1
|
Guérin TM, Barrington C, Pobegalov G, Molodtsov MI, Uhlmann F. An extrinsic motor directs chromatin loop formation by cohesin. EMBO J 2024; 43:4173-4196. [PMID: 39160275 PMCID: PMC11445435 DOI: 10.1038/s44318-024-00202-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Revised: 07/30/2024] [Accepted: 07/31/2024] [Indexed: 08/21/2024] Open
Abstract
The ring-shaped cohesin complex topologically entraps two DNA molecules to establish sister chromatid cohesion. Cohesin also shapes the interphase chromatin landscape with wide-ranging implications for gene regulation, and cohesin is thought to achieve this by actively extruding DNA loops without topologically entrapping DNA. The 'loop extrusion' hypothesis finds motivation from in vitro observations-whether this process underlies in vivo chromatin loop formation remains untested. Here, using the budding yeast S. cerevisiae, we generate cohesin variants that have lost their ability to extrude DNA loops but retain their ability to topologically entrap DNA. Analysis of these variants suggests that in vivo chromatin loops form independently of loop extrusion. Instead, we find that transcription promotes loop formation, and acts as an extrinsic motor that expands these loops and defines their ultimate positions. Our results necessitate a re-evaluation of the loop extrusion hypothesis. We propose that cohesin, akin to sister chromatid cohesion establishment at replication forks, forms chromatin loops by DNA-DNA capture at places of transcription, thus unifying cohesin's two roles in chromosome segregation and interphase genome organisation.
Collapse
Affiliation(s)
- Thomas M Guérin
- Chromosome Segregation Laboratory, The Francis Crick Institute, London, UK
- Université Paris Cité and Université Paris-Saclay, Inserm, CEA, Stabilité Génétique Cellules Souches et Radiations, Fontenay-aux-Roses, France
| | - Christopher Barrington
- Bioinformatics & Biostatistics Science Technology Platform, The Francis Crick Institute, London, UK
| | - Georgii Pobegalov
- Mechanobiology and Biophysics Laboratory, The Francis Crick Institute, London, UK
- Department of Physics and Astronomy, University College London, London, UK
| | - Maxim I Molodtsov
- Mechanobiology and Biophysics Laboratory, The Francis Crick Institute, London, UK
- Department of Physics and Astronomy, University College London, London, UK
| | - Frank Uhlmann
- Chromosome Segregation Laboratory, The Francis Crick Institute, London, UK.
| |
Collapse
|
2
|
Kant A, Guo Z, Vinayak V, Neguembor MV, Li WS, Agrawal V, Pujadas E, Almassalha L, Backman V, Lakadamyali M, Cosma MP, Shenoy VB. Active transcription and epigenetic reactions synergistically regulate meso-scale genomic organization. Nat Commun 2024; 15:4338. [PMID: 38773126 PMCID: PMC11109243 DOI: 10.1038/s41467-024-48698-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Accepted: 05/06/2024] [Indexed: 05/23/2024] Open
Abstract
In interphase nuclei, chromatin forms dense domains of characteristic sizes, but the influence of transcription and histone modifications on domain size is not understood. We present a theoretical model exploring this relationship, considering chromatin-chromatin interactions, histone modifications, and chromatin extrusion. We predict that the size of heterochromatic domains is governed by a balance among the diffusive flux of methylated histones sustaining them and the acetylation reactions in the domains and the process of loop extrusion via supercoiling by RNAPII at their periphery, which contributes to size reduction. Super-resolution and nano-imaging of five distinct cell lines confirm the predictions indicating that the absence of transcription leads to larger heterochromatin domains. Furthermore, the model accurately reproduces the findings regarding how transcription-mediated supercoiling loss can mitigate the impacts of excessive cohesin loading. Our findings shed light on the role of transcription in genome organization, offering insights into chromatin dynamics and potential therapeutic targets.
Collapse
Affiliation(s)
- Aayush Kant
- Center for Engineering Mechanobiology, University of Pennsylvania, Philadelphia, PA, 19104, USA
- Department of Materials Science and Engineering, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Zixian Guo
- Center for Engineering Mechanobiology, University of Pennsylvania, Philadelphia, PA, 19104, USA
- Department of Mechanical Engineering and Applied Mechanics, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Vinayak Vinayak
- Center for Engineering Mechanobiology, University of Pennsylvania, Philadelphia, PA, 19104, USA
- Department of Materials Science and Engineering, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Maria Victoria Neguembor
- Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, 08003, Barcelona, Spain
| | - Wing Shun Li
- Department of Applied Physics, Northwestern University, Evanston, IL, 60208, USA
- Center for Physical Genomics and Engineering, Northwestern University, Evanston, IL, 60202, USA
| | - Vasundhara Agrawal
- Center for Physical Genomics and Engineering, Northwestern University, Evanston, IL, 60202, USA
- Department of Biomedical Engineering, Northwestern University, Evanston, IL, 60208, USA
| | - Emily Pujadas
- Center for Physical Genomics and Engineering, Northwestern University, Evanston, IL, 60202, USA
| | - Luay Almassalha
- Center for Physical Genomics and Engineering, Northwestern University, Evanston, IL, 60202, USA
- Department of Gastroenterology and Hepatology, Northwestern Memorial Hospital, Chicago, IL, 60611, USA
| | - Vadim Backman
- Center for Physical Genomics and Engineering, Northwestern University, Evanston, IL, 60202, USA
- Department of Biomedical Engineering, Northwestern University, Evanston, IL, 60208, USA
| | - Melike Lakadamyali
- Center for Engineering Mechanobiology, University of Pennsylvania, Philadelphia, PA, 19104, USA
- Department of Physiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Maria Pia Cosma
- Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, 08003, Barcelona, Spain
- ICREA, Barcelona, 08010, Spain
- Universitat Pompeu Fabra (UPF), Barcelona, 08003, Spain
| | - Vivek B Shenoy
- Center for Engineering Mechanobiology, University of Pennsylvania, Philadelphia, PA, 19104, USA.
- Department of Materials Science and Engineering, University of Pennsylvania, Philadelphia, PA, 19104, USA.
- Department of Mechanical Engineering and Applied Mechanics, University of Pennsylvania, Philadelphia, PA, 19104, USA.
| |
Collapse
|
3
|
Yoon I, Kim U, Song Y, Park T, Lee DS. 3C methods in cancer research: recent advances and future prospects. Exp Mol Med 2024; 56:788-798. [PMID: 38658701 PMCID: PMC11059347 DOI: 10.1038/s12276-024-01236-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2023] [Revised: 03/15/2024] [Accepted: 03/25/2024] [Indexed: 04/26/2024] Open
Abstract
In recent years, Hi-C technology has revolutionized cancer research by elucidating the mystery of three-dimensional chromatin organization and its role in gene regulation. This paper explored the impact of Hi-C advancements on cancer research by delving into high-resolution techniques, such as chromatin loops, structural variants, haplotype phasing, and extrachromosomal DNA (ecDNA). Distant regulatory elements interact with their target genes through chromatin loops. Structural variants contribute to the development and progression of cancer. Haplotype phasing is crucial for understanding allele-specific genomic rearrangements and somatic clonal evolution in cancer. The role of ecDNA in driving oncogene amplification and drug resistance in cancer cells has also been revealed. These innovations offer a deeper understanding of cancer biology and the potential for personalized therapies. Despite these advancements, challenges, such as the accurate mapping of repetitive sequences and precise identification of structural variants, persist. Integrating Hi-C with multiomics data is key to overcoming these challenges and comprehensively understanding complex cancer genomes. Thus, Hi-C is a powerful tool for guiding precision medicine in cancer research and treatment.
Collapse
Affiliation(s)
- Insoo Yoon
- Department of Life Science, University of Seoul, Seoul, 02504, Republic of Korea
| | - Uijin Kim
- Department of Life Science, University of Seoul, Seoul, 02504, Republic of Korea
| | - Yousuk Song
- Department of Life Science, University of Seoul, Seoul, 02504, Republic of Korea
| | - Taesoo Park
- Department of Life Science, University of Seoul, Seoul, 02504, Republic of Korea
| | - Dong-Sung Lee
- Department of Life Science, University of Seoul, Seoul, 02504, Republic of Korea.
| |
Collapse
|
4
|
Litwin I, Nowicka M, Markowska K, Maciaszczyk-Dziubińska E, Tomaszewska P, Wysocki R, Kramarz K. ISW1a modulates cohesin distribution in centromeric and pericentromeric regions. Nucleic Acids Res 2023; 51:9101-9121. [PMID: 37486771 PMCID: PMC10516642 DOI: 10.1093/nar/gkad612] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Revised: 06/28/2023] [Accepted: 07/11/2023] [Indexed: 07/25/2023] Open
Abstract
Cohesin is a highly conserved, multiprotein complex whose canonical function is to hold sister chromatids together to ensure accurate chromosome segregation. Cohesin association with chromatin relies on the Scc2-Scc4 cohesin loading complex that enables cohesin ring opening and topological entrapment of sister DNAs. To better understand how sister chromatid cohesion is regulated, we performed a proteomic screen in budding yeast that identified the Isw1 chromatin remodeler as a cohesin binding partner. In addition, we found that Isw1 also interacts with Scc2-Scc4. Lack of Isw1 protein, the Ioc3 subunit of ISW1a or Isw1 chromatin remodeling activity resulted in increased accumulation of cohesin at centromeres and pericentromeres, suggesting that ISW1a may promote efficient translocation of cohesin from the centromeric site of loading to neighboring regions. Consistent with the role of ISW1a in the chromatin organization of centromeric regions, Isw1 was found to be recruited to centromeres. In its absence we observed changes in the nucleosomal landscape at centromeres and pericentromeres. Finally, we discovered that upon loss of RSC functionality, ISW1a activity leads to reduced cohesin binding and cohesion defect. Taken together, our results support the notion of a key role of chromatin remodelers in the regulation of cohesin distribution on chromosomes.
Collapse
Affiliation(s)
- Ireneusz Litwin
- Academic Excellence Hub - Research Centre for DNA Repair and Replication, Faculty of Biological Sciences, University of Wroclaw, 50-328 Wroclaw, Poland
| | - Małgorzata Nowicka
- Department of Genetics and Cell Physiology, Faculty of Biological Sciences, University of Wroclaw, 50-328 Wroclaw, Poland
| | - Katarzyna Markowska
- Academic Excellence Hub - Research Centre for DNA Repair and Replication, Faculty of Biological Sciences, University of Wroclaw, 50-328 Wroclaw, Poland
| | - Ewa Maciaszczyk-Dziubińska
- Department of Genetics and Cell Physiology, Faculty of Biological Sciences, University of Wroclaw, 50-328 Wroclaw, Poland
| | - Paulina Tomaszewska
- Department of Genetics and Cell Physiology, Faculty of Biological Sciences, University of Wroclaw, 50-328 Wroclaw, Poland
- Department of Genetics and Genome Biology, University of Leicester, Leicester LE1 7RH, UK
| | - Robert Wysocki
- Department of Genetics and Cell Physiology, Faculty of Biological Sciences, University of Wroclaw, 50-328 Wroclaw, Poland
| | - Karol Kramarz
- Academic Excellence Hub - Research Centre for DNA Repair and Replication, Faculty of Biological Sciences, University of Wroclaw, 50-328 Wroclaw, Poland
| |
Collapse
|
5
|
Bailey MLP, Surovtsev I, Williams JF, Yan H, Yuan T, Li K, Duseau K, Mochrie SGJ, King MC. Loops and the activity of loop extrusion factors constrain chromatin dynamics. Mol Biol Cell 2023; 34:ar78. [PMID: 37126401 PMCID: PMC10398873 DOI: 10.1091/mbc.e23-04-0119] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Revised: 04/19/2023] [Accepted: 04/20/2023] [Indexed: 05/02/2023] Open
Abstract
The chromosomes-DNA polymers and their binding proteins-are compacted into a spatially organized, yet dynamic, three-dimensional structure. Recent genome-wide chromatin conformation capture experiments reveal a hierarchical organization of the DNA structure that is imposed, at least in part, by looping interactions arising from the activity of loop extrusion factors. The dynamics of chromatin reflects the response of the polymer to a combination of thermal fluctuations and active processes. However, how chromosome structure and enzymes acting on chromatin together define its dynamics remains poorly understood. To gain insight into the structure-dynamics relationship of chromatin, we combine high-precision microscopy in living Schizosaccharomyces pombe cells with systematic genetic perturbations and Rouse model polymer simulations. We first investigated how the activity of two loop extrusion factors, the cohesin and condensin complexes, influences chromatin dynamics. We observed that deactivating cohesin, or to a lesser extent condensin, increased chromatin mobility, suggesting that loop extrusion constrains rather than agitates chromatin motion. Our corresponding simulations reveal that the introduction of loops is sufficient to explain the constraining activity of loop extrusion factors, highlighting that the conformation adopted by the polymer plays a key role in defining its dynamics. Moreover, we find that the number of loops or residence times of loop extrusion factors influence the dynamic behavior of the chromatin polymer. Last, we observe that the activity of the INO80 chromatin remodeler, but not the SWI/SNF or RSC complexes, is critical for ATP-dependent chromatin mobility in fission yeast. Taking the data together, we suggest that thermal and INO80-dependent activities exert forces that drive chromatin fluctuations, which are constrained by the organization of the chromosome into loops.
Collapse
Affiliation(s)
- Mary Lou P. Bailey
- Department of Applied Physics, Yale University, New Haven, CT 06511
- Integrated Graduate Program in Physics Engineering Biology, Yale University, New Haven, CT 06511
| | - Ivan Surovtsev
- Department of Physics, Yale University, New Haven, CT 06511
- Department of Cell Biology, Yale School of Medicine, New Haven, CT 06520
| | | | - Hao Yan
- Integrated Graduate Program in Physics Engineering Biology, Yale University, New Haven, CT 06511
- Department of Physics, Yale University, New Haven, CT 06511
| | - Tianyu Yuan
- Integrated Graduate Program in Physics Engineering Biology, Yale University, New Haven, CT 06511
- Department of Physics, Yale University, New Haven, CT 06511
| | - Kevin Li
- Department of Cell Biology, Yale School of Medicine, New Haven, CT 06520
| | - Katherine Duseau
- Department of Cell Biology, Yale School of Medicine, New Haven, CT 06520
| | - Simon G. J. Mochrie
- Department of Applied Physics, Yale University, New Haven, CT 06511
- Integrated Graduate Program in Physics Engineering Biology, Yale University, New Haven, CT 06511
- Department of Physics, Yale University, New Haven, CT 06511
| | - Megan C. King
- Integrated Graduate Program in Physics Engineering Biology, Yale University, New Haven, CT 06511
- Department of Molecular, Cell and Developmental Biology, Yale University, New Haven, CT 06511
- Department of Cell Biology, Yale School of Medicine, New Haven, CT 06520
| |
Collapse
|
6
|
Borrie MS, Kraycer PM, Gartenberg MR. Transcription-Driven Translocation of Cohesive and Non-Cohesive Cohesin In Vivo. Mol Cell Biol 2023; 43:254-268. [PMID: 37178128 PMCID: PMC10251789 DOI: 10.1080/10985549.2023.2199660] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Revised: 03/23/2023] [Accepted: 03/28/2023] [Indexed: 05/15/2023] Open
Abstract
Cohesin is a central architectural element of chromosomes that regulates numerous DNA-based events. The complex holds sister chromatids together until anaphase onset and organizes individual chromosomal DNAs into loops and self-associating domains. Purified cohesin diffuses along DNA in an ATP-independent manner but can be propelled by transcribing RNA polymerase. In conjunction with a cofactor, the complex also extrudes DNA loops in an ATP-dependent manner. In this study we examine transcription-driven translocation of cohesin under various conditions in yeast. To this end, obstacles of increasing size were tethered to DNA to act as roadblocks to complexes mobilized by an inducible gene. The obstacles were built from a GFP-lacI core fused to one or more mCherries. A chimera with four mCherries blocked cohesin passage in late G1. During M phase, the threshold barrier depended on the state of cohesion: non-cohesive complexes were also blocked by four mCherries whereas cohesive complexes were blocked by as few as three mCherries. Furthermore cohesive complexes that were stalled at obstacles, in turn, blocked the passage of non-cohesive complexes. That synthetic barriers capture mobilized cohesin demonstrates that transcription-driven complexes translocate processively in vivo. Together, this study reveals unexplored limitations to cohesin movement on chromosomes.
Collapse
Affiliation(s)
- Melinda S. Borrie
- Department of Biochemistry and Molecular Biology, Robert Wood Johnson Medical School, Rutgers, The State University of New Jersey, Piscataway, NJ, USA
| | - Paul M. Kraycer
- Graduate Program in Cellular and Molecular Pharmacology, Robert Wood Johnson Medical School, Rutgers, The State University of New Jersey, Piscataway, NJ, USA
| | - Marc R. Gartenberg
- Department of Biochemistry and Molecular Biology, Robert Wood Johnson Medical School, Rutgers, The State University of New Jersey, Piscataway, NJ, USA
- Member of The Rutgers Cancer Institute of New Jersey, New Brunswick, NJ, USA
| |
Collapse
|
7
|
Banigan EJ, Tang W, van den Berg AA, Stocsits RR, Wutz G, Brandão HB, Busslinger GA, Peters JM, Mirny LA. Transcription shapes 3D chromatin organization by interacting with loop extrusion. Proc Natl Acad Sci U S A 2023; 120:e2210480120. [PMID: 36897969 PMCID: PMC10089175 DOI: 10.1073/pnas.2210480120] [Citation(s) in RCA: 52] [Impact Index Per Article: 52.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Accepted: 12/03/2022] [Indexed: 03/12/2023] Open
Abstract
Cohesin folds mammalian interphase chromosomes by extruding the chromatin fiber into numerous loops. "Loop extrusion" can be impeded by chromatin-bound factors, such as CTCF, which generates characteristic and functional chromatin organization patterns. It has been proposed that transcription relocalizes or interferes with cohesin and that active promoters are cohesin loading sites. However, the effects of transcription on cohesin have not been reconciled with observations of active extrusion by cohesin. To determine how transcription modulates extrusion, we studied mouse cells in which we could alter cohesin abundance, dynamics, and localization by genetic "knockouts" of the cohesin regulators CTCF and Wapl. Through Hi-C experiments, we discovered intricate, cohesin-dependent contact patterns near active genes. Chromatin organization around active genes exhibited hallmarks of interactions between transcribing RNA polymerases (RNAPs) and extruding cohesins. These observations could be reproduced by polymer simulations in which RNAPs were moving barriers to extrusion that obstructed, slowed, and pushed cohesins. The simulations predicted that preferential loading of cohesin at promoters is inconsistent with our experimental data. Additional ChIP-seq experiments showed that the putative cohesin loader Nipbl is not predominantly enriched at promoters. Therefore, we propose that cohesin is not preferentially loaded at promoters and that the barrier function of RNAP accounts for cohesin accumulation at active promoters. Altogether, we find that RNAP is an extrusion barrier that is not stationary, but rather, translocates and relocalizes cohesin. Loop extrusion and transcription might interact to dynamically generate and maintain gene interactions with regulatory elements and shape functional genomic organization.
Collapse
Affiliation(s)
- Edward J. Banigan
- Department of Physics, Massachusetts Institute of Technology, Cambridge, MA02139
- Institute for Medical Engineering and Science, Massachusetts Institute of Technology, Cambridge, MA02139
| | - Wen Tang
- Research Institute of Molecular Pathology, Vienna BioCenter1030Vienna, Austria
| | - Aafke A. van den Berg
- Department of Physics, Massachusetts Institute of Technology, Cambridge, MA02139
- Institute for Medical Engineering and Science, Massachusetts Institute of Technology, Cambridge, MA02139
| | - Roman R. Stocsits
- Research Institute of Molecular Pathology, Vienna BioCenter1030Vienna, Austria
| | - Gordana Wutz
- Research Institute of Molecular Pathology, Vienna BioCenter1030Vienna, Austria
| | - Hugo B. Brandão
- Graduate Program in Biophysics, Harvard University, Cambridge, MA02138
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA02139
- The Broad Institute of MIT and Harvard, Cambridge, MA02142
| | - Georg A. Busslinger
- Research Institute of Molecular Pathology, Vienna BioCenter1030Vienna, Austria
- Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna1090, Austria
- Division of Gastroenterology and Hepatology, Department of Internal Medicine III, Medical University of Vienna, Vienna1090, Austria
| | - Jan-Michael Peters
- Research Institute of Molecular Pathology, Vienna BioCenter1030Vienna, Austria
| | - Leonid A. Mirny
- Department of Physics, Massachusetts Institute of Technology, Cambridge, MA02139
- Institute for Medical Engineering and Science, Massachusetts Institute of Technology, Cambridge, MA02139
| |
Collapse
|
8
|
Choudhary K, Kupiec M. The cohesin complex of yeasts: sister chromatid cohesion and beyond. FEMS Microbiol Rev 2023; 47:6825453. [PMID: 36370456 DOI: 10.1093/femsre/fuac045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Revised: 11/07/2022] [Accepted: 11/09/2022] [Indexed: 11/13/2022] Open
Abstract
Each time a cell divides, it needs to duplicate the genome and then separate the two copies. In eukaryotes, which usually have more than one linear chromosome, this entails tethering the two newly replicated DNA molecules, a phenomenon known as sister chromatid cohesion (SCC). Cohesion ensures proper chromosome segregation to separate poles during mitosis. SCC is achieved by the presence of the cohesin complex. Besides its canonical function, cohesin is essential for chromosome organization and DNA damage repair. Surprisingly, yeast cohesin is loaded in G1 before DNA replication starts but only acquires its binding activity during DNA replication. Work in microorganisms, such as Saccharomyces cerevisiae and Schizosaccharomyces pombe has greatly contributed to the understanding of cohesin composition and functions. In the last few years, much progress has been made in elucidating the role of cohesin in chromosome organization and compaction. Here, we discuss the different functions of cohesin to ensure faithful chromosome segregation and genome stability during the mitotic cell division in yeast. We describe what is known about its composition and how DNA replication is coupled with SCC establishment. We also discuss current models for the role of cohesin in chromatin loop extrusion and delineate unanswered questions about the activity of this important, conserved complex.
Collapse
Affiliation(s)
- Karan Choudhary
- The Shmunis School of Biomedicine and Cancer Research, Tel Aviv University, Ramat Aviv 69978, Israel
| | - Martin Kupiec
- The Shmunis School of Biomedicine and Cancer Research, Tel Aviv University, Ramat Aviv 69978, Israel
| |
Collapse
|
9
|
Jeppsson K, Sakata T, Nakato R, Milanova S, Shirahige K, Björkegren C. Cohesin-dependent chromosome loop extrusion is limited by transcription and stalled replication forks. SCIENCE ADVANCES 2022; 8:eabn7063. [PMID: 35687682 PMCID: PMC9187231 DOI: 10.1126/sciadv.abn7063] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Revised: 12/15/2021] [Accepted: 04/27/2022] [Indexed: 05/31/2023]
Abstract
Genome function depends on regulated chromosome folding, and loop extrusion by the protein complex cohesin is essential for this multilayered organization. The chromosomal positioning of cohesin is controlled by transcription, and the complex also localizes to stalled replication forks. However, the role of transcription and replication in chromosome looping remains unclear. Here, we show that reduction of chromosome-bound RNA polymerase weakens normal cohesin loop extrusion boundaries, allowing cohesin to form new long-range chromosome cis interactions. Stress response genes induced by transcription inhibition are also shown to act as new loop extrusion boundaries. Furthermore, cohesin loop extrusion during early S phase is jointly controlled by transcription and replication units. Together, the results reveal that replication and transcription machineries are chromosome-folding regulators that block the progression of loop-extruding cohesin, opening for new perspectives on cohesin's roles in genome function and stability.
Collapse
Affiliation(s)
- Kristian Jeppsson
- Karolinska Institutet, Department of Biosciences and Nutrition, Neo, Hälsovägen 7c, 141 83 Huddinge, Sweden
- Karolinska Institutet, Department of Cell and Molecular Biology, Biomedicum, Tomtebodavägen 16, 171 77 Stockholm, Sweden
- Institute for Quantitative Bioscience, Tokyo University, 1-1-1, Yayoi, Bunkyo-ku, Tokyo 113-0032, Japan
| | - Toyonori Sakata
- Institute for Quantitative Bioscience, Tokyo University, 1-1-1, Yayoi, Bunkyo-ku, Tokyo 113-0032, Japan
| | - Ryuichiro Nakato
- Institute for Quantitative Bioscience, Tokyo University, 1-1-1, Yayoi, Bunkyo-ku, Tokyo 113-0032, Japan
| | - Stefina Milanova
- Karolinska Institutet, Department of Biosciences and Nutrition, Neo, Hälsovägen 7c, 141 83 Huddinge, Sweden
- Karolinska Institutet, Department of Cell and Molecular Biology, Biomedicum, Tomtebodavägen 16, 171 77 Stockholm, Sweden
| | - Katsuhiko Shirahige
- Institute for Quantitative Bioscience, Tokyo University, 1-1-1, Yayoi, Bunkyo-ku, Tokyo 113-0032, Japan
| | - Camilla Björkegren
- Karolinska Institutet, Department of Biosciences and Nutrition, Neo, Hälsovägen 7c, 141 83 Huddinge, Sweden
- Karolinska Institutet, Department of Cell and Molecular Biology, Biomedicum, Tomtebodavägen 16, 171 77 Stockholm, Sweden
| |
Collapse
|
10
|
Deng S, Feng Y, Pauklin S. 3D chromatin architecture and transcription regulation in cancer. J Hematol Oncol 2022; 15:49. [PMID: 35509102 PMCID: PMC9069733 DOI: 10.1186/s13045-022-01271-x] [Citation(s) in RCA: 31] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Accepted: 04/21/2022] [Indexed: 12/18/2022] Open
Abstract
Chromatin has distinct three-dimensional (3D) architectures important in key biological processes, such as cell cycle, replication, differentiation, and transcription regulation. In turn, aberrant 3D structures play a vital role in developing abnormalities and diseases such as cancer. This review discusses key 3D chromatin structures (topologically associating domain, lamina-associated domain, and enhancer-promoter interactions) and corresponding structural protein elements mediating 3D chromatin interactions [CCCTC-binding factor, polycomb group protein, cohesin, and Brother of the Regulator of Imprinted Sites (BORIS) protein] with a highlight of their associations with cancer. We also summarise the recent development of technologies and bioinformatics approaches to study the 3D chromatin interactions in gene expression regulation, including crosslinking and proximity ligation methods in the bulk cell population (ChIA-PET and HiChIP) or single-molecule resolution (ChIA-drop), and methods other than proximity ligation, such as GAM, SPRITE, and super-resolution microscopy techniques.
Collapse
Affiliation(s)
- Siwei Deng
- Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences, Botnar Research Centre, University of Oxford, Old Road, Headington, Oxford, OX3 7LD, UK
| | - Yuliang Feng
- Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences, Botnar Research Centre, University of Oxford, Old Road, Headington, Oxford, OX3 7LD, UK
| | - Siim Pauklin
- Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences, Botnar Research Centre, University of Oxford, Old Road, Headington, Oxford, OX3 7LD, UK.
| |
Collapse
|
11
|
Higashi TL, Uhlmann F. SMC complexes: Lifting the lid on loop extrusion. Curr Opin Cell Biol 2022; 74:13-22. [PMID: 35016058 PMCID: PMC9089308 DOI: 10.1016/j.ceb.2021.12.003] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Revised: 12/07/2021] [Accepted: 12/08/2021] [Indexed: 01/02/2023]
Abstract
Loop extrusion has emerged as a prominent hypothesis for how SMC complexes shape chromosomes - single molecule in vitro observations have yielded fascinating images of this process. When not extruding loops, SMC complexes are known to topologically entrap one or more DNAs. Here, we review how structural insight into the SMC complex cohesin has led to a molecular framework for both activities: a Brownian ratchet motion, associated with topological DNA entry, might repeat itself to elicit loop extrusion. After contrasting alternative loop extrusion models, we explore whether topological loading or loop extrusion is more adept at explaining in vivo SMC complex function. SMC variants that experimentally separate topological loading from loop extrusion will in the future probe their respective contributions to chromosome biology.
Collapse
Affiliation(s)
- Torahiko L Higashi
- Chromosome Segregation Laboratory, The Francis Crick Institute, London, NW1 1AT, UK; Department of Cellular Biochemistry, Kyushu University, Fukuoka, 812-8582, Japan
| | - Frank Uhlmann
- Chromosome Segregation Laboratory, The Francis Crick Institute, London, NW1 1AT, UK.
| |
Collapse
|
12
|
Neguembor MV, Martin L, Castells-García Á, Gómez-García PA, Vicario C, Carnevali D, AlHaj Abed J, Granados A, Sebastian-Perez R, Sottile F, Solon J, Wu CT, Lakadamyali M, Cosma MP. Transcription-mediated supercoiling regulates genome folding and loop formation. Mol Cell 2021; 81:3065-3081.e12. [PMID: 34297911 PMCID: PMC9482096 DOI: 10.1016/j.molcel.2021.06.009] [Citation(s) in RCA: 47] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2020] [Revised: 03/27/2021] [Accepted: 06/08/2021] [Indexed: 12/21/2022]
Abstract
The chromatin fiber folds into loops, but the mechanisms controlling loop extrusion are still poorly understood. Using super-resolution microscopy, we visualize that loops in intact nuclei are formed by a scaffold of cohesin complexes from which the DNA protrudes. RNA polymerase II decorates the top of the loops and is physically segregated from cohesin. Augmented looping upon increased loading of cohesin on chromosomes causes disruption of Lamin at the nuclear rim and chromatin blending, a homogeneous distribution of chromatin within the nucleus. Altering supercoiling via either transcription or topoisomerase inhibition counteracts chromatin blending, increases chromatin condensation, disrupts loop formation, and leads to altered cohesin distribution and mobility on chromatin. Overall, negative supercoiling generated by transcription is an important regulator of loop formation in vivo.
Collapse
Affiliation(s)
- Maria Victoria Neguembor
- Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, 08003 Barcelona, Spain
| | - Laura Martin
- Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, 08003 Barcelona, Spain
| | - Álvaro Castells-García
- Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, 08003 Barcelona, Spain; Bioland Laboratory, Guangzhou Regenerative Medicine and Health Guangdong Laboratory, Guangzhou 510005, China
| | - Pablo Aurelio Gómez-García
- Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, 08003 Barcelona, Spain
| | - Chiara Vicario
- Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, 08003 Barcelona, Spain
| | - Davide Carnevali
- Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, 08003 Barcelona, Spain
| | | | - Alba Granados
- Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, 08003 Barcelona, Spain
| | - Ruben Sebastian-Perez
- Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, 08003 Barcelona, Spain
| | - Francesco Sottile
- Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, 08003 Barcelona, Spain
| | - Jérôme Solon
- Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, 08003 Barcelona, Spain; Universitat Pompeu Fabra (UPF), Dr Aiguader 88, 08003 Barcelona, Spain; Instituto Biofisika (CSIC, UPV/EHU), Basque Excellence Research Centre, Barrio Sarriena, 48940, Leioa, Spain; Ikerbasque, Basque Foundation for Science, 48013 Bilbao, Spain
| | - Chao-Ting Wu
- Department of Genetics, Harvard Medical School, Boston, MA, USA; Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA, USA
| | - Melike Lakadamyali
- Department of Physiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Department of Cell and Developmental Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Epigenetics Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA.
| | - Maria Pia Cosma
- Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, 08003 Barcelona, Spain; Bioland Laboratory, Guangzhou Regenerative Medicine and Health Guangdong Laboratory, Guangzhou 510005, China; Universitat Pompeu Fabra (UPF), Dr Aiguader 88, 08003 Barcelona, Spain; ICREA, Pg. Lluís Companys 23, 08010 Barcelona, Spain; CAS Key Laboratory of Regenerative Biology, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China.
| |
Collapse
|
13
|
Higashi TL, Pobegalov G, Tang M, Molodtsov MI, Uhlmann F. A Brownian ratchet model for DNA loop extrusion by the cohesin complex. eLife 2021; 10:e67530. [PMID: 34309513 PMCID: PMC8313234 DOI: 10.7554/elife.67530] [Citation(s) in RCA: 47] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2021] [Accepted: 06/10/2021] [Indexed: 12/12/2022] Open
Abstract
The cohesin complex topologically encircles DNA to promote sister chromatid cohesion. Alternatively, cohesin extrudes DNA loops, thought to reflect chromatin domain formation. Here, we propose a structure-based model explaining both activities. ATP and DNA binding promote cohesin conformational changes that guide DNA through a kleisin N-gate into a DNA gripping state. Two HEAT-repeat DNA binding modules, associated with cohesin's heads and hinge, are now juxtaposed. Gripping state disassembly, following ATP hydrolysis, triggers unidirectional hinge module movement, which completes topological DNA entry by directing DNA through the ATPase head gate. If head gate passage fails, hinge module motion creates a Brownian ratchet that, instead, drives loop extrusion. Molecular-mechanical simulations of gripping state formation and resolution cycles recapitulate experimentally observed DNA loop extrusion characteristics. Our model extends to asymmetric and symmetric loop extrusion, as well as z-loop formation. Loop extrusion by biased Brownian motion has important implications for chromosomal cohesin function.
Collapse
Affiliation(s)
- Torahiko L Higashi
- Chromosome Segregation Laboratory, The Francis Crick InstituteLondonUnited Kingdom
| | - Georgii Pobegalov
- Mechanobiology and Biophysics Laboratory, The Francis Crick InstituteLondonUnited Kingdom
- Department of Physics and Astronomy, University College LondonLondonUnited Kingdom
| | - Minzhe Tang
- Chromosome Segregation Laboratory, The Francis Crick InstituteLondonUnited Kingdom
| | - Maxim I Molodtsov
- Mechanobiology and Biophysics Laboratory, The Francis Crick InstituteLondonUnited Kingdom
- Department of Physics and Astronomy, University College LondonLondonUnited Kingdom
| | - Frank Uhlmann
- Chromosome Segregation Laboratory, The Francis Crick InstituteLondonUnited Kingdom
| |
Collapse
|
14
|
Xie L, Liu Z. Single-cell imaging of genome organization and dynamics. Mol Syst Biol 2021; 17:e9653. [PMID: 34232558 PMCID: PMC8262488 DOI: 10.15252/msb.20209653] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Revised: 04/13/2021] [Accepted: 04/23/2021] [Indexed: 12/28/2022] Open
Abstract
Probing the architecture, mechanism, and dynamics of genome folding is fundamental to our understanding of genome function in homeostasis and disease. Most chromosome conformation capture studies dissect the genome architecture with population- and time-averaged snapshots and thus have limited capabilities to reveal 3D nuclear organization and dynamics at the single-cell level. Here, we discuss emerging imaging techniques ranging from light microscopy to electron microscopy that enable investigation of genome folding and dynamics at high spatial and temporal resolution. Results from these studies complement genomic data, unveiling principles underlying the spatial arrangement of the genome and its potential functional links to diverse biological activities in the nucleus.
Collapse
Affiliation(s)
- Liangqi Xie
- Janelia Research CampusHoward Hughes Medical InstituteAshburnVAUSA
| | - Zhe Liu
- Janelia Research CampusHoward Hughes Medical InstituteAshburnVAUSA
| |
Collapse
|
15
|
Paulson JR, Hudson DF, Cisneros-Soberanis F, Earnshaw WC. Mitotic chromosomes. Semin Cell Dev Biol 2021; 117:7-29. [PMID: 33836947 PMCID: PMC8406421 DOI: 10.1016/j.semcdb.2021.03.014] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2021] [Revised: 03/23/2021] [Accepted: 03/23/2021] [Indexed: 01/25/2023]
Abstract
Our understanding of the structure and function of mitotic chromosomes has come a long way since these iconic objects were first recognized more than 140 years ago, though many details remain to be elucidated. In this chapter, we start with the early history of chromosome studies and then describe the path that led to our current understanding of the formation and structure of mitotic chromosomes. We also discuss some of the remaining questions. It is now well established that each mitotic chromatid consists of a central organizing region containing a so-called "chromosome scaffold" from which loops of DNA project radially. Only a few key non-histone proteins and protein complexes are required to form the chromosome: topoisomerase IIα, cohesin, condensin I and condensin II, and the chromokinesin KIF4A. These proteins are concentrated along the axis of the chromatid. Condensins I and II are primarily responsible for shaping the chromosome and the scaffold, and they produce the loops of DNA by an ATP-dependent process known as loop extrusion. Modelling of Hi-C data suggests that condensin II adopts a spiral staircase arrangement with an extruded loop extending out from each step in a roughly helical pattern. Condensin I then forms loops nested within these larger condensin II loops, thereby giving rise to the final compaction of the mitotic chromosome in a process that requires Topo IIα.
Collapse
Affiliation(s)
- James R Paulson
- Department of Chemistry, University of Wisconsin Oshkosh, 800 Algoma Boulevard, Oshkosh, WI 54901, USA.
| | - Damien F Hudson
- Murdoch Children's Research Institute, Royal Children's Hospital, Parkville, VIC 3052, Australia
| | - Fernanda Cisneros-Soberanis
- Wellcome Trust Centre for Cell Biology, ICB, University of Edinburgh, Michael Swann Building, King's Buildings, Max Born Crescent, Edinburgh EH9 3BF, Scotland, UK
| | - William C Earnshaw
- Wellcome Trust Centre for Cell Biology, ICB, University of Edinburgh, Michael Swann Building, King's Buildings, Max Born Crescent, Edinburgh EH9 3BF, Scotland, UK.
| |
Collapse
|
16
|
Magaña-Acosta M, Valadez-Graham V. Chromatin Remodelers in the 3D Nuclear Compartment. Front Genet 2020; 11:600615. [PMID: 33329746 PMCID: PMC7673392 DOI: 10.3389/fgene.2020.600615] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2020] [Accepted: 10/07/2020] [Indexed: 12/15/2022] Open
Abstract
Chromatin remodeling complexes (CRCs) use ATP hydrolysis to maintain correct expression profiles, chromatin stability, and inherited epigenetic states. More than 20 CRCs have been described to date, which encompass four large families defined by their ATPase subunits. These complexes and their subunits are conserved from yeast to humans through evolution. Their activities depend on their catalytic subunits which through ATP hydrolysis provide the energy necessary to fulfill cellular functions such as gene transcription, DNA repair, and transposon silencing. These activities take place at the first levels of chromatin compaction, and CRCs have been recognized as essential elements of chromatin dynamics. Recent studies have demonstrated an important role for these complexes in the maintenance of higher order chromatin structure. In this review, we present an overview of the organization of the genome within the cell nucleus, the different levels of chromatin compaction, and importance of the architectural proteins, and discuss the role of CRCs and how their functions contribute to the dynamics of the 3D genome organization.
Collapse
Affiliation(s)
- Mauro Magaña-Acosta
- Departamento de Genética del Desarrollo y Fisiología Molecular, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Cuernavaca, Mexico
| | - Viviana Valadez-Graham
- Departamento de Genética del Desarrollo y Fisiología Molecular, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Cuernavaca, Mexico
| |
Collapse
|
17
|
Paldi F, Alver B, Robertson D, Schalbetter SA, Kerr A, Kelly DA, Baxter J, Neale MJ, Marston AL. Convergent genes shape budding yeast pericentromeres. Nature 2020; 582:119-123. [PMID: 32494069 PMCID: PMC7279958 DOI: 10.1038/s41586-020-2244-6] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2019] [Accepted: 02/25/2020] [Indexed: 11/08/2022]
Abstract
The three-dimensional architecture of the genome governs its maintenance, expression and transmission. The cohesin protein complex organizes the genome by topologically linking distant loci, and is highly enriched in specialized chromosomal domains surrounding centromeres, called pericentromeres1-6. Here we report the three-dimensional structure of pericentromeres in budding yeast (Saccharomyces cerevisiae) and establish the relationship between genome organization and function. We find that convergent genes mark pericentromere borders and, together with core centromeres, define their structure and function by positioning cohesin. Centromeres load cohesin, and convergent genes at pericentromere borders trap it. Each side of the pericentromere is organized into a looped conformation, with border convergent genes at the base. Microtubule attachment extends a single pericentromere loop, size-limited by convergent genes at its borders. Reorienting genes at borders into a tandem configuration repositions cohesin, enlarges the pericentromere and impairs chromosome biorientation during mitosis. Thus, the linear arrangement of transcriptional units together with targeted cohesin loading shapes pericentromeres into a structure that is competent for chromosome segregation. Our results reveal the architecture of the chromosomal region within which kinetochores are embedded, as well as the restructuring caused by microtubule attachment. Furthermore, we establish a direct, causal relationship between the three-dimensional genome organization of a specific chromosomal domain and cellular function.
Collapse
Affiliation(s)
- Flora Paldi
- The Wellcome Centre for Cell Biology, Institute of Cell Biology, School of Biological Sciences, University of Edinburgh, Edinburgh, UK
| | - Bonnie Alver
- The Wellcome Centre for Cell Biology, Institute of Cell Biology, School of Biological Sciences, University of Edinburgh, Edinburgh, UK
| | - Daniel Robertson
- The Wellcome Centre for Cell Biology, Institute of Cell Biology, School of Biological Sciences, University of Edinburgh, Edinburgh, UK
| | | | - Alastair Kerr
- The Wellcome Centre for Cell Biology, Institute of Cell Biology, School of Biological Sciences, University of Edinburgh, Edinburgh, UK
| | - David A Kelly
- The Wellcome Centre for Cell Biology, Institute of Cell Biology, School of Biological Sciences, University of Edinburgh, Edinburgh, UK
| | - Jonathan Baxter
- Genome Damage and Stability Centre, University of Sussex, Brighton, UK
| | - Matthew J Neale
- Genome Damage and Stability Centre, University of Sussex, Brighton, UK
| | - Adele L Marston
- The Wellcome Centre for Cell Biology, Institute of Cell Biology, School of Biological Sciences, University of Edinburgh, Edinburgh, UK.
| |
Collapse
|
18
|
Liu HW, Bouchoux C, Panarotto M, Kakui Y, Patel H, Uhlmann F. Division of Labor between PCNA Loaders in DNA Replication and Sister Chromatid Cohesion Establishment. Mol Cell 2020; 78:725-738.e4. [PMID: 32277910 PMCID: PMC7242910 DOI: 10.1016/j.molcel.2020.03.017] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2019] [Revised: 12/17/2019] [Accepted: 03/10/2020] [Indexed: 01/26/2023]
Abstract
Concomitant with DNA replication, the chromosomal cohesin complex establishes cohesion between newly replicated sister chromatids. Several replication-fork-associated "cohesion establishment factors," including the multifunctional Ctf18-RFC complex, aid this process in as yet unknown ways. Here, we show that Ctf18-RFC's role in sister chromatid cohesion correlates with PCNA loading but is separable from its role in the replication checkpoint. Ctf18-RFC loads PCNA with a slight preference for the leading strand, which is dispensable for DNA replication. Conversely, the canonical Rfc1-RFC complex preferentially loads PCNA onto the lagging strand, which is crucial for DNA replication but dispensable for sister chromatid cohesion. The downstream effector of Ctf18-RFC is cohesin acetylation, which we place toward a late step during replication maturation. Our results suggest that Ctf18-RFC enriches and balances PCNA levels at the replication fork, beyond the needs of DNA replication, to promote establishment of sister chromatid cohesion and possibly other post-replicative processes.
Collapse
Affiliation(s)
- Hon Wing Liu
- Chromosome Segregation Laboratory, The Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK
| | - Céline Bouchoux
- Chromosome Segregation Laboratory, The Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK
| | - Mélanie Panarotto
- Chromosome Segregation Laboratory, The Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK
| | - Yasutaka Kakui
- Chromosome Segregation Laboratory, The Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK
| | - Harshil Patel
- Bioinformatics and Biostatistics Science Technology Platform, The Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK
| | - Frank Uhlmann
- Chromosome Segregation Laboratory, The Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK.
| |
Collapse
|
19
|
Malenge MM, Patzke S, Ree AH, Stokke T, Ceuppens P, Middleton B, Dahle J, Repetto-Llamazares AHV. 177Lu-Lilotomab Satetraxetan Has the Potential to Counteract Resistance to Rituximab in Non-Hodgkin Lymphoma. J Nucl Med 2020; 61:1468-1475. [PMID: 32245896 PMCID: PMC7539655 DOI: 10.2967/jnumed.119.237230] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2019] [Accepted: 01/29/2020] [Indexed: 12/18/2022] Open
Abstract
Patients with non-Hodgkin lymphoma (NHL) who are treated with rituximab may develop resistant disease, often associated with changes in expression of CD20. The next-generation β-particle–emitting radioimmunoconjugate 177Lu-lilotomab-satetraxetan (Betalutin) was shown to up-regulate CD20 expression in different rituximab-sensitive NHL cell lines and to act synergistically with rituximab in a rituximab-sensitive NHL animal model. We hypothesized that 177Lu-lilotomab-satetraxetan may be used to reverse rituximab resistance in NHL. Methods: The rituximab-resistant Raji2R and the parental Raji cell lines were used. CD20 expression was measured by flow cytometry. Antibody-dependent cellular cytotoxicity (ADCC) was measured by a bioluminescence reporter assay. The efficacies of combined treatments with 177Lu-lilotomab-satetraxetan (150 or 350 MBq/kg) and rituximab (4 × 10 mg/kg) were compared with those of single agents or phosphate-buffered saline in a Raji2R-xenograft model. Cox regression and the Bliss independence model were used to assess synergism. Results: Rituximab binding in Raji2R cells was 36% ± 5% of that in the rituximab-sensitive Raji cells. 177Lu-lilotomab-satetraxetan treatment of Raji2R cells increased the binding to 53% ± 3% of the parental cell line. Rituximab ADCC induction in Raji2R cells was 20% ± 2% of that induced in Raji cells, whereas treatment with 177Lu-lilotomab-satetraxetan increased the ADCC induction to 30% ± 3% of that in Raji cells, representing a 50% increase (P < 0.05). The combination of rituximab with 350 MBq/kg 177Lu-lilotomab-satetraxetan synergistically suppressed Raji2R tumor growth in athymic Foxn1nu mice. Conclusion:177Lu-lilotomab-satetraxetan has the potential to reverse rituximab resistance; it can increase rituximab binding and ADCC activity in vitro and can synergistically improve antitumor efficacy in vivo.
Collapse
Affiliation(s)
- Marion M Malenge
- Nordic Nanovector ASA, Oslo, Norway.,Department of Radiation Biology, Institute for Cancer Research, Oslo University Hospital, Oslo, Norway.,Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | - Sebastian Patzke
- Nordic Nanovector ASA, Oslo, Norway.,Department of Radiation Biology, Institute for Cancer Research, Oslo University Hospital, Oslo, Norway
| | - Anne H Ree
- Institute of Clinical Medicine, University of Oslo, Oslo, Norway.,Department of Oncology, Akershus University Hospital, Lørenskog, Norway; and
| | - Trond Stokke
- Department of Radiation Biology, Institute for Cancer Research, Oslo University Hospital, Oslo, Norway
| | | | | | | | | |
Collapse
|
20
|
Abstract
Protein complexes built of structural maintenance of chromosomes (SMC) and kleisin subunits, including cohesin, condensin and the Smc5/6 complex, are master organizers of genome architecture in all kingdoms of life. How these large ring-shaped molecular machines use the energy of ATP hydrolysis to change the topology of chromatin fibers has remained a central unresolved question of chromosome biology. A currently emerging concept suggests that the common principle that underlies the essential functions of SMC protein complexes in the control of gene expression, chromosome segregation or DNA damage repair is their ability to expand DNA into large loop structures. Here, we review the current knowledge about the biochemical and structural properties of SMC protein complexes that might enable them to extrude DNA loops and compare their action to other motor proteins and nucleic acid translocases. We evaluate the currently predominant models of active loop extrusion and propose a detailed version of a 'scrunching' model, which reconciles much of the available mechanistic data and provides an elegant explanation for how SMC protein complexes fulfill an array of seemingly diverse tasks during the organization of genomes.
Collapse
|
21
|
Schalbetter SA, Fudenberg G, Baxter J, Pollard KS, Neale MJ. Principles of meiotic chromosome assembly revealed in S. cerevisiae. Nat Commun 2019; 10:4795. [PMID: 31641121 PMCID: PMC6805904 DOI: 10.1038/s41467-019-12629-0] [Citation(s) in RCA: 72] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2019] [Accepted: 09/20/2019] [Indexed: 12/13/2022] Open
Abstract
During meiotic prophase, chromosomes organise into a series of chromatin loops emanating from a proteinaceous axis, but the mechanisms of assembly remain unclear. Here we use Saccharomyces cerevisiae to explore how this elaborate three-dimensional chromosome organisation is linked to genomic sequence. As cells enter meiosis, we observe that strong cohesin-dependent grid-like Hi-C interaction patterns emerge, reminiscent of mammalian interphase organisation, but with distinct regulation. Meiotic patterns agree with simulations of loop extrusion with growth limited by barriers, in which a heterogeneous population of expanding loops develop along the chromosome. Importantly, CTCF, the factor that imposes similar features in mammalian interphase, is absent in S. cerevisiae, suggesting alternative mechanisms of barrier formation. While grid-like interactions emerge independently of meiotic chromosome synapsis, synapsis itself generates additional compaction that matures differentially according to telomere proximity and chromosome size. Collectively, our results elucidate fundamental principles of chromosome assembly and demonstrate the essential role of cohesin within this evolutionarily conserved process.
Collapse
Affiliation(s)
- Stephanie A Schalbetter
- Genome Damage and Stability Centre, School of Life Sciences, University of Sussex, Brighton, UK.
| | - Geoffrey Fudenberg
- Gladstone Institutes for Data Science and Biotechnology, San Francisco, USA.
| | - Jonathan Baxter
- Genome Damage and Stability Centre, School of Life Sciences, University of Sussex, Brighton, UK
| | - Katherine S Pollard
- Gladstone Institutes for Data Science and Biotechnology, San Francisco, USA.
- Department of Epidemiology & Biostatistics, Institute for Human Genetics, Quantitative Biology Institute, and Institute for Computational Health Sciences, University of California, San Francisco, CA, USA.
- Chan-Zuckerberg Biohub, San Francisco, CA, USA.
| | - Matthew J Neale
- Genome Damage and Stability Centre, School of Life Sciences, University of Sussex, Brighton, UK.
| |
Collapse
|
22
|
Nishiyama T. Compartments in the Ring. Mol Cell 2019; 75:201-203. [PMID: 31348876 DOI: 10.1016/j.molcel.2019.07.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Sister chromatid cohesion has been thought to be mediated by DNA entrapment within the large cohesin ring. Vazquez Nunez et al. and Chapard et al. now show that the ring is divided up into two sub-compartments, with implications for how these chromosomal organizers entrap DNA.
Collapse
Affiliation(s)
- Tomoko Nishiyama
- Division of Biological Science, Graduate School of Science, Nagoya University, Nagoya 464-8602, Japan.
| |
Collapse
|
23
|
Boginya A, Detroja R, Matityahu A, Frenkel-Morgenstern M, Onn I. The chromatin remodeler Chd1 regulates cohesin in budding yeast and humans. Sci Rep 2019; 9:8929. [PMID: 31222142 PMCID: PMC6586844 DOI: 10.1038/s41598-019-45263-3] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2018] [Accepted: 06/04/2019] [Indexed: 12/24/2022] Open
Abstract
Chd1 is a chromatin remodeler that is involved in nucleosome positioning and transcription. Deletion of CHD1 is a frequent event in prostate cancer. The Structural Maintenance of Chromosome (SMC) complex cohesin mediates long-range chromatin interactions and is involved in maintaining genome stability. We provide new evidence that Chd1 is a regulator of cohesin. In the yeast S. cerevisiae, Chd1 is not essential for viability. We show that deletion of the gene leads to a defect in sister chromatid cohesion and in chromosome morphology. Chl1 is a non-essential DNA helicase that has been shown to regulate cohesin loading. Surprisingly, co-deletion of CHD1 and CHL1 results in an additive cohesion defect but partial suppression of the chromosome structure phenotype. We found that the cohesin regulator Pds5 is overexpressed when Chd1 and Chl1 are deleted. However, Pds5 expression is reduced to wild type levels when both genes are deleted. Finally, we show a correlation in the expression of CHD1 and cohesin genes in prostate cancer patients. Furthermore, we show that overexpression of cohesin subunits is correlated with the aggressiveness of the tumor. The biological roles of the interplay between Chd1, Chl1 and SMCs are discussed.
Collapse
Affiliation(s)
- Alexandra Boginya
- Chromosome Instability and Dynamics Lab. The Azrieli Faculty of Medicine, Bar-Ilan University, Safed, Israel
| | - Rajesh Detroja
- Cancer Genomics and Biocomputing of Complex Diseases Lab. The Azrieli Faculty of Medicine, Bar-Ilan University, Safed, Israel
| | - Avi Matityahu
- Chromosome Instability and Dynamics Lab. The Azrieli Faculty of Medicine, Bar-Ilan University, Safed, Israel
| | - Milana Frenkel-Morgenstern
- Cancer Genomics and Biocomputing of Complex Diseases Lab. The Azrieli Faculty of Medicine, Bar-Ilan University, Safed, Israel
| | - Itay Onn
- Chromosome Instability and Dynamics Lab. The Azrieli Faculty of Medicine, Bar-Ilan University, Safed, Israel.
| |
Collapse
|
24
|
Holzmann J, Politi AZ, Nagasaka K, Hantsche-Grininger M, Walther N, Koch B, Fuchs J, Dürnberger G, Tang W, Ladurner R, Stocsits RR, Busslinger GA, Novák B, Mechtler K, Davidson IF, Ellenberg J, Peters JM. Absolute quantification of cohesin, CTCF and their regulators in human cells. eLife 2019; 8:e46269. [PMID: 31204999 PMCID: PMC6606026 DOI: 10.7554/elife.46269] [Citation(s) in RCA: 66] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2019] [Accepted: 06/13/2019] [Indexed: 12/15/2022] Open
Abstract
The organisation of mammalian genomes into loops and topologically associating domains (TADs) contributes to chromatin structure, gene expression and recombination. TADs and many loops are formed by cohesin and positioned by CTCF. In proliferating cells, cohesin also mediates sister chromatid cohesion, which is essential for chromosome segregation. Current models of chromatin folding and cohesion are based on assumptions of how many cohesin and CTCF molecules organise the genome. Here we have measured absolute copy numbers and dynamics of cohesin, CTCF, NIPBL, WAPL and sororin by mass spectrometry, fluorescence-correlation spectroscopy and fluorescence recovery after photobleaching in HeLa cells. In G1-phase, there are ~250,000 nuclear cohesin complexes, of which ~ 160,000 are chromatin-bound. Comparison with chromatin immunoprecipitation-sequencing data implies that some genomic cohesin and CTCF enrichment sites are unoccupied in single cells at any one time. We discuss the implications of these findings for how cohesin can contribute to genome organisation and cohesion.
Collapse
Affiliation(s)
- Johann Holzmann
- Research Institute of Molecular Pathology (IMP)Vienna Biocenter (VBC)ViennaAustria
- Institute of Molecular Biotechnology of the Austrian Academy of Sciences (IMBA)Vienna Biocenter (VBC)ViennaAustria
- Gregor Mendel Institute, Austrian Academy of SciencesVienna Biocenter (VBC)ViennaAustria
| | - Antonio Z Politi
- Cell Biology and Biophysics UnitEuropean Molecular Biology Laboratory (EMBL)HeidelbergGermany
| | - Kota Nagasaka
- Research Institute of Molecular Pathology (IMP)Vienna Biocenter (VBC)ViennaAustria
| | | | - Nike Walther
- Cell Biology and Biophysics UnitEuropean Molecular Biology Laboratory (EMBL)HeidelbergGermany
| | - Birgit Koch
- Cell Biology and Biophysics UnitEuropean Molecular Biology Laboratory (EMBL)HeidelbergGermany
| | - Johannes Fuchs
- Research Institute of Molecular Pathology (IMP)Vienna Biocenter (VBC)ViennaAustria
- Institute of Molecular Biotechnology of the Austrian Academy of Sciences (IMBA)Vienna Biocenter (VBC)ViennaAustria
- Gregor Mendel Institute, Austrian Academy of SciencesVienna Biocenter (VBC)ViennaAustria
| | - Gerhard Dürnberger
- Research Institute of Molecular Pathology (IMP)Vienna Biocenter (VBC)ViennaAustria
- Institute of Molecular Biotechnology of the Austrian Academy of Sciences (IMBA)Vienna Biocenter (VBC)ViennaAustria
- Gregor Mendel Institute, Austrian Academy of SciencesVienna Biocenter (VBC)ViennaAustria
| | - Wen Tang
- Research Institute of Molecular Pathology (IMP)Vienna Biocenter (VBC)ViennaAustria
| | - Rene Ladurner
- Research Institute of Molecular Pathology (IMP)Vienna Biocenter (VBC)ViennaAustria
| | - Roman R Stocsits
- Research Institute of Molecular Pathology (IMP)Vienna Biocenter (VBC)ViennaAustria
| | - Georg A Busslinger
- Research Institute of Molecular Pathology (IMP)Vienna Biocenter (VBC)ViennaAustria
| | - Béla Novák
- Department of BiochemistryUniversity of OxfordOxfordUnited Kingdom
| | - Karl Mechtler
- Research Institute of Molecular Pathology (IMP)Vienna Biocenter (VBC)ViennaAustria
- Institute of Molecular Biotechnology of the Austrian Academy of Sciences (IMBA)Vienna Biocenter (VBC)ViennaAustria
- Gregor Mendel Institute, Austrian Academy of SciencesVienna Biocenter (VBC)ViennaAustria
| | - Iain Finley Davidson
- Research Institute of Molecular Pathology (IMP)Vienna Biocenter (VBC)ViennaAustria
| | - Jan Ellenberg
- Cell Biology and Biophysics UnitEuropean Molecular Biology Laboratory (EMBL)HeidelbergGermany
| | - Jan-Michael Peters
- Research Institute of Molecular Pathology (IMP)Vienna Biocenter (VBC)ViennaAustria
- Medical University of ViennaViennaAustria
| |
Collapse
|
25
|
Nishiyama T. Cohesion and cohesin-dependent chromatin organization. Curr Opin Cell Biol 2019; 58:8-14. [PMID: 30544080 DOI: 10.1016/j.ceb.2018.11.006] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2018] [Accepted: 11/29/2018] [Indexed: 02/08/2023]
Abstract
Cohesin, one of structural maintenance of chromosomes (SMC) complexes, forms a ring-shaped protein complex, and mediates sister chromatid cohesion for accurate chromosome segregation and precise genome inheritance. The cohesin ring entraps one or two DNA molecules to achieve cohesion, which is further regulated by cohesin-binding proteins and modification enzymes in a cell cycle-dependent manner. Recent significant advancements in Hi-C technologies have revealed numerous cohesin-dependent higher-order chromatin structures. Simultaneously, single-molecule imaging has also unveiled the detailed dynamics of cohesin on DNA and/or chromatin. Thus, those studies are providing novel visions for the authentic chromatin structure regulated by cohesin.
Collapse
Affiliation(s)
- Tomoko Nishiyama
- Division of Biological Science, Graduate School of Science, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, Japan.
| |
Collapse
|
26
|
Mirkovic M, Oliveira RA. Centromeric Cohesin: Molecular Glue and Much More. PROGRESS IN MOLECULAR AND SUBCELLULAR BIOLOGY 2019; 56:485-513. [PMID: 28840250 DOI: 10.1007/978-3-319-58592-5_20] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Sister chromatid cohesion, mediated by the cohesin complex, is a prerequisite for faithful chromosome segregation during mitosis. Premature release of sister chromatid cohesion leads to random segregation of the genetic material and consequent aneuploidy. Multiple regulatory mechanisms ensure proper timing for cohesion establishment, concomitant with DNA replication, and cohesion release during the subsequent mitosis. Here we summarize the most important phases of the cohesin cycle and the coordination of cohesion release with the progression through mitosis. We further discuss recent evidence that has revealed additional functions for centromeric localization of cohesin in the fidelity of mitosis in metazoans. Beyond its well-established role as "molecular glue", centromeric cohesin complexes are now emerging as a scaffold for multiple fundamental processes during mitosis, including the formation of correct chromosome and kinetochore architecture, force balance with the mitotic spindle, and the association with key molecules that regulate mitotic fidelity, particularly at the chromosomal inner centromere. Centromeric chromatin may be thus seen as a dynamic place where cohesin ensures mitotic fidelity by multiple means.
Collapse
Affiliation(s)
- Mihailo Mirkovic
- Instituto Gulbenkian de Ciência, Rua da Quinta Grande, 2780-156, Oeiras, Portugal
| | - Raquel A Oliveira
- Instituto Gulbenkian de Ciência, Rua da Quinta Grande, 2780-156, Oeiras, Portugal.
| |
Collapse
|
27
|
Muñoz S, Minamino M, Casas-Delucchi CS, Patel H, Uhlmann F. A Role for Chromatin Remodeling in Cohesin Loading onto Chromosomes. Mol Cell 2019; 74:664-673.e5. [PMID: 30922844 PMCID: PMC6527865 DOI: 10.1016/j.molcel.2019.02.027] [Citation(s) in RCA: 49] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2018] [Revised: 01/14/2019] [Accepted: 02/15/2019] [Indexed: 12/18/2022]
Abstract
Cohesin is a conserved, ring-shaped protein complex that topologically embraces DNA. Its central role in genome organization includes functions in sister chromatid cohesion, DNA repair, and transcriptional regulation. Cohesin loading onto chromosomes requires the Scc2-Scc4 cohesin loader, whose presence on chromatin in budding yeast depends on the RSC chromatin remodeling complex. Here we reveal a dual role of RSC in cohesin loading. RSC acts as a chromatin receptor that recruits Scc2-Scc4 by a direct protein interaction independent of chromatin remodeling. In addition, chromatin remodeling is required to generate a nucleosome-free region that is the substrate for cohesin loading. An engineered cohesin loading module can be created by fusing the Scc2 C terminus to RSC or to other chromatin remodelers, but not to unrelated DNA binding proteins. These observations demonstrate the importance of nucleosome-free DNA for cohesin loading and provide insight into how cohesin accesses DNA during its varied chromosomal activities.
Collapse
Affiliation(s)
- Sofía Muñoz
- Chromosome Segregation Laboratory, The Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK
| | - Masashi Minamino
- Chromosome Segregation Laboratory, The Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK
| | - Corella S Casas-Delucchi
- Chromosome Replication Laboratory, The Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK
| | - Harshil Patel
- Bioinformatics and Biostatistics Science Technology Platform, The Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK
| | - Frank Uhlmann
- Chromosome Segregation Laboratory, The Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK.
| |
Collapse
|
28
|
Eykelenboom JK, Gierliński M, Yue Z, Hegarat N, Pollard H, Fukagawa T, Hochegger H, Tanaka TU. Live imaging of marked chromosome regions reveals their dynamic resolution and compaction in mitosis. J Cell Biol 2019; 218:1531-1552. [PMID: 30858191 PMCID: PMC6504890 DOI: 10.1083/jcb.201807125] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2018] [Revised: 12/19/2018] [Accepted: 02/05/2019] [Indexed: 01/27/2023] Open
Abstract
When human cells enter mitosis, chromosomes undergo substantial changes in their organization to resolve sister chromatids and compact chromosomes. To comprehend the timing and coordination of these events, we need to evaluate the progression of both sister chromatid resolution and chromosome compaction in one assay. Here we achieved this by analyzing changes in configuration of marked chromosome regions over time, with high spatial and temporal resolution. This assay showed that sister chromatids cycle between nonresolved and partially resolved states with an interval of a few minutes during G2 phase before completing full resolution in prophase. Cohesins and WAPL antagonistically regulate sister chromatid resolution in late G2 and prophase while local enrichment of cohesin on chromosomes prevents precocious sister chromatid resolution. Moreover, our assay allowed quantitative evaluation of condensin II and I activities, which differentially promote sister chromatid resolution and chromosome compaction, respectively. Our assay reveals novel aspects of dynamics in mitotic chromosome resolution and compaction that were previously obscure in global chromosome assays.
Collapse
Affiliation(s)
- John K Eykelenboom
- Centre for Gene Regulation and Expression, School of Life Sciences, University of Dundee, Dundee, UK
| | - Marek Gierliński
- Centre for Gene Regulation and Expression, School of Life Sciences, University of Dundee, Dundee, UK
- Data Analysis Group, School of Life Sciences, University of Dundee, Dundee, UK
| | - Zuojun Yue
- Centre for Gene Regulation and Expression, School of Life Sciences, University of Dundee, Dundee, UK
| | - Nadia Hegarat
- Genome Damage and Stability Centre, University of Sussex, Brighton, UK
| | - Hilary Pollard
- Genome Damage and Stability Centre, University of Sussex, Brighton, UK
| | - Tatsuo Fukagawa
- Graduate School of Frontier Biosciences, Osaka University, Suita, Osaka, Japan
| | - Helfrid Hochegger
- Genome Damage and Stability Centre, University of Sussex, Brighton, UK
| | - Tomoyuki U Tanaka
- Centre for Gene Regulation and Expression, School of Life Sciences, University of Dundee, Dundee, UK
| |
Collapse
|
29
|
Unraveling quiescence-specific repressive chromatin domains. Curr Genet 2019; 65:1145-1151. [PMID: 31055637 DOI: 10.1007/s00294-019-00985-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2019] [Revised: 04/29/2019] [Accepted: 04/30/2019] [Indexed: 01/30/2023]
Abstract
Quiescence is a highly conserved inactive life stage in which the cell reversibly exits the cell cycle in response to external cues. Quiescence is essential for diverse processes such as the maintenance of adult stem cell stores, stress resistance, and longevity, and its misregulation has been implicated in cancer. Although the non-cycling nature of quiescent cells has made obtaining sufficient quantities of quiescent cells for study difficult, the development of a Saccharomyces cerevisiae model of quiescence has recently enabled detailed investigation into mechanisms underlying the quiescent state. Like their metazoan counterparts, quiescent budding yeast exhibit widespread transcriptional silencing and dramatic chromatin condensation. We have recently found that the structural maintenance of chromosomes (SMC) complex condensin binds throughout the quiescent budding yeast genome and induces the formation of large chromatin loop domains. In the absence of condensin, quiescent cell chromatin is decondensed and transcription is de-repressed. Here, we briefly discuss our findings in the larger context of the genome organization field.
Collapse
|
30
|
Moronta-Gines M, van Staveren TRH, Wendt KS. One ring to bind them - Cohesin's interaction with chromatin fibers. Essays Biochem 2019; 63:167-176. [PMID: 31015387 DOI: 10.1042/ebc20180064] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2019] [Revised: 02/26/2019] [Accepted: 03/01/2019] [Indexed: 12/17/2023]
Abstract
In the nuclei of eukaryotic cells, the genetic information is organized at several levels. First, the DNA is wound around the histone proteins, to form a structure termed as chromatin fiber. This fiber is then arranged into chromatin loops that can cluster together and form higher order structures. This packaging of chromatin provides on one side compaction but also functional compartmentalization. The cohesin complex is a multifunctional ring-shaped multiprotein complex that organizes the chromatin fiber to establish functional domains important for transcriptional regulation, help with DNA damage repair, and ascertain stable inheritance of the genome during cell division. Our current model for cohesin function suggests that cohesin tethers chromatin strands by topologically entrapping them within its ring. To achieve this, cohesin's association with chromatin needs to be very precisely regulated in timing and position on the chromatin strand. Here we will review the current insight in when and where cohesin associates with chromatin and which factors regulate this. Further, we will discuss the latest insights into where and how the cohesin ring opens to embrace chromatin and also the current knowledge about the 'exit gates' when cohesin is released from chromatin.
Collapse
Affiliation(s)
| | | | - Kerstin S Wendt
- Department of Cell Biology, Erasmus MC, Rotterdam, The Netherlands
| |
Collapse
|
31
|
Rowley MJ, Lyu X, Rana V, Ando-Kuri M, Karns R, Bosco G, Corces VG. Condensin II Counteracts Cohesin and RNA Polymerase II in the Establishment of 3D Chromatin Organization. Cell Rep 2019; 26:2890-2903.e3. [PMID: 30865881 PMCID: PMC6424357 DOI: 10.1016/j.celrep.2019.01.116] [Citation(s) in RCA: 71] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2018] [Revised: 01/02/2019] [Accepted: 01/30/2019] [Indexed: 12/22/2022] Open
Abstract
Interaction domains in Drosophila chromosomes form by segregation of active and inactive chromatin in the absence of CTCF loops, but the role of transcription versus other architectural proteins in chromatin organization is unclear. Here, we find that positioning of RNAPII via transcription elongation is essential in the formation of gene loops, which in turn interact to form compartmental domains. Inhibition of transcription elongation or depletion of cohesin decreases gene looping and formation of active compartmental domains. In contrast, depletion of condensin II, which also localizes to active chromatin, causes increased gene looping, formation of compartmental domains, and stronger intra-chromosomal compartmental interactions. Condensin II has a similar role in maintaining inter-chromosomal interactions responsible for pairing between homologous chromosomes, whereas inhibition of transcription elongation or cohesin depletion has little effect on homolog pairing. The results suggest distinct roles for cohesin and condensin II in the establishment of 3D nuclear organization in Drosophila.
Collapse
Affiliation(s)
- M Jordan Rowley
- Department of Biology, Emory University, 1510 Clifton Road NE, Atlanta, GA 30322, USA
| | - Xiaowen Lyu
- Department of Biology, Emory University, 1510 Clifton Road NE, Atlanta, GA 30322, USA
| | - Vibhuti Rana
- Department of Molecular and Systems Biology, Geisel School of Medicine at Dartmouth, Hanover, NH, USA
| | - Masami Ando-Kuri
- Department of Biology, Emory University, 1510 Clifton Road NE, Atlanta, GA 30322, USA
| | - Rachael Karns
- Department of Biology, Emory University, 1510 Clifton Road NE, Atlanta, GA 30322, USA
| | - Giovanni Bosco
- Department of Molecular and Systems Biology, Geisel School of Medicine at Dartmouth, Hanover, NH, USA
| | - Victor G Corces
- Department of Biology, Emory University, 1510 Clifton Road NE, Atlanta, GA 30322, USA.
| |
Collapse
|
32
|
Abstract
Studies of 3D chromatin organization have suggested that chromosomes are hierarchically organized into large compartments composed of smaller domains called topologically associating domains (TADs). Recent evidence suggests that compartments are smaller than previously thought and that the transcriptional or chromatin state is responsible for interactions leading to the formation of small compartmental domains in all organisms. In vertebrates, CTCF forms loop domains, probably via an extrusion process involving cohesin. CTCF loops cooperate with compartmental domains to establish the 3D organization of the genome. The continuous extrusion of the chromatin fibre by cohesin may also be responsible for the establishment of enhancer-promoter interactions and stochastic aspects of the transcription process. These observations suggest that the 3D organization of the genome is an emergent property of chromatin and its components, and thus may not be only a determinant but also a consequence of its function.
Collapse
|
33
|
Litwin I, Pilarczyk E, Wysocki R. The Emerging Role of Cohesin in the DNA Damage Response. Genes (Basel) 2018; 9:genes9120581. [PMID: 30487431 PMCID: PMC6316000 DOI: 10.3390/genes9120581] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2018] [Revised: 11/20/2018] [Accepted: 11/21/2018] [Indexed: 12/23/2022] Open
Abstract
Faithful transmission of genetic material is crucial for all organisms since changes in genetic information may result in genomic instability that causes developmental disorders and cancers. Thus, understanding the mechanisms that preserve genome integrity is of fundamental importance. Cohesin is a multiprotein complex whose canonical function is to hold sister chromatids together from S-phase until the onset of anaphase to ensure the equal division of chromosomes. However, recent research points to a crucial function of cohesin in the DNA damage response (DDR). In this review, we summarize recent advances in the understanding of cohesin function in DNA damage signaling and repair. First, we focus on cohesin architecture and molecular mechanisms that govern sister chromatid cohesion. Next, we briefly characterize the main DDR pathways. Finally, we describe mechanisms that determine cohesin accumulation at DNA damage sites and discuss possible roles of cohesin in DDR.
Collapse
Affiliation(s)
- Ireneusz Litwin
- Institute of Experimental Biology, University of Wroclaw, 50-328 Wroclaw, Poland.
| | - Ewa Pilarczyk
- Institute of Experimental Biology, University of Wroclaw, 50-328 Wroclaw, Poland.
| | - Robert Wysocki
- Institute of Experimental Biology, University of Wroclaw, 50-328 Wroclaw, Poland.
| |
Collapse
|
34
|
Minamino M, Higashi TL, Bouchoux C, Uhlmann F. Topological in vitro loading of the budding yeast cohesin ring onto DNA. Life Sci Alliance 2018; 1. [PMID: 30381802 PMCID: PMC6205631 DOI: 10.26508/lsa.201800143] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
Abstract
The biochemical reconstitution of topological DNA binding by budding yeast cohesin yields surprises and opens opportunities to exploit experimental approaches developed in this model organism. The ring-shaped chromosomal cohesin complex holds sister chromatids together by topological embrace, a prerequisite for accurate chromosome segregation. Cohesin plays additional roles in genome organization, transcriptional regulation, and DNA repair. The cohesin ring includes an ABC family ATPase, but the molecular mechanism by which the ATPase contributes to cohesin function is not yet understood. In this study, we have purified budding yeast cohesin, as well as its Scc2–Scc4 cohesin loader complex, and biochemically reconstituted ATP-dependent topological cohesin loading onto DNA. Our results reproduce previous observations obtained using fission yeast cohesin, thereby establishing conserved aspects of cohesin behavior. Unexpectedly, we find that nonhydrolyzable ATP ground state mimetics ADP·BeF2, ADP·BeF3−, and ADP·AlFx, but not a hydrolysis transition state analog ADP·VO43−, support cohesin loading. The energy from nucleotide binding is sufficient to drive the DNA entry reaction into the cohesin ring. ATP hydrolysis, believed to be essential for in vivo cohesin loading, must serve a subsequent reaction step. These results provide molecular insights into cohesin function and open new experimental opportunities that the budding yeast model affords.
Collapse
Affiliation(s)
- Masashi Minamino
- Chromosome Segregation Laboratory, The Francis Crick Institute, London, UK
| | - Torahiko L Higashi
- Chromosome Segregation Laboratory, The Francis Crick Institute, London, UK
| | - Céline Bouchoux
- Chromosome Segregation Laboratory, The Francis Crick Institute, London, UK
| | - Frank Uhlmann
- Chromosome Segregation Laboratory, The Francis Crick Institute, London, UK
| |
Collapse
|
35
|
Szalaj P, Plewczynski D. Three-dimensional organization and dynamics of the genome. Cell Biol Toxicol 2018; 34:381-404. [PMID: 29568981 PMCID: PMC6133016 DOI: 10.1007/s10565-018-9428-y] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2017] [Accepted: 03/11/2018] [Indexed: 12/30/2022]
Abstract
Genome is a complex hierarchical structure, and its spatial organization plays an important role in its function. Chromatin loops and topological domains form the basic structural units of this multiscale organization and are essential to orchestrate complex regulatory networks and transcription mechanisms. They also form higher-order structures such as chromosomal compartments and chromosome territories. Each level of this intrinsic architecture is governed by principles and mechanisms that we only start to understand. In this review, we summarize the current view of the genome architecture on the scales ranging from chromatin loops to the whole genome. We describe cell-to-cell variability, links between genome reorganization and various genomic processes, such as chromosome X inactivation and cell differentiation, and the interplay between different experimental techniques.
Collapse
Affiliation(s)
- Przemyslaw Szalaj
- Centre for Innovative Research, Medical University of Bialystok, Białystok, Poland.
- I-BioStat, Hasselt University, Hasselt, Belgium.
- Centre of New Technologies, University of Warsaw, Warsaw, Poland.
| | - Dariusz Plewczynski
- Centre for Innovative Research, Medical University of Bialystok, Białystok, Poland
- Centre of New Technologies, University of Warsaw, Warsaw, Poland
- Faculty of Mathematics and Information Science, Warsaw University of Technology, Warsaw, Poland
| |
Collapse
|
36
|
Petela NJ, Gligoris TG, Metson J, Lee BG, Voulgaris M, Hu B, Kikuchi S, Chapard C, Chen W, Rajendra E, Srinivisan M, Yu H, Löwe J, Nasmyth KA. Scc2 Is a Potent Activator of Cohesin's ATPase that Promotes Loading by Binding Scc1 without Pds5. Mol Cell 2018; 70:1134-1148.e7. [PMID: 29932904 PMCID: PMC6028919 DOI: 10.1016/j.molcel.2018.05.022] [Citation(s) in RCA: 91] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2017] [Revised: 04/10/2018] [Accepted: 05/18/2018] [Indexed: 01/10/2023]
Abstract
Cohesin organizes DNA into chromatids, regulates enhancer-promoter interactions, and confers sister chromatid cohesion. Its association with chromosomes is regulated by hook-shaped HEAT repeat proteins that bind Scc1, namely Scc3, Pds5, and Scc2. Unlike Pds5, Scc2 is not a stable cohesin constituent but, as shown here, transiently replaces Pds5. Scc1 mutations that compromise its interaction with Scc2 adversely affect cohesin's ATPase activity and loading. Moreover, Scc2 mutations that alter how the ATPase responds to DNA abolish loading despite cohesin's initial association with loading sites. Lastly, Scc2 mutations that permit loading in the absence of Scc4 increase Scc2's association with chromosomal cohesin and reduce that of Pds5. We suggest that cohesin switches between two states: one with Pds5 bound that is unable to hydrolyze ATP efficiently but is capable of release from chromosomes and another in which Scc2 replaces Pds5 and stimulates ATP hydrolysis necessary for loading and translocation from loading sites.
Collapse
Affiliation(s)
- Naomi J Petela
- Department of Biochemistry, University of Oxford, Oxford OX1 3QU, UK
| | - Thomas G Gligoris
- Department of Biochemistry, University of Oxford, Oxford OX1 3QU, UK
| | - Jean Metson
- Department of Biochemistry, University of Oxford, Oxford OX1 3QU, UK
| | - Byung-Gil Lee
- MRC Laboratory of Molecular Biology, Cambridge CB2 0QH, UK
| | | | - Bin Hu
- Department of Molecular Biology and Biotechnology, University of Sheffield, Sheffield S10 2TN, UK
| | - Sotaro Kikuchi
- Howard Hughes Medical Institute, Department of Pharmacology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | | | - Wentao Chen
- Department of Biochemistry, University of Oxford, Oxford OX1 3QU, UK
| | - Eeson Rajendra
- MRC Laboratory of Molecular Biology, Cambridge CB2 0QH, UK
| | | | - Hongtao Yu
- Howard Hughes Medical Institute, Department of Pharmacology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Jan Löwe
- MRC Laboratory of Molecular Biology, Cambridge CB2 0QH, UK
| | - Kim A Nasmyth
- Department of Biochemistry, University of Oxford, Oxford OX1 3QU, UK.
| |
Collapse
|
37
|
Tran NT, Laub MT, Le TBK. SMC Progressively Aligns Chromosomal Arms in Caulobacter crescentus but Is Antagonized by Convergent Transcription. Cell Rep 2018; 20:2057-2071. [PMID: 28854358 PMCID: PMC5583512 DOI: 10.1016/j.celrep.2017.08.026] [Citation(s) in RCA: 87] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2017] [Revised: 07/07/2017] [Accepted: 08/03/2017] [Indexed: 11/16/2022] Open
Abstract
The structural maintenance of chromosomes (SMC) complex plays an important role in chromosome organization and segregation in most living organisms. In Caulobacter crescentus, SMC is required to align the left and the right arms of the chromosome that run in parallel down the long axis of the cell. However, the mechanism of SMC-mediated alignment of chromosomal arms remains elusive. Here, using genome-wide methods and microscopy of single cells, we show that Caulobacter SMC is recruited to the centromeric parS site and that SMC-mediated arm alignment depends on the chromosome-partitioning protein ParB. We provide evidence that SMC likely tethers the parS-proximal regions of the chromosomal arms together, promoting arm alignment. Furthermore, we show that highly transcribed genes near parS that are oriented against SMC translocation disrupt arm alignment, suggesting that head-on transcription interferes with SMC translocation. Our results demonstrate a tight interdependence of bacterial chromosome organization and global patterns of transcription. Caulobacter SMC aligns the two chromosomal arms progressively from ori to ter SMC is loaded at parS, and ParB is essential for SMC-mediated arm alignment SMC likely functions as a tether to cohese parS-proximal DNA together Head-on transcription interferes with SMC translocation from parS
Collapse
Affiliation(s)
- Ngat T Tran
- Department of Molecular Microbiology, John Innes Centre, Norwich NR4 7UH, UK, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Michael T Laub
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; Howard Hughes Medical Institute, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Tung B K Le
- Department of Molecular Microbiology, John Innes Centre, Norwich NR4 7UH, UK, Massachusetts Institute of Technology, Cambridge, MA 02139, USA.
| |
Collapse
|
38
|
Litwin I, Wysocki R. New insights into cohesin loading. Curr Genet 2018; 64:53-61. [PMID: 28631016 DOI: 10.1007/s00294-017-0723-6] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2017] [Revised: 06/12/2017] [Accepted: 06/13/2017] [Indexed: 01/13/2023]
Abstract
Cohesin is a conserved, ring-shaped protein complex that encircles sister chromatids and ensures correct chromosome segregation during mitosis and meiosis. It also plays a crucial role in the regulation of gene expression, DNA condensation, and DNA repair through both non-homologous end joining and homologous recombination. Cohesins are spatiotemporally regulated by the Scc2-Scc4 complex which facilitates cohesin loading onto chromatin at specific chromosomal sites. Over the last few years, much attention has been paid to cohesin and cohesin loader as it became clear that even minor disruptions of these complexes may lead to developmental disorders and cancers. Here we summarize recent developments in the structure of Scc2-Scc4 complex, cohesin loading process, and mediators that determine the Scc2-Scc4 binding patterns to chromatin.
Collapse
Affiliation(s)
- Ireneusz Litwin
- Institute of Experimental Biology, University of Wroclaw, 50-328, Wroclaw, Poland.
| | - Robert Wysocki
- Institute of Experimental Biology, University of Wroclaw, 50-328, Wroclaw, Poland
| |
Collapse
|
39
|
Misulovin Z, Pherson M, Gause M, Dorsett D. Brca2, Pds5 and Wapl differentially control cohesin chromosome association and function. PLoS Genet 2018; 14:e1007225. [PMID: 29447171 PMCID: PMC5831647 DOI: 10.1371/journal.pgen.1007225] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2017] [Revised: 02/28/2018] [Accepted: 01/26/2018] [Indexed: 12/11/2022] Open
Abstract
The cohesin complex topologically encircles chromosomes and mediates sister chromatid cohesion to ensure accurate chromosome segregation upon cell division. Cohesin also participates in DNA repair and gene transcription. The Nipped-B-Mau2 protein complex loads cohesin onto chromosomes and the Pds5-Wapl complex removes cohesin. Pds5 is also essential for sister chromatid cohesion, indicating that it has functions beyond cohesin removal. The Brca2 DNA repair protein interacts with Pds5, but the roles of this complex beyond DNA repair are unknown. Here we show that Brca2 opposes Pds5 function in sister chromatid cohesion by assaying precocious sister chromatid separation in metaphase spreads of cultured cells depleted for these proteins. By genome-wide chromatin immunoprecipitation we find that Pds5 facilitates SA cohesin subunit association with DNA replication origins and that Brca2 inhibits SA binding, mirroring their effects on sister chromatid cohesion. Cohesin binding is maximal at replication origins and extends outward to occupy active genes and regulatory sequences. Pds5 and Wapl, but not Brca2, limit the distance that cohesin extends from origins, thereby determining which active genes, enhancers and silencers bind cohesin. Using RNA-seq we find that Brca2, Pds5 and Wapl influence the expression of most genes sensitive to Nipped-B and cohesin, largely in the same direction. These findings demonstrate that Brca2 regulates sister chromatid cohesion and gene expression in addition to its canonical role in DNA repair and expand the known functions of accessory proteins in cohesin's diverse functions.
Collapse
Affiliation(s)
- Ziva Misulovin
- Edward A Doisy Department of Biochemistry and Molecular Biology, Saint Louis University School of Medicine, Saint Louis, Missouri, United States of America
| | - Michelle Pherson
- Edward A Doisy Department of Biochemistry and Molecular Biology, Saint Louis University School of Medicine, Saint Louis, Missouri, United States of America
| | - Maria Gause
- Edward A Doisy Department of Biochemistry and Molecular Biology, Saint Louis University School of Medicine, Saint Louis, Missouri, United States of America
| | - Dale Dorsett
- Edward A Doisy Department of Biochemistry and Molecular Biology, Saint Louis University School of Medicine, Saint Louis, Missouri, United States of America
| |
Collapse
|
40
|
Sazer S, Schiessel H. The biology and polymer physics underlying large-scale chromosome organization. Traffic 2018; 19:87-104. [PMID: 29105235 PMCID: PMC5846894 DOI: 10.1111/tra.12539] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2017] [Revised: 10/31/2017] [Accepted: 10/31/2017] [Indexed: 12/21/2022]
Abstract
Chromosome large-scale organization is a beautiful example of the interplay between physics and biology. DNA molecules are polymers and thus belong to the class of molecules for which physicists have developed models and formulated testable hypotheses to understand their arrangement and dynamic properties in solution, based on the principles of polymer physics. Biologists documented and discovered the biochemical basis for the structure, function and dynamic spatial organization of chromosomes in cells. The underlying principles of chromosome organization have recently been revealed in unprecedented detail using high-resolution chromosome capture technology that can simultaneously detect chromosome contact sites throughout the genome. These independent lines of investigation have now converged on a model in which DNA loops, generated by the loop extrusion mechanism, are the basic organizational and functional units of the chromosome.
Collapse
Affiliation(s)
- Shelley Sazer
- Verna and Marrs McLean Department of Biochemistry and Molecular BiologyBaylor College of MedicineHoustonTexas
| | - Helmut Schiessel
- Institute Lorentz for Theoretical PhysicsLeiden UniversityLeidenThe Netherlands
| |
Collapse
|
41
|
Borrie MS, Campor JS, Joshi H, Gartenberg MR. Binding, sliding, and function of cohesin during transcriptional activation. Proc Natl Acad Sci U S A 2017; 114:E1062-E1071. [PMID: 28137853 PMCID: PMC5320966 DOI: 10.1073/pnas.1617309114] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
The ring-shaped cohesin complex orchestrates long-range DNA interactions to mediate sister chromatid cohesion and other aspects of chromosome structure and function. In the yeast Saccharomyces cerevisiae, the complex binds discrete sites along chromosomes, including positions within and around genes. Transcriptional activity redistributes the complex to the 3' ends of convergently oriented gene pairs. Despite the wealth of information about where cohesin binds, little is known about cohesion at individual chromosomal binding sites and how transcription affects cohesion when cohesin complexes redistribute. In this study, we generated extrachromosomal DNA circles to study cohesion in response to transcriptional induction of a model gene, URA3. Functional cohesin complexes loaded onto the locus via a poly(dA:dT) tract in the gene promoter and mediated cohesion before induction. Upon transcription, the fate of these complexes depended on whether the DNA was circular or not. When gene activation occurred before DNA circularization, cohesion was lost. When activation occurred after DNA circularization, cohesion persisted. The presence of a convergently oriented gene also prevented transcription-driven loss of functional cohesin complexes, at least in M phase-arrested cells. The results are consistent with cohesin binding chromatin in a topological embrace and with transcription mobilizing functional complexes by sliding them along DNA.
Collapse
MESH Headings
- Adenosine Triphosphatases/metabolism
- Binding Sites
- Cell Cycle Proteins/metabolism
- Chromosomal Proteins, Non-Histone/metabolism
- Chromosomes, Fungal/metabolism
- Chromosomes, Fungal/ultrastructure
- DNA, Circular/metabolism
- DNA, Fungal/genetics
- DNA-Binding Proteins/metabolism
- Extrachromosomal Inheritance
- Gene Expression Regulation, Fungal
- Genes, Fungal
- Genes, Reporter
- Genes, Synthetic
- Metaphase
- Multiprotein Complexes/metabolism
- Poly dA-dT/pharmacology
- Promoter Regions, Genetic/genetics
- Protein Binding
- Regulatory Sequences, Nucleic Acid
- Saccharomyces cerevisiae/genetics
- Saccharomyces cerevisiae Proteins/genetics
- Saccharomyces cerevisiae Proteins/metabolism
- Transcriptional Activation/physiology
- Cohesins
Collapse
Affiliation(s)
- Melinda S Borrie
- Department of Biochemistry and Molecular Biology, Robert Wood Johnson Medical School, Rutgers, The State University of New Jersey, Piscataway, NJ 08854
| | - John S Campor
- Department of Biochemistry and Molecular Biology, Robert Wood Johnson Medical School, Rutgers, The State University of New Jersey, Piscataway, NJ 08854
| | - Hansa Joshi
- Department of Biochemistry and Molecular Biology, Robert Wood Johnson Medical School, Rutgers, The State University of New Jersey, Piscataway, NJ 08854
| | - Marc R Gartenberg
- Department of Biochemistry and Molecular Biology, Robert Wood Johnson Medical School, Rutgers, The State University of New Jersey, Piscataway, NJ 08854;
- The Rutgers Cancer Institute of New Jersey, New Brunswick, NJ 08901
| |
Collapse
|
42
|
Kanke M, Tahara E, Huis In't Veld PJ, Nishiyama T. Cohesin acetylation and Wapl-Pds5 oppositely regulate translocation of cohesin along DNA. EMBO J 2016; 35:2686-2698. [PMID: 27872142 PMCID: PMC5167340 DOI: 10.15252/embj.201695756] [Citation(s) in RCA: 83] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2016] [Revised: 11/04/2016] [Accepted: 11/07/2016] [Indexed: 01/17/2023] Open
Abstract
Cohesin is a ring-shaped protein complex that plays a crucial role in sister chromatid cohesion and gene expression. The dynamic association of cohesin with chromatin is essential for these functions. However, the exact nature of cohesin dynamics, particularly cohesin translocation, remains unclear. We evaluated the dynamics of individual cohesin molecules on DNA and found that the cohesin core complex possesses an intrinsic ability to traverse DNA in an adenosine triphosphatase (ATPase)-dependent manner. Translocation ability is suppressed in the presence of Wapl-Pds5 and Sororin; this suppression is alleviated by the acetylation of cohesin and the action of mitotic kinases. In Xenopus laevis egg extracts, cohesin is translocated on unreplicated DNA in an ATPase- and Smc3 acetylation-dependent manner. Cohesin movement changes from bidirectional to unidirectional when cohesin faces DNA replication; otherwise, it is incorporated into replicating DNA without being translocated or is dissociated from replicating DNA This study provides insight into the nature of individual cohesin dynamics and the mechanisms by which cohesin achieves cohesion in different chromatin contexts.
Collapse
Affiliation(s)
- Mai Kanke
- Division of Biological Science, Graduate School of Science Nagoya University, Nagoya, Japan
| | - Eri Tahara
- Division of Biological Science, Graduate School of Science Nagoya University, Nagoya, Japan
| | | | - Tomoko Nishiyama
- Division of Biological Science, Graduate School of Science Nagoya University, Nagoya, Japan
| |
Collapse
|
43
|
Davidson IF, Goetz D, Zaczek MP, Molodtsov MI, Huis In 't Veld PJ, Weissmann F, Litos G, Cisneros DA, Ocampo-Hafalla M, Ladurner R, Uhlmann F, Vaziri A, Peters JM. Rapid movement and transcriptional re-localization of human cohesin on DNA. EMBO J 2016; 35:2671-2685. [PMID: 27799150 PMCID: PMC5167347 DOI: 10.15252/embj.201695402] [Citation(s) in RCA: 154] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2016] [Revised: 09/08/2016] [Accepted: 10/03/2016] [Indexed: 01/17/2023] Open
Abstract
The spatial organization, correct expression, repair, and segregation of eukaryotic genomes depend on cohesin, ring-shaped protein complexes that are thought to function by entrapping DNA It has been proposed that cohesin is recruited to specific genomic locations from distal loading sites by an unknown mechanism, which depends on transcription, and it has been speculated that cohesin movements along DNA could create three-dimensional genomic organization by loop extrusion. However, whether cohesin can translocate along DNA is unknown. Here, we used single-molecule imaging to show that cohesin can diffuse rapidly on DNA in a manner consistent with topological entrapment and can pass over some DNA-bound proteins and nucleosomes but is constrained in its movement by transcription and DNA-bound CCCTC-binding factor (CTCF). These results indicate that cohesin can be positioned in the genome by moving along DNA, that transcription can provide directionality to these movements, that CTCF functions as a boundary element for moving cohesin, and they are consistent with the hypothesis that cohesin spatially organizes the genome via loop extrusion.
Collapse
Affiliation(s)
- Iain F Davidson
- Research Institute of Molecular Pathology (IMP), Vienna, Austria
| | - Daniela Goetz
- Research Institute of Molecular Pathology (IMP), Vienna, Austria
| | - Maciej P Zaczek
- Research Institute of Molecular Pathology (IMP), Vienna, Austria
| | - Maxim I Molodtsov
- Research Institute of Molecular Pathology (IMP), Vienna, Austria
- Max F. Perutz Laboratories, University of Vienna, Vienna, Austria
| | | | | | - Gabriele Litos
- Research Institute of Molecular Pathology (IMP), Vienna, Austria
| | - David A Cisneros
- Research Institute of Molecular Pathology (IMP), Vienna, Austria
| | | | - Rene Ladurner
- Research Institute of Molecular Pathology (IMP), Vienna, Austria
| | | | - Alipasha Vaziri
- Research Institute of Molecular Pathology (IMP), Vienna, Austria
- Max F. Perutz Laboratories, University of Vienna, Vienna, Austria
- The Rockefeller University, New York, NY, USA
| | | |
Collapse
|
44
|
The loading of condensin in the context of chromatin. Curr Genet 2016; 63:577-589. [PMID: 27909798 DOI: 10.1007/s00294-016-0669-0] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2016] [Revised: 11/24/2016] [Accepted: 11/25/2016] [Indexed: 12/23/2022]
Abstract
The packaging of DNA into chromosomes is a ubiquitous process that enables living organisms to structure and transmit their genome accurately through cell divisions. In the three kingdoms of life, the architecture and dynamics of chromosomes rely upon ring-shaped SMC (Structural Maintenance of Chromosomes) condensin complexes. To understand how condensin rings organize chromosomes, it is essential to decipher how they associate with chromatin filaments. Here, we use recent evidence to discuss the role played by nucleosomes and transcription factors in the loading of condensin at transcribed genes. We propose a model whereby cis-acting features nestled in the promoters of active genes synergistically attract condensin rings and promote their association with DNA.
Collapse
|