1
|
Turner DA, Martinez Arias A. Three-dimensional stem cell models of mammalian gastrulation. Bioessays 2024; 46:e2400123. [PMID: 39194406 PMCID: PMC11589689 DOI: 10.1002/bies.202400123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Revised: 07/24/2024] [Accepted: 08/06/2024] [Indexed: 08/29/2024]
Abstract
Gastrulation is a key milestone in the development of an organism. It is a period of cell proliferation and coordinated cellular rearrangement, that creates an outline of the body plan. Our current understanding of mammalian gastrulation has been improved by embryo culture, but there are still many open questions that are difficult to address because of the intrauterine development of the embryos and the low number of specimens. In the case of humans, there are additional difficulties associated with technical and ethical challenges. Over the last few years, pluripotent stem cell models are being developed that have the potential to become useful tools to understand the mammalian gastrulation. Here we review these models with a special emphasis on gastruloids and provide a survey of the methods to produce them robustly, their uses, relationship to embryos, and their prospects as well as their limitations.
Collapse
Affiliation(s)
- David A. Turner
- Institute of Life Course and Medical Sciences, William Henry Duncan Building, Faculty of Health and Life SciencesUniversity of LiverpoolLiverpoolUK
| | | |
Collapse
|
2
|
Gallo E, De Renzis S, Sharpe J, Mayor R, Hartmann J. Versatile system cores as a conceptual basis for generality in cell and developmental biology. Cell Syst 2024; 15:790-807. [PMID: 39236709 DOI: 10.1016/j.cels.2024.08.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Revised: 05/26/2024] [Accepted: 08/07/2024] [Indexed: 09/07/2024]
Abstract
The discovery of general principles underlying the complexity and diversity of cellular and developmental systems is a central and long-standing aim of biology. While new technologies collect data at an ever-accelerating rate, there is growing concern that conceptual progress is not keeping pace. We contend that this is due to a paucity of conceptual frameworks that support meaningful generalizations. This led us to develop the core and periphery (C&P) hypothesis, which posits that many biological systems can be decomposed into a highly versatile core with a large behavioral repertoire and a specific periphery that configures said core to perform one particular function. Versatile cores tend to be widely reused across biology, which confers generality to theories describing them. Here, we introduce this concept and describe examples at multiple scales, including Turing patterning, actomyosin dynamics, multi-cellular morphogenesis, and vertebrate gastrulation. We also sketch its evolutionary basis and discuss key implications and open questions. We propose that the C&P hypothesis could unlock new avenues of conceptual progress in mesoscale biology.
Collapse
Affiliation(s)
- Elisa Gallo
- Institute of Molecular Life Sciences, University of Zurich (UZH), 8057 Zurich, Switzerland
| | - Stefano De Renzis
- Developmental Biology Unit, European Molecular Biology Laboratory (EMBL), 69117 Heidelberg, Germany
| | - James Sharpe
- EMBL Barcelona, European Molecular Biology Laboratory (EMBL), 08003 Barcelona, Spain; Institució Catalana de Recerca i Estudis Avançats, 08010 Barcelona, Spain
| | - Roberto Mayor
- Department of Cell and Developmental Biology, University College London, London WC1E 6BT, UK
| | - Jonas Hartmann
- Institute of Molecular Life Sciences, University of Zurich (UZH), 8057 Zurich, Switzerland; Developmental Biology Unit, European Molecular Biology Laboratory (EMBL), 69117 Heidelberg, Germany; EMBL Barcelona, European Molecular Biology Laboratory (EMBL), 08003 Barcelona, Spain; Department of Cell and Developmental Biology, University College London, London WC1E 6BT, UK; Northwestern Institute on Complex Systems, Northwestern University, Evanston, IL 60208, USA; Department of Chemical and Biological Engineering, Northwestern University, Evanston, IL 60208, USA.
| |
Collapse
|
3
|
Harmoush B, Viebahn C, Tsikolia N. Development of node architecture and emergence of molecular organizer characteristics in the pig embryo. Dev Dyn 2024. [PMID: 38733144 DOI: 10.1002/dvdy.715] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2023] [Revised: 03/17/2024] [Accepted: 03/30/2024] [Indexed: 05/13/2024] Open
Abstract
BACKGROUND The avian node is the equivalent of the amphibian Spemann's organizer, as indicated by its ability to induce a secondary axis, cellular contribution, and gene expression, whereas the node of the mouse, which displays limited inductive capacities, was suggested to be a part of spatially distributed signaling. Furthermore, the structural identity of the mouse node is subject of controversy, while little is known about equivalent structures in other mammals. RESULTS We analyzed the node and emerging organizer in the pig using morphology and the expression of selected organizer genes prior to and during gastrulation. The node was defined according to the "four-quarter model" based on comparative consideration. The node of the pig displays a multilayered, dense structure that includes columnar epithelium, bottle-like cells in the dorsal part, and mesenchymal cells ventrally. Expression of goosecoid (gsc), chordin, and brachyury, together with morphology, reveal the consecutive emergence of three distinct domains: the gastrulation precursor domain, the presumptive node, and the mature node. Additionally, gsc displays a ventral expression domain prior to epiblast epithelialization. CONCLUSION Our study defines the morphological and molecular context of the emerging organizer equivalent in the pig and suggests a sequential development of its function.
Collapse
Affiliation(s)
- Braah Harmoush
- Institute of Anatomy and Cell Biology, University Medical Centre Göttingen, Göttingen, Germany
| | - Christoph Viebahn
- Institute of Anatomy and Cell Biology, University Medical Centre Göttingen, Göttingen, Germany
| | - Nikoloz Tsikolia
- Institute of Anatomy and Cell Biology, University Medical Centre Göttingen, Göttingen, Germany
| |
Collapse
|
4
|
Schmidt C, Deyett A, Ilmer T, Haendeler S, Torres Caballero A, Novatchkova M, Netzer MA, Ceci Ginistrelli L, Mancheno Juncosa E, Bhattacharya T, Mujadzic A, Pimpale L, Jahnel SM, Cirigliano M, Reumann D, Tavernini K, Papai N, Hering S, Hofbauer P, Mendjan S. Multi-chamber cardioids unravel human heart development and cardiac defects. Cell 2023; 186:5587-5605.e27. [PMID: 38029745 DOI: 10.1016/j.cell.2023.10.030] [Citation(s) in RCA: 48] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Revised: 07/31/2023] [Accepted: 10/30/2023] [Indexed: 12/01/2023]
Abstract
The number one cause of human fetal death are defects in heart development. Because the human embryonic heart is inaccessible and the impacts of mutations, drugs, and environmental factors on the specialized functions of different heart compartments are not captured by in vitro models, determining the underlying causes is difficult. Here, we established a human cardioid platform that recapitulates the development of all major embryonic heart compartments, including right and left ventricles, atria, outflow tract, and atrioventricular canal. By leveraging 2D and 3D differentiation, we efficiently generated progenitor subsets with distinct first, anterior, and posterior second heart field identities. This advance enabled the reproducible generation of cardioids with compartment-specific in vivo-like gene expression profiles, morphologies, and functions. We used this platform to unravel the ontogeny of signal and contraction propagation between interacting heart chambers and dissect how mutations, teratogens, and drugs cause compartment-specific defects in the developing human heart.
Collapse
Affiliation(s)
- Clara Schmidt
- Institute of Molecular Biotechnology of the Austrian Academy of Sciences (IMBA), Dr. Bohr Gasse 3, 1030 Vienna, Austria; Vienna BioCenter PhD Program, Doctoral School of the University of Vienna, and Medical University of Vienna, 1030 Vienna, Austria
| | - Alison Deyett
- Institute of Molecular Biotechnology of the Austrian Academy of Sciences (IMBA), Dr. Bohr Gasse 3, 1030 Vienna, Austria; Vienna BioCenter PhD Program, Doctoral School of the University of Vienna, and Medical University of Vienna, 1030 Vienna, Austria
| | - Tobias Ilmer
- Institute of Molecular Biotechnology of the Austrian Academy of Sciences (IMBA), Dr. Bohr Gasse 3, 1030 Vienna, Austria; FH Campus Wien, Favoritenstraße 226, 1100 Vienna, Austria
| | - Simon Haendeler
- Center for Integrative Bioinformatics Vienna, Max Perutz Laboratories, University of Vienna, Medical University of Vienna, 1030 Vienna, Austria; Vienna BioCenter PhD Program, Doctoral School of the University of Vienna, and Medical University of Vienna, 1030 Vienna, Austria
| | - Aranxa Torres Caballero
- Institute of Molecular Biotechnology of the Austrian Academy of Sciences (IMBA), Dr. Bohr Gasse 3, 1030 Vienna, Austria
| | - Maria Novatchkova
- Institute of Molecular Pathology (IMP), Campus-Vienna-Biocenter, 1030 Vienna, Austria
| | - Michael A Netzer
- Division of Pharmacology and Toxicology, University of Vienna, Josef-Holaubek-Platz 2, 1090 Vienna, Austria
| | - Lavinia Ceci Ginistrelli
- Institute of Molecular Biotechnology of the Austrian Academy of Sciences (IMBA), Dr. Bohr Gasse 3, 1030 Vienna, Austria; Vienna BioCenter PhD Program, Doctoral School of the University of Vienna, and Medical University of Vienna, 1030 Vienna, Austria
| | - Estela Mancheno Juncosa
- Institute of Molecular Biotechnology of the Austrian Academy of Sciences (IMBA), Dr. Bohr Gasse 3, 1030 Vienna, Austria; Vienna BioCenter PhD Program, Doctoral School of the University of Vienna, and Medical University of Vienna, 1030 Vienna, Austria
| | - Tanishta Bhattacharya
- Institute of Molecular Biotechnology of the Austrian Academy of Sciences (IMBA), Dr. Bohr Gasse 3, 1030 Vienna, Austria
| | - Amra Mujadzic
- Institute of Molecular Biotechnology of the Austrian Academy of Sciences (IMBA), Dr. Bohr Gasse 3, 1030 Vienna, Austria
| | - Lokesh Pimpale
- HeartBeat.bio AG, Dr. Bohr Gasse 7, 1030 Vienna, Austria
| | - Stefan M Jahnel
- Institute of Molecular Biotechnology of the Austrian Academy of Sciences (IMBA), Dr. Bohr Gasse 3, 1030 Vienna, Austria
| | - Martina Cirigliano
- Institute of Molecular Biotechnology of the Austrian Academy of Sciences (IMBA), Dr. Bohr Gasse 3, 1030 Vienna, Austria
| | - Daniel Reumann
- Institute of Molecular Biotechnology of the Austrian Academy of Sciences (IMBA), Dr. Bohr Gasse 3, 1030 Vienna, Austria; Vienna BioCenter PhD Program, Doctoral School of the University of Vienna, and Medical University of Vienna, 1030 Vienna, Austria
| | - Katherina Tavernini
- Institute of Molecular Biotechnology of the Austrian Academy of Sciences (IMBA), Dr. Bohr Gasse 3, 1030 Vienna, Austria; Vienna BioCenter PhD Program, Doctoral School of the University of Vienna, and Medical University of Vienna, 1030 Vienna, Austria
| | - Nora Papai
- Institute of Molecular Biotechnology of the Austrian Academy of Sciences (IMBA), Dr. Bohr Gasse 3, 1030 Vienna, Austria; Vienna BioCenter PhD Program, Doctoral School of the University of Vienna, and Medical University of Vienna, 1030 Vienna, Austria
| | - Steffen Hering
- Division of Pharmacology and Toxicology, University of Vienna, Josef-Holaubek-Platz 2, 1090 Vienna, Austria
| | - Pablo Hofbauer
- HeartBeat.bio AG, Dr. Bohr Gasse 7, 1030 Vienna, Austria
| | - Sasha Mendjan
- Institute of Molecular Biotechnology of the Austrian Academy of Sciences (IMBA), Dr. Bohr Gasse 3, 1030 Vienna, Austria.
| |
Collapse
|
5
|
Amel A, Rabeling A, Rossouw S, Goolam M. Wnt and BMP signalling direct anterior-posterior differentiation in aggregates of mouse embryonic stem cells. Biol Open 2023; 12:bio059981. [PMID: 37622734 PMCID: PMC10508691 DOI: 10.1242/bio.059981] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Accepted: 08/22/2023] [Indexed: 08/26/2023] Open
Abstract
Stem-cell-based embryo models have allowed greater insight into peri-implantation mammalian developmental events that are otherwise difficult to manipulate due to the inaccessibility of the early embryo. The rapid development of this field has resulted in the precise roles of frequently used supplements such as N2, B27 and Chiron in driving stem cell lineage commitment not being clearly defined. Here, we investigate the effects of these supplements on embryoid bodies to better understand their roles in stem cell differentiation. We show that Wnt signalling has a general posteriorising effect on stem cell aggregates and directs differentiation towards the mesoderm, as confirmed through the upregulation of posterior and mesodermal markers. N2 and B27 can mitigate these effects and upregulate the expression of anterior markers. To control the Wnt gradient and the subsequent anterior versus posterior fate, we make use of a BMP4 signalling centre and show that aggregates in these conditions express cephalic markers. These findings indicate that there is an intricate balance between various culture supplements and their ability to guide differentiation in stem cell embryo models.
Collapse
Affiliation(s)
- Atoosa Amel
- Department of Human Biology, University of Cape Town, Cape Town 7925, South Africa
| | - Alexa Rabeling
- Department of Human Biology, University of Cape Town, Cape Town 7925, South Africa
| | - Simoné Rossouw
- Department of Human Biology, University of Cape Town, Cape Town 7925, South Africa
| | - Mubeen Goolam
- Department of Human Biology, University of Cape Town, Cape Town 7925, South Africa
- UCT Neuroscience Institute, Cape Town, South Africa
| |
Collapse
|
6
|
Yu Y, Liu T, Yu G, Wang H, Du Z, Chen Y, Yang N, Cao K, Liu C, Wan Z, Shen H, Gao F, Yang Y, Zhang W. PRDM15 interacts with DNA-PK-Ku complex to promote radioresistance in rectal cancer by facilitating DNA damage repair. Cell Death Dis 2022; 13:978. [PMID: 36402747 PMCID: PMC9675803 DOI: 10.1038/s41419-022-05402-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Revised: 10/30/2022] [Accepted: 11/03/2022] [Indexed: 11/21/2022]
Abstract
Neoadjuvant radiotherapy is a standard treatment for locally advanced rectal cancer, however, resistance to chemoradiotherapy is one of the main obstacles to improving treatment outcomes. The goal of this study was to explore the role of PRDM15 involved in the radioresistance of colorectal cancer and to clarify the underlying mechanism. In present study, we demonstrated that, after DNA damage, PRDM15 was upregulated and localized to DNA damage sites, co-localizing with γ-H2AX. Knockdown of PRDM15 inhibited DNA damage repair and increased radiosensitivity in colorectal cancer cells. Mechanistically, PRDM15 promoted DNA repair by interacting with DNA-PKcs and Ku70/Ku80 complex. In preclinical models of rectal cancer, knockdown of PRDM15 sensitized cell derived xenograft and patient derived xenograft to radiotherapy. In 80 rectal cancer patients treated with neoadjuvant chemoradiotherapy, higher PRDM15 expression was observed associated with weaker tumor regression and poorer prognosis. Our findings revealed that inhibiting PRDM15 was potent to overcome radioresistance through abrogating DNA repair in colorectal cancer cells. Additionally, the expression level of PRDM15 could be applied to predict radiotherapy responsiveness and the outcome of neoadjuvant radiotherapy in rectal cancer patients.
Collapse
Affiliation(s)
- Yue Yu
- grid.73113.370000 0004 0369 1660Department of Colorectal Surgery, Changhai Hospital, Naval Medical University, Shanghai, China
| | - Tingting Liu
- grid.73113.370000 0004 0369 1660Department of Radiation Medicine, Faculty of Naval Medicine, Naval Medical University, Shanghai, China
| | - Guanyu Yu
- grid.73113.370000 0004 0369 1660Department of Colorectal Surgery, Changhai Hospital, Naval Medical University, Shanghai, China
| | - Hang Wang
- grid.73113.370000 0004 0369 1660Department of Radiation Medicine, Faculty of Naval Medicine, Naval Medical University, Shanghai, China
| | - Zhipeng Du
- grid.73113.370000 0004 0369 1660Department of Colorectal Surgery, Changhai Hospital, Naval Medical University, Shanghai, China ,grid.268099.c0000 0001 0348 3990School of Public Health and Management, Wenzhou Medical University, University Town, Wenzhou, Zhejiang China
| | - Yuanyuan Chen
- grid.73113.370000 0004 0369 1660Department of Radiation Medicine, Faculty of Naval Medicine, Naval Medical University, Shanghai, China
| | - Nan Yang
- Pharmacy Department, Qingdao Special Servicemen Recuperation Center of CPLA Navy, Qingdao, 266071 China
| | - Kun Cao
- grid.73113.370000 0004 0369 1660Department of Radiation Medicine, Faculty of Naval Medicine, Naval Medical University, Shanghai, China
| | - Chunlei Liu
- grid.512114.20000 0004 8512 7501Chifeng Municipal Hospital, Chifeng Clinical Medical School of Inner Mongolia Medical University, Chifeng, 024000 China
| | - Zhijie Wan
- grid.73113.370000 0004 0369 1660Department of Radiation Medicine, Faculty of Naval Medicine, Naval Medical University, Shanghai, China
| | - Hui Shen
- grid.73113.370000 0004 0369 1660Department of Radiation Medicine, Faculty of Naval Medicine, Naval Medical University, Shanghai, China
| | - Fu Gao
- grid.73113.370000 0004 0369 1660Department of Radiation Medicine, Faculty of Naval Medicine, Naval Medical University, Shanghai, China
| | - Yanyong Yang
- grid.73113.370000 0004 0369 1660Department of Radiation Medicine, Faculty of Naval Medicine, Naval Medical University, Shanghai, China
| | - Wei Zhang
- grid.73113.370000 0004 0369 1660Department of Colorectal Surgery, Changhai Hospital, Naval Medical University, Shanghai, China
| |
Collapse
|
7
|
Chen T, Alcorn H, Devbhandari S, Remus D, Lacy E, Huangfu D, Anderson KV. A hypomorphic mutation in Pold1 disrupts the coordination of embryo size expansion and morphogenesis during gastrulation. Biol Open 2022; 11:bio059307. [PMID: 35876795 PMCID: PMC9382117 DOI: 10.1242/bio.059307] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Accepted: 06/30/2022] [Indexed: 12/02/2022] Open
Abstract
Formation of a properly sized and patterned embryo during gastrulation requires a well-coordinated interplay between cell proliferation, lineage specification and tissue morphogenesis. Following transient physical or pharmacological manipulations of embryo size, pre-gastrulation mouse embryos show remarkable plasticity to recover and resume normal development. However, it remains unclear how mechanisms driving lineage specification and morphogenesis respond to defects in cell proliferation during and after gastrulation. Null mutations in DNA replication or cell-cycle-related genes frequently lead to cell-cycle arrest and reduced cell proliferation, resulting in developmental arrest before the onset of gastrulation; such early lethality precludes studies aiming to determine the impact of cell proliferation on lineage specification and morphogenesis during gastrulation. From an unbiased ENU mutagenesis screen, we discovered a mouse mutant, tiny siren (tyrn), that carries a hypomorphic mutation producing an aspartate to tyrosine (D939Y) substitution in Pold1, the catalytic subunit of DNA polymerase δ. Impaired cell proliferation in the tyrn mutant leaves anterior-posterior patterning unperturbed during gastrulation but results in reduced embryo size and severe morphogenetic defects. Our analyses show that the successful execution of morphogenetic events during gastrulation requires that lineage specification and the ordered production of differentiated cell types occur in concordance with embryonic growth.
Collapse
Affiliation(s)
- Tingxu Chen
- Developmental Biology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
- Louis V. Gerstner Jr. Graduate School of Biomedical Sciences, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Heather Alcorn
- Developmental Biology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Sujan Devbhandari
- Molecular Biology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Dirk Remus
- Molecular Biology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Elizabeth Lacy
- Developmental Biology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Danwei Huangfu
- Developmental Biology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Kathryn V. Anderson
- Developmental Biology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| |
Collapse
|
8
|
Abdalkader R, Kamei KI. An efficient simplified method for the generation of corneal epithelial cells from human pluripotent stem cells. Hum Cell 2022; 35:1016-1029. [PMID: 35553384 DOI: 10.1007/s13577-022-00713-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2022] [Accepted: 04/27/2022] [Indexed: 01/23/2023]
Abstract
Corneal epithelial cells derived from human pluripotent stem cells (hPSCs) are an important cell source for preclinical models to test ophthalmic drugs. However, current differentiation protocols lack instructions regarding optimal culturing conditions, which hinders the quality of cells and limits scale-up. Here, we introduce a simplified small molecule-based corneal induction method (SSM-CI) to generate corneal epithelial cells from hPSCs. SSM-CI provides the advantage of minimizing cell-culturing time using two defined culturing media containing TGF-β, and Wnt/β-catenin pathway inhibitors, and bFGF growth factor over 25 days. Compared to the conventional human corneal epithelial cell line (HCE-T) and human primary corneal epithelial cells (hPCEpCs), corneal epithelial cells generated by SSM-CI are well differentiated and express relevant maturation markers, including PAX6 and CK12. RNA-seq analysis indicated the faithful differentiation of hPSCs into corneal epithelia, with significant upregulation of corneal progenitor and adult corneal epithelial phenotypes. Furthermore, despite the initial inhibition of TGF-β and Wnt/β-catenin, upregulation of these pathway-related transcripts was observed in the later stages, indicating their necessity in the generation of mature corneal epithelial cells. Moreover, we observed a shift in gene signatures associated with the metabolic characteristics of mature corneal epithelial cells, involving a decrease in glycolysis and an increase in fatty acid oxidation. This was also attributed to the overexpression of metabolic enzymes and transporter-related transcripts responsible for fatty acid metabolism. Thus, SSM-CI provides a comprehensive method for the generation of functional corneal epithelial cells for use in preclinical models.
Collapse
Affiliation(s)
- Rodi Abdalkader
- Ritsumeikan Global Innovation Research Organization (R-GIRO), Ritsumeikan University, 1-1-1 Noji-Higashi, Kusatsu, Shiga, 525-8577, Japan.
| | - Ken-Ichiro Kamei
- Institute for Integrated Cell-Material Sciences (WPI-iCeMS), Kyoto University, Yoshida-Ushinomiya-cho, Sakyo-ku, Kyoto, 606-8501, Japan. .,Wuya College of Innovation, Shenyang Pharmaceutical University, Liaoning, 110016, People's Republic of China. .,Department of Pharmaceutics, Shenyang Pharmaceutical University, Liaoning, 110016, People's Republic of China.
| |
Collapse
|
9
|
McMahon R, Sibbritt T, Aryamanesh N, Masamsetti VP, Tam PPL. Loss of Foxd4 Impacts Neurulation and Cranial Neural Crest Specification During Early Head Development. Front Cell Dev Biol 2022; 9:777652. [PMID: 35178396 PMCID: PMC8843869 DOI: 10.3389/fcell.2021.777652] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Accepted: 12/30/2021] [Indexed: 11/19/2022] Open
Abstract
The specification of anterior head tissue in the late gastrulation mouse embryo relies on signaling cues from the visceral endoderm and anterior mesendoderm (AME). Genetic loss-of-function studies have pinpointed a critical requirement of LIM homeobox 1 (LHX1) transcription factor in these tissues for the formation of the embryonic head. Transcriptome analysis of embryos with gain-of-function LHX1 activity identified the forkhead box gene, Foxd4, as one downstream target of LHX1 in late-gastrulation E7.75 embryos. Our analysis of single-cell RNA-seq data show Foxd4 is co-expressed with Lhx1 and Foxa2 in the anterior midline tissue of E7.75 mouse embryos, and in the anterior neuroectoderm (ANE) at E8.25 alongside head organizer genes Otx2 and Hesx1. To study the role of Foxd4 during early development we used CRISPR-Cas9 gene editing in mouse embryonic stem cells (mESCs) to generate bi-allelic frameshift mutations in the coding sequence of Foxd4. In an in vitro model of the anterior neural tissues derived from Foxd4-loss of function (LOF) mESCs and extraembryonic endoderm cells, expression of head organizer genes as well as Zic1 and Zic2 was reduced, pointing to a need for FOXD4 in regulating early neuroectoderm development. Mid-gestation mouse chimeras harbouring Foxd4-LOF mESCs displayed craniofacial malformations and neural tube closure defects. Furthermore, our in vitro data showed a loss of FOXD4 impacts the expression of cranial neural crest markers Twist1 and Sox9. Our findings have demonstrated that FOXD4 is essential in the AME and later in the ANE for rostral neural tube closure and neural crest specification during head development.
Collapse
Affiliation(s)
- Riley McMahon
- Embryology Research Unit, Children's Medical Research Institute, Sydney, NSW, Australia.,School of Medical Sciences, Faculty of Medicine and Health, The University of Sydney, Darlington, NSW, Australia
| | - Tennille Sibbritt
- Embryology Research Unit, Children's Medical Research Institute, Sydney, NSW, Australia
| | - Nadar Aryamanesh
- Embryology Research Unit, Children's Medical Research Institute, Sydney, NSW, Australia
| | - V Pragathi Masamsetti
- Embryology Research Unit, Children's Medical Research Institute, Sydney, NSW, Australia.,School of Medical Sciences, Faculty of Medicine and Health, The University of Sydney, Darlington, NSW, Australia
| | - Patrick P L Tam
- Embryology Research Unit, Children's Medical Research Institute, Sydney, NSW, Australia.,School of Medical Sciences, Faculty of Medicine and Health, The University of Sydney, Darlington, NSW, Australia
| |
Collapse
|
10
|
Barratt KS, Drover KA, Thomas ZM, Arkell RM. Patterning of the antero-ventral mammalian brain: Lessons from holoprosencephaly comparative biology in man and mouse. WIREs Mech Dis 2022; 14:e1552. [PMID: 35137563 DOI: 10.1002/wsbm.1552] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Revised: 11/30/2021] [Accepted: 12/21/2021] [Indexed: 12/13/2022]
Abstract
Adult form and function are dependent upon the activity of specialized signaling centers that act early in development at the embryonic midline. These centers instruct the surrounding cells to adopt a positional fate and to form the patterned structures of the phylotypic embryo. Abnormalities in these processes have devastating consequences for the individual, as exemplified by holoprosencephaly in which anterior midline development fails, leading to structural defects of the brain and/or face. In the 25 years since the first association between human holoprosencephaly and the sonic hedgehog gene, a combination of human and animal genetic studies have enhanced our understanding of the genetic and embryonic causation of this congenital defect. Comparative biology has extended the holoprosencephaly network via the inclusion of gene mutations from multiple signaling pathways known to be required for anterior midline formation. It has also clarified aspects of holoprosencephaly causation, showing that it arises when a deleterious variant is present within a permissive genome, and that environmental factors, as well as embryonic stochasticity, influence the phenotypic outcome of the variant. More than two decades of research can now be distilled into a framework of embryonic and genetic causation. This framework means we are poised to move beyond our current understanding of variants in signaling pathway molecules. The challenges now at the forefront of holoprosencephaly research include deciphering how the mutation of genes involved in basic cell processes can also cause holoprosencephaly, determining the important constituents of the holoprosencephaly permissive genome, and identifying environmental compounds that promote holoprosencephaly. This article is categorized under: Congenital Diseases > Stem Cells and Development Congenital Diseases > Genetics/Genomics/Epigenetics Congenital Diseases > Molecular and Cellular Physiology Congenital Diseases > Environmental Factors.
Collapse
Affiliation(s)
- Kristen S Barratt
- John Curtin School of Medical Research, The Australian National University, Canberra, Australian Capital Territory, Australia
| | - Kyle A Drover
- John Curtin School of Medical Research, The Australian National University, Canberra, Australian Capital Territory, Australia
| | - Zoe M Thomas
- John Curtin School of Medical Research, The Australian National University, Canberra, Australian Capital Territory, Australia
| | - Ruth M Arkell
- John Curtin School of Medical Research, The Australian National University, Canberra, Australian Capital Territory, Australia
| |
Collapse
|
11
|
Bérenger-Currias NM, Mircea M, Adegeest E, van den Berg PR, Feliksik M, Hochane M, Idema T, Tans SJ, Semrau S. A gastruloid model of the interaction between embryonic and extra-embryonic cell types. J Tissue Eng 2022; 13:20417314221103042. [PMID: 35707767 PMCID: PMC9189523 DOI: 10.1177/20417314221103042] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Accepted: 05/10/2022] [Indexed: 12/11/2022] Open
Abstract
Stem-cell derived in vitro systems, such as organoids or embryoids, hold great
potential for modeling in vivo development. Full control over their initial
composition, scalability, and easily measurable dynamics make those systems
useful for studying specific developmental processes in isolation. Here we
report the formation of gastruloids consisting of mouse embryonic stem cells
(mESCs) and extraembryonic endoderm (XEN) cells. These XEN-enhanced gastruloids
(XEGs) exhibit the formation of neural epithelia, which are absent in
gastruloids derived from mESCs only. By single-cell RNA-seq, imaging, and
differentiation experiments, we demonstrate the neural characteristics of the
epithelial tissue. We further show that the mESCs induce the differentiation of
the XEN cells to a visceral endoderm-like state. Finally, we demonstrate that
local inhibition of WNT signaling and production of a basement membrane by the
XEN cells underlie the formation of the neuroepithelial tissue. In summary, we
establish XEGs to explore heterotypic cellular interactions and their
developmental consequences in vitro.
Collapse
Affiliation(s)
- Noémie Mlp Bérenger-Currias
- Department of Physics, Leiden University, Leiden, The Netherlands.,Delft University of Technology, Department of Bionanoscience, Kavli Institute of Nanoscience, Delft, The Netherlands
| | - Maria Mircea
- Department of Physics, Leiden University, Leiden, The Netherlands
| | - Esmée Adegeest
- Department of Physics, Leiden University, Leiden, The Netherlands
| | | | - Marleen Feliksik
- Department of Physics, Leiden University, Leiden, The Netherlands
| | - Mazène Hochane
- Department of Physics, Leiden University, Leiden, The Netherlands
| | - Timon Idema
- Delft University of Technology, Department of Bionanoscience, Kavli Institute of Nanoscience, Delft, The Netherlands
| | - Sander J Tans
- Delft University of Technology, Department of Bionanoscience, Kavli Institute of Nanoscience, Delft, The Netherlands.,AMOLF, Amsterdam, The Netherlands
| | - Stefan Semrau
- Department of Physics, Leiden University, Leiden, The Netherlands
| |
Collapse
|
12
|
Steventon B, Busby L, Arias AM. Establishment of the vertebrate body plan: Rethinking gastrulation through stem cell models of early embryogenesis. Dev Cell 2021; 56:2405-2418. [PMID: 34520764 DOI: 10.1016/j.devcel.2021.08.012] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Revised: 07/20/2021] [Accepted: 08/14/2021] [Indexed: 12/28/2022]
Abstract
A striking property of vertebrate embryos is the emergence of a conserved body plan across a wide range of organisms through the process of gastrulation. As the body plan unfolds, gene regulatory networks (GRNs) and multicellular interactions (cell regulatory networks, CRNs) combine to generate a conserved set of morphogenetic events that lead to the phylotypic stage. Interrogation of these multilevel interactions requires manipulation of the mechanical environment, which is difficult in vivo. We review recent studies of stem cell models of early embryogenesis from different species showing that, independent of species origin, cells in culture form similar structures. The main difference between embryos and in vitro models is the boundary conditions of the multicellular ensembles. We discuss these observations and suggest that the mechanical and geometric boundary conditions of different embryos before gastrulation hide a morphogenetic ground state that is revealed in the stem-cell-based models of embryo development.
Collapse
Affiliation(s)
| | - Lara Busby
- Department of Genetics, University of Cambridge, Cambridge CB2 3EH, UK
| | - Alfonso Martinez Arias
- Systems Bioengineering, DCEXS, Universidad Pompeu Fabra, Doctor Aiguader, 88 ICREA, Pag Lluis Companys 23, Barcelona, Spain.
| |
Collapse
|
13
|
van den Brink SC, van Oudenaarden A. 3D gastruloids: a novel frontier in stem cell-based in vitro modeling of mammalian gastrulation. Trends Cell Biol 2021; 31:747-759. [PMID: 34304959 DOI: 10.1016/j.tcb.2021.06.007] [Citation(s) in RCA: 62] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2021] [Revised: 06/16/2021] [Accepted: 06/18/2021] [Indexed: 12/24/2022]
Abstract
3D gastruloids, aggregates of embryonic stem cells that recapitulate key aspects of gastrula-stage embryos, have emerged as a powerful tool to study the early stages of mammalian post-implantation development in vitro. Owing to their tractable nature and the relative ease by which they can be generated in large numbers, 3D gastruloids provide an unparalleled opportunity to study normal and pathological embryogenesis from a bottom-up perspective and in a high-throughput manner. Here, we review how gastruloid models can be exploited to deepen our understanding of mammalian development. In addition, we discuss current limitations, potential clinical applications, and ethical implications of this emerging model system.
Collapse
Affiliation(s)
- Susanne C van den Brink
- Oncode Institute, Hubrecht Institute-KNAW (Royal Netherlands Academy of Arts and Sciences) and University Medical Center Utrecht, Utrecht, The Netherlands.
| | - Alexander van Oudenaarden
- Oncode Institute, Hubrecht Institute-KNAW (Royal Netherlands Academy of Arts and Sciences) and University Medical Center Utrecht, Utrecht, The Netherlands
| |
Collapse
|
14
|
Sozen B, Cornwall-Scoones J, Zernicka-Goetz M. The dynamics of morphogenesis in stem cell-based embryology: Novel insights for symmetry breaking. Dev Biol 2021; 474:82-90. [PMID: 33333067 PMCID: PMC8259461 DOI: 10.1016/j.ydbio.2020.12.005] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2020] [Revised: 12/05/2020] [Accepted: 12/07/2020] [Indexed: 12/14/2022]
Abstract
Breaking embryonic symmetry is an essential prerequisite to shape the initially symmetric embryo into a highly organized body plan that serves as the blueprint of the adult organism. This critical process is driven by morphogen signaling gradients that instruct anteroposterior axis specification. Despite its fundamental importance, what triggers symmetry breaking and how the signaling gradients are established in time and space in the mammalian embryo remain largely unknown. Stem cell-based in vitro models of embryogenesis offer an unprecedented opportunity to quantitatively dissect the multiple physical and molecular processes that shape the mammalian embryo. Here we review biochemical mechanisms governing early mammalian patterning in vivo and highlight recent advances to recreate this in vitro using stem cells. We discuss how the novel insights from these model systems extend previously proposed concepts to illuminate the extent to which embryonic cells have the intrinsic capability to generate specific, reproducible patterns during embryogenesis.
Collapse
Affiliation(s)
- Berna Sozen
- California Institute of Technology, Division of Biology and Biological Engineering, 1200 E. California Boulevard, Pasadena, CA, 91125, USA; Yale University School of Medicine, Department of Genetics, New Haven, CT, 06510, USA.
| | - Jake Cornwall-Scoones
- California Institute of Technology, Division of Biology and Biological Engineering, 1200 E. California Boulevard, Pasadena, CA, 91125, USA; Developmental Dynamics Laboratory, The Francis Crick Institute, London, NW1 1AT, UK
| | - Magdalena Zernicka-Goetz
- California Institute of Technology, Division of Biology and Biological Engineering, 1200 E. California Boulevard, Pasadena, CA, 91125, USA; Mammalian Embryo and Stem Cell Group, University of Cambridge, Department of Physiology, Development and Neuroscience, Cambridge, CB2 3EG, UK.
| |
Collapse
|
15
|
Dinh TTH, Iseki H, Mizuno S, Iijima-Mizuno S, Tanimoto Y, Daitoku Y, Kato K, Hamada Y, Hasan ASH, Suzuki H, Murata K, Muratani M, Ema M, Kim JD, Ishida J, Fukamizu A, Kato M, Takahashi S, Yagami KI, Wilson V, Arkell RM, Sugiyama F. Disruption of entire Cables2 locus leads to embryonic lethality by diminished Rps21 gene expression and enhanced p53 pathway. eLife 2021; 10:50346. [PMID: 33949947 PMCID: PMC8099427 DOI: 10.7554/elife.50346] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2019] [Accepted: 04/19/2021] [Indexed: 11/25/2022] Open
Abstract
In vivo function of CDK5 and Abl enzyme substrate 2 (Cables2), belonging to the Cables protein family, is unknown. Here, we found that targeted disruption of the entire Cables2 locus (Cables2d) caused growth retardation and enhanced apoptosis at the gastrulation stage and then induced embryonic lethality in mice. Comparative transcriptome analysis revealed disruption of Cables2, 50% down-regulation of Rps21 abutting on the Cables2 locus, and up-regulation of p53-target genes in Cables2d gastrulas. We further revealed the lethality phenotype in Rps21-deleted mice and unexpectedly, the exon 1-deleted Cables2 mice survived. Interestingly, chimeric mice derived from Cables2d ESCs carrying exogenous Cables2 and tetraploid wild-type embryo overcame gastrulation. These results suggest that the diminished expression of Rps21 and the completed lack of Cables2 expression are intricately involved in the embryonic lethality via the p53 pathway. This study sheds light on the importance of Cables2 locus in mouse embryonic development.
Collapse
Affiliation(s)
- Tra Thi Huong Dinh
- Laboratory Animal Resource Center, Faculty of Medicine, University of Tsukuba, Tsukuba, Japan.,Ph.D. Program in Human Biology, School of Integrative and Global Majors (SIGMA), University of Tsukuba, Tsukuba, Japan.,Department of Traditional Medicine, University of Medicine and Pharmacy, Ho Chi Minh City, Viet Nam.,Transborder Medical Research Center, Faculty of Medicine, University of Tsukuba, Tsukuba, Japan
| | - Hiroyoshi Iseki
- Laboratory Animal Resource Center, Faculty of Medicine, University of Tsukuba, Tsukuba, Japan.,International Institute for Integrative Sleep Medicine (WPI-IIIS), University of Tsukuba, Tsukuba, Japan
| | - Seiya Mizuno
- Laboratory Animal Resource Center, Faculty of Medicine, University of Tsukuba, Tsukuba, Japan.,Transborder Medical Research Center, Faculty of Medicine, University of Tsukuba, Tsukuba, Japan
| | - Saori Iijima-Mizuno
- Laboratory Animal Resource Center, Faculty of Medicine, University of Tsukuba, Tsukuba, Japan.,Experimental Animal Division, RIKEN BioResource Research Center, Tsukuba, Japan
| | - Yoko Tanimoto
- Laboratory Animal Resource Center, Faculty of Medicine, University of Tsukuba, Tsukuba, Japan
| | - Yoko Daitoku
- Laboratory Animal Resource Center, Faculty of Medicine, University of Tsukuba, Tsukuba, Japan
| | - Kanako Kato
- Laboratory Animal Resource Center, Faculty of Medicine, University of Tsukuba, Tsukuba, Japan
| | - Yuko Hamada
- Laboratory Animal Resource Center, Faculty of Medicine, University of Tsukuba, Tsukuba, Japan
| | - Ammar Shaker Hamed Hasan
- Laboratory Animal Resource Center, Faculty of Medicine, University of Tsukuba, Tsukuba, Japan.,Doctor's Program in Biomedical Sciences, Graduate School of Comprehensive Human Science, University of Tsukuba, Tsukuba, Japan
| | - Hayate Suzuki
- Laboratory Animal Resource Center, Faculty of Medicine, University of Tsukuba, Tsukuba, Japan.,Doctor's Program in Biomedical Sciences, Graduate School of Comprehensive Human Science, University of Tsukuba, Tsukuba, Japan
| | - Kazuya Murata
- Laboratory Animal Resource Center, Faculty of Medicine, University of Tsukuba, Tsukuba, Japan.,Transborder Medical Research Center, Faculty of Medicine, University of Tsukuba, Tsukuba, Japan
| | - Masafumi Muratani
- Transborder Medical Research Center, Faculty of Medicine, University of Tsukuba, Tsukuba, Japan.,Department of Genome Biology, Faculty of Medicine, University of Tsukuba, Tsukuba, Japan
| | - Masatsugu Ema
- Department of Stem Cells and Human Disease Models, Research Center for Animal Life Science, Shiga University of Medical Science, Otsu, Japan.,Institute for the Advanced Study of Human Biology (WPI-ASHBi), Kyoto University, Kyoto, Japan
| | - Jun-Dal Kim
- Life Science Center for Survival Dynamics, Tsukuba Advanced Research Alliance (TARA), University of Tsukuba, Tsukuba, Japan.,Division of Complex Bioscience Research, Department of Research and Development, Institute of National Medicine, University of Toyama, Toyama, Japan
| | - Junji Ishida
- Life Science Center for Survival Dynamics, Tsukuba Advanced Research Alliance (TARA), University of Tsukuba, Tsukuba, Japan
| | - Akiyoshi Fukamizu
- Life Science Center for Survival Dynamics, Tsukuba Advanced Research Alliance (TARA), University of Tsukuba, Tsukuba, Japan
| | - Mitsuyasu Kato
- Transborder Medical Research Center, Faculty of Medicine, University of Tsukuba, Tsukuba, Japan.,Department of Experimental Pathology, Faculty of. Medicine, University of Tsukuba, Tsukuba, Japan
| | - Satoru Takahashi
- Laboratory Animal Resource Center, Faculty of Medicine, University of Tsukuba, Tsukuba, Japan.,Transborder Medical Research Center, Faculty of Medicine, University of Tsukuba, Tsukuba, Japan
| | - Ken-Ichi Yagami
- Laboratory Animal Resource Center, Faculty of Medicine, University of Tsukuba, Tsukuba, Japan
| | - Valerie Wilson
- MRC Centre for Regenerative Medicine, School of Biological Sciences, SCRM Building, The University of Edinburgh, Edinburgh, United Kingdom
| | - Ruth M Arkell
- John Curtin School of Medical Research, The Australian National University, Canberra, Australia
| | - Fumihiro Sugiyama
- Laboratory Animal Resource Center, Faculty of Medicine, University of Tsukuba, Tsukuba, Japan.,Transborder Medical Research Center, Faculty of Medicine, University of Tsukuba, Tsukuba, Japan
| |
Collapse
|
16
|
A single-embryo, single-cell time-resolved model for mouse gastrulation. Cell 2021; 184:2825-2842.e22. [PMID: 33932341 PMCID: PMC8162424 DOI: 10.1016/j.cell.2021.04.004] [Citation(s) in RCA: 123] [Impact Index Per Article: 30.8] [Reference Citation Analysis] [Abstract] [Key Words] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Revised: 01/26/2021] [Accepted: 04/05/2021] [Indexed: 12/11/2022]
Abstract
Mouse embryonic development is a canonical model system for studying mammalian cell fate acquisition. Recently, single-cell atlases comprehensively charted embryonic transcriptional landscapes, yet inference of the coordinated dynamics of cells over such atlases remains challenging. Here, we introduce a temporal model for mouse gastrulation, consisting of data from 153 individually sampled embryos spanning 36 h of molecular diversification. Using algorithms and precise timing, we infer differentiation flows and lineage specification dynamics over the embryonic transcriptional manifold. Rapid transcriptional bifurcations characterize the commitment of early specialized node and blood cells. However, for most lineages, we observe combinatorial multi-furcation dynamics rather than hierarchical transcriptional transitions. In the mesoderm, dozens of transcription factors combinatorially regulate multifurcations, as we exemplify using time-matched chimeric embryos of Foxc1/Foxc2 mutants. Our study rejects the notion of differentiation being governed by a series of binary choices, providing an alternative quantitative model for cell fate acquisition.
Collapse
|
17
|
Theerakittayakorn K, Thi Nguyen H, Musika J, Kunkanjanawan H, Imsoonthornruksa S, Somredngan S, Ketudat-Cairns M, Parnpai R. Differentiation Induction of Human Stem Cells for Corneal Epithelial Regeneration. Int J Mol Sci 2020; 21:E7834. [PMID: 33105778 PMCID: PMC7660084 DOI: 10.3390/ijms21217834] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2020] [Revised: 10/16/2020] [Accepted: 10/17/2020] [Indexed: 12/13/2022] Open
Abstract
Deficiency of corneal epithelium causes vision impairment or blindness in severe cases. Transplantation of corneal epithelial cells is an effective treatment but the availability of the tissue source for those cells is inadequate. Stem cells can be induced to differentiate to corneal epithelial cells and used in the treatment. Multipotent stem cells (mesenchymal stem cells) and pluripotent stem cells (embryonic stem cells and induced pluripotent stem cells) are promising cells to address the problem. Various protocols have been developed to induce differentiation of the stem cells into corneal epithelial cells. The feasibility and efficacy of both human stem cells and animal stem cells have been investigated for corneal epithelium regeneration. However, some physiological aspects of animal stem cells are different from those of human stem cells, the protocols suited for animal stem cells might not be suitable for human stem cells. Therefore, in this review, only the investigations of corneal epithelial differentiation of human stem cells are taken into account. The available protocols for inducing the differentiation of human stem cells into corneal epithelial cells are gathered and compared. Also, the pathways involving in the differentiation are provided to elucidate the relevant mechanisms.
Collapse
Affiliation(s)
- Kasem Theerakittayakorn
- Embryo Technology and Stem Cell Research Center, School of Biotechnology, Institute of Agricultural Technology, Suranaree University of Technology, Nakhon Ratchasima 30000, Thailand; (K.T.); (H.T.N.); (J.M.); (S.I.); (S.S.); (M.K.-C.)
| | - Hong Thi Nguyen
- Embryo Technology and Stem Cell Research Center, School of Biotechnology, Institute of Agricultural Technology, Suranaree University of Technology, Nakhon Ratchasima 30000, Thailand; (K.T.); (H.T.N.); (J.M.); (S.I.); (S.S.); (M.K.-C.)
| | - Jidapa Musika
- Embryo Technology and Stem Cell Research Center, School of Biotechnology, Institute of Agricultural Technology, Suranaree University of Technology, Nakhon Ratchasima 30000, Thailand; (K.T.); (H.T.N.); (J.M.); (S.I.); (S.S.); (M.K.-C.)
| | - Hataiwan Kunkanjanawan
- Medeze Research and Development Co., Ltd. 28/9 Moo 8, Phutthamonthon Sai 4 Rd., Krathum Lom, Sam Phran, Nakhon Pathom 73220, Thailand;
| | - Sumeth Imsoonthornruksa
- Embryo Technology and Stem Cell Research Center, School of Biotechnology, Institute of Agricultural Technology, Suranaree University of Technology, Nakhon Ratchasima 30000, Thailand; (K.T.); (H.T.N.); (J.M.); (S.I.); (S.S.); (M.K.-C.)
| | - Sirilak Somredngan
- Embryo Technology and Stem Cell Research Center, School of Biotechnology, Institute of Agricultural Technology, Suranaree University of Technology, Nakhon Ratchasima 30000, Thailand; (K.T.); (H.T.N.); (J.M.); (S.I.); (S.S.); (M.K.-C.)
| | - Mariena Ketudat-Cairns
- Embryo Technology and Stem Cell Research Center, School of Biotechnology, Institute of Agricultural Technology, Suranaree University of Technology, Nakhon Ratchasima 30000, Thailand; (K.T.); (H.T.N.); (J.M.); (S.I.); (S.S.); (M.K.-C.)
| | - Rangsun Parnpai
- Embryo Technology and Stem Cell Research Center, School of Biotechnology, Institute of Agricultural Technology, Suranaree University of Technology, Nakhon Ratchasima 30000, Thailand; (K.T.); (H.T.N.); (J.M.); (S.I.); (S.S.); (M.K.-C.)
| |
Collapse
|
18
|
Mzoughi S, Di Tullio F, Low DHP, Motofeanu CM, Ong SLM, Wollmann H, Wun CM, Kruszka P, Muenke M, Hildebrandt F, Dunn NR, Messerschmidt DM, Guccione E. PRDM15 loss of function links NOTCH and WNT/PCP signaling to patterning defects in holoprosencephaly. SCIENCE ADVANCES 2020; 6:eaax9852. [PMID: 31950080 PMCID: PMC6954057 DOI: 10.1126/sciadv.aax9852] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2019] [Accepted: 09/30/2019] [Indexed: 05/15/2023]
Abstract
Holoprosencephaly (HPE) is a congenital forebrain defect often associated with embryonic lethality and lifelong disabilities. Currently, therapeutic and diagnostic options are limited by lack of knowledge of potential disease-causing mutations. We have identified a new mutation in the PRDM15 gene (C844Y) associated with a syndromic form of HPE in multiple families. We demonstrate that C844Y is a loss-of-function mutation impairing PRDM15 transcriptional activity. Genetic deletion of murine Prdm15 causes anterior/posterior (A/P) patterning defects and recapitulates the brain malformations observed in patients. Mechanistically, PRDM15 regulates the transcription of key effectors of the NOTCH and WNT/PCP pathways to preserve early midline structures in the developing embryo. Analysis of a large cohort of patients with HPE revealed potentially damaging mutations in several regulators of both pathways. Our findings uncover an unexpected link between NOTCH and WNT/PCP signaling and A/P patterning and set the stage for the identification of new HPE candidate genes.
Collapse
Affiliation(s)
- Slim Mzoughi
- Institute of Molecular and Cell Biology, Agency for Science, Technology and Research (A*STAR), Singapore
- Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Federico Di Tullio
- Institute of Molecular and Cell Biology, Agency for Science, Technology and Research (A*STAR), Singapore
| | - Diana H. P. Low
- Institute of Molecular and Cell Biology, Agency for Science, Technology and Research (A*STAR), Singapore
| | - Corina-Mihaela Motofeanu
- Institute of Molecular and Cell Biology, Agency for Science, Technology and Research (A*STAR), Singapore
| | - Sheena L. M. Ong
- Institute of Medical Biology, Agency for Science, Technology and Research (A*STAR), Singapore
| | - Heike Wollmann
- Institute of Molecular and Cell Biology, Agency for Science, Technology and Research (A*STAR), Singapore
| | - Cheng Mun Wun
- Institute of Molecular and Cell Biology, Agency for Science, Technology and Research (A*STAR), Singapore
| | - Paul Kruszka
- Medical Genetics Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Maximilian Muenke
- Medical Genetics Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Friedhelm Hildebrandt
- Department of Medicine, Boston Children’s Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - N. Ray Dunn
- Institute of Medical Biology, Agency for Science, Technology and Research (A*STAR), Singapore
| | - Daniel M. Messerschmidt
- Institute of Molecular and Cell Biology, Agency for Science, Technology and Research (A*STAR), Singapore
| | - Ernesto Guccione
- Institute of Molecular and Cell Biology, Agency for Science, Technology and Research (A*STAR), Singapore
- Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
- Department of Oncological Sciences and Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Department of Pharmacological Sciences and Mount Sinai Center for Therapeutics Discovery, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Corresponding author.
| |
Collapse
|
19
|
Abstract
In this issue, Metzis et al., demonstrate that in the development of the central nervous system, patterning along the anterior-posterior axis precedes acquisition of neural identity. This contrasts with the prevailing view that neural identity comes first, providing a new window on the origins of the brain and spinal cord.
Collapse
|
20
|
Edri S, Hayward P, Baillie-Johnson P, Steventon BJ, Martinez Arias A. An epiblast stem cell-derived multipotent progenitor population for axial extension. Development 2019; 146:dev.168187. [PMID: 31023877 DOI: 10.1242/dev.168187] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2018] [Accepted: 04/10/2019] [Indexed: 12/21/2022]
Abstract
The caudal lateral epiblast of mammalian embryos harbours bipotent progenitors that contribute to the spinal cord and the paraxial mesoderm in concert with the body axis elongation. These progenitors, called neural mesodermal progenitors (NMPs), are identified as cells that co-express Sox2 and T/brachyury, a criterion used to derive NMP-like cells from embryonic stem cells in vitro However, unlike embryonic NMPs, these progenitors do not self-renew. Here, we find that the protocols that yield NMP-like cells in vitro initially produce a multipotent population that, in addition to NMPs, generates progenitors for the lateral plate and intermediate mesoderm. We show that epiblast stem cells (EpiSCs) are an effective source of these multipotent progenitors, which are further differentiated by a balance between BMP and Nodal signalling. Importantly, we show that NMP-like cells derived from EpiSCs exhibit limited self-renewal in vitro and a gene expression signature like their embryonic counterparts.
Collapse
Affiliation(s)
- Shlomit Edri
- Department of Genetics, Downing Site, University of Cambridge, Cambridge CB2 3EH, UK
| | - Penny Hayward
- Department of Genetics, Downing Site, University of Cambridge, Cambridge CB2 3EH, UK
| | - Peter Baillie-Johnson
- Department of Genetics, Downing Site, University of Cambridge, Cambridge CB2 3EH, UK
| | - Benjamin J Steventon
- Department of Genetics, Downing Site, University of Cambridge, Cambridge CB2 3EH, UK
| | | |
Collapse
|
21
|
Pereira IM, Marote A, Salgado AJ, Silva NA. Filling the Gap: Neural Stem Cells as A Promising Therapy for Spinal Cord Injury. Pharmaceuticals (Basel) 2019; 12:ph12020065. [PMID: 31035689 PMCID: PMC6631328 DOI: 10.3390/ph12020065] [Citation(s) in RCA: 57] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2019] [Revised: 04/15/2019] [Accepted: 04/23/2019] [Indexed: 02/07/2023] Open
Abstract
Spinal cord injury (SCI) can lead to severe motor, sensory and social impairments having a huge impact on patients’ lives. The complex and time-dependent SCI pathophysiology has been hampering the development of novel and effective therapies. Current treatment options include surgical interventions, to stabilize and decompress the spinal cord, and rehabilitative care, without providing a cure for these patients. Novel therapies have been developed targeting different stages during trauma. Among them, cell-based therapies hold great potential for tissue regeneration after injury. Neural stem cells (NSCs), which are multipotent cells with inherent differentiation capabilities committed to the neuronal lineage, are especially relevant to promote and reestablish the damaged neuronal spinal tracts. Several studies demonstrate the regenerative effects of NSCs in SCI after transplantation by providing neurotrophic support and restoring synaptic connectivity. Therefore, human clinical trials have already been launched to assess safety in SCI patients. Here, we review NSC-based experimental studies in a SCI context and how are they currently being translated into human clinical trials.
Collapse
Affiliation(s)
- Inês M Pereira
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal.
- ICVS/3B's-PT Government Associate Laboratory, Braga/Guimarães, Portugal.
| | - Ana Marote
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal.
- ICVS/3B's-PT Government Associate Laboratory, Braga/Guimarães, Portugal.
| | - António J Salgado
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal.
- ICVS/3B's-PT Government Associate Laboratory, Braga/Guimarães, Portugal.
| | - Nuno A Silva
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal.
- ICVS/3B's-PT Government Associate Laboratory, Braga/Guimarães, Portugal.
| |
Collapse
|
22
|
Osteil P, Studdert JB, Goh HN, Wilkie EE, Fan X, Khoo PL, Peng G, Salehin N, Knowles H, Han JDJ, Jing N, Fossat N, Tam PPL. Dynamics of Wnt activity on the acquisition of ectoderm potency in epiblast stem cells. Development 2019; 146:dev.172858. [PMID: 30890572 DOI: 10.1242/dev.172858] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2018] [Accepted: 03/11/2019] [Indexed: 01/12/2023]
Abstract
During embryogenesis, the stringent regulation of Wnt activity is crucial for the morphogenesis of the head and brain. The loss of function of the Wnt inhibitor Dkk1 results in elevated Wnt activity, loss of ectoderm lineage attributes from the anterior epiblast, and the posteriorisation of anterior germ layer tissue towards the mesendoderm. The modulation of Wnt signalling may therefore be crucial for the allocation of epiblast cells to ectoderm progenitors during gastrulation. To test this hypothesis, we examined the lineage characteristics of epiblast stem cells (EpiSCs) that were derived and maintained under different signalling conditions. We showed that suppression of Wnt activity enhanced the ectoderm propensity of the EpiSCs. Neuroectoderm differentiation of these EpiSCs was further empowered by the robust re-activation of Wnt activity. Therefore, during gastrulation, the tuning of the signalling activities that mediate mesendoderm differentiation is instrumental for the acquisition of ectoderm potency in the epiblast.
Collapse
Affiliation(s)
- Pierre Osteil
- Embryology Unit, Children's Medical Research Institute, Westmead, NSW 2145, Australia .,School of Medical Sciences, Faculty of Medicine and Health, University of Sydney, Sydney, NSW 2006, Australia
| | - Josh B Studdert
- Embryology Unit, Children's Medical Research Institute, Westmead, NSW 2145, Australia
| | - Hwee Ngee Goh
- Embryology Unit, Children's Medical Research Institute, Westmead, NSW 2145, Australia
| | - Emilie E Wilkie
- Embryology Unit, Children's Medical Research Institute, Westmead, NSW 2145, Australia.,Bioinformatics Group, Children's Medical Research Institute, Westmead, NSW 2145, Australia
| | - Xiaochen Fan
- Embryology Unit, Children's Medical Research Institute, Westmead, NSW 2145, Australia
| | - Poh-Lynn Khoo
- Embryology Unit, Children's Medical Research Institute, Westmead, NSW 2145, Australia
| | - Guangdun Peng
- State Key Laboratory of Cell Biology, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Nazmus Salehin
- Embryology Unit, Children's Medical Research Institute, Westmead, NSW 2145, Australia
| | - Hilary Knowles
- Embryology Unit, Children's Medical Research Institute, Westmead, NSW 2145, Australia
| | - Jing-Dong J Han
- Key Laboratory of Computational Biology, CAS Center for Excellence in Molecular Cell Science, Collaborative Innovation Center for Genetics and Developmental Biology, Chinese Academy of Sciences-Max Planck Partner Institute for Computational Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Naihe Jing
- State Key Laboratory of Cell Biology, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Nicolas Fossat
- Embryology Unit, Children's Medical Research Institute, Westmead, NSW 2145, Australia.,School of Medical Sciences, Faculty of Medicine and Health, University of Sydney, Sydney, NSW 2006, Australia
| | - Patrick P L Tam
- Embryology Unit, Children's Medical Research Institute, Westmead, NSW 2145, Australia.,School of Medical Sciences, Faculty of Medicine and Health, University of Sydney, Sydney, NSW 2006, Australia
| |
Collapse
|
23
|
Cheng S, Pei Y, He L, Peng G, Reinius B, Tam PP, Jing N, Deng Q. Single-Cell RNA-Seq Reveals Cellular Heterogeneity of Pluripotency Transition and X Chromosome Dynamics during Early Mouse Development. Cell Rep 2019; 26:2593-2607.e3. [DOI: 10.1016/j.celrep.2019.02.031] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2018] [Revised: 10/29/2018] [Accepted: 02/08/2019] [Indexed: 01/13/2023] Open
|
24
|
Yang J, Park JW, Zheng D, Xu RH. Universal Corneal Epithelial-Like Cells Derived from Human Embryonic Stem Cells for Cellularization of a Corneal Scaffold. Transl Vis Sci Technol 2018; 7:23. [PMID: 30323996 PMCID: PMC6181193 DOI: 10.1167/tvst.7.5.23] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2018] [Accepted: 08/07/2018] [Indexed: 12/13/2022] Open
Abstract
Purpose We generated universal corneal epithelial cells (CEC) from human embryonic stem cells (hESC) by genetically removing human leukocyte antigens (HLA) class I from the cell surface. Methods The serum-free, growth factor-free, and defined medium E6 was used to differentiate hESC to CEC. Decellularized murine corneas were recellularized with hESC-derived CEC. Using CRISPR/Cas9, β-2-microglobulin (B2M) was deleted in hESC to block the assembly of HLA class-I antigens on the cell surface to generate B2M−/− CEC. Results E6 alone was sufficient to allow hESC differentiation to CEC. A time-course analysis of the global gene expression of the differentiating cells indicates that the differentiation closely resembles the corneal development in vivo. The hESC-CEC were highly proliferative, and could form multilayer epithelium in decellularized murine cornea, retain its transparency, and form intact tight junctions on its surface. As reported before, B2M knockout led to the absence of HLA class-I on the cell surface of hESC and subsequently derived CEC following stimulation with inflammatory factors. Moreover, B2M−/− CEC, following transplantation into mouse eyes, caused less T-cell infiltration in the limbal region of the eye than the wild-type control. Conclusions CEC can be derived from hESC via a novel and simple protocol free of any proteins, hESC-CEC seeded on decellularized animal cornea form tight junctions and allow light transmittance, and B2M−/− CEC are hypoimmunogenic both in vitro and in vivo. Translational Relevance B2M−/− hESC-CEC can be an unlimited and universal therapy for corneal repair in patients of any HLA type.
Collapse
Affiliation(s)
- Juan Yang
- Center of Reproduction, Development & Aging, and Institute of Translational Medicine, Faculty of Health Sciences, University of Macau, Taipa, Macau, China
| | - Jung Woo Park
- Center of Reproduction, Development & Aging, and Institute of Translational Medicine, Faculty of Health Sciences, University of Macau, Taipa, Macau, China
| | - Dejin Zheng
- Center of Reproduction, Development & Aging, and Institute of Translational Medicine, Faculty of Health Sciences, University of Macau, Taipa, Macau, China
| | - Ren-He Xu
- Center of Reproduction, Development & Aging, and Institute of Translational Medicine, Faculty of Health Sciences, University of Macau, Taipa, Macau, China
| |
Collapse
|
25
|
Nandkishore N, Vyas B, Javali A, Ghosh S, Sambasivan R. Divergent early mesoderm specification underlies distinct head and trunk muscle programmes in vertebrates. Development 2018; 145:dev.160945. [PMID: 30237317 DOI: 10.1242/dev.160945] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2017] [Accepted: 07/31/2018] [Indexed: 01/19/2023]
Abstract
Head and trunk muscles have discrete embryological origins and are governed by distinct regulatory programmes. Whereas the developmental route of trunk muscles from mesoderm is well studied, that of head muscles is ill defined. Here, we show that, unlike the myogenic trunk paraxial mesoderm, head mesoderm development is independent of the T/Tbx6 network in mouse. We reveal that, in contrast to Wnt and FGF-driven trunk mesoderm, dual inhibition of Wnt/β-catenin and Nodal specifies head mesoderm. Remarkably, the progenitors derived from embryonic stem cells by dual inhibition efficiently differentiate into cardiac and skeletal muscle cells. This twin potential is the defining feature of cardiopharyngeal mesoderm: the head subtype giving rise to heart and branchiomeric head muscles. Therefore, our findings provide compelling evidence that dual inhibition specifies head mesoderm and unravel the mechanism that diversifies head and trunk muscle programmes during early mesoderm fate commitment. Significantly, this is the first report of directed differentiation of pluripotent stem cells, without transgenes, into progenitors with muscle/heart dual potential. Ability to generate branchiomeric muscle in vitro could catalyse efforts in modelling myopathies that selectively involve head muscles.
Collapse
Affiliation(s)
- Nitya Nandkishore
- Institute for Stem Cell Biology and Regenerative Medicine, GKVK Campus, Bellary Road, Bengaluru 560065, India.,SASTRA University, Thirumalaisamudram, Thanjavur 613401, India
| | - Bhakti Vyas
- Institute for Stem Cell Biology and Regenerative Medicine, GKVK Campus, Bellary Road, Bengaluru 560065, India.,Manipal Academy of Higher Education, Manipal 576104, India
| | - Alok Javali
- Institute for Stem Cell Biology and Regenerative Medicine, GKVK Campus, Bellary Road, Bengaluru 560065, India.,National Centre for Biological Sciences, TIFR, GKVK Campus, Bellary Road, Bengaluru 560065, India
| | - Subho Ghosh
- Institute for Stem Cell Biology and Regenerative Medicine, GKVK Campus, Bellary Road, Bengaluru 560065, India
| | - Ramkumar Sambasivan
- Institute for Stem Cell Biology and Regenerative Medicine, GKVK Campus, Bellary Road, Bengaluru 560065, India
| |
Collapse
|
26
|
Barratt KS, Diamand KEM, Arkell RM. Identification of reference genes suitable for RT-qPCR studies of murine gastrulation and patterning. Mamm Genome 2018; 29:656-662. [PMID: 30094508 DOI: 10.1007/s00335-018-9769-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2018] [Accepted: 07/20/2018] [Indexed: 11/26/2022]
Abstract
Quantitative reverse transcriptase PCR (RT-qPCR), a powerful and efficient means of rapidly comparing gene expression between experimental conditions, is routinely used as a phenotyping tool in developmental biology. The accurate comparison of gene expression across multiple embryonic stages requires normalisation to reference genes that have stable expression across the time points to be examined. As the embryo and its constituent tissues undergo rapid growth and differentiation during development, reference genes known to be stable across some time points cannot be assumed to be stable across all developmental stages. The immediate post-implantation events of gastrulation and patterning are characterised by a rapid expansion in cell number and increasing specialisation of cells. The optimal reference genes for comparative gene expression studies at these specific stages have not been experimentally identified. In this study, the expression of five commonly used reference genes (H2afz, Ubc, Actb, Tbp and Gapdh) was measured across murine gastrulation and patterning (6.5-9.5 dpc) and analysed with the normalisation tools geNorm, Bestkeeper and Normfinder. The results, validated by RT-qPCR analysis of two genes with well-documented expression patterns across these stages, indicated the best strategy for RT-qPCR studies spanning murine gastrulation and patterning utilises the concurrent reference genes H2afz and Ubc.
Collapse
Affiliation(s)
- Kristen S Barratt
- Early Mammalian Development Laboratory, John Curtin School of Medical Research, The Australian National University, Canberra, ACT, 2601, Australia
| | - Koula E M Diamand
- Early Mammalian Development Laboratory, John Curtin School of Medical Research, The Australian National University, Canberra, ACT, 2601, Australia
| | - Ruth M Arkell
- Early Mammalian Development Laboratory, John Curtin School of Medical Research, The Australian National University, Canberra, ACT, 2601, Australia.
| |
Collapse
|
27
|
Abstract
The ZIC2 transcription factor is one of the most commonly mutated genes in Holoprosencephaly (HPE) probands. HPE is a severe congenital defect of forebrain development which occurs when the cerebral hemispheres fail to separate during the early stages of organogenesis and is typically associated with mispatterning of the embryonic midline. Recent study of genotype-phenotype correlations in HPE cases has defined distinctive features of ZIC2-associated HPE presentation and genetics, revealing that ZIC2 mutation does not produce the craniofacial abnormalities generally thought to characterise HPE but leads to a range of non-forebrain phenotypes. Furthermore, the studies confirm the extent of ZIC2 allelic heterogeneity and that pathogenic variants of ZIC2 are associated with both classic and middle interhemispheric variant (MIHV) HPE which arise from defective ventral and dorsal forebrain patterning, respectively. An allelic series of mouse mutants has helped to delineate the cellular and molecular mechanisms by which one gene leads to defects in these related but distinct embryological processes.
Collapse
Affiliation(s)
- Kristen S Barratt
- Early Mammalian Development Laboratory, John Curtin School of Medical Research, The Australian National University, Canberra, ACT, Australia
| | - Ruth M Arkell
- Early Mammalian Development Laboratory, John Curtin School of Medical Research, The Australian National University, Canberra, ACT, Australia.
| |
Collapse
|
28
|
Takata N, Sakakura E, Eiraku M, Kasukawa T, Sasai Y. Self-patterning of rostral-caudal neuroectoderm requires dual role of Fgf signaling for localized Wnt antagonism. Nat Commun 2017; 8:1339. [PMID: 29109536 PMCID: PMC5673904 DOI: 10.1038/s41467-017-01105-2] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2015] [Accepted: 08/17/2017] [Indexed: 01/05/2023] Open
Abstract
The neuroectoderm is patterned along a rostral-caudal axis in response to localized factors in the embryo, but exactly how these factors act as positional information for this patterning is not yet fully understood. Here, using the self-organizing properties of mouse embryonic stem cell (ESC), we report that ESC-derived neuroectoderm self-generates a Six3+ rostral and a Irx3+ caudal bipolarized patterning. In this instance, localized Fgf signaling performs dual roles, as it regulates Six3+ rostral polarization at an earlier stage and promotes Wnt signaling at a later stage. The Wnt signaling components are differentially expressed in the polarized tissues, leading to genome-wide Irx3+ caudal-polarization signals. Surprisingly, differentially expressed Wnt agonists and antagonists have essential roles in orchestrating the formation of a balanced rostral-caudal neuroectoderm pattern. Together, our findings provide key processes for dynamic self-patterning and evidence that a temporally and locally regulated interaction between Fgf and Wnt signaling controls self-patterning in ESC-derived neuroectoderm.
Collapse
Affiliation(s)
- Nozomu Takata
- Laboratory for in vitro Histogenesis, RIKEN Center for Developmental Biology, 2-2-3 Minatojima-minamimachi, Chuo-ku, Kobe, Hyogo, 650-0047, Japan.
- Center for Vascular and Developmental Biology, Feinberg Cardiovascular Research Institute, Northwestern University, 303 East Superior Street, Chicago, IL, 60611, USA.
| | - Eriko Sakakura
- Laboratory for in vitro Histogenesis, RIKEN Center for Developmental Biology, 2-2-3 Minatojima-minamimachi, Chuo-ku, Kobe, Hyogo, 650-0047, Japan
| | - Mototsugu Eiraku
- Laboratory for in vitro Histogenesis, RIKEN Center for Developmental Biology, 2-2-3 Minatojima-minamimachi, Chuo-ku, Kobe, Hyogo, 650-0047, Japan.
- Laboratory of Developmental Systems, Institute for Frontier Life and Medical Sciences, Kyoto University, 53 Kawahara-cho, Shogoin, Sakyo-ku, Kyoto, Kyoto, 606-8507, Japan.
| | - Takeya Kasukawa
- Large Scale Data Managing Unit, RIKEN Center for Life Science Technologies, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama, Kanagawa, 230-0045, Japan
| | - Yoshiki Sasai
- Laboratory for Organogenesis and Neurogenesis, RIKEN Center for Developmental Biology, 2-2-3 Minatojima-minamimachi, Chuo-ku, Kobe, Hyogo, 650-0047, Japan
| |
Collapse
|
29
|
Rauschenberger V, Bernkopf DB, Krenn S, Jalal K, Heller J, Behrens J, Gentzel M, Schambony A. The phosphatase Pgam5 antagonizes Wnt/β-Catenin signaling in embryonic anterior-posterior axis patterning. Development 2017; 144:2234-2247. [PMID: 28506997 DOI: 10.1242/dev.144477] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2016] [Accepted: 05/03/2017] [Indexed: 12/13/2022]
Abstract
The scaffold protein Dishevelled is a central intracellular component of Wnt signaling pathways. Various kinases have been described that regulate and modulate Wnt signaling through phosphorylation of Dishevelled. However, besides general protein phosphatases 1 and 2 (PP1 and PP2), no specific protein phosphatases have been identified. Here, we report on the identification and functional characterization of the protein phosphatase Pgam5 in vitro and in vivo in Xenopus Pgam5 is a novel antagonist of Wnt/β-Catenin signaling in human cells and Xenopus embryogenesis. In early development, Pgam5 is essential for head formation, and for establishing and maintaining the Wnt/β-Catenin signaling gradient that patterns the anterior-posterior body axis. Inhibition of Wnt/β-Catenin signaling and developmental function depend on Pgam5 phosphatase activity. We show that Pgam5 interacts with Dishevelled2 and that Dishevelled2 is a substrate of Pgam5. Pgam5 mediates a marked decrease in Dishevelled2 phosphorylation in the cytoplasm and in the nucleus, as well as decreased interaction between Dishevelled2, Tcf1 and β-Catenin, indicating that Pgam5 regulates Dishevelled function upstream and downstream of β-Catenin stabilization.
Collapse
Affiliation(s)
- Verena Rauschenberger
- Biology Department, Developmental Biology, Friedrich-Alexander University Erlangen-Nuremberg, 91058 Erlangen, Germany
| | - Dominic B Bernkopf
- Experimental Medicine II, Nikolaus-Fiebiger-Centre, Friedrich-Alexander University Erlangen-Nuremberg, 91054 Erlangen, Germany
| | - Sabrina Krenn
- Biology Department, Developmental Biology, Friedrich-Alexander University Erlangen-Nuremberg, 91058 Erlangen, Germany
| | - Kowcee Jalal
- Experimental Medicine II, Nikolaus-Fiebiger-Centre, Friedrich-Alexander University Erlangen-Nuremberg, 91054 Erlangen, Germany
| | - Jens Heller
- Biology Department, Developmental Biology, Friedrich-Alexander University Erlangen-Nuremberg, 91058 Erlangen, Germany
| | - Jürgen Behrens
- Experimental Medicine II, Nikolaus-Fiebiger-Centre, Friedrich-Alexander University Erlangen-Nuremberg, 91054 Erlangen, Germany
| | - Marc Gentzel
- Max Planck Institute of Molecular Cell Biology and Genetics, 01307 Dresden, Germany.,Center for Molecular and Cellular Bioengineering, Molecular Analysis - Mass Spectrometry, TU Dresden, 01307 Dresden, Germany
| | - Alexandra Schambony
- Biology Department, Developmental Biology, Friedrich-Alexander University Erlangen-Nuremberg, 91058 Erlangen, Germany
| |
Collapse
|
30
|
Simon CS, Downes DJ, Gosden ME, Telenius J, Higgs DR, Hughes JR, Costello I, Bikoff EK, Robertson EJ. Functional characterisation of cis-regulatory elements governing dynamic Eomes expression in the early mouse embryo. Development 2017; 144:1249-1260. [PMID: 28174238 PMCID: PMC5399628 DOI: 10.1242/dev.147322] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2016] [Accepted: 01/25/2017] [Indexed: 12/28/2022]
Abstract
The T-box transcription factor (TF) Eomes is a key regulator of cell fate decisions during early mouse development. The cis-acting regulatory elements that direct expression in the anterior visceral endoderm (AVE), primitive streak (PS) and definitive endoderm (DE) have yet to be defined. Here, we identified three gene-proximal enhancer-like sequences (PSE_a, PSE_b and VPE) that faithfully activate tissue-specific expression in transgenic embryos. However, targeted deletion experiments demonstrate that PSE_a and PSE_b are dispensable, and only VPE is required for optimal Eomes expression in vivo. Embryos lacking this enhancer display variably penetrant defects in anterior-posterior axis orientation and DE formation. Chromosome conformation capture experiments reveal VPE-promoter interactions in embryonic stem cells (ESCs), prior to gene activation. The locus resides in a large (500 kb) pre-formed compartment in ESCs and activation during DE differentiation occurs in the absence of 3D structural changes. ATAC-seq analysis reveals that VPE, PSE_a and four additional putative enhancers display increased chromatin accessibility in DE that is associated with Smad2/3 binding coincident with transcriptional activation. By contrast, activation of the Eomes target genes Foxa2 and Lhx1 is associated with higher order chromatin reorganisation. Thus, diverse regulatory mechanisms govern activation of lineage specifying TFs during early development. Summary: Expression of the mouse T-box factor Eomes is controlled by a key gene-proximal enhancer-like element, with changes in chromatin accessibility influencing its activity in definitive endoderm.
Collapse
Affiliation(s)
- Claire S Simon
- The Sir William Dunn School of Pathology, University of Oxford, Oxford OX1 3RE, UK
| | - Damien J Downes
- MRC Molecular Haematology Unit, Weatherall Institute of Molecular Medicine, University of Oxford, John Radcliffe Hospital, Oxford OX3 9DS, UK
| | - Matthew E Gosden
- MRC Molecular Haematology Unit, Weatherall Institute of Molecular Medicine, University of Oxford, John Radcliffe Hospital, Oxford OX3 9DS, UK
| | - Jelena Telenius
- MRC Molecular Haematology Unit, Weatherall Institute of Molecular Medicine, University of Oxford, John Radcliffe Hospital, Oxford OX3 9DS, UK
| | - Douglas R Higgs
- MRC Molecular Haematology Unit, Weatherall Institute of Molecular Medicine, University of Oxford, John Radcliffe Hospital, Oxford OX3 9DS, UK
| | - Jim R Hughes
- MRC Molecular Haematology Unit, Weatherall Institute of Molecular Medicine, University of Oxford, John Radcliffe Hospital, Oxford OX3 9DS, UK
| | - Ita Costello
- The Sir William Dunn School of Pathology, University of Oxford, Oxford OX1 3RE, UK
| | - Elizabeth K Bikoff
- The Sir William Dunn School of Pathology, University of Oxford, Oxford OX1 3RE, UK
| | | |
Collapse
|
31
|
Takata N, Sakakura E, Sakuma T, Yamamoto T. Genetic Tools for Self-Organizing Culture of Mouse Embryonic Stem Cells via Small Regulatory RNA-Mediated Technologies, CRISPR/Cas9, and Inducible RNAi. Methods Mol Biol 2017; 1622:269-292. [PMID: 28674815 DOI: 10.1007/978-1-4939-7108-4_19] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Approaches to investigate gene functions in experimental biology are becoming more diverse and reliable. Furthermore, several kinds of tissues and organs that possess their original identities can be generated in petri dishes from stem cells including embryonic, adult and induced pluripotent stem cells. Researchers now have several choices of experimental methods and their combinations to analyze gene functions in various biological systems. Here, as an example we describe one of the better protocols, which combines three-dimensional embryonic stem cell culture with small regulatory RNA-mediated technologies, clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR-associated protein 9 (Cas9), and inducible RNA interference (RNAi). This protocol allows investigation of genes of interest to better understand gene functions in target tissues (or organs) during in vitro development.
Collapse
Affiliation(s)
- Nozomu Takata
- Laboratory for In Vitro Histogenesis, RIKEN Center for Developmental Biology, 2-2-3 Minatojima-Minamimachi, Chuo, Kobe, Hyogo, 650-0047, Japan. .,Center for Vascular and Developmental Biology, Feinberg Cardiovascular Research Institute, Northwestern University Feinberg School of Medicine, Chicago, 60611, Illinois, USA.
| | - Eriko Sakakura
- Laboratory for In Vitro Histogenesis, RIKEN Center for Developmental Biology, 2-2-3 Minatojima-Minamimachi, Chuo, Kobe, Hyogo, 650-0047, Japan
| | - Tetsushi Sakuma
- Department of Mathematical and Life Sciences, Graduate School of Science, Hiroshima University, 1-3-1 Kagamiyama, Higashi-Hiroshima, Hiroshima, 739-8526, Japan
| | - Takashi Yamamoto
- Department of Mathematical and Life Sciences, Graduate School of Science, Hiroshima University, 1-3-1 Kagamiyama, Higashi-Hiroshima, Hiroshima, 739-8526, Japan
| |
Collapse
|
32
|
Zic2mutation causes holoprosencephaly via disruption of NODAL signalling. Hum Mol Genet 2016; 25:3946-3959. [DOI: 10.1093/hmg/ddw235] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2016] [Revised: 06/30/2016] [Accepted: 07/11/2016] [Indexed: 12/14/2022] Open
|
33
|
Bell CC, Amaral PP, Kalsbeek A, Magor GW, Gillinder KR, Tangermann P, di Lisio L, Cheetham SW, Gruhl F, Frith J, Tallack MR, Ru KL, Crawford J, Mattick JS, Dinger ME, Perkins AC. The Evx1/Evx1as gene locus regulates anterior-posterior patterning during gastrulation. Sci Rep 2016; 6:26657. [PMID: 27226347 PMCID: PMC4880930 DOI: 10.1038/srep26657] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2016] [Accepted: 04/29/2016] [Indexed: 01/09/2023] Open
Abstract
Thousands of sense-antisense mRNA-lncRNA gene pairs occur in the mammalian genome. While there is usually little doubt about the function of the coding transcript, the function of the lncRNA partner is mostly untested. Here we examine the function of the homeotic Evx1-Evx1as gene locus. Expression is tightly co-regulated in posterior mesoderm of mouse embryos and in embryoid bodies. Expression of both genes is enhanced by BMP4 and WNT3A, and reduced by Activin. We generated a suite of deletions in the locus by CRISPR-Cas9 editing. We show EVX1 is a critical downstream effector of BMP4 and WNT3A with respect to patterning of posterior mesoderm. The lncRNA, Evx1as arises from alternative promoters and is difficult to fully abrogate by gene editing or siRNA approaches. Nevertheless, we were able to generate a large 2.6 kb deletion encompassing the shared promoter with Evx1 and multiple additional exons of Evx1as. This led to an identical dorsal-ventral patterning defect to that generated by micro-deletion in the DNA-binding domain of EVX1. Thus, Evx1as has no function independent of EVX1, and is therefore unlikely to act in trans. We predict many antisense lncRNAs have no specific trans function, possibly only regulating the linked coding genes in cis.
Collapse
Affiliation(s)
- Charles C Bell
- Mater Research, Translational Research Institute, University of Queensland, Brisbane, Queensland, 4101, Australia
| | - Paulo P Amaral
- The Institute for Molecular Bioscience, University of Queensland, Brisbane, Queensland, Australia
| | - Anton Kalsbeek
- The Institute for Molecular Bioscience, University of Queensland, Brisbane, Queensland, Australia.,Garvan Institute of Medical Research, Sydney, Australia
| | - Graham W Magor
- Mater Research, Translational Research Institute, University of Queensland, Brisbane, Queensland, 4101, Australia
| | - Kevin R Gillinder
- Mater Research, Translational Research Institute, University of Queensland, Brisbane, Queensland, 4101, Australia
| | - Pierre Tangermann
- The Institute for Molecular Bioscience, University of Queensland, Brisbane, Queensland, Australia
| | - Lorena di Lisio
- Mater Research, Translational Research Institute, University of Queensland, Brisbane, Queensland, 4101, Australia
| | - Seth W Cheetham
- Mater Research, Translational Research Institute, University of Queensland, Brisbane, Queensland, 4101, Australia.,Diamantina Institute; Translational Research Institute, University of Queensland, Brisbane, Queensland, 4102, Australia
| | - Franziska Gruhl
- Mater Research, Translational Research Institute, University of Queensland, Brisbane, Queensland, 4101, Australia.,Diamantina Institute; Translational Research Institute, University of Queensland, Brisbane, Queensland, 4102, Australia
| | - Jessica Frith
- The Institute for Molecular Bioscience, University of Queensland, Brisbane, Queensland, Australia.,The Australian Institute for Bioengineering and Nanotechnology, University of Queensland, Brisbane, Queensland, 4102, Australia
| | - Michael R Tallack
- Mater Research, Translational Research Institute, University of Queensland, Brisbane, Queensland, 4101, Australia.,The Institute for Molecular Bioscience, University of Queensland, Brisbane, Queensland, Australia
| | - Ke-Lin Ru
- The Institute for Molecular Bioscience, University of Queensland, Brisbane, Queensland, Australia.,The Australian Institute for Bioengineering and Nanotechnology, University of Queensland, Brisbane, Queensland, 4102, Australia
| | - Joanna Crawford
- The Institute for Molecular Bioscience, University of Queensland, Brisbane, Queensland, Australia
| | - John S Mattick
- Garvan Institute of Medical Research, Sydney, Australia.,St Vincents Clinical School, Faculty of Medicine, UNSW Australia, Sydney, Australia
| | - Marcel E Dinger
- Garvan Institute of Medical Research, Sydney, Australia.,Diamantina Institute; Translational Research Institute, University of Queensland, Brisbane, Queensland, 4102, Australia.,St Vincents Clinical School, Faculty of Medicine, UNSW Australia, Sydney, Australia
| | - Andrew C Perkins
- Mater Research, Translational Research Institute, University of Queensland, Brisbane, Queensland, 4101, Australia.,The Institute for Molecular Bioscience, University of Queensland, Brisbane, Queensland, Australia.,The Princess Alexandra Hospital, Brisbane, Queensland, 4102, Australia
| |
Collapse
|
34
|
Souilhol C, Perea-Gomez A, Camus A, Beck-Cormier S, Vandormael-Pournin S, Escande M, Collignon J, Cohen-Tannoudji M. NOTCH activation interferes with cell fate specification in the gastrulating mouse embryo. Development 2016; 142:3649-60. [PMID: 26534985 DOI: 10.1242/dev.121145] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
NOTCH signalling is an evolutionarily conserved pathway involved in intercellular communication essential for cell fate choices during development. Although dispensable for early aspects of mouse development, canonical RBPJ-dependent NOTCH signalling has been shown to influence lineage commitment during embryonic stem cell (ESC) differentiation. NOTCH activation in ESCs promotes the acquisition of a neural fate, whereas its suppression favours their differentiation into cardiomyocytes. This suggests that NOTCH signalling is implicated in the acquisition of distinct embryonic fates at early stages of mammalian development. In order to investigate in vivo such a role for NOTCH signalling in shaping cell fate specification, we use genetic approaches to constitutively activate the NOTCH pathway in the mouse embryo. Early embryonic development, including the establishment of anterior-posterior polarity, is not perturbed by forced NOTCH activation. By contrast, widespread NOTCH activity in the epiblast triggers dramatic gastrulation defects. These are fully rescued in a RBPJ-deficient background. Epiblast-specific NOTCH activation induces acquisition of neurectoderm identity and disrupts the formation of specific mesodermal precursors including the derivatives of the anterior primitive streak, the mouse organiser. In addition, we show that forced NOTCH activation results in misregulation of NODAL signalling, a major determinant of early embryonic patterning. Our study reveals a previously unidentified role for canonical NOTCH signalling during mammalian gastrulation. It also exemplifies how in vivo studies can shed light on the mechanisms underlying cell fate specification during in vitro directed differentiation.
Collapse
Affiliation(s)
- Céline Souilhol
- Institut Pasteur, Unité de Génétique Fonctionnelle de la Souris, Département de Biologie du Développement et Cellules Souches, 25 rue du docteur Roux, Paris F-75015, France CNRS URA 2578, Paris F-75015, France
| | - Aitana Perea-Gomez
- Institut Jacques Monod, CNRS, UMR7592, Univ Paris Diderot, Sorbonne Paris Cité, Paris F-75205, France
| | - Anne Camus
- Institut Jacques Monod, CNRS, UMR7592, Univ Paris Diderot, Sorbonne Paris Cité, Paris F-75205, France
| | - Sarah Beck-Cormier
- Institut Pasteur, Unité de Génétique Fonctionnelle de la Souris, Département de Biologie du Développement et Cellules Souches, 25 rue du docteur Roux, Paris F-75015, France CNRS URA 2578, Paris F-75015, France
| | - Sandrine Vandormael-Pournin
- Institut Pasteur, Unité de Génétique Fonctionnelle de la Souris, Département de Biologie du Développement et Cellules Souches, 25 rue du docteur Roux, Paris F-75015, France CNRS URA 2578, Paris F-75015, France
| | - Marie Escande
- Institut Pasteur, Unité de Génétique Fonctionnelle de la Souris, Département de Biologie du Développement et Cellules Souches, 25 rue du docteur Roux, Paris F-75015, France CNRS URA 2578, Paris F-75015, France
| | - Jérôme Collignon
- Institut Jacques Monod, CNRS, UMR7592, Univ Paris Diderot, Sorbonne Paris Cité, Paris F-75205, France
| | - Michel Cohen-Tannoudji
- Institut Pasteur, Unité de Génétique Fonctionnelle de la Souris, Département de Biologie du Développement et Cellules Souches, 25 rue du docteur Roux, Paris F-75015, France CNRS URA 2578, Paris F-75015, France
| |
Collapse
|
35
|
Tam PPL, Fossat N, Wilkie E, Loebel DAF, Ip CK, Ramialison M. Formation of the Embryonic Head in the Mouse: Attributes of a Gene Regulatory Network. Curr Top Dev Biol 2016; 117:497-521. [PMID: 26969997 DOI: 10.1016/bs.ctdb.2015.11.019] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
The embryonic head is the first major body part to be constructed during embryogenesis. The allocation and the assembly of the progenitor tissues, which start at gastrulation, are accompanied by the spatiotemporal activity of transcription factors and signaling pathways that drives lineage specification, germ layer formation, and cell/tissue movement. The morphogenesis, regionalization, and patterning of the brain and craniofacial structures rely on the function of LIM-domain, homeodomain, and basic helix-loop-helix transcription factors. These factors constitute the central nodes of a gene regulatory network (GRN) which encompasses and intersects with signaling pathways involved with head formation. It is predicted that the functional output of this "head GRN" impacts on cellular function and cell-cell interactions that are essential for lineage differentiation and tissue modeling, which are key processes underpinning the formation of the head.
Collapse
Affiliation(s)
- Patrick P L Tam
- Embryology Unit, Children's Medical Research Institute, Westmead, New South Wales, Australia; Discipline of Medicine, Sydney Medical School, University of Sydney, Sydney, New South Wales, Australia.
| | - Nicolas Fossat
- Embryology Unit, Children's Medical Research Institute, Westmead, New South Wales, Australia; Discipline of Medicine, Sydney Medical School, University of Sydney, Sydney, New South Wales, Australia
| | - Emilie Wilkie
- Embryology Unit, Children's Medical Research Institute, Westmead, New South Wales, Australia; Bioinformatics Unit, Children's Medical Research Institute, Westmead, New South Wales, Australia
| | - David A F Loebel
- Embryology Unit, Children's Medical Research Institute, Westmead, New South Wales, Australia; Discipline of Medicine, Sydney Medical School, University of Sydney, Sydney, New South Wales, Australia
| | - Chi Kin Ip
- Embryology Unit, Children's Medical Research Institute, Westmead, New South Wales, Australia; Discipline of Medicine, Sydney Medical School, University of Sydney, Sydney, New South Wales, Australia
| | - Mirana Ramialison
- Australian Regenerative Medicine Institute, Monash University, Clayton, Victoria, Australia; Systems Biology Institute Australia, Monash University, Clayton, Victoria, Australia
| |
Collapse
|
36
|
Muñoz-Descalzo S, Hadjantonakis AK, Arias AM. Wnt/ß-catenin signalling and the dynamics of fate decisions in early mouse embryos and embryonic stem (ES) cells. Semin Cell Dev Biol 2015; 47-48:101-9. [PMID: 26321498 DOI: 10.1016/j.semcdb.2015.08.011] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2015] [Revised: 08/18/2015] [Accepted: 08/20/2015] [Indexed: 12/22/2022]
Abstract
Wnt/ß-catenin signalling is a widespread cell signalling pathway with multiple roles during vertebrate development. In mouse embryonic stem (mES) cells, there is a dual role for ß-catenin: it promotes differentiation when activated as part of the Wnt/ß-catenin signalling pathway, and promotes stable pluripotency independently of signalling. Although mES cells resemble the preimplantation epiblast progenitors, the first requirement for Wnt/ß-catenin signalling during mouse development has been reported at implantation [1,2]. The relationship between ß-catenin and pluripotency and that of mES cells with epiblast progenitors suggests that ß-catenin might have a functional role during preimplantation development. Here we summarize the expression and function of Wnt/ß-catenin signalling elements during the early stages of mouse development and consider the reasons why the requirement in ES cells do not reflect the embryo.
Collapse
Affiliation(s)
| | - Anna-Katerina Hadjantonakis
- Developmental Biology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | | |
Collapse
|
37
|
Reis AH, Macdonald B, Feistel K, Brito JM, Amado NG, Xu C, Abreu JG, He XI. Expression and evolution of the Tiki1 and Tiki2 genes in vertebrates. THE INTERNATIONAL JOURNAL OF DEVELOPMENTAL BIOLOGY 2015; 58:355-362. [PMID: 25354456 DOI: 10.1387/ijdb.140106ja] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
Tiki1 is a Wnt protease and antagonist specifically expressed in the Spemann-Mangold Organizer and is required for head formation in Xenopus embryos. Here we report neighbor-joining phylogenetic analysis of vertebrate Tiki genes and their mRNA expression patterns in chick, mouse, and rabbit embryos. Tiki1 and Tiki2 orthologues are highly conserved, and exhibit similar but also different developmental expression patterns among the vertebrate/mammalian species analyzed. The Tiki1 gene is noticeably absent in the rodent lineage, but is present in lagomorphs and all other vertebrate/mammalian species examined. Expression in Hensen's node, the equivalent of the Xenopus Organizer, was observed for Chick Tiki2 and Rabbit Tiki1 and Tiki2. Mouse Tiki2 was detected at low levels at gastrulation and head fold stages, but not in the node. Mouse Tiki2 and chick Tiki1 display similar expression in the dorsal spinal cord. Chick Tiki1 expression was also detected in the surface ectoderm and maxillary bud, while chick Tiki2 was found in the anterior intestinal portal, head mesenchyme and primitive atrium. Our expression analyses provide evidence that Tiki1 and Tiki2 are evolutionarily conserved among vertebrate species and their expression in the Organizer and other regions suggests contributions of these Wnt inhibitors to embryonic patterning, as well as organogenesis. Our analyses further reveal mis-regulation of TIKI1 and TIKI2 in human cancer and diseases.
Collapse
Affiliation(s)
- Alice H Reis
- Instituto de Ciências Biomédicas, Universidade Federal do Rio de Janeiro, Rio de Janeiro, 21949-590, Brazil
| | - Bryan Macdonald
- F. M. Kirby Center, Boston Children's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Kerstin Feistel
- Institute of Zoology, University of Hohenheim, 70593 Stuttgart, Germany
| | - Jose M Brito
- Instituto de Ciências Biomédicas, Universidade Federal do Rio de Janeiro, Rio de Janeiro, 21949-590, Brazil
| | - Nathalia G Amado
- Instituto de Ciências Biomédicas, Universidade Federal do Rio de Janeiro, Rio de Janeiro, 21949-590, Brazil
| | - Chiwei Xu
- F. M. Kirby Center, Boston Children's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Jose G Abreu
- Instituto de Ciências Biomédicas, Universidade Federal do Rio de Janeiro, Rio de Janeiro, 21949-590, Brazil
| | - X I He
- F. M. Kirby Center, Boston Children's Hospital, Harvard Medical School, Boston, MA 02115, USA
| |
Collapse
|
38
|
Fossat N, Ip CK, Jones VJ, Studdert JB, Khoo PL, Lewis SL, Power M, Tourle K, Loebel DAF, Kwan KM, Behringer RR, Tam PPL. Context-specific function of the LIM homeobox 1 transcription factor in head formation of the mouse embryo. Development 2015; 142:2069-79. [DOI: 10.1242/dev.120907] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2014] [Accepted: 04/19/2015] [Indexed: 01/18/2023]
Abstract
ABSTRACT
Lhx1 encodes a LIM homeobox transcription factor that is expressed in the primitive streak, mesoderm and anterior mesendoderm of the mouse embryo. Using a conditional Lhx1 flox mutation and three different Cre deleters, we demonstrated that LHX1 is required in the anterior mesendoderm, but not in the mesoderm, for formation of the head. LHX1 enables the morphogenetic movement of cells that accompanies the formation of the anterior mesendoderm, in part through regulation of Pcdh7 expression. LHX1 also regulates, in the anterior mesendoderm, the transcription of genes encoding negative regulators of WNT signalling, such as Dkk1, Hesx1, Cer1 and Gsc. Embryos carrying mutations in Pcdh7, generated using CRISPR-Cas9 technology, and embryos without Lhx1 function specifically in the anterior mesendoderm displayed head defects that partially phenocopied the truncation defects of Lhx1-null mutants. Therefore, disruption of Lhx1-dependent movement of the anterior mesendoderm cells and failure to modulate WNT signalling both resulted in the truncation of head structures. Compound mutants of Lhx1, Dkk1 and Ctnnb1 show an enhanced head truncation phenotype, pointing to a functional link between LHX1 transcriptional activity and the regulation of WNT signalling. Collectively, these results provide comprehensive insight into the context-specific function of LHX1 in head formation: LHX1 enables the formation of the anterior mesendoderm that is instrumental for mediating the inductive interaction with the anterior neuroectoderm and LHX1 also regulates the expression of factors in the signalling cascade that modulate the level of WNT activity.
Collapse
Affiliation(s)
- Nicolas Fossat
- Embryology Unit, Children's Medical Research Institute, Westmead, New South Wales 2145, Australia
- Discipline of Medicine, Sydney Medical School, University of Sydney, Sydney, New South Wales 2006, Australia
| | - Chi Kin Ip
- Embryology Unit, Children's Medical Research Institute, Westmead, New South Wales 2145, Australia
- Discipline of Medicine, Sydney Medical School, University of Sydney, Sydney, New South Wales 2006, Australia
| | - Vanessa J. Jones
- Embryology Unit, Children's Medical Research Institute, Westmead, New South Wales 2145, Australia
| | - Joshua B. Studdert
- Embryology Unit, Children's Medical Research Institute, Westmead, New South Wales 2145, Australia
| | - Poh-Lynn Khoo
- Embryology Unit, Children's Medical Research Institute, Westmead, New South Wales 2145, Australia
| | - Samara L. Lewis
- Embryology Unit, Children's Medical Research Institute, Westmead, New South Wales 2145, Australia
| | - Melinda Power
- Embryology Unit, Children's Medical Research Institute, Westmead, New South Wales 2145, Australia
| | - Karin Tourle
- Embryology Unit, Children's Medical Research Institute, Westmead, New South Wales 2145, Australia
| | - David A. F. Loebel
- Embryology Unit, Children's Medical Research Institute, Westmead, New South Wales 2145, Australia
- Discipline of Medicine, Sydney Medical School, University of Sydney, Sydney, New South Wales 2006, Australia
| | - Kin Ming Kwan
- Department of Genetics, MD Anderson Cancer Center, University of Texas, Houston, TX 77005, USA
| | - Richard R. Behringer
- Department of Genetics, MD Anderson Cancer Center, University of Texas, Houston, TX 77005, USA
| | - Patrick P. L. Tam
- Embryology Unit, Children's Medical Research Institute, Westmead, New South Wales 2145, Australia
- Discipline of Medicine, Sydney Medical School, University of Sydney, Sydney, New South Wales 2006, Australia
| |
Collapse
|
39
|
van den Brink SC, Baillie-Johnson P, Balayo T, Hadjantonakis AK, Nowotschin S, Turner DA, Martinez Arias A. Symmetry breaking, germ layer specification and axial organisation in aggregates of mouse embryonic stem cells. Development 2015; 141:4231-42. [PMID: 25371360 PMCID: PMC4302915 DOI: 10.1242/dev.113001] [Citation(s) in RCA: 296] [Impact Index Per Article: 29.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Mouse embryonic stem cells (mESCs) are clonal populations derived from preimplantation mouse embryos that can be propagated in vitro and, when placed into blastocysts, contribute to all tissues of the embryo and integrate into the normal morphogenetic processes, i.e. they are pluripotent. However, although they can be steered to differentiate in vitro into all cell types of the organism, they cannot organise themselves into structures that resemble embryos. When aggregated into embryoid bodies they develop disorganised masses of different cell types with little spatial coherence. An exception to this rule is the emergence of retinas and anterior cortex-like structures under minimal culture conditions. These structures emerge from the cultures without any axial organisation. Here, we report that small aggregates of mESCs, of about 300 cells, self-organise into polarised structures that exhibit collective behaviours reminiscent of those that cells exhibit in early mouse embryos, including symmetry breaking, axial organisation, germ layer specification and cell behaviour, as well as axis elongation. The responses are signal specific and uncouple processes that in the embryo are tightly associated, such as specification of the anteroposterior axis and anterior neural development, or endoderm specification and axial elongation. We discuss the meaning and implications of these observations and the potential uses of these structures which, because of their behaviour, we suggest to call ‘gastruloids’.
Collapse
Affiliation(s)
| | | | - Tina Balayo
- Department of Genetics, University of Cambridge, Cambridge CB2 3EH, UK
| | | | - Sonja Nowotschin
- Developmental Biology Program, Sloan-Kettering Institute, New York, NY 10065, USA
| | - David A Turner
- Department of Genetics, University of Cambridge, Cambridge CB2 3EH, UK
| | | |
Collapse
|
40
|
Cajal M, Creuzet SE, Papanayotou C, Sabéran-Djoneidi D, Chuva de Sousa Lopes SM, Zwijsen A, Collignon J, Camus A. A conserved role for non-neural ectoderm cells in early neural development. Development 2014; 141:4127-38. [DOI: 10.1242/dev.107425] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
During the early steps of head development, ectodermal patterning leads to the emergence of distinct non-neural and neural progenitor cells. The induction of the preplacodal ectoderm and the neural crest depends on well-studied signalling interactions between the non-neural ectoderm fated to become epidermis and the prospective neural plate. By contrast, the involvement of the non-neural ectoderm in the morphogenetic events leading to the development and patterning of the central nervous system has been studied less extensively. Here, we show that the removal of the rostral non-neural ectoderm abutting the prospective neural plate at late gastrulation stage leads, in mouse and chick embryos, to morphological defects in forebrain and craniofacial tissues. In particular, this ablation compromises the development of the telencephalon without affecting that of the diencephalon. Further investigations of ablated mouse embryos established that signalling centres crucial for forebrain regionalization, namely the axial mesendoderm and the anterior neural ridge, form normally. Moreover, changes in cell death or cell proliferation could not explain the specific loss of telencephalic tissue. Finally, we provide evidence that the removal of rostral tissues triggers misregulation of the BMP, WNT and FGF signalling pathways that may affect telencephalon development. This study opens new perspectives on the role of the neural/non-neural interface and reveals its functional relevance across higher vertebrates.
Collapse
Affiliation(s)
- Marieke Cajal
- Université Paris Diderot, Sorbonne Paris Cité, Institut Jacques Monod, UMR7592 CNRS, Paris F-75013, France
| | - Sophie E. Creuzet
- Institut de Neurobiologie, Laboratoire Neurobiologie et Développement, CNRS-UPR3294, avenue de la Terrasse, Gif-sur-Yvette 91198, France
| | - Costis Papanayotou
- Université Paris Diderot, Sorbonne Paris Cité, Institut Jacques Monod, UMR7592 CNRS, Paris F-75013, France
| | - Délara Sabéran-Djoneidi
- Université Paris Diderot, Sorbonne Paris Cité, Institut Jacques Monod, UMR7592 CNRS, Paris F-75013, France
| | | | - An Zwijsen
- Laboratory of Developmental Signaling, VIB Center for the Biology of Disease, and KU Leuven, Department for Human Genetics, Leuven 3000, Belgium
| | - Jérôme Collignon
- Université Paris Diderot, Sorbonne Paris Cité, Institut Jacques Monod, UMR7592 CNRS, Paris F-75013, France
| | - Anne Camus
- Université Paris Diderot, Sorbonne Paris Cité, Institut Jacques Monod, UMR7592 CNRS, Paris F-75013, France
| |
Collapse
|
41
|
Ip CK, Fossat N, Jones V, Lamonerie T, Tam PPL. Head formation: OTX2 regulates Dkk1 and Lhx1 activity in the anterior mesendoderm. Development 2014; 141:3859-67. [DOI: 10.1242/dev.114900] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
The Otx2 gene encodes a paired-type homeobox transcription factor that is essential for the induction and the patterning of the anterior structures in the mouse embryo. Otx2 knockout embryos fail to form a head. Whereas previous studies have shown that Otx2 is required in the anterior visceral endoderm and the anterior neuroectoderm for head formation, its role in the anterior mesendoderm (AME) has not been assessed specifically. Here, we show that tissue-specific ablation of Otx2 in the AME phenocopies the truncation of the embryonic head of the Otx2 null mutant. Expression of Dkk1 and Lhx1, two genes that are also essential for head formation, is disrupted in the AME of the conditional Otx2-deficient embryos. Consistent with the fact that Dkk1 is a direct target of OTX2, we showed that OTX2 can interact with the H1 regulatory region of Dkk1 to activate its expression. Cross-species comparative analysis, RT-qPCR, ChIP-qPCR and luciferase assays have revealed two conserved regions in the Lhx1 locus to which OTX2 can bind to activate Lhx1 expression. Abnormal development of the embryonic head in Otx2;Lhx1 and Otx2;Dkk1 compound mutant embryos highlights the functional intersection of Otx2, Dkk1 and Lhx1 in the AME for head formation.
Collapse
Affiliation(s)
- Chi Kin Ip
- Embryology Unit, Children's Medical Research Institute, Locked Bag 23, Wentworthville, New South Wales 2145, Australia
- Discipline of Medicine, Sydney Medical School, University of Sydney, New South Wales 2006, Australia
| | - Nicolas Fossat
- Embryology Unit, Children's Medical Research Institute, Locked Bag 23, Wentworthville, New South Wales 2145, Australia
- Discipline of Medicine, Sydney Medical School, University of Sydney, New South Wales 2006, Australia
| | - Vanessa Jones
- Embryology Unit, Children's Medical Research Institute, Locked Bag 23, Wentworthville, New South Wales 2145, Australia
| | - Thomas Lamonerie
- Equipe Neurodéveloppement, Institut de Biologie Valrose, UMR UNS/CNRS 7277/INSERM 1091, Université Nice Sophia Antipolis, Parc Valrose, 06108 Nice cedex 2, France
| | - Patrick P. L. Tam
- Embryology Unit, Children's Medical Research Institute, Locked Bag 23, Wentworthville, New South Wales 2145, Australia
- Discipline of Medicine, Sydney Medical School, University of Sydney, New South Wales 2006, Australia
| |
Collapse
|
42
|
Turner DA, Trott J, Hayward P, Rué P, Martinez Arias A. An interplay between extracellular signalling and the dynamics of the exit from pluripotency drives cell fate decisions in mouse ES cells. Biol Open 2014; 3:614-26. [PMID: 24950969 PMCID: PMC4154298 DOI: 10.1242/bio.20148409] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Embryonic Stem cells derived from the epiblast tissue of the mammalian blastocyst retain the capability to differentiate into any adult cell type and are able to self-renew indefinitely under appropriate culture conditions. Despite the large amount of knowledge that we have accumulated to date about the regulation and control of self-renewal, efficient directed differentiation into specific tissues remains elusive. In this work, we have analysed in a systematic manner the interaction between the dynamics of loss of pluripotency and Activin/Nodal, BMP4 and Wnt signalling in fate assignment during the early stages of differentiation of mouse ES cells in culture. During the initial period of differentiation, cells exit from pluripotency and enter an Epi-like state. Following this transient stage, and under the influence of Activin/Nodal and BMP signalling, cells face a fate choice between differentiating into neuroectoderm and contributing to Primitive Streak fates. We find that Wnt signalling does not suppress neural development as previously thought and that it aids both fates in a context dependent manner. Our results suggest that as cells exit pluripotency they are endowed with a primary neuroectodermal fate and that the potency to become endomesodermal rises with time. We suggest that this situation translates into a “race for fates” in which the neuroectodermal fate has an advantage.
Collapse
Affiliation(s)
- David A Turner
- Department of Genetics, University of Cambridge, Cambridge CB2 3EH, UK
| | - Jamie Trott
- Department of Genetics, University of Cambridge, Cambridge CB2 3EH, UK Wellcome Trust Centre for Stem Cell Research, University of Cambridge, Cambridge CB2 1QR, UK
| | - Penelope Hayward
- Department of Genetics, University of Cambridge, Cambridge CB2 3EH, UK
| | - Pau Rué
- Department of Genetics, University of Cambridge, Cambridge CB2 3EH, UK
| | | |
Collapse
|
43
|
From pluripotency to forebrain patterning: an in vitro journey astride embryonic stem cells. Cell Mol Life Sci 2014; 71:2917-30. [PMID: 24643740 PMCID: PMC4098049 DOI: 10.1007/s00018-014-1596-1] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2013] [Revised: 02/17/2014] [Accepted: 02/26/2014] [Indexed: 02/07/2023]
Abstract
Embryonic stem cells (ESCs) have been used extensively as in vitro models of neural development and disease, with special efforts towards their conversion into forebrain progenitors and neurons. The forebrain is the most complex brain region, giving rise to several fundamental structures, such as the cerebral cortex, the hypothalamus, and the retina. Due to the multiplicity of signaling pathways playing different roles at distinct times of embryonic development, the specification and patterning of forebrain has been difficult to study in vivo. Research performed on ESCs in vitro has provided a large body of evidence to complement work in model organisms, but these studies have often been focused more on cell type production than on cell fate regulation. In this review, we systematically reassess the current literature in the field of forebrain development in mouse and human ESCs with a focus on the molecular mechanisms of early cell fate decisions, taking into consideration the specific culture conditions, exogenous and endogenous molecular cues as described in the original studies. The resulting model of early forebrain induction and patterning provides a useful framework for further studies aimed at reconstructing forebrain development in vitro for basic research or therapy.
Collapse
|
44
|
Barratt KS, Glanville-Jones HC, Arkell RM. The Zic2
gene directs the formation and function of node cilia to control cardiac situs. Genesis 2014; 52:626-35. [DOI: 10.1002/dvg.22767] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2013] [Revised: 02/13/2014] [Accepted: 02/25/2014] [Indexed: 01/10/2023]
Affiliation(s)
- Kristen S. Barratt
- Early Mammalian Development Laboratory; Research School of Biology, Evolution, Ecology and Genetics, The Australian National University; Canberra ACT 0200 Australia
| | - Hannah C. Glanville-Jones
- Early Mammalian Development Laboratory; Research School of Biology, Evolution, Ecology and Genetics, The Australian National University; Canberra ACT 0200 Australia
| | - Ruth M. Arkell
- Early Mammalian Development Laboratory; Research School of Biology, Evolution, Ecology and Genetics, The Australian National University; Canberra ACT 0200 Australia
| |
Collapse
|
45
|
Small-molecule induction promotes corneal epithelial cell differentiation from human induced pluripotent stem cells. Stem Cell Reports 2014; 2:219-31. [PMID: 24527395 PMCID: PMC3923224 DOI: 10.1016/j.stemcr.2013.12.014] [Citation(s) in RCA: 75] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2013] [Revised: 12/23/2013] [Accepted: 12/23/2013] [Indexed: 12/21/2022] Open
Abstract
Human induced pluripotent stem cells (hiPSCs) offer unique opportunities for developing novel cell-based therapies and disease modeling. In this study, we developed a directed differentiation method for hiPSCs toward corneal epithelial progenitor cells capable of terminal differentiation toward mature corneal epithelial-like cells. In order to improve the efficiency and reproducibility of our method, we replicated signaling cues active during ocular surface ectoderm development with the help of two small-molecule inhibitors in combination with basic fibroblast growth factor (bFGF) in serum-free and feeder-free conditions. First, small-molecule induction downregulated the expression of pluripotency markers while upregulating several transcription factors essential for normal eye development. Second, protein expression of the corneal epithelial progenitor marker p63 was greatly enhanced, with up to 95% of cells being p63 positive after 5 weeks of differentiation. Third, corneal epithelial-like cells were obtained upon further maturation. Small-molecule induction directs early stage differentiation Subsequent maturation yields homogeneous populations of p63-positive cells p63-positive progenitor cells are capable of terminal differentiation The serum-free and feeder-free method can be upgraded to fully defined and xeno free
Collapse
|
46
|
Houtmeyers R, Souopgui J, Tejpar S, Arkell R. The ZIC gene family encodes multi-functional proteins essential for patterning and morphogenesis. Cell Mol Life Sci 2013; 70:3791-811. [PMID: 23443491 PMCID: PMC11113920 DOI: 10.1007/s00018-013-1285-5] [Citation(s) in RCA: 76] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2012] [Revised: 01/16/2013] [Accepted: 01/28/2013] [Indexed: 12/18/2022]
Abstract
The zinc finger of the cerebellum gene (ZIC) discovered in Drosophila melanogaster (odd-paired) has five homologs in Xenopus, chicken, mice, and humans, and seven in zebrafish. This pattern of gene copy expansion is accompanied by a divergence in gene and protein structure, suggesting that Zic family members share some, but not all, functions. ZIC genes are implicated in neuroectodermal development and neural crest cell induction. All share conserved regions encoding zinc finger domains, however their heterogeneity and specification remain unexplained. In this review, the evolution, structure, and expression patterns of the ZIC homologs are described; specific functions attributable to individual family members are supported. A review of data from functional studies in Xenopus and murine models suggest that ZIC genes encode multifunctional proteins operating in a context-specific manner to drive critical events during embryogenesis. The identification of ZIC mutations in congenital syndromes highlights the relevance of these genes in human development.
Collapse
Affiliation(s)
- Rob Houtmeyers
- Department of Oncology, Katholieke Universiteit Leuven, O&N1, 3000, Leuven, Belgium,
| | | | | | | |
Collapse
|
47
|
Trott J, Martinez Arias A. Single cell lineage analysis of mouse embryonic stem cells at the exit from pluripotency. Biol Open 2013; 2:1049-56. [PMID: 24167715 PMCID: PMC3798188 DOI: 10.1242/bio.20135934] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2013] [Accepted: 07/15/2013] [Indexed: 12/29/2022] Open
Abstract
Understanding how interactions between extracellular signalling pathways and transcription factor networks influence cellular decision making will be crucial for understanding mammalian embryogenesis and for generating specialised cell types in vitro. To this end, pluripotent mouse Embryonic Stem (mES) cells have proven to be a useful model system. However, understanding how transcription factors and signalling pathways affect decisions made by individual cells is confounded by the fact that measurements are generally made on groups of cells, whilst individual mES cells differentiate at different rates and towards different lineages, even in conditions that favour a particular lineage. Here we have used single-cell measurements of transcription factor expression and Wnt/β-catenin signalling activity to investigate their effects on lineage commitment decisions made by individual cells. We find that pluripotent mES cells exhibit differing degrees of heterogeneity in their expression of important regulators from pluripotency, depending on the signalling environment to which they are exposed. As mES cells differentiate, downregulation of Nanog and Oct4 primes cells for neural commitment, whilst loss of Sox2 expression primes cells for primitive streak commitment. Furthermore, we find that Wnt signalling acts through Nanog to direct cells towards a primitive streak fate, but that transcriptionally active β-catenin is associated with both neural and primitive streak commitment. These observations confirm and extend previous suggestions that pluripotency genes influence lineage commitment and demonstrate how their dynamic expression affects the direction of lineage commitment, whilst illustrating two ways in which the Wnt signalling pathway acts on this network during cell fate assignment.
Collapse
Affiliation(s)
- Jamie Trott
- Department of Genetics, University of Cambridge, Cambridge CB2 3EH, UK
- Wellcome Trust Centre for Stem Cell Research, University of Cambridge, Cambridge CB2 1QR, UK
- Present address: Institute of Medical Biology, 8A Biomedical Grove, No. 06-06 Immunos, Singapore 138648
| | | |
Collapse
|
48
|
Engert S, Burtscher I, Liao WP, Dulev S, Schotta G, Lickert H. Wnt/β-catenin signalling regulates Sox17 expression and is essential for organizer and endoderm formation in the mouse. Development 2013; 140:3128-38. [PMID: 23824574 DOI: 10.1242/dev.088765] [Citation(s) in RCA: 72] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Several signalling cascades are implicated in the formation and patterning of the three principal germ layers, but their precise temporal-spatial mode of action in progenitor populations remains undefined. We have used conditional gene deletion of mouse β-catenin in Sox17-positive embryonic and extra-embryonic endoderm as well as vascular endothelial progenitors to address the function of canonical Wnt signalling in cell lineage formation and patterning. Conditional mutants fail to form anterior brain structures and exhibit posterior body axis truncations, whereas initial blood vessel formation appears normal. Tetraploid rescue experiments reveal that lack of β-catenin in the anterior visceral endoderm results in defects in head organizer formation. Sox17 lineage tracing in the definitive endoderm (DE) shows a cell-autonomous requirement for β-catenin in midgut and hindgut formation. Surprisingly, wild-type posterior visceral endoderm (PVE) in midgut- and hindgut-deficient tetraploid chimera rescues the posterior body axis truncation, indicating that the PVE is important for tail organizer formation. Upon loss of β-catenin in the visceral endoderm and DE lineages, but not in the vascular endothelial lineage, Sox17 expression is not maintained, suggesting downstream regulation by canonical Wnt signalling. Strikingly, Tcf4/β-catenin transactivation complexes accumulated on Sox17 cis-regulatory elements specifically upon endoderm induction in an embryonic stem cell differentiation system. Together, these results indicate that the Wnt/β-catenin signalling pathway regulates Sox17 expression for visceral endoderm pattering and DE formation and provide the first functional evidence that the PVE is necessary for gastrula organizer gene induction and posterior axis development.
Collapse
Affiliation(s)
- Silvia Engert
- Institute of Stem Cell Research, Helmholtz Zentrum München, 85764 Neuherberg, Germany
| | | | | | | | | | | |
Collapse
|
49
|
Arkell RM, Fossat N, Tam PPL. Wnt signalling in mouse gastrulation and anterior development: new players in the pathway and signal output. Curr Opin Genet Dev 2013; 23:454-60. [PMID: 23608663 DOI: 10.1016/j.gde.2013.03.001] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2013] [Revised: 03/06/2013] [Accepted: 03/08/2013] [Indexed: 12/20/2022]
Abstract
Embryonic development and adult homeostasis are dependent upon the coordinated action of signal transduction pathways such as the Wnt signalling pathway which is used iteratively during these processes. In the early post-implantation mouse embryo, Wnt/β-catenin signalling activity plays a critical role in the formation of the primitive streak, progression of gastrulation and tissue patterning in the anterior-posterior axis. The net output of the signalling pathway is influenced by the delivery and post-translational modification of the ligands, the counteracting activities of the activating components and the negative modulators, and the molecular interaction of β-catenin, TCF and other factors regulating the transcription of downstream target genes.
Collapse
Affiliation(s)
- Ruth M Arkell
- Early Mammalian Development Laboratory, Research School of Biology, College of Medicine, Biology and Environment, Australian National University, Canberra, ACT, Australia.
| | | | | |
Collapse
|