1
|
Paul NF, Gustmann K, Tetens J, Falker-Gieske C. MG132 dramatically reduces SAA expression in chicken hepatocellular carcinoma cells at the transcript level independent of its endogenous promoter. Mol Biol Rep 2024; 51:770. [PMID: 38896168 PMCID: PMC11186868 DOI: 10.1007/s11033-024-09726-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Accepted: 06/13/2024] [Indexed: 06/21/2024]
Abstract
BACKGROUND MG132, a proteasome inhibitor, is widely used to inhibit nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB) activity by proteasome-mediated degradation of IκB. It has been marketed as a specific, reversible, cell-permeable and low-cost inhibitor. However, adverse effects of the compound have been reported in the literature. We recently discovered and characterised a point mutation in the acute phase protein serum amyloid A (SAA) in chickens, by overexpressing the protein in chicken hepatocellular carcinoma (LMH) cells. This serine to arginine exchange at amino acid position 90 (SAA.R90S) leads to intra- and extracellular accumulation of SAA, which is surprisingly counteracted by MG132 treatment, independent of SAA's intrinsic promoter. METHODS AND RESULTS To test, whether low proteasomal degradation of SAA.R90S is responsible for the observed intra- and extracellular SAA accumulation, we intended to inhibit the proteasome in SAA wild type (SAA.WT) overexpressing cells with MG132. However, we observed an unexpected drastic decrease in SAA protein expression at the transcript level. NF-κB gene expression was unchanged by MG132 at the measured time point. CONCLUSIONS The observed results demonstrate that MG132 inhibits SAA expression at the transcript level, independent of its endogenous promoter. Further, the data might indicate that NF-κB is not involved in the observed MG132-induced inhibition of SAA expression. We, consequently, question in this brief report whether MG132 should truly be categorised as a specific ubiquitin proteasome inhibitor and recommend the usage of alternative compounds.
Collapse
Affiliation(s)
- Nora-Fabienne Paul
- Department of Animal Sciences, Division of Functional Breeding, Georg-August-Universität Göttingen, Burckhardtweg 2, 37077, Göttingen, Germany
| | - Karolin Gustmann
- Department of Animal Sciences, Division of Functional Breeding, Georg-August-Universität Göttingen, Burckhardtweg 2, 37077, Göttingen, Germany
| | - Jens Tetens
- Department of Animal Sciences, Division of Functional Breeding, Georg-August-Universität Göttingen, Burckhardtweg 2, 37077, Göttingen, Germany
- Center for Integrated Breeding Research, Georg-August-University, Albrecht-Thaer-Weg 3, 37075, Göttingen, Germany
| | - Clemens Falker-Gieske
- Department of Animal Sciences, Division of Functional Breeding, Georg-August-Universität Göttingen, Burckhardtweg 2, 37077, Göttingen, Germany.
- Center for Integrated Breeding Research, Georg-August-University, Albrecht-Thaer-Weg 3, 37075, Göttingen, Germany.
| |
Collapse
|
2
|
Cadena-Ramos AI, De-la-Peña C. Picky eaters: selective autophagy in plant cells. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2024; 117:364-384. [PMID: 37864806 DOI: 10.1111/tpj.16508] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Revised: 09/21/2023] [Accepted: 10/10/2023] [Indexed: 10/23/2023]
Abstract
Autophagy, a fundamental cellular process, plays a vital role in maintaining cellular homeostasis by degrading damaged or unnecessary components. While selective autophagy has been extensively studied in animal cells, its significance in plant cells has only recently gained attention. In this review, we delve into the intriguing realm selective autophagy in plants, with specific focus on its involvement in nutrient recycling, organelle turnover, and stress response. Moreover, recent studies have unveiled the interesting interplay between selective autophagy and epigenetic mechanisms in plants, elucidating the significance of epigenetic regulation in modulating autophagy-related gene expression and finely tuning the selective autophagy process in plants. By synthesizing existing knowledge, this review highlights the emerging field of selective autophagy in plant cells, emphasizing its pivotal role in maintaining nutrient homeostasis, facilitating cellular adaptation, and shedding light on the epigenetic regulation that governs these processes. Our comprehensive study provides the way for a deeper understanding of the dynamic control of cellular responses to nutrient availability and stress conditions, opening new avenues for future research in this field of autophagy in plant physiology.
Collapse
Affiliation(s)
- Alexis I Cadena-Ramos
- Unidad de Biotecnología, Centro de Investigación Científica de Yucatán, Calle 43 No. 130 x 32 y 34 Col. Chuburná de Hidalgo, 97205, Mérida, Yucatán, Mexico
| | - Clelia De-la-Peña
- Unidad de Biotecnología, Centro de Investigación Científica de Yucatán, Calle 43 No. 130 x 32 y 34 Col. Chuburná de Hidalgo, 97205, Mérida, Yucatán, Mexico
| |
Collapse
|
3
|
Lavilla-Puerta M, Latter R, Bellè F, Cervelli T, Galli A, Perata P, Chini A, Flashman E, Giuntoli B. Identification of novel plant cysteine oxidase inhibitors from a yeast chemical genetic screen. J Biol Chem 2023; 299:105366. [PMID: 37863264 PMCID: PMC10692734 DOI: 10.1016/j.jbc.2023.105366] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Revised: 09/28/2023] [Accepted: 10/11/2023] [Indexed: 10/22/2023] Open
Abstract
Hypoxic responses in plants involve Plant Cysteine Oxidases (PCOs). They catalyze the N-terminal cysteine oxidation of Ethylene Response Factors VII (ERF-VII) in an oxygen-dependent manner, leading to their degradation via the cysteine N-degron pathway (Cys-NDP) in normoxia. In hypoxia, PCO activity drops, leading to the stabilization of ERF-VIIs and subsequent hypoxic gene upregulation. Thus far, no chemicals have been described to specifically inhibit PCO enzymes. In this work, we devised an in vivo pipeline to discover Cys-NDP effector molecules. Budding yeast expressing AtPCO4 and plant-based ERF-VII reporters was deployed to screen a library of natural-like chemical scaffolds and was further combined with an Arabidopsis Cys-NDP reporter line. This strategy allowed us to identify three PCO inhibitors, two of which were shown to affect PCO activity in vitro. Application of these molecules to Arabidopsis seedlings led to an increase in ERF-VII stability, induction of anaerobic gene expression, and improvement of tolerance to anoxia. By combining a high-throughput heterologous platform and the plant model Arabidopsis, our synthetic pipeline provides a versatile system to study how the Cys-NDP is modulated. Its first application here led to the discovery of at least two hypoxia-mimicking molecules with the potential to impact plant tolerance to low oxygen stress.
Collapse
Affiliation(s)
| | - Rebecca Latter
- Department of Chemistry, University of Oxford, Oxford, UK
| | | | | | | | | | - Andrea Chini
- Department of Plant Molecular Genetics, Centro Nacional de Biotecnología, CSIC, Madrid, Spain
| | | | - Beatrice Giuntoli
- Plantlab, Center of Plant Sciences, Scuola Superiore Sant'Anna, Pisa, Italy; Biology Department, University of Pisa, Pisa, Italy.
| |
Collapse
|
4
|
Li K, Mocciaro G, Griffin JL, Zhang N. The Saccharomyces cerevisiae acetyltransferase Gcn5 exerts antagonistic pleiotropic effects on chronological ageing. Aging (Albany NY) 2023; 15:10915-10937. [PMID: 37874684 PMCID: PMC10637828 DOI: 10.18632/aging.205109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2023] [Accepted: 09/18/2023] [Indexed: 10/26/2023]
Abstract
Compared to replicative lifespan, epigenetic regulation of chronological lifespan (CLS) is less well understood in yeast. Here, by screening all the viable mutants of histone acetyltransferase (HAT) and histone deacetylase (HDAC), we demonstrate that Gcn5, functioning in the HAT module of the SAGA/SLIK complex, exhibits an epistatic relationship with the HDAC Hda1 to control the expression of starvation-induced stress response and respiratory cell growth. Surprisingly, the gcn5Δ mutants lose their colony-forming potential early in the stationary phase but display a longer maximum CLS than their WT counterparts, suggesting the contradictory roles of Gcn5 in lifespan regulation. Integrative analyses of the transcriptome, metabolome and ChIP assays reveal that Gcn5 is necessary for the activation of two regulons upon glucose starvation: the Msn2/4-/Gis1-dependent stress response and the Cat8-/Adr1-mediated metabolic reprogramming, to enable pro-longevity characteristics, including redox homeostasis, stress resistance and maximal storage of carbohydrates. The activation of Cat8-/Adr1-dependent regulon also promotes the pyruvate dehydrogenase (PDH) bypass, leading to acetyl-CoA synthesis, global and targeted H3K9 acetylation. Global H3K9 acetylation levels mediated by Gcn5 and Hda1 during the transition into stationary phase are positively correlated with senescent cell populations accumulated in the aged cell cultures. These data suggest that Gcn5 lies in the centre of a feed-forward loop between histone acetylation and starvation-induced gene expression, enabling stress resistance and homeostasis but also promoting chronological ageing concomitantly.
Collapse
Affiliation(s)
- Kaiqiang Li
- Department of Biochemistry, University of Cambridge, Cambridge CB2 1GA, UK
| | - Gabriele Mocciaro
- Department of Biochemistry, University of Cambridge, Cambridge CB2 1GA, UK
| | - Jules L. Griffin
- Department of Biochemistry, University of Cambridge, Cambridge CB2 1GA, UK
- The Rowett Institute, University of Aberdeen, Foresterhill Campus, Aberdeen AB25 2ZD, UK
| | - Nianshu Zhang
- Department of Biochemistry, University of Cambridge, Cambridge CB2 1GA, UK
| |
Collapse
|
5
|
Caligaris M, Sampaio-Marques B, Hatakeyama R, Pillet B, Ludovico P, De Virgilio C, Winderickx J, Nicastro R. The Yeast Protein Kinase Sch9 Functions as a Central Nutrient-Responsive Hub That Calibrates Metabolic and Stress-Related Responses. J Fungi (Basel) 2023; 9:787. [PMID: 37623558 PMCID: PMC10455444 DOI: 10.3390/jof9080787] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 07/20/2023] [Accepted: 07/24/2023] [Indexed: 08/26/2023] Open
Abstract
Yeast cells are equipped with different nutrient signaling pathways that enable them to sense the availability of various nutrients and adjust metabolism and growth accordingly. These pathways are part of an intricate network since most of them are cross-regulated and subject to feedback regulation at different levels. In yeast, a central role is played by Sch9, a protein kinase that functions as a proximal effector of the conserved growth-regulatory TORC1 complex to mediate information on the availability of free amino acids. However, recent studies established that Sch9 is more than a TORC1-effector as its activity is tuned by several other kinases. This allows Sch9 to function as an integrator that aligns different input signals to achieve accuracy in metabolic responses and stress-related molecular adaptations. In this review, we highlight the latest findings on the structure and regulation of Sch9, as well as its role as a nutrient-responsive hub that impacts on growth and longevity of yeast cells. Given that most key players impinging on Sch9 are well-conserved, we also discuss how studies on Sch9 can be instrumental to further elucidate mechanisms underpinning healthy aging in mammalians.
Collapse
Affiliation(s)
- Marco Caligaris
- Department of Biology, University of Fribourg, 1700 Fribourg, Switzerland; (M.C.); (B.P.); (C.D.V.)
| | - Belém Sampaio-Marques
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, 4710-057 Braga, Portugal; (B.S.-M.); (P.L.)
- ICVS/3B’s-PT Government Associate Laboratory, 4806-909 Guimarães, Portugal
| | - Riko Hatakeyama
- Institute of Medical Sciences, University of Aberdeen, Aberdeen AB25 2ZD, UK;
| | - Benjamin Pillet
- Department of Biology, University of Fribourg, 1700 Fribourg, Switzerland; (M.C.); (B.P.); (C.D.V.)
| | - Paula Ludovico
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, 4710-057 Braga, Portugal; (B.S.-M.); (P.L.)
- ICVS/3B’s-PT Government Associate Laboratory, 4806-909 Guimarães, Portugal
| | - Claudio De Virgilio
- Department of Biology, University of Fribourg, 1700 Fribourg, Switzerland; (M.C.); (B.P.); (C.D.V.)
| | - Joris Winderickx
- Department of Biology, Functional Biology, KU Leuven, B-3001 Heverlee, Belgium;
| | - Raffaele Nicastro
- Department of Biology, University of Fribourg, 1700 Fribourg, Switzerland; (M.C.); (B.P.); (C.D.V.)
| |
Collapse
|
6
|
Lin DS, Huang YW, Lee TH, Chang L, Huang ZD, Wu TY, Wang TJ, Ho CS. Rapamycin Alleviates Protein Aggregates, Reduces Neuroinflammation, and Rescues Demyelination in Globoid Cell Leukodystrophy. Cells 2023; 12:cells12070993. [PMID: 37048066 PMCID: PMC10093124 DOI: 10.3390/cells12070993] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Revised: 02/23/2023] [Accepted: 03/22/2023] [Indexed: 04/14/2023] Open
Abstract
We have shown in vivo and in vitro previously that psychosine causes dysfunction of autophagy and the ubiquitin-proteasome system underlying the pathogenesis of globoid cell leukodystrophy (GLD), a devastating lysosomal storage disease complicated by global demyelination. Here, we investigated the therapeutic efficacy of the mTOR inhibitor rapamycin in twitcher mice, a murine model of infantile GLD, in biochemical, histochemical, and clinical aspects. Administration of rapamycin to twitcher mice inhibited mTOR signaling in the brains, and significantly reduced the accumulation of insoluble ubiquitinated protein and the formation of ubiquitin aggregates. The astrocytes and microglia reactivity were attenuated in that reactive astrocytes, ameboid microglia, and globoid cells were reduced in the brains of rapamycin-treated twitcher mice. Furthermore, rapamycin improved the cortical myelination, neurite density, and rescued the network complexity in the cortex of twitcher mice. The therapeutic action of rapamycin on the pathology of the twitcher mice's brains prolonged the longevity of treated twitcher mice. Overall, these findings validate the therapeutic efficacy of rapamycin and highlight enhancing degradation of aggregates as a therapeutic strategy to modulate neuroinflammation, demyelination, and disease progression of GLD and other leukodystrophies associated with intracellular aggregates.
Collapse
Affiliation(s)
- Dar-Shong Lin
- Department of Pediatrics, MacKay Memorial Hospital, Taipei 10449, Taiwan
- Department of Medicine, MacKay Medical College, New Taipei 25245, Taiwan
| | - Yu-Wen Huang
- Department of Medical Research, MacKay Memorial Hospital, Taipei 10449, Taiwan
| | - Tsung-Han Lee
- Department of Medical Research, MacKay Memorial Hospital, Taipei 10449, Taiwan
| | - Lung Chang
- Department of Pediatrics, MacKay Memorial Hospital, Taipei 10449, Taiwan
- Department of Medicine, MacKay Medical College, New Taipei 25245, Taiwan
| | - Zon-Darr Huang
- Department of Medical Research, MacKay Memorial Hospital, Taipei 10449, Taiwan
| | - Tsu-Yen Wu
- Department of Medical Research, MacKay Memorial Hospital, Taipei 10449, Taiwan
| | - Tuan-Jen Wang
- Department of Laboratory Medicine, MacKay Memorial Hospital, Taipei 10449, Taiwan
| | - Che-Sheng Ho
- Department of Medicine, MacKay Medical College, New Taipei 25245, Taiwan
- Department of Neurology, MacKay Children's Hospital, Taipei 10449, Taiwan
| |
Collapse
|
7
|
Waite KA, Burris A, Vontz G, Lang A, Roelofs J. Proteaphagy is specifically regulated and requires factors dispensable for general autophagy. J Biol Chem 2022; 298:101494. [PMID: 34919962 PMCID: PMC8732087 DOI: 10.1016/j.jbc.2021.101494] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Accepted: 12/07/2021] [Indexed: 12/27/2022] Open
Abstract
Changing physiological conditions can increase the need for protein degradative capacity in eukaryotic cells. Both the ubiquitin-proteasome system and autophagy contribute to protein degradation. However, these processes can be differently regulated depending on the physiological conditions. Strikingly, proteasomes themselves can be a substrate for autophagy. The signals and molecular mechanisms that govern proteasome autophagy (proteaphagy) are only partly understood. Here, we used immunoblots, native gel analyses, and fluorescent microscopy to understand the regulation of proteaphagy in response to genetic and small molecule-induced perturbations. Our data indicate that chemical inhibition of the master nutrient sensor TORC1 (inhibition of which induces general autophagy) with rapamycin induces a bi-phasic response where proteasome levels are upregulated after an autophagy-dependent reduction. Surprisingly, several conditions that result in inhibited TORC1, such as caffeinine treatment or nitrogen starvation, only induced proteaphagy (i.e., without any proteasome upregulation), suggesting a convergence of signals upstream of proteaphagy under different physiological conditions. Indeed, we found that several conditions that activated general autophagy did not induce proteaphagy, further distinguishing proteaphagy from general autophagy. Consistent with this, we show that Atg11, a selective autophagy receptor, as well as the MAP kinases Mpk1, Mkk1, and Mkk2 all play a role in autophagy of proteasomes, although they are dispensable for general autophagy. Taken together, our data provide new insights into the molecular regulation of proteaphagy by demonstrating that degradation of proteasome complexes is specifically regulated under different autophagy-inducing conditions.
Collapse
Affiliation(s)
- Kenrick A Waite
- Department of Biochemistry and Molecular Biology, University of Kansas Medical Center, Kansas City, Kansas, USA
| | - Alicia Burris
- Department of Biochemistry and Molecular Biology, University of Kansas Medical Center, Kansas City, Kansas, USA; Molecular, Cellular, and Developmental Biology Program, Division of Biology, Kansas State University, Manhattan, Kansas, USA; Biology & Environmental Health, Missouri Southern State University, Joplin, Missouri, USA
| | - Gabrielle Vontz
- Department of Biochemistry and Molecular Biology, University of Kansas Medical Center, Kansas City, Kansas, USA
| | - Angelica Lang
- Molecular, Cellular, and Developmental Biology Program, Division of Biology, Kansas State University, Manhattan, Kansas, USA
| | - Jeroen Roelofs
- Department of Biochemistry and Molecular Biology, University of Kansas Medical Center, Kansas City, Kansas, USA.
| |
Collapse
|
8
|
Phosphoproteomic responses of TORC1 target kinases reveal discrete and convergent mechanisms that orchestrate the quiescence program in yeast. Cell Rep 2021; 37:110149. [PMID: 34965436 DOI: 10.1016/j.celrep.2021.110149] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Revised: 10/19/2021] [Accepted: 11/30/2021] [Indexed: 01/18/2023] Open
Abstract
The eukaryotic TORC1 kinase assimilates diverse environmental cues, including growth factors and nutrients, to control growth by tuning anabolic and catabolic processes. In yeast, TORC1 stimulates protein synthesis in response to abundant nutrients primarily through its proximal effector kinase Sch9. Conversely, TORC1 inhibition following nutrient limitation unlocks various distally controlled kinases (e.g., Atg1, Gcn2, Npr1, Rim15, Slt2/Mpk1, and Yak1), which cooperate through poorly defined circuits to orchestrate the quiescence program. To better define the signaling landscape of the latter kinases, we use in vivo quantitative phosphoproteomics. Through pinpointing known and uncharted Npr1, Rim15, Slt2/Mpk1, and Yak1 effectors, our study examines the architecture of the distally controlled TORC1 kinase network. Accordingly, this is built on a combination of discrete, convergent, and multilayered feedback regulatory mechanisms, which likely ensure homeostatic control of and/or robust responses by TORC1 and its effector kinases under fluctuating nutritional conditions.
Collapse
|
9
|
Roger F, Picazo C, Reiter W, Libiad M, Asami C, Hanzén S, Gao C, Lagniel G, Welkenhuysen N, Labarre J, Nyström T, Grøtli M, Hartl M, Toledano MB, Molin M. Peroxiredoxin promotes longevity and H 2O 2-resistance in yeast through redox-modulation of protein kinase A. eLife 2020; 9:e60346. [PMID: 32662770 PMCID: PMC7392609 DOI: 10.7554/elife.60346] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2020] [Accepted: 07/08/2020] [Indexed: 12/16/2022] Open
Abstract
Peroxiredoxins are H2O2 scavenging enzymes that also carry out H2O2 signaling and chaperone functions. In yeast, the major cytosolic peroxiredoxin, Tsa1 is required for both promoting resistance to H2O2 and extending lifespan upon caloric restriction. We show here that Tsa1 effects both these functions not by scavenging H2O2, but by repressing the nutrient signaling Ras-cAMP-PKA pathway at the level of the protein kinase A (PKA) enzyme. Tsa1 stimulates sulfenylation of cysteines in the PKA catalytic subunit by H2O2 and a significant proportion of the catalytic subunits are glutathionylated on two cysteine residues. Redox modification of the conserved Cys243 inhibits the phosphorylation of a conserved Thr241 in the kinase activation loop and enzyme activity, and preventing Thr241 phosphorylation can overcome the H2O2 sensitivity of Tsa1-deficient cells. Results support a model of aging where nutrient signaling pathways constitute hubs integrating information from multiple aging-related conduits, including a peroxiredoxin-dependent response to H2O2.
Collapse
Affiliation(s)
- Friederike Roger
- Department of Chemistry and Molecular Biology, University of GothenburgGothenburgSweden
| | - Cecilia Picazo
- Department of Biology and Biological Engineering, Chalmers University of TechnologyGothenburgSweden
| | - Wolfgang Reiter
- Mass Spectrometry Facility, Department of Biochemistry, Max F. Perutz Laboratories, University of Vienna, Vienna BioCenterViennaAustria
| | - Marouane Libiad
- Oxidative Stress and Cancer Laboratory, Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC)Gif sur YvetteFrance
| | - Chikako Asami
- Department of Chemistry and Molecular Biology, University of GothenburgGothenburgSweden
| | - Sarah Hanzén
- Department of Chemistry and Molecular Biology, University of GothenburgGothenburgSweden
| | - Chunxia Gao
- Department of Chemistry and Molecular Biology, University of GothenburgGothenburgSweden
| | - Gilles Lagniel
- Oxidative Stress and Cancer Laboratory, Integrative Biology and Molecular Genetics Unit (SBIGEM)CEA SaclayFrance
| | - Niek Welkenhuysen
- Department of Mathematical Sciences, Chalmers University of Technology and University of GothenburgGothenburgSweden
| | - Jean Labarre
- Oxidative Stress and Cancer Laboratory, Integrative Biology and Molecular Genetics Unit (SBIGEM)CEA SaclayFrance
| | - Thomas Nyström
- Department of Microbiology and Immunology, Institute for Biomedicine, Sahlgrenska Academy, University of GothenburgGothenburgSweden
| | - Morten Grøtli
- Department of Chemistry and Molecular Biology, University of GothenburgGothenburgSweden
| | - Markus Hartl
- Mass Spectrometry Facility, Department of Biochemistry, Max F. Perutz Laboratories, University of Vienna, Vienna BioCenterViennaAustria
| | - Michel B Toledano
- Oxidative Stress and Cancer Laboratory, Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC)Gif sur YvetteFrance
| | - Mikael Molin
- Department of Chemistry and Molecular Biology, University of GothenburgGothenburgSweden
- Department of Biology and Biological Engineering, Chalmers University of TechnologyGothenburgSweden
| |
Collapse
|
10
|
Dikicioglu D, Dereli Eke E, Eraslan S, Oliver SG, Kirdar B. Saccharomyces cerevisiae adapted to grow in the presence of low-dose rapamycin exhibit altered amino acid metabolism. Cell Commun Signal 2018; 16:85. [PMID: 30458881 PMCID: PMC6245637 DOI: 10.1186/s12964-018-0298-y] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2018] [Accepted: 11/08/2018] [Indexed: 01/01/2023] Open
Abstract
BACKGROUND Rapamycin is a potent inhibitor of the highly conserved TOR kinase, the nutrient-sensitive controller of growth and aging. It has been utilised as a chemotherapeutic agent due to its anti-proliferative properties and as an immunosuppressive drug, and is also known to extend lifespan in a range of eukaryotes from yeast to mammals. However, the mechanisms through which eukaryotic cells adapt to sustained exposure to rapamycin have not yet been thoroughly investigated. METHODS Here, S. cerevisiae response to long-term rapamycin exposure was investigated by identifying the physiological, transcriptomic and metabolic differences observed for yeast populations inoculated into low-dose rapamycin-containing environment. The effect of oxygen availability and acidity of extracellular environment on this response was further deliberated by controlling or monitoring the dissolved oxygen level and pH of the culture. RESULTS Yeast populations grown in the presence of rapamycin reached higher cell densities complemented by an increase in their chronological lifespan, and these physiological adaptations were associated with a rewiring of the amino acid metabolism, particularly that of arginine. The ability to synthesise amino acids emerges as the key factor leading to the major mechanistic differences between mammalian and microbial TOR signalling pathways in relation to nutrient recognition. CONCLUSION Oxygen levels and extracellular acidity of the culture were observed to conjointly affect yeast populations, virtually acting as coupled physiological effectors; cells were best adapted when maximal oxygenation of the culture was maintained in slightly acidic pH, any deviation necessitated more extensive readjustment to additional stress factors.
Collapse
Affiliation(s)
- Duygu Dikicioglu
- Department of Chemical Engineering and Biotechnology, University of Cambridge, Cambridge, UK. .,Cambridge Systems Biology Centre, University of Cambridge, Cambridge, UK. .,Department of Chemical Engineering, Bogazici University, Istanbul, Turkey.
| | - Elif Dereli Eke
- Department of Chemical Engineering, Bogazici University, Istanbul, Turkey.,Present address: Unit of Blood Diseases and Stem Cells Transplantation, Department of Clinical and Experimental Sciences, University of Brescia, Brescia, Italy
| | - Serpil Eraslan
- Department of Chemical Engineering, Bogazici University, Istanbul, Turkey.,Present address: Diagnostic Centre for Genetic Diseases, Koc University Hospital, Istanbul, Turkey
| | - Stephen G Oliver
- Cambridge Systems Biology Centre, University of Cambridge, Cambridge, UK.,Department of Biochemistry, University of Cambridge, Cambridge, UK
| | - Betul Kirdar
- Department of Chemical Engineering, Bogazici University, Istanbul, Turkey
| |
Collapse
|
11
|
Yin Y, Wu S, Chui C, Ma T, Jiang H, Hahn M, Ma Z. The MAPK kinase BcMkk1 suppresses oxalic acid biosynthesis via impeding phosphorylation of BcRim15 by BcSch9 in Botrytis cinerea. PLoS Pathog 2018; 14:e1007285. [PMID: 30212570 PMCID: PMC6136818 DOI: 10.1371/journal.ppat.1007285] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2018] [Accepted: 08/16/2018] [Indexed: 12/13/2022] Open
Abstract
The mitogen-activated protein kinase (MAPK) cassette of the cell wall integrity (CWI) pathway is primarily responsible for orchestrating changes of cell wall. However, functions of this cassette in other cellular processes are not well understood. Here, we found that the Botrytis cinerea mutant of MAPK kinase (BcMkk1) displays more serious defects in mycelial growth, conidiation, responses to cell wall and oxidative stresses, but possesses less reduced virulence than the mutants of its upstream (BcBck1) and downstream (BcBmp3) kinases. Interestingly, BcMkk1, but not BcBck1 and BcBmp3, negatively regulates production of oxalic acid (OA) and activity of extracellular hydrolases (EHs) that are proposed to be virulence factors of B. cinerea. Moreover, we obtained evidence that BcMkk1 negatively controls OA production via impeding phosphorylation of the Per-Arnt-Sim (PAS) kinase BcRim15 by the Ser/Thr kinase BcSch9. In addition, the fungal Pro40 homolog BcPro40 was found to interact simultaneously with three MAPKs, implying that BcPro40 is a scaffold protein of the CWI pathway in B. cinerea. Taken together, results of this study reveal that BcMkk1 negatively modulates virulence via suppressing OA biosynthesis in B. cinerea, which provides novel insight into conserved and species-specific functions of the MAPK kinase in fungi. Botrytis cinerea causes pre- and postharvest diseases in more than 200 economically important crops. In this study, the roles of cell wall integrity (CWI)-related MAPK kinase BcMkk1in regulating B. cinerea virulence were investigated using genetic and biochemical approaches. We found that the MAPK kinase BcMkk1 positively regulates virulence via the CWI pathway. Unexpectedly, BcMkk1 also negatively regulates fungal virulence via restraining oxalic acid production, by impeding phosphorylation of the PAS kinase BcRim15 mediated by the kinase BcSch9. To our knowledge, this is the first report that a MAPK kinase can negatively modulate fungal virulence on host plants. Our results provide novel insight into biological functions of a MAPK kinase in fungal pathogenesis.
Collapse
Affiliation(s)
- Yanni Yin
- State Key Laboratory of Rice Biology, Institute of Biotechnology, Zhejiang University, Hangzhou, China
| | - Sisi Wu
- State Key Laboratory of Rice Biology, Institute of Biotechnology, Zhejiang University, Hangzhou, China
| | - Chaonan Chui
- State Key Laboratory of Rice Biology, Institute of Biotechnology, Zhejiang University, Hangzhou, China
| | - Tianling Ma
- State Key Laboratory of Rice Biology, Institute of Biotechnology, Zhejiang University, Hangzhou, China
| | - Huixian Jiang
- State Key Laboratory of Rice Biology, Institute of Biotechnology, Zhejiang University, Hangzhou, China
| | - Matthias Hahn
- Department of Biology, Kaiserslautern University, Kaiserslautern, Germany
| | - Zhonghua Ma
- State Key Laboratory of Rice Biology, Institute of Biotechnology, Zhejiang University, Hangzhou, China
- * E-mail:
| |
Collapse
|
12
|
Inaba JI, Nagy PD. Tombusvirus RNA replication depends on the TOR pathway in yeast and plants. Virology 2018; 519:207-222. [PMID: 29734044 DOI: 10.1016/j.virol.2018.04.010] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2018] [Revised: 04/09/2018] [Accepted: 04/15/2018] [Indexed: 02/06/2023]
Abstract
Similar to other (+)RNA viruses, tomato bushy stunt virus (TBSV) utilizes metabolites, lipids, membranes, and co-opted host factors during replication. The coordination of cell metabolism and growth with environmental cues is performed by the target of rapamycin (TOR) kinase in eukaryotic cells. In this paper, we find that TBSV replication partially inhibits TOR activity, likely due to recruitment of glycolytic enzymes to the viral replication compartment, which results in reduced ATP levels in the cytosol. Complete inhibition of TOR activity with rapamycin in yeast or AZD8055 inhibitor in plants reduces tombusvirus replication. We find that high glucose concentration, which stimulates TOR activity, enhanced tombusvirus replication in yeast. Depletion of yeast Sch9 or plant S6K1 kinase, a downstream effector of TOR, also inhibited tombusvirus replication in yeast and plant or the assembly of the viral replicase in vitro. Altogether, the TOR pathway is crucial for TBSV to replicate efficiently in hosts.
Collapse
Affiliation(s)
- Jun-Ichi Inaba
- Department of Plant Pathology, University of Kentucky, Plant Science Building, Lexington, KY 40546, United States
| | - Peter D Nagy
- Department of Plant Pathology, University of Kentucky, Plant Science Building, Lexington, KY 40546, United States.
| |
Collapse
|
13
|
Nakazawa N, Yanata H, Ito N, Kaneta E, Takahashi K. Oxidative stress tolerance of a spore clone isolated from Shirakami kodama yeast depends on altered regulation of Msn2 leading to enhanced expression of ROS-degrading enzymes. J GEN APPL MICROBIOL 2018; 64:149-157. [PMID: 29607878 DOI: 10.2323/jgam.2017.11.002] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
We analyzed the stress response in a spore clone from Shirakami kodama yeast, Saccharomyces cerevisiae, with an exceptional high tolerance to oxidative stress. The levels of reactive oxygen species (ROS) in this clone were very low, whereas the genes for superoxide dismutase (SOD2) and catalase (CTT1) were highly expressed and those enzymes also had high activities even under non-stress conditions. Both genes are regulated by general stress-responsive transcription factors Msn2 and Msn4, and Yap1, a transcription factor required for oxidative stress tolerance, and the removal of Msn2 or Yap1 caused a significant decrease in CTT1-expression. Under non-stress conditions, Msn2 was ~3.6-fold more abundant in the nucleus of the spore clone compared with a laboratory strain, whereas the nuclear abundance of Yap1 remained unchanged. Thus, a high tolerance to oxidative stress in this spore clone results from a high expression of ROS-degrading enzymes by the abundant accumulation of Msn2 in the nucleus. We found that oxidative stress caused by the presence of furfural did not impair fermentation by this strain, which could make it attractive for ethanol production from lignocellulosic biomass.
Collapse
Affiliation(s)
- Nobushige Nakazawa
- Department of Biotechnology, Faculty of Bioresource Science, Akita Prefectural University
| | - Himiko Yanata
- Department of Biotechnology, Faculty of Bioresource Science, Akita Prefectural University
| | - Natsumi Ito
- Department of Biotechnology, Faculty of Bioresource Science, Akita Prefectural University
| | - Eri Kaneta
- Department of Biotechnology, Faculty of Bioresource Science, Akita Prefectural University
| | | |
Collapse
|
14
|
Starvation signals in yeast are integrated to coordinate metabolic reprogramming and stress response to ensure longevity. Curr Genet 2017; 63:839-843. [PMID: 28444510 PMCID: PMC5605593 DOI: 10.1007/s00294-017-0697-4] [Citation(s) in RCA: 62] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2017] [Revised: 04/14/2017] [Accepted: 04/20/2017] [Indexed: 11/02/2022]
Abstract
Studies on replicative and chronological aging in Saccharomyces cerevisiae have greatly advanced our understanding of how longevity is regulated in all eukaryotes. Chronological lifespan (CLS) of yeast is defined as the age-dependent viability of non-dividing cell populations. A number of nutrient sensing and signal transduction pathways (mainly TOR and PKA) have been shown to regulate CLS, yet it is poorly understood how the starvation signals transduced via these pathways lead to CLS extension. Using reporters whose expressions are induced by glucose starvation, we have screened the majority of the 'signaling' mutants in the yeast genome and identified many genes that are necessary for stress response. Subsequent analyses of the 'signaling' mutants not only revealed novel regulators of CLS, such as the GSK-3 ortholog Mck1, but also demonstrated that starvation signals transmitted by SNF1/AMPK, PKC1 and those negatively regulated by TOR/PKA, including Rim15, Yak1 and Mck1 kinases, are integrated to enable metabolic reprogramming and the acquisition of stress resistance. Coordinated metabolic reprogramming ensures the accumulation of storage carbohydrates for quiescent cells to maintain viability. We provide new evidence that Yak1, Rim15 and Mck1 kinases cooperate to activate H2O2-scanvenging activities, thus limiting the levels of ROS in cells entering quiescence. These findings support the recent advances in higher organisms that the flexibility of metabolic reprogramming and the balance between energetics and stress resistance are the unifying principles of lifespan extension. Future work to reveal how the metabolic switch and stress response is coordinated will help delineate the molecular mechanisms of aging in yeast and shed novel insight into aging/anti-aging principles in higher organisms.
Collapse
|
15
|
Ah-Fong AMV, Kim KS, Judelson HS. RNA-seq of life stages of the oomycete Phytophthora infestans reveals dynamic changes in metabolic, signal transduction, and pathogenesis genes and a major role for calcium signaling in development. BMC Genomics 2017; 18:198. [PMID: 28228125 PMCID: PMC5322657 DOI: 10.1186/s12864-017-3585-x] [Citation(s) in RCA: 65] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2016] [Accepted: 02/13/2017] [Indexed: 01/02/2023] Open
Abstract
BACKGROUND The oomycete Phytophthora infestans causes the devastating late blight diseases of potato and tomato. P. infestans uses spores for dissemination and infection, like many other filamentous eukaryotic plant pathogens. The expression of a subset of its genes during spore formation and germination were studied previously, but comprehensive genome-wide data have not been available. RESULTS RNA-seq was used to profile hyphae, sporangia, sporangia undergoing zoosporogenesis, motile zoospores, and germinated cysts of P. infestans. Parallel studies of two isolates generated robust expression calls for 16,000 of 17,797 predicted genes, with about 250 transcribed in one isolate but not the other. The largest changes occurred in the transition from hyphae to sporangia, when >4200 genes were up-regulated. More than 1350 of these were induced >100-fold, accounting for 26% of total mRNA. Genes encoding calcium-binding proteins, cation channels, signaling proteins, and flagellar proteins were over-represented in genes up-regulated in sporangia. Proteins associated with pathogenicity were transcribed in waves with subclasses induced during zoosporogenesis, in zoospores, or in germinated cysts. Genes involved in most metabolic pathways were down-regulated upon sporulation and reactivated during cyst germination, although there were exceptions such as DNA replication, where transcripts peaked in zoospores. Inhibitor studies indicated that the transcription of two-thirds of genes induced during zoosporogenesis relied on calcium signaling. A sporulation-induced protein kinase was shown to bind a constitutive Gβ-like protein, which contributed to fitness based on knock-down analysis. CONCLUSIONS Spore formation and germination involves the staged expression of a large subset of the transcriptome, commensurate with the importance of spores in the life cycle. A comparison of the RNA-seq results with the older microarray data indicated that information is now available for about twice the number of genes than before. Analyses based on function revealed dynamic changes in genes involved in pathogenicity, metabolism, and signaling, with diversity in expression observed within members of multigene families and between isolates. The effects of calcium signaling, a spore-induced protein kinase, and an interacting Gβ-like protein were also demonstrated experimentally. The results reveal aspects of oomycete biology that underly their success as pathogens and potential targets for crop protection chemicals.
Collapse
Affiliation(s)
- Audrey M. V. Ah-Fong
- Department of Plant Pathology and Microbiology, University of California, Riverside, CA 92521 USA
| | - Kyoung Su Kim
- Department of Plant Pathology and Microbiology, University of California, Riverside, CA 92521 USA
- Present address: Department of Applied Biology, College of Agriculture and Life Sciences, Kangwon National University, Chuncheon, Korea
| | - Howard S. Judelson
- Department of Plant Pathology and Microbiology, University of California, Riverside, CA 92521 USA
| |
Collapse
|
16
|
Chronological Lifespan in Yeast Is Dependent on the Accumulation of Storage Carbohydrates Mediated by Yak1, Mck1 and Rim15 Kinases. PLoS Genet 2016; 12:e1006458. [PMID: 27923067 PMCID: PMC5140051 DOI: 10.1371/journal.pgen.1006458] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2016] [Accepted: 11/03/2016] [Indexed: 12/19/2022] Open
Abstract
Upon starvation for glucose or any other macronutrient, yeast cells exit from the mitotic cell cycle and acquire a set of characteristics that are specific to quiescent cells to ensure longevity. Little is known about the molecular determinants that orchestrate quiescence entry and lifespan extension. Using starvation-specific gene reporters, we screened a subset of the yeast deletion library representing the genes encoding 'signaling' proteins. Apart from the previously characterised Rim15, Mck1 and Yak1 kinases, the SNF1/AMPK complex, the cell wall integrity pathway and a number of cell cycle regulators were shown to be necessary for proper quiescence establishment and for extension of chronological lifespan (CLS), suggesting that entry into quiescence requires the integration of starvation signals transmitted via multiple signaling pathways. The CLS of these signaling mutants, and those of the single, double and triple mutants of RIM15, YAK1 and MCK1 correlates well with the amount of storage carbohydrates but poorly with transition-phase cell cycle status. Combined removal of the glycogen and trehalose biosynthetic genes, especially GSY2 and TPS1, nearly abolishes the accumulation of storage carbohydrates and severely reduces CLS. Concurrent overexpression of GSY2 and TSL1 or supplementation of trehalose to the growth medium ameliorates the severe CLS defects displayed by the signaling mutants (rim15Δyak1Δ or rim15Δmck1Δ). Furthermore, we reveal that the levels of intracellular reactive oxygen species are cooperatively controlled by Yak1, Rim15 and Mck1, and the three kinases mediate the TOR1-regulated accumulation of storage carbohydrates and CLS extension. Our data support the hypothesis that metabolic reprogramming to accumulate energy stores and the activation of anti-oxidant defence systems are coordinated by Yak1, Rim15 and Mck1 kinases to ensure quiescence entry and lifespan extension in yeast.
Collapse
|
17
|
Dobzinski N, Chuartzman S, Kama R, Schuldiner M, Gerst J. Starvation-Dependent Regulation of Golgi Quality Control Links the TOR Signaling and Vacuolar Protein Sorting Pathways. Cell Rep 2015; 12:1876-86. [DOI: 10.1016/j.celrep.2015.08.026] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2015] [Revised: 07/09/2015] [Accepted: 08/09/2015] [Indexed: 01/18/2023] Open
|
18
|
Quan Z, Cao L, Tang Y, Yan Y, Oliver SG, Zhang N. The Yeast GSK-3 Homologue Mck1 Is a Key Controller of Quiescence Entry and Chronological Lifespan. PLoS Genet 2015; 11:e1005282. [PMID: 26103122 PMCID: PMC4477894 DOI: 10.1371/journal.pgen.1005282] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2014] [Accepted: 05/14/2015] [Indexed: 02/06/2023] Open
Abstract
Upon starvation for glucose or any other core nutrient, yeast cells exit from the mitotic cell cycle and acquire a set of G0-specific characteristics to ensure long-term survival. It is not well understood whether or how cell cycle progression is coordinated with the acquisition of different G0-related features during the transition to stationary phase (SP). Here, we identify the yeast GSK-3 homologue Mck1 as a key regulator of G0 entry and reveal that Mck1 acts in parallel to Rim15 to activate starvation-induced gene expression, the acquisition of stress resistance, the accumulation of storage carbohydrates, the ability of early SP cells to exit from quiescence, and their chronological lifespan. FACS and microscopy imaging analyses indicate that Mck1 promotes mother-daughter cell separation and together with Rim15, modulates cell size. This indicates that the two kinases coordinate the transition-phase cell cycle, cell size and the acquisition of different G0-specific features. Epistasis experiments place MCK1, like RIM15, downstream of RAS2 in antagonising cell growth and activating stress resistance and glycogen accumulation. Remarkably, in the ras2∆ cells, deletion of MCK1 and RIM15 together, compared to removal of either of them alone, compromises respiratory growth and enhances heat tolerance and glycogen accumulation. Our data indicate that the nutrient sensor Ras2 may prevent the acquisition of G0-specific features via at least two pathways. One involves the negative regulation of the effectors of G0 entry such as Mck1 and Rim15, while the other likely to involve its functions in promoting respiratory growth, a phenotype also contributed by Mck1 and Rim15.
Collapse
Affiliation(s)
- Zhenzhen Quan
- Cambridge Systems Biology Centre and Department of Biochemistry, University of Cambridge, Cambridge, United Kingdom
| | - Lu Cao
- Cambridge Systems Biology Centre and Department of Biochemistry, University of Cambridge, Cambridge, United Kingdom
| | - Yingzhi Tang
- Cambridge Systems Biology Centre and Department of Biochemistry, University of Cambridge, Cambridge, United Kingdom
| | - Yanchun Yan
- Graduate school of Chinese Academy of Agricultural Sciences, Zhongguancun, Beijing, PR China
| | - Stephen G. Oliver
- Cambridge Systems Biology Centre and Department of Biochemistry, University of Cambridge, Cambridge, United Kingdom
| | - Nianshu Zhang
- Cambridge Systems Biology Centre and Department of Biochemistry, University of Cambridge, Cambridge, United Kingdom
- * E-mail:
| |
Collapse
|