1
|
Rizzotto D, Vigorito V, Rieder P, Gallob F, Moretta GM, Soratroi C, Riley JS, Bellutti F, Veli SL, Mattivi A, Lohmüller M, Herzog S, Bornhauser BC, Jacotot ED, Villunger A, Fava LL. Caspase-2 kills cells with extra centrosomes. SCIENCE ADVANCES 2024; 10:eado6607. [PMID: 39475598 PMCID: PMC11524169 DOI: 10.1126/sciadv.ado6607] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Accepted: 09/25/2024] [Indexed: 11/02/2024]
Abstract
Centrosomes are membrane-less organelles that orchestrate a wide array of biological functions by acting as microtubule organizing centers. Here, we report that caspase-2-driven apoptosis is elicited in blood cells failing cytokinesis and that extra centrosomes are necessary to trigger this cell death. Activation of caspase-2 depends on the PIDDosome multi-protein complex, and priming of PIDD1 at extra centrosomes is necessary for pathway activation. Accordingly, loss of its centrosomal adapter, ANKRD26, allows for cell survival and unrestricted polyploidization in response to cytokinesis failure. Mechanistically, cell death is initiated upstream of mitochondria via caspase-2-mediated processing of the BCL2 family protein BID, driving BAX/BAK-dependent mitochondrial outer membrane permeabilization (MOMP). Remarkably, BID-deficient cells enforce apoptosis by engaging p53-dependent proapoptotic transcriptional responses initiated by caspase-2. Consistently, BID and MDM2 act as shared caspase-2 substrates, with BID being kinetically favored. Our findings document that the centrosome limits its own unscheduled duplication by the induction of PIDDosome-driven mitochondrial apoptosis to avoid potentially pathogenic polyploidization events.
Collapse
Affiliation(s)
- Dario Rizzotto
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, 1090 Vienna, Austria
| | - Vincenza Vigorito
- Armenise-Harvard Laboratory of Cell Division, Department of Cellular, Computational and Integrative Biology-CIBIO, University of Trento, Trento, Italy
| | - Patricia Rieder
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, 1090 Vienna, Austria
| | - Filip Gallob
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, 1090 Vienna, Austria
| | - Gian Mario Moretta
- Armenise-Harvard Laboratory of Cell Division, Department of Cellular, Computational and Integrative Biology-CIBIO, University of Trento, Trento, Italy
| | - Claudia Soratroi
- Institute for Developmental Immunology, Biocenter, Medical University Innsbruck, 6020 Innsbruck, Austria
| | - Joel S. Riley
- Institute for Developmental Immunology, Biocenter, Medical University Innsbruck, 6020 Innsbruck, Austria
| | - Florian Bellutti
- Armenise-Harvard Laboratory of Cell Division, Department of Cellular, Computational and Integrative Biology-CIBIO, University of Trento, Trento, Italy
| | - Stefano Li Veli
- Armenise-Harvard Laboratory of Cell Division, Department of Cellular, Computational and Integrative Biology-CIBIO, University of Trento, Trento, Italy
| | - Alessia Mattivi
- Armenise-Harvard Laboratory of Cell Division, Department of Cellular, Computational and Integrative Biology-CIBIO, University of Trento, Trento, Italy
| | - Michael Lohmüller
- Institute for Developmental Immunology, Biocenter, Medical University Innsbruck, 6020 Innsbruck, Austria
| | - Sebastian Herzog
- Institute for Developmental Immunology, Biocenter, Medical University Innsbruck, 6020 Innsbruck, Austria
| | - Beat C. Bornhauser
- Department of Oncology and Children’s Research Centre, University Children’s Hospital Zürich, 8032 Zürich, Switzerland
| | - Etienne D. Jacotot
- Inserm U1268, Medicinal Chemistry and Translational Research, Paris F-75006, France
- Faculté de Pharmacie, UMR 8038 CiTCoM, Université Paris Cité, Paris F-75006, France
| | - Andreas Villunger
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, 1090 Vienna, Austria
- Institute for Developmental Immunology, Biocenter, Medical University Innsbruck, 6020 Innsbruck, Austria
| | - Luca L. Fava
- Armenise-Harvard Laboratory of Cell Division, Department of Cellular, Computational and Integrative Biology-CIBIO, University of Trento, Trento, Italy
| |
Collapse
|
2
|
Kiermaier E, Stötzel I, Schapfl MA, Villunger A. Amplified centrosomes-more than just a threat. EMBO Rep 2024; 25:4153-4167. [PMID: 39285247 PMCID: PMC11467336 DOI: 10.1038/s44319-024-00260-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Revised: 07/05/2024] [Accepted: 08/28/2024] [Indexed: 09/19/2024] Open
Abstract
Centrosomes are major organizing components of the tubulin-based cytoskeleton. In recent years, we have gained extensive knowledge about their structure, biogenesis, and function from single cells, cell-cell interactions to tissue homeostasis, including their role in human diseases. Centrosome abnormalities are linked to, among others primary microcephaly, birth defects, ciliopathies, and tumorigenesis. Centrosome amplification, a state where two or more centrosomes are present in the G1 phase of the cell cycle, correlates in cancer with karyotype alterations, clinical aggressiveness, and lymph node metastasis. However, amplified centrosomes also appear in healthy tissues and, independent of their established role, in multi-ciliation. One example is the liver where hepatocytes carry amplified centrosomes owing to whole-genome duplication events during organogenesis. More recently, amplified centrosomes have been found in neuronal progenitors and several cell types of hematopoietic origin in which they enhance cellular effector functions. These findings suggest that extra centrosomes do not necessarily pose a risk for genome integrity and are harnessed for physiological processes. Here, we compare established and emerging 'non-canonical functions' of amplified centrosomes in cancerous and somatic cells and discuss their role in cellular physiology.
Collapse
Affiliation(s)
- Eva Kiermaier
- Life and Medical Sciences Institute, Immune and Tumor Biology, University of Bonn, Bonn, Germany.
| | - Isabel Stötzel
- Life and Medical Sciences Institute, Immune and Tumor Biology, University of Bonn, Bonn, Germany
| | - Marina A Schapfl
- Institute for Developmental Immunology, Biocenter, Medical University of Innsbruck, Innsbruck, Austria
| | - Andreas Villunger
- Institute for Developmental Immunology, Biocenter, Medical University of Innsbruck, Innsbruck, Austria.
- The Research Center for Molecular Medicine (CeMM) of the Austrian Academy of Sciences, Lazarettgasse 14, 1090, Vienna, Austria.
| |
Collapse
|
3
|
Moussa AT, Cosenza MR, Wohlfromm T, Brobeil K, Hill A, Patrizi A, Müller-Decker K, Holland-Letz T, Jauch A, Kraft B, Krämer A. STIL overexpression shortens lifespan and reduces tumor formation in mice. PLoS Genet 2024; 20:e1011460. [PMID: 39466849 PMCID: PMC11542878 DOI: 10.1371/journal.pgen.1011460] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Revised: 11/07/2024] [Accepted: 10/14/2024] [Indexed: 10/30/2024] Open
Abstract
Centrosomes are the major microtubule organizing centers of animal cells. Supernumerary centrosomes are a common feature of human tumors and associated with karyotype abnormalities and aggressive disease, but whether they are cause or consequence of cancer remains controversial. Here, we analyzed the consequences of centrosome amplification by generating transgenic mice in which centrosome numbers can be increased by overexpression of the structural centrosome protein STIL. We show that STIL overexpression induces centrosome amplification and aneuploidy, leading to senescence, apoptosis, and impaired proliferation in mouse embryonic fibroblasts, and microcephaly with increased perinatal lethality and shortened lifespan in mice. Importantly, both overall tumor formation in mice with constitutive, global STIL overexpression and chemical skin carcinogenesis in animals with inducible, skin-specific STIL overexpression were reduced, an effect that was not rescued by concomitant interference with p53 function. These results suggest that supernumerary centrosomes impair proliferation in vitro as well as in vivo, resulting in reduced lifespan and delayed spontaneous as well as carcinogen-induced tumor formation.
Collapse
Affiliation(s)
- Amira-Talaat Moussa
- Clinical Cooperation Unit Molecular Hematology/Oncology, German Cancer Research Center (DKFZ) and Department of Internal Medicine V, University of Heidelberg, Heidelberg, Germany
- Department of Pathology, Faculty of Veterinary Medicine, Zagazig University, Al Sharkia, Egypt
| | - Marco R. Cosenza
- Clinical Cooperation Unit Molecular Hematology/Oncology, German Cancer Research Center (DKFZ) and Department of Internal Medicine V, University of Heidelberg, Heidelberg, Germany
- Genome Biology Unit, European Molecular Biology Laboratory (EMBL), Heidelberg, Germany
| | - Timothy Wohlfromm
- Clinical Cooperation Unit Molecular Hematology/Oncology, German Cancer Research Center (DKFZ) and Department of Internal Medicine V, University of Heidelberg, Heidelberg, Germany
| | - Katharina Brobeil
- Clinical Cooperation Unit Molecular Hematology/Oncology, German Cancer Research Center (DKFZ) and Department of Internal Medicine V, University of Heidelberg, Heidelberg, Germany
| | - Anthony Hill
- Schaller Research Group, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Annarita Patrizi
- Schaller Research Group, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Karin Müller-Decker
- Core Facility Tumor Models, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Tim Holland-Letz
- Division of Biostatistics, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Anna Jauch
- Institute of Human Genetics, University of Heidelberg, Heidelberg, Germany
| | - Bianca Kraft
- Clinical Cooperation Unit Molecular Hematology/Oncology, German Cancer Research Center (DKFZ) and Department of Internal Medicine V, University of Heidelberg, Heidelberg, Germany
| | - Alwin Krämer
- Clinical Cooperation Unit Molecular Hematology/Oncology, German Cancer Research Center (DKFZ) and Department of Internal Medicine V, University of Heidelberg, Heidelberg, Germany
- Department of Internal Medicine V, University of Heidelberg, Heidelberg, Germany
| |
Collapse
|
4
|
Li X, Zhu H, Huang BT, Li X, Kim H, Tan H, Zhang Y, Choi I, Peng J, Xu P, Sun J, Yue Z. RAB12-LRRK2 complex suppresses primary ciliogenesis and regulates centrosome homeostasis in astrocytes. Nat Commun 2024; 15:8434. [PMID: 39343966 PMCID: PMC11439917 DOI: 10.1038/s41467-024-52723-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Accepted: 09/17/2024] [Indexed: 10/01/2024] Open
Abstract
The leucine-rich repeat kinase 2 (LRRK2) phosphorylates a subset of RAB GTPases, and their phosphorylation levels are elevated by Parkinson's disease (PD)-linked mutations of LRRK2. However, the precise function of the LRRK2-regulated RAB GTPase in the brain remains to be elucidated. Here, we identify RAB12 as a robust LRRK2 substrate in the mouse brain through phosphoproteomics profiling and solve the structure of RAB12-LRRK2 protein complex through Cryo-EM analysis. Mechanistically, RAB12 cooperates with LRRK2 to inhibit primary ciliogenesis and regulate centrosome homeostasis in astrocytes through enhancing the phosphorylation of RAB10 and recruiting RILPL1, while the functions of RAB12 require a direct interaction with LRRK2 and LRRK2 activity. Furthermore, the ciliary and centrosome defects caused by the PD-linked LRRK2-G2019S mutation are prevented by Rab12 deletion in astrocytes. Thus, our study reveals a physiological function of the RAB12-LRRK2 complex in regulating ciliogenesis and centrosome homeostasis. The RAB12-LRRK2 structure offers a guidance in the therapeutic development of PD by targeting the RAB12-LRRK2 interaction.
Collapse
Affiliation(s)
- Xingjian Li
- Department of Neurology, Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Neurology, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong Province, China
| | - Hanwen Zhu
- Department of Structural Biology, St. Jude Children's Research Hospital, Memphis, TN, USA
- Department of Biological Sciences, National University of Singapore, Singapore, Singapore
| | - Bik Tzu Huang
- Department of Neurology, Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Neuroscience, Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Pharmacological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Xianting Li
- Department of Neurology, Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Neuroscience, Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Heesoo Kim
- Department of Neurology, Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Haiyan Tan
- Center for Proteomics and Metabolomics, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Yuanxi Zhang
- Department of Neurology, Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Insup Choi
- Department of Neurology, Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Junmin Peng
- Departments of Structural Biology and Developmental Neurobiology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Pingyi Xu
- Department of Neurology, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong Province, China
| | - Ji Sun
- Department of Structural Biology, St. Jude Children's Research Hospital, Memphis, TN, USA
- Department of Biological Sciences, National University of Singapore, Singapore, Singapore
| | - Zhenyu Yue
- Department of Neurology, Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
- Department of Neuroscience, Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
- Center for Parkinson's Disease Neurobiology, Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
| |
Collapse
|
5
|
Mu Z, Zheng P, Liu S, Kang Y, Xie H. Plk4 regulates centriole duplication in the embryonic development of zebrafish. Dev Biol 2024; 517:148-156. [PMID: 39304174 DOI: 10.1016/j.ydbio.2024.09.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Revised: 08/23/2024] [Accepted: 09/16/2024] [Indexed: 09/22/2024]
Abstract
PLK4 plays a crucial role in centriole duplication, which is essential for maintaining cellular processes such as cell division, cytoskeletal stability, and cilia formation. However, the mechanisms of PLK4 remain incompletely understood, especially in the embryonic development of vertebrate species. In this study, we observed that Plk4 dysfunction led to abnormal embryonic development in zebrafish, characterized by symptoms such as dark and wrinkled skin, microphthalmia, and body axis curvature. In plk4 mutants, defects in centriole duplication led to abnormal cell division, apoptosis, and ciliogenesis defects. Moreover, overexpression of plk4 in zebrafish embryos caused excessive centrosome amplification, disrupting embryonic gastrulation through abnormal cell division and ultimately resulting in embryonic lethality. Furthermore, we identified the "cryptic" polo box (CPB) domain, consisting of two PBs (PB1 and PB2), as the critical centrosome localization domain of Plk4. Surprisingly, overexpression of these two PB domains alone was sufficient to induce embryonic lethality. Additionally, we discovered a truncated form of CPB that localizes to the centrosome without causing defects in embryonic development. Our results demonstrate that Plk4 tightly controls centriole duplication, which is essential for early embryonic development in zebrafish.
Collapse
Affiliation(s)
- Zhiyu Mu
- Institute of Evolution & Marine Biodiversity, Ocean University of China, Qingdao, 266003, China
| | - Pengfei Zheng
- Institute of Evolution & Marine Biodiversity, Ocean University of China, Qingdao, 266003, China
| | - Shuangyu Liu
- Institute of Evolution & Marine Biodiversity, Ocean University of China, Qingdao, 266003, China
| | - Yunsi Kang
- Key Laboratory of Evolution and Marine Biodiversity of the Ministry of Education, Institute of Evolution and Marine Biodiversity, Ocean University of China, Qingdao, 266003, China
| | - Haibo Xie
- Institute of Evolution & Marine Biodiversity, Ocean University of China, Qingdao, 266003, China; Key Laboratory of Evolution and Marine Biodiversity of the Ministry of Education, Institute of Evolution and Marine Biodiversity, Ocean University of China, Qingdao, 266003, China.
| |
Collapse
|
6
|
Edwards F, Fantozzi G, Simon AY, Morretton JP, Herbette A, Tijhuis AE, Wardenaar R, Foulane S, Gemble S, Spierings DC, Foijer F, Mariani O, Vincent-Salomon A, Roman-Roman S, Sastre-Garau X, Goundiam O, Basto R. Centrosome amplification primes ovarian cancer cells for apoptosis and potentiates the response to chemotherapy. PLoS Biol 2024; 22:e3002759. [PMID: 39236086 PMCID: PMC11441705 DOI: 10.1371/journal.pbio.3002759] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Revised: 09/30/2024] [Accepted: 07/17/2024] [Indexed: 09/07/2024] Open
Abstract
Centrosome amplification is a feature of cancer cells associated with chromosome instability and invasiveness. Enhancing chromosome instability and subsequent cancer cell death via centrosome unclustering and multipolar divisions is an aimed-for therapeutic approach. Here, we show that centrosome amplification potentiates responses to conventional chemotherapy in addition to its effect on multipolar divisions and chromosome instability. We perform single-cell live imaging of chemotherapy responses in epithelial ovarian cancer cell lines and observe increased cell death when centrosome amplification is induced. By correlating cell fate with mitotic behaviors, we show that enhanced cell death can occur independently of chromosome instability. We identify that cells with centrosome amplification are primed for apoptosis. We show they are dependent on the apoptotic inhibitor BCL-XL and that this is not a consequence of mitotic stresses associated with centrosome amplification. Given the multiple mechanisms that promote chemotherapy responses in cells with centrosome amplification, we assess such a relationship in an epithelial ovarian cancer patient cohort. We show that high centrosome numbers associate with improved treatment responses and longer overall survival. Our work identifies apoptotic priming as a clinically relevant consequence of centrosome amplification, expanding our understanding of this pleiotropic cancer cell feature.
Collapse
Affiliation(s)
- Frances Edwards
- Biology of centrosomes and genetic instability, Institut Curie, PSL Research University, CNRS UMR 144, Paris, France
| | - Giulia Fantozzi
- Biology of centrosomes and genetic instability, Institut Curie, PSL Research University, CNRS UMR 144, Paris, France
| | - Anthony Y. Simon
- Biology of centrosomes and genetic instability, Institut Curie, PSL Research University, CNRS UMR 144, Paris, France
| | - Jean-Philippe Morretton
- Biology of centrosomes and genetic instability, Institut Curie, PSL Research University, CNRS UMR 144, Paris, France
| | - Aurelie Herbette
- Department of Translational Research, Institut Curie, PSL University, Paris, France
| | - Andrea E. Tijhuis
- European Research Institute for the Biology of Ageing, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands
| | - Rene Wardenaar
- European Research Institute for the Biology of Ageing, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands
| | - Stacy Foulane
- Biology of centrosomes and genetic instability, Institut Curie, PSL Research University, CNRS UMR 144, Paris, France
| | - Simon Gemble
- Biology of centrosomes and genetic instability, Institut Curie, PSL Research University, CNRS UMR 144, Paris, France
| | - Diana C.J. Spierings
- European Research Institute for the Biology of Ageing, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands
| | - Floris Foijer
- European Research Institute for the Biology of Ageing, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands
| | | | | | - Sergio Roman-Roman
- Department of Translational Research, Institut Curie, PSL University, Paris, France
| | | | - Oumou Goundiam
- Department of Translational Research, Institut Curie, PSL University, Paris, France
| | - Renata Basto
- Biology of centrosomes and genetic instability, Institut Curie, PSL Research University, CNRS UMR 144, Paris, France
| |
Collapse
|
7
|
Rajam SM, Varghese PC, Shirude MB, Syed KM, Devarajan A, Natarajan K, Dutta D. Kinase activity of histone chaperone APLF maintains steady state of centrosomes in mouse embryonic stem cells. Eur J Cell Biol 2024; 103:151439. [PMID: 38968704 DOI: 10.1016/j.ejcb.2024.151439] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Revised: 06/22/2024] [Accepted: 06/25/2024] [Indexed: 07/07/2024] Open
Abstract
Our recent studies revealed the role of mouse Aprataxin PNK-like Factor (APLF) in development. Nevertheless, the comprehensive characterization of mouse APLF remains entirely unexplored. Based on domain deletion studies, here we report that mouse APLF's Acidic Domain and Fork Head Associated (FHA) domain can chaperone histones and repair DNA like the respective human orthologs. Immunofluorescence studies in mouse embryonic stem cells showed APLF co-localized with γ-tubulin within and around the centrosomes and govern the number and integrity of centrosomes via PLK4 phosphorylation. Enzymatic analysis established mouse APLF as a kinase. Docking studies identified three putative ATP binding sites within the FHA domain. Site-directed mutagenesis showed that R37 residue within the FHA domain is indispensable for the kinase activity of APLF thereby regulating the centrosome number. These findings might assist us comprehend APLF in different pathological and developmental conditions and reveal non-canonical kinase activity of proteins harbouring FHA domains that might impact multiple cellular processes.
Collapse
Affiliation(s)
- Sruthy Manuraj Rajam
- Rajiv Gandhi Centre for Biotechnology (RGCB), Regenerative Biology Program, Thycaud PO, Poojappura, Thiruvananthapuram, Kerala 695014, India; Manipal Academy of Higher Education, Manipal, Karnataka State 576104, India
| | - Pallavi Chinnu Varghese
- Rajiv Gandhi Centre for Biotechnology (RGCB), Regenerative Biology Program, Thycaud PO, Poojappura, Thiruvananthapuram, Kerala 695014, India
| | - Mayur Balkrishna Shirude
- Rajiv Gandhi Centre for Biotechnology (RGCB), Regenerative Biology Program, Thycaud PO, Poojappura, Thiruvananthapuram, Kerala 695014, India; Manipal Academy of Higher Education, Manipal, Karnataka State 576104, India
| | - Khaja Mohieddin Syed
- Rajiv Gandhi Centre for Biotechnology (RGCB), Regenerative Biology Program, Thycaud PO, Poojappura, Thiruvananthapuram, Kerala 695014, India
| | - Anjali Devarajan
- Rajiv Gandhi Centre for Biotechnology (RGCB), Regenerative Biology Program, Thycaud PO, Poojappura, Thiruvananthapuram, Kerala 695014, India
| | - Kathiresan Natarajan
- Rajiv Gandhi Centre for Biotechnology (RGCB), Transdisciplinary Biology Program, Thycaud PO, Poojappura, Thiruvananthapuram, Kerala 695014, India
| | - Debasree Dutta
- Rajiv Gandhi Centre for Biotechnology (RGCB), Regenerative Biology Program, Thycaud PO, Poojappura, Thiruvananthapuram, Kerala 695014, India.
| |
Collapse
|
8
|
Martinez A, Stemm-Wolf AJ, Sheridan RM, Taliaferro MJ, Pearson CG. The Unkempt RNA binding protein reveals a local translation program in centriole overduplication. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.07.29.605660. [PMID: 39131325 PMCID: PMC11312568 DOI: 10.1101/2024.07.29.605660] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 08/13/2024]
Abstract
Excess centrosomes cause defects in mitosis, cell-signaling, and cell migration, and therefore their assembly is tightly regulated. Plk4 controls centriole duplication at the heart of centrosome assembly, and elevation of Plk4 promotes centrosome amplification (CA), a founding event of tumorigenesis. Here, we investigate the transcriptional consequences of elevated Plk4 and find Unkempt, a gene encoding an RNA binding protein with roles in translational regulation, to be one of only two upregulated mRNAs. Unk protein localizes to centrosomes and Cep131-positive centriolar satellites and is required for Plk4-induced centriole overduplication in an RNA-binding dependent manner. Translation is enriched at centrosomes and centriolar satellites with Unk and Cep131 promoting this localized translation. A transient centrosomal downregulation of translation occurs early in Plk4-induced CA. CNOT9, an Unk interactor and component of the translational inhibitory CCR4-NOT complex, localizes to centrosomes at this time. In summary, centriolar satellites and Unk promote local translation as part of a translational program that ensures centriole duplication.
Collapse
Affiliation(s)
- Abraham Martinez
- Department of Cell and Developmental Biology, University of Colorado, Anschutz Medical Campus, Aurora, CO 80045
| | - Alexander J. Stemm-Wolf
- Department of Cell and Developmental Biology, University of Colorado, Anschutz Medical Campus, Aurora, CO 80045
| | - Ryan M. Sheridan
- RNA Bioscience Initiative (RBI), University of Colorado, Anschutz Medical Campus, Aurora CO 80045
| | - Matthew J. Taliaferro
- RNA Bioscience Initiative (RBI), University of Colorado, Anschutz Medical Campus, Aurora CO 80045
- Department of Biochemistry and Molecular Genetics, University of Colorado, Anschutz Medical Campus, Aurora, CO 80045
| | - Chad G. Pearson
- Department of Cell and Developmental Biology, University of Colorado, Anschutz Medical Campus, Aurora, CO 80045
| |
Collapse
|
9
|
Li X, Zhu H, Huang BT, Li X, Kim H, Tan H, Zhang Y, Choi I, Peng J, Xu P, Sun J, Yue Z. RAB12-LRRK2 Complex Suppresses Primary Ciliogenesis and Regulates Centrosome Homeostasis in Astrocytes. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.07.17.603999. [PMID: 39071328 PMCID: PMC11275936 DOI: 10.1101/2024.07.17.603999] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/30/2024]
Abstract
Leucine-rich repeat kinase 2 (LRRK2) phosphorylates a subset of RAB GTPases, and the phosphorylation levels are elevated by Parkinson's disease (PD)-linked mutations of LRRK2. However, the precise function of the specific RAB GTPase targeted by LRRK2 signaling in the brain remains to be elucidated. Here, we identify RAB12 as a robust LRRK2 substrate in the mouse brains through phosphoproteomics profiling and solve the structure of RAB12-LRRK2 protein complex through Cryo-EM analysis. Mechanistically, RAB12 cooperates with LRRK2 to inhibit primary ciliogenesis and regulate centrosome homeostasis in astrocytes through enhancing the phosphorylation of RAB10 and recruiting Rab interacting lysosomal protein like 1 (RILPL1), while the functions of RAB12 require a direct interaction with LRRK2 and LRRK2 kinase activity. Furthermore, the ciliary deficits and centrosome alteration caused by the PD-linked LRRK2-G2019S mutation are prevented by the deletion of Rab12 in astrocytes. Thus, our study reveals a physiological function of the RAB12-LRRK2 complex in regulating ciliogenesis and centrosome homeostasis. The RAB12-LRRK2 structure offers a guidance in the therapeutic development of PD by targeting the RAB12-LRRK2 interaction.
Collapse
Affiliation(s)
- Xingjian Li
- Department of Neurology, Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Neurology, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong Province, China
| | - Hanwen Zhu
- Department of Structural Biology, St. Jude Children’s Research Hospital, Memphis, TN, USA
| | - Bik Tzu Huang
- Department of Neurology, Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Neuroscience, Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Pharmacological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Xianting Li
- Department of Neurology, Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Neuroscience, Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Heesoo Kim
- Department of Neurology, Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Haiyan Tan
- Center for Proteomics and Metabolomics, St. Jude Children’s Research Hospital, Memphis, TN, USA
| | - Yuanxi Zhang
- Department of Neurology, Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Insup Choi
- Department of Neurology, Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Junmin Peng
- Departments of Structural Biology and Developmental Neurobiology, St. Jude Children’s Research Hospital, Memphis, TN, USA
| | - Pingyi Xu
- Department of Neurology, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong Province, China
| | - Ji Sun
- Department of Structural Biology, St. Jude Children’s Research Hospital, Memphis, TN, USA
| | - Zhenyu Yue
- Department of Neurology, Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Neuroscience, Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Center for Parkinson’s Disease Neurobiology, Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| |
Collapse
|
10
|
Yoshino Y, Ogoh H, Iichi Y, Sasaki T, Yoshida T, Ichimura S, Nakayama M, Xi W, Fujita H, Kikuchi M, Fang Z, Li X, Abe T, Futakuchi M, Nakamura Y, Watanabe T, Chiba N. Knockout of Brca1-interacting factor Ola1 in female mice induces tumors with estrogen suppressible centrosome amplification. Biochim Biophys Acta Mol Basis Dis 2024; 1870:167138. [PMID: 38537683 DOI: 10.1016/j.bbadis.2024.167138] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Revised: 03/06/2024] [Accepted: 03/18/2024] [Indexed: 04/08/2024]
Abstract
Obg-like ATPase 1 (OLA1) is a binding protein of Breast cancer gene 1 (BRCA1), germline pathogenic variants of which cause hereditary breast cancer. Cancer-associated variants of BRCA1 and OLA1 are deficient in the regulation of centrosome number. Although OLA1 might function as a tumor suppressor, the relevance of OLA1 deficiency to carcinogenesis is unclear. Here, we generated Ola1 knockout mice. Aged female Ola1+/- mice developed lymphoproliferative diseases, including malignant lymphoma. The lymphoma tissues had low expression of Ola1 and an increase in the number of cells with centrosome amplification. Interestingly, the proportion of cells with centrosome amplification in normal spleen from Ola1+/- mice was higher in male mice than in female mice. In human cells, estrogen stimulation attenuated centrosome amplification induced by OLA1 knockdown. Previous reports indicate that prominent centrosome amplification causes cell death but does not promote tumorigenesis. Thus, in the current study, the mild centrosome amplification observed under estrogen stimulation in Ola1+/- female mice is likely more tumorigenic than the prominent centrosome amplification observed in Ola1+/- male mice. Our findings provide a possible sex-dependent mechanism of the tumor suppressor function of OLA1.
Collapse
Affiliation(s)
- Yuki Yoshino
- Department of Cancer Biology, Institute of Aging, Development, and Cancer, Tohoku University, 4-1 Seiryomachi, Aoba-ku, Sendai 980-8575, Japan; Laboratory of Cancer Biology, Graduate School of Life Sciences, Tohoku University, 4-1 Seiryomachi Aoba-ku, Sendai 980-8575, Japan; Department of Cancer Biology, Tohoku University Graduate School of Medicine, 4-1 Seiryomachi Aoba-ku, Sendai 980-8575, Japan
| | - Honami Ogoh
- Department of Biological Science, Graduate School of Humanities and Sciences, Nara Women's University, Kitauoya-Nishimachi, Nara, 630-8506, Japan
| | - Yudai Iichi
- Department of Cancer Biology, Institute of Aging, Development, and Cancer, Tohoku University, 4-1 Seiryomachi, Aoba-ku, Sendai 980-8575, Japan; Laboratory of Cancer Biology, Graduate School of Life Sciences, Tohoku University, 4-1 Seiryomachi Aoba-ku, Sendai 980-8575, Japan
| | - Tomohiro Sasaki
- Department of Cancer Biology, Institute of Aging, Development, and Cancer, Tohoku University, 4-1 Seiryomachi, Aoba-ku, Sendai 980-8575, Japan; Laboratory of Cancer Biology, Graduate School of Life Sciences, Tohoku University, 4-1 Seiryomachi Aoba-ku, Sendai 980-8575, Japan
| | - Takahiro Yoshida
- Department of Cancer Biology, Institute of Aging, Development, and Cancer, Tohoku University, 4-1 Seiryomachi, Aoba-ku, Sendai 980-8575, Japan; Laboratory of Cancer Biology, Graduate School of Life Sciences, Tohoku University, 4-1 Seiryomachi Aoba-ku, Sendai 980-8575, Japan
| | - Shiori Ichimura
- Department of Cancer Biology, Institute of Aging, Development, and Cancer, Tohoku University, 4-1 Seiryomachi, Aoba-ku, Sendai 980-8575, Japan; Laboratory of Cancer Biology, Graduate School of Life Sciences, Tohoku University, 4-1 Seiryomachi Aoba-ku, Sendai 980-8575, Japan
| | - Masahiro Nakayama
- Department of Molecular Immunology, Institute of Development, Aging and Cancer, Tohoku University, 4-1 Seiryomachi Aoba-ku, Sendai 980-8575, Japan; Laboratory of Molecular Immunology, Graduate School of Life Sciences, Tohoku University, 4-1 Seiryomachi Aoba-ku, Sendai 980-8575, Japan
| | - Wu Xi
- Department of Cancer Biology, Institute of Aging, Development, and Cancer, Tohoku University, 4-1 Seiryomachi, Aoba-ku, Sendai 980-8575, Japan; Laboratory of Cancer Biology, Graduate School of Life Sciences, Tohoku University, 4-1 Seiryomachi Aoba-ku, Sendai 980-8575, Japan
| | - Hiroki Fujita
- Department of Cancer Biology, Institute of Aging, Development, and Cancer, Tohoku University, 4-1 Seiryomachi, Aoba-ku, Sendai 980-8575, Japan; Laboratory of Cancer Biology, Graduate School of Life Sciences, Tohoku University, 4-1 Seiryomachi Aoba-ku, Sendai 980-8575, Japan
| | - Megumi Kikuchi
- Department of Cancer Biology, Institute of Aging, Development, and Cancer, Tohoku University, 4-1 Seiryomachi, Aoba-ku, Sendai 980-8575, Japan; Laboratory of Cancer Biology, Graduate School of Life Sciences, Tohoku University, 4-1 Seiryomachi Aoba-ku, Sendai 980-8575, Japan
| | - Zhenzhou Fang
- Department of Cancer Biology, Institute of Aging, Development, and Cancer, Tohoku University, 4-1 Seiryomachi, Aoba-ku, Sendai 980-8575, Japan; Department of Cancer Biology, Tohoku University Graduate School of Medicine, 4-1 Seiryomachi Aoba-ku, Sendai 980-8575, Japan
| | - Xingming Li
- Department of Cancer Biology, Institute of Aging, Development, and Cancer, Tohoku University, 4-1 Seiryomachi, Aoba-ku, Sendai 980-8575, Japan; Laboratory of Cancer Biology, Graduate School of Life Sciences, Tohoku University, 4-1 Seiryomachi Aoba-ku, Sendai 980-8575, Japan
| | - Takaya Abe
- Laboratory for Animal Resources and Genetic Engineering, RIKEN Center for Biosystems Dynamics Research, 2-2-3 Minatojima-minamimachi, Chuo-ku, Kobe, Hyogo 650-0047, Japan
| | - Mitsuru Futakuchi
- Department of Pathology, Yamagata University Faculty of Medicine, 2-2-2 Iida-Nishi, Yamagata 990-9585, Japan
| | - Yasuhiro Nakamura
- Division of Pathology, Faculty of Medicine, Tohoku Medical and Pharmaceutical University, 1-15-1 Fukumuro, Miyagino-ku, Sendai 983-8536, Japan
| | - Toshio Watanabe
- Department of Biological Science, Graduate School of Humanities and Sciences, Nara Women's University, Kitauoya-Nishimachi, Nara, 630-8506, Japan
| | - Natsuko Chiba
- Department of Cancer Biology, Institute of Aging, Development, and Cancer, Tohoku University, 4-1 Seiryomachi, Aoba-ku, Sendai 980-8575, Japan; Laboratory of Cancer Biology, Graduate School of Life Sciences, Tohoku University, 4-1 Seiryomachi Aoba-ku, Sendai 980-8575, Japan; Department of Cancer Biology, Tohoku University Graduate School of Medicine, 4-1 Seiryomachi Aoba-ku, Sendai 980-8575, Japan.
| |
Collapse
|
11
|
Braun VZ, Karbon G, Schuler F, Schapfl MA, Weiss JG, Petermann PY, Spierings DC, Tijhuis AE, Foijer F, Labi V, Villunger A. Extra centrosomes delay DNA damage-driven tumorigenesis. SCIENCE ADVANCES 2024; 10:eadk0564. [PMID: 38552015 PMCID: PMC10980279 DOI: 10.1126/sciadv.adk0564] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Accepted: 02/23/2024] [Indexed: 04/01/2024]
Abstract
Deregulated centrosome numbers are frequently found in human cancer and can promote malignancies in model organisms. Current research aims to clarify if extra centrosomes are cause or consequence of malignant transformation, and if their biogenesis can be targeted for therapy. Here, we show that oncogene-driven blood cancer is inert to genetic manipulation of centrosome numbers, whereas the formation of DNA damage-induced malignancies is delayed. We provide first evidence that this unexpected phenomenon is connected to extra centrosomes eliciting a pro-death signal engaging the apoptotic machinery. Apoptosis induction requires the PIDDosome multi-protein complex, as it can be abrogated by loss of any of its three components, Caspase-2, Raidd/Cradd, or Pidd1. BCL2 overexpression equally blocks cell death, documenting for the first time induction of mitochondrial apoptosis downstream of extra centrosomes. Our findings demonstrate context-dependent effects of centrosome amplification during transformation and ask to adjust current belief that extra centrosomes are intrinsically pro-tumorigenic.
Collapse
Affiliation(s)
- Vincent Z. Braun
- Institute for Developmental Immunology, Biocenter, Medical University of Innsbruck, Innsbruck, Austria
| | - Gerlinde Karbon
- Institute for Developmental Immunology, Biocenter, Medical University of Innsbruck, Innsbruck, Austria
| | - Fabian Schuler
- Institute for Developmental Immunology, Biocenter, Medical University of Innsbruck, Innsbruck, Austria
| | - Marina A. Schapfl
- Institute for Developmental Immunology, Biocenter, Medical University of Innsbruck, Innsbruck, Austria
| | - Johannes G. Weiss
- Institute for Developmental Immunology, Biocenter, Medical University of Innsbruck, Innsbruck, Austria
- Department of Paediatrics I, Medical University of Innsbruck, Innsbruck, Austria
| | - Paul Y. Petermann
- Institute for Developmental Immunology, Biocenter, Medical University of Innsbruck, Innsbruck, Austria
| | - Diana C.J. Spierings
- European Research Institute for the Biology of Ageing, University of Groningen, University Medical Center Groningen, Groningen, Netherlands
| | - Andrea E. Tijhuis
- European Research Institute for the Biology of Ageing, University of Groningen, University Medical Center Groningen, Groningen, Netherlands
| | - Floris Foijer
- European Research Institute for the Biology of Ageing, University of Groningen, University Medical Center Groningen, Groningen, Netherlands
| | - Verena Labi
- Institute for Developmental Immunology, Biocenter, Medical University of Innsbruck, Innsbruck, Austria
| | - Andreas Villunger
- Institute for Developmental Immunology, Biocenter, Medical University of Innsbruck, Innsbruck, Austria
- The CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria
| |
Collapse
|
12
|
Hosea R, Hillary S, Naqvi S, Wu S, Kasim V. The two sides of chromosomal instability: drivers and brakes in cancer. Signal Transduct Target Ther 2024; 9:75. [PMID: 38553459 PMCID: PMC10980778 DOI: 10.1038/s41392-024-01767-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Revised: 01/18/2024] [Accepted: 02/06/2024] [Indexed: 04/02/2024] Open
Abstract
Chromosomal instability (CIN) is a hallmark of cancer and is associated with tumor cell malignancy. CIN triggers a chain reaction in cells leading to chromosomal abnormalities, including deviations from the normal chromosome number or structural changes in chromosomes. CIN arises from errors in DNA replication and chromosome segregation during cell division, leading to the formation of cells with abnormal number and/or structure of chromosomes. Errors in DNA replication result from abnormal replication licensing as well as replication stress, such as double-strand breaks and stalled replication forks; meanwhile, errors in chromosome segregation stem from defects in chromosome segregation machinery, including centrosome amplification, erroneous microtubule-kinetochore attachments, spindle assembly checkpoint, or defective sister chromatids cohesion. In normal cells, CIN is deleterious and is associated with DNA damage, proteotoxic stress, metabolic alteration, cell cycle arrest, and senescence. Paradoxically, despite these negative consequences, CIN is one of the hallmarks of cancer found in over 90% of solid tumors and in blood cancers. Furthermore, CIN could endow tumors with enhanced adaptation capabilities due to increased intratumor heterogeneity, thereby facilitating adaptive resistance to therapies; however, excessive CIN could induce tumor cells death, leading to the "just-right" model for CIN in tumors. Elucidating the complex nature of CIN is crucial for understanding the dynamics of tumorigenesis and for developing effective anti-tumor treatments. This review provides an overview of causes and consequences of CIN, as well as the paradox of CIN, a phenomenon that continues to perplex researchers. Finally, this review explores the potential of CIN-based anti-tumor therapy.
Collapse
Affiliation(s)
- Rendy Hosea
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing, 400045, China
- The 111 Project Laboratory of Biomechanics and Tissue Repair, College of Bioengineering, Chongqing University, Chongqing, 400044, China
| | - Sharon Hillary
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing, 400045, China
- The 111 Project Laboratory of Biomechanics and Tissue Repair, College of Bioengineering, Chongqing University, Chongqing, 400044, China
| | - Sumera Naqvi
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing, 400045, China
- The 111 Project Laboratory of Biomechanics and Tissue Repair, College of Bioengineering, Chongqing University, Chongqing, 400044, China
| | - Shourong Wu
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing, 400045, China.
- The 111 Project Laboratory of Biomechanics and Tissue Repair, College of Bioengineering, Chongqing University, Chongqing, 400044, China.
- Chongqing Key Laboratory of Translational Research for Cancer Metastasis and Individualized Treatment, Chongqing University Cancer Hospital, Chongqing University, Chongqing, 400030, China.
| | - Vivi Kasim
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing, 400045, China.
- The 111 Project Laboratory of Biomechanics and Tissue Repair, College of Bioengineering, Chongqing University, Chongqing, 400044, China.
- Chongqing Key Laboratory of Translational Research for Cancer Metastasis and Individualized Treatment, Chongqing University Cancer Hospital, Chongqing University, Chongqing, 400030, China.
| |
Collapse
|
13
|
Curinha A, Huang Z, Anglen T, Strong MA, Gliech CR, Jewett CE, Friskes A, Holland AJ. Centriole structural integrity defects are a crucial feature of Hydrolethalus Syndrome. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.03.06.583733. [PMID: 38496445 PMCID: PMC10942441 DOI: 10.1101/2024.03.06.583733] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/19/2024]
Abstract
Hydrolethalus Syndrome (HLS) is a lethal, autosomal recessive ciliopathy caused by the mutation of the conserved centriole protein HYLS1. However, how HYLS1 facilitates the centriole-based templating of cilia is poorly understood. Here, we show that mice harboring the HYLS1 disease mutation die shortly after birth and exhibit developmental defects that recapitulate several manifestations of the human disease. These phenotypes arise from tissue-specific defects in cilia assembly and function caused by a loss of centriole integrity. We show that HYLS1 is recruited to the centriole by CEP120 and functions to recruit centriole inner scaffold proteins that stabilize the centriolar microtubule wall. The HLS mutation disrupts the interaction of HYLS1 with CEP120 leading to HYLS1 displacement and degeneration of the centriole distal end. We propose that tissue-specific defects in centriole integrity caused by the HYLS1 mutation prevent ciliogenesis and drive HLS phenotypes.
Collapse
Affiliation(s)
- Ana Curinha
- Department of Molecular Biology and Genetics, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Zhaoyu Huang
- Department of Molecular Biology and Genetics, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Taylor Anglen
- Department of Biomedical Engineering, Duke University, Durham, NC, USA
| | - Margaret A Strong
- Department of Molecular Biology and Genetics, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Colin R Gliech
- Department of Molecular Biology and Genetics, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Cayla E Jewett
- Department of Molecular Biology and Genetics, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Anoek Friskes
- Division of Cell Biology, Oncode Institute, The Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Andrew J Holland
- Department of Molecular Biology and Genetics, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| |
Collapse
|
14
|
Ozcan SC, Kalkan BM, Cicek E, Canbaz AA, Acilan C. Prolonged overexpression of PLK4 leads to formation of centriole rosette clusters that are connected via canonical centrosome linker proteins. Sci Rep 2024; 14:4370. [PMID: 38388511 PMCID: PMC10883960 DOI: 10.1038/s41598-024-53985-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Accepted: 02/07/2024] [Indexed: 02/24/2024] Open
Abstract
Centrosome amplification is a hallmark of cancer and PLK4 is one of the responsible factors for cancer associated centrosome amplification. Increased PLK4 levels was also shown to contribute to generation of cells with centriole amplification in mammalian tissues as olfactory neuron progenitor cells. PLK4 overexpression generates centriole rosette (CR) structures which harbor more than two centrioles each. Long term PLK4 overexpression results with centrosome amplification, but the maturation of amplified centrioles in CRs and linking of PLK4 induced amplified centrosomes has not yet been investigated in detail. Here, we show evidence for generation of large clustered centrosomes which have more than 2 centriole rosettes and define these structures as centriole rosette clusters (CRCs) in cells that have high PLK4 levels for 2 consecutive cell cycles. In addition, we show that PLK4 induced CRs follow normal centrosomal maturation processes and generate CRC structures that are inter-connected with canonical centrosomal linker proteins as C-Nap1, Rootletin and Cep68 in the second cell cycle after PLK4 induction. Increased PLK4 levels in cells with C-Nap1 and Rootletin knock-out resulted with distanced CRs and CRCs in interphase, while Nek2 knock-out inhibited separation of CRCs in prometaphase, providing functional evidence for the binding of CRC structures with centrosomal linker proteins. Taken together, these results suggest a cell cycle dependent model for PLK4 induced centrosome amplification which occurs in 2 consecutive cell cycles: (i) CR state in the first cell cycle, and (ii) CRC state in the second cell cycle.
Collapse
Affiliation(s)
- Selahattin Can Ozcan
- Koç University Research Center for Translational Medicine (KUTTAM), Sariyer, Istanbul, Turkey
| | - Batuhan Mert Kalkan
- Koç University Research Center for Translational Medicine (KUTTAM), Sariyer, Istanbul, Turkey
| | - Enes Cicek
- Graduate School of Health Sciences, Koç University, Sariyer, Istanbul, Turkey
| | | | - Ceyda Acilan
- Koç University Research Center for Translational Medicine (KUTTAM), Sariyer, Istanbul, Turkey.
- School of Medicine, Koç University, Sariyer, Istanbul, Turkey.
| |
Collapse
|
15
|
Lei Q, Yu Q, Yang N, Xiao Z, Song C, Zhang R, Yang S, Liu Z, Deng H. Therapeutic potential of targeting polo-like kinase 4. Eur J Med Chem 2024; 265:116115. [PMID: 38199166 DOI: 10.1016/j.ejmech.2023.116115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Revised: 12/21/2023] [Accepted: 12/30/2023] [Indexed: 01/12/2024]
Abstract
Polo-like kinase 4 (PLK4), a highly conserved serine/threonine kinase, masterfully regulates centriole duplication in a spatiotemporal manner to ensure the fidelity of centrosome duplication and proper mitosis. Abnormal expression of PLK4 contributes to genomic instability and associates with a poor prognosis in cancer. Inhibition of PLK4 is demonstrated to exhibit significant efficacy against various types of human cancers, further highlighting its potential as a promising therapeutic target for cancer treatment. As such, numerous small-molecule inhibitors with distinct chemical scaffolds targeting PLK4 have been extensively investigated for the treatment of different human cancers, with several undergoing clinical evaluation (e.g., CFI-400945). Here, we review the structure, distribution, and biological functions of PLK4, encapsulate its intricate regulatory mechanisms of expression, and highlighting its multifaceted roles in cancer development and metastasis. Moreover, the recent advancements of PLK4 inhibitors in patent or literature are summarized, and their therapeutic potential as monotherapies or combination therapies with other anticancer agents are also discussed.
Collapse
Affiliation(s)
- Qian Lei
- Department of Respiratory and Critical Care Medicine, West China Hospital and Targeted Tracer Research and Development Laboratory, Precision Medicine Key Laboratory of Sichuan Province & Precision Medicine Center, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, China
| | - Quanwei Yu
- Department of Respiratory and Critical Care Medicine, West China Hospital and Targeted Tracer Research and Development Laboratory, Precision Medicine Key Laboratory of Sichuan Province & Precision Medicine Center, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, China
| | - Na Yang
- Laboratory of Clinical Pharmacy and Adverse Drug Reaction, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, China
| | - Zhaolin Xiao
- Department of Respiratory and Critical Care Medicine, West China Hospital and Targeted Tracer Research and Development Laboratory, Precision Medicine Key Laboratory of Sichuan Province & Precision Medicine Center, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, China
| | - Chao Song
- Department of Respiratory and Critical Care Medicine, West China Hospital and Targeted Tracer Research and Development Laboratory, Precision Medicine Key Laboratory of Sichuan Province & Precision Medicine Center, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, China
| | - Rui Zhang
- Department of Pharmacy, Guizhou Provincial People's Hospital, Guizhou, Guiyang, 550002, China
| | - Shuxin Yang
- Key Laboratory of Quantitative Synthetic Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China
| | - Zhihao Liu
- Department of Emergency Medicine and Laboratory of Emergency Medicine, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, China.
| | - Hui Deng
- Department of Respiratory and Critical Care Medicine, West China Hospital and Targeted Tracer Research and Development Laboratory, Precision Medicine Key Laboratory of Sichuan Province & Precision Medicine Center, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, China.
| |
Collapse
|
16
|
Han YW, Xu SX, Zhang J, Li YF, Xu P, Lee SC, Zhao JZ. Cadmium promotes the binding and centrosomal translocation of CCDC85C and PLK4 via ROS-GCLM pathway to trigger centrosome amplification in colon cancer cells. Toxicol Lett 2024; 392:84-93. [PMID: 38185225 DOI: 10.1016/j.toxlet.2024.01.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Revised: 11/27/2023] [Accepted: 01/03/2024] [Indexed: 01/09/2024]
Abstract
Cadmium (Cd) is a prevalent heavy metal contaminant that can cause centrosome amplification (CA) and cancer. Since CA can initiate tumorigenesis, it is plausible that cadmium initiates tumorigenesis via CA. The present study investigated the signaling pathways underlying CA by Cd. Our findings confirmed that sub-toxic concentrations of Cd could induce CA in the HCT116 colon cancer cells, and revealed that reactive oxygen species (ROS), GCLM, CCDC85C and PLK4 were the signaling molecules that formed a pathway of ROS-GCLM-CCDC85C-PLK4. Cd not only increased the protein levels of CCDC85C and PLK4, but also promoted their distribution to the centrosomes. Molecular docking analysis revealed that CCDC85C and PLK4 had the binding potential. Indeed, antibodies against CCDC85C and PLK4 were able to pull down PLK4 and CCDC85C, respectively. Knockdown of CCDC85C decreased the Cd-promoted centrosomal distribution of PLK4. Similarly, knockdown of PLK4 reduced the centrosomal distribution of CCDC85C. Our results suggest that Cd activates ROS-GCLM pathway that triggers the expression of and binding between CCDC85C and PLK4, and promotes the translocation of CCDC85C-PLK4 complex to the centrosomes, which eventually leads to CA.
Collapse
Affiliation(s)
- Ya Wen Han
- Institute of Biomedical Sciences, Jiangsu Normal University, Xuzhou, Jiangsu, PR China; School of Life Sciences, Jiangsu Normal University, Xuzhou, Jiangsu, PR China
| | - Si Xian Xu
- Institute of Biomedical Sciences, Jiangsu Normal University, Xuzhou, Jiangsu, PR China; School of Life Sciences, Jiangsu Normal University, Xuzhou, Jiangsu, PR China
| | - Jun Zhang
- Institute of Biomedical Sciences, Jiangsu Normal University, Xuzhou, Jiangsu, PR China; School of Life Sciences, Jiangsu Normal University, Xuzhou, Jiangsu, PR China
| | - Yuan Fei Li
- Department of Oncology, the First Hospital, Shanxi Medical University, Taiyuan, Shanxi, PR China
| | - Peng Xu
- School of Life Science, Shanxi University, Taiyuan, Shanxi 030006, PR China
| | - Shao Chin Lee
- Institute of Biomedical Sciences, Jiangsu Normal University, Xuzhou, Jiangsu, PR China; School of Life Sciences, Jiangsu Normal University, Xuzhou, Jiangsu, PR China.
| | - Ji Zhong Zhao
- Institute of Biomedical Sciences, Jiangsu Normal University, Xuzhou, Jiangsu, PR China; School of Life Sciences, Jiangsu Normal University, Xuzhou, Jiangsu, PR China.
| |
Collapse
|
17
|
Scott P, Curinha A, Gliech C, Holland AJ. PLK4 self-phosphorylation drives the selection of a single site for procentriole assembly. J Cell Biol 2023; 222:e202301069. [PMID: 37773039 PMCID: PMC10541313 DOI: 10.1083/jcb.202301069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Revised: 08/02/2023] [Accepted: 09/12/2023] [Indexed: 09/30/2023] Open
Abstract
Polo-like kinase 4 (PLK4) is a key regulator of centriole biogenesis, but how PLK4 selects a single site for procentriole assembly remains unclear. Using ultrastructure expansion microscopy, we show that PLK4 localizes to discrete sites along the wall of parent centrioles. While there is variation in the number of sites PLK4 occupies on the parent centriole, most PLK4 localize at a dominant site that directs procentriole assembly. Inhibition of PLK4 activity leads to stable binding of PLK4 to the centriole and increases occupancy to a maximum of nine sites. We show that self-phosphorylation of an unstructured linker promotes the release of active PLK4 from the centriole to drive the selection of a single site for procentriole assembly. Preventing linker phosphorylation blocks PLK4 turnover, leading to supernumerary sites of PLK4 localization and centriole amplification. Therefore, self-phosphorylation is a major driver of the spatial patterning of PLK4 at the centriole and plays a critical role in selecting a single centriole duplication site.
Collapse
Affiliation(s)
- Phillip Scott
- Department of Molecular Biology and Genetics, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Ana Curinha
- Department of Molecular Biology and Genetics, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Colin Gliech
- Department of Molecular Biology and Genetics, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Andrew J. Holland
- Department of Molecular Biology and Genetics, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| |
Collapse
|
18
|
Prakash A, Paunikar S, Webber M, McDermott E, Vellanki SH, Thompson K, Dockery P, Jahns H, Brown JAL, Hopkins AM, Bourke E. Centrosome amplification promotes cell invasion via cell-cell contact disruption and Rap-1 activation. J Cell Sci 2023; 136:jcs261150. [PMID: 37772773 PMCID: PMC10629695 DOI: 10.1242/jcs.261150] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Accepted: 09/19/2023] [Indexed: 09/30/2023] Open
Abstract
Centrosome amplification (CA) is a prominent feature of human cancers linked to tumorigenesis in vivo. Here, we report mechanistic contributions of CA induction alone to tumour architecture and extracellular matrix (ECM) remodelling. CA induction in non-tumorigenic breast cells MCF10A causes cell migration and invasion, with underlying disruption of epithelial cell-cell junction integrity and dysregulation of expression and subcellular localisation of cell junction proteins. CA also elevates expression of integrin β-3, its binding partner fibronectin-1 and matrix metalloproteinase enzymes, promoting cell-ECM attachment, ECM degradation, and a migratory and invasive cell phenotype. Using a chicken embryo xenograft model for in vivo validation, we show that CA-induced (+CA) MCF10A cells invade into the chick mesodermal layer, with inflammatory cell infiltration and marked focal reactions between chorioallantoic membrane and cell graft. We also demonstrate a key role of small GTPase Rap-1 signalling through inhibition using GGTI-298, which blocked various CA-induced effects. These insights reveal that in normal cells, CA induction alone (without additional oncogenic alterations) is sufficient to confer early pro-tumorigenic changes within days, acting through Rap-1-dependent signalling to alter cell-cell contacts and ECM disruption.
Collapse
Affiliation(s)
- Anu Prakash
- Lambe Institute for Translational Research, Discipline of Pathology, Centre for Chromosome Biology, University of Galway, Galway H91 V4AY, Ireland
| | - Shishir Paunikar
- Lambe Institute for Translational Research, Discipline of Pathology, Centre for Chromosome Biology, University of Galway, Galway H91 V4AY, Ireland
| | - Mark Webber
- Lambe Institute for Translational Research, Discipline of Pathology, Centre for Chromosome Biology, University of Galway, Galway H91 V4AY, Ireland
| | - Emma McDermott
- Centre for Microscopy and Imaging, Discipline of Anatomy, School of Medicine, University of Galway, Galway H91 W5P7, Ireland
| | - Sri H. Vellanki
- Department of Surgery, Beaumont Hospital, Royal College of Surgeons in Ireland, Dublin D09 DK19, Ireland
| | - Kerry Thompson
- Centre for Microscopy and Imaging, Discipline of Anatomy, School of Medicine, University of Galway, Galway H91 W5P7, Ireland
| | - Peter Dockery
- Centre for Microscopy and Imaging, Discipline of Anatomy, School of Medicine, University of Galway, Galway H91 W5P7, Ireland
| | - Hanne Jahns
- Pathobiology Section, School of Veterinary Medicine, University College Dublin, Dublin, Ireland
| | - James A. L. Brown
- Department of Biological Sciences, University of Limerick, Limerick V94T9PX, Ireland
- Limerick Digital Cancer Research Centre (LDCRC) and Health Research Institute, University of Limerick, Limerick V94T9PX, Ireland
| | - Ann M. Hopkins
- Department of Surgery, Beaumont Hospital, Royal College of Surgeons in Ireland, Dublin D09 DK19, Ireland
| | - Emer Bourke
- Lambe Institute for Translational Research, Discipline of Pathology, Centre for Chromosome Biology, University of Galway, Galway H91 V4AY, Ireland
| |
Collapse
|
19
|
Garcia‐Carpio I, Braun VZ, Weiler ES, Leone M, Niñerola S, Barco A, Fava LL, Villunger A. Extra centrosomes induce PIDD1-mediated inflammation and immunosurveillance. EMBO J 2023; 42:e113510. [PMID: 37530438 PMCID: PMC10577638 DOI: 10.15252/embj.2023113510] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Revised: 07/01/2023] [Accepted: 07/18/2023] [Indexed: 08/03/2023] Open
Abstract
Unscheduled increases in ploidy underlie defects in tissue function, premature aging, and malignancy. A concomitant event to polyploidization is the amplification of centrosomes, the main microtubule organization centers in animal cells. Supernumerary centrosomes are frequent in tumors, correlating with higher aggressiveness and poor prognosis. However, extra centrosomes initially also exert an onco-protective effect by activating p53-induced cell cycle arrest. If additional signaling events initiated by centrosomes help prevent pathology is unknown. Here, we report that extra centrosomes, arising during unscheduled polyploidization or aberrant centriole biogenesis, induce activation of NF-κB signaling and sterile inflammation. This signaling requires the NEMO-PIDDosome, a multi-protein complex composed of PIDD1, RIPK1, and NEMO/IKKγ. Remarkably, the presence of supernumerary centrosomes suffices to induce a paracrine chemokine and cytokine profile, able to polarize macrophages into a pro-inflammatory phenotype. Furthermore, extra centrosomes increase the immunogenicity of cancer cells and render them more susceptible to NK-cell attack. Hence, the PIDDosome acts as a dual effector, able to engage not only the p53 network for cell cycle control but also NF-κB signaling to instruct innate immunity.
Collapse
Affiliation(s)
- Irmina Garcia‐Carpio
- Institute for Developmental Immunology, BiocenterMedical University of InnsbruckInnsbruckAustria
| | - Vincent Z Braun
- Institute for Developmental Immunology, BiocenterMedical University of InnsbruckInnsbruckAustria
| | - Elias S Weiler
- Institute for Developmental Immunology, BiocenterMedical University of InnsbruckInnsbruckAustria
| | - Marina Leone
- Institute for Developmental Immunology, BiocenterMedical University of InnsbruckInnsbruckAustria
| | - Sergio Niñerola
- Instituto de Neurociencias, Consejo Superior de Investigaciones CientíficasUniversidad Miguel HernándezAlicanteSpain
| | - Angel Barco
- Instituto de Neurociencias, Consejo Superior de Investigaciones CientíficasUniversidad Miguel HernándezAlicanteSpain
| | - Luca L Fava
- Armenise‐Harvard Laboratory of Cell Division, Department of Cellular, Computational and Integrative Biology – CIBIOUniversity of TrentoTrentoItaly
| | - Andreas Villunger
- Institute for Developmental Immunology, BiocenterMedical University of InnsbruckInnsbruckAustria
- CeMM Research Center for Molecular Medicine of the Austrian Academy of SciencesViennaAustria
| |
Collapse
|
20
|
Bloomfield M, Cimini D. The fate of extra centrosomes in newly formed tetraploid cells: should I stay, or should I go? Front Cell Dev Biol 2023; 11:1210983. [PMID: 37576603 PMCID: PMC10413984 DOI: 10.3389/fcell.2023.1210983] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2023] [Accepted: 07/17/2023] [Indexed: 08/15/2023] Open
Abstract
An increase in centrosome number is commonly observed in cancer cells, but the role centrosome amplification plays along with how and when it occurs during cancer development is unclear. One mechanism for generating cancer cells with extra centrosomes is whole genome doubling (WGD), an event that occurs in over 30% of human cancers and is associated with poor survival. Newly formed tetraploid cells can acquire extra centrosomes during WGD, and a generally accepted model proposes that centrosome amplification in tetraploid cells promotes cancer progression by generating aneuploidy and chromosomal instability. Recent findings, however, indicate that newly formed tetraploid cells in vitro lose their extra centrosomes to prevent multipolar cell divisions. Rather than persistent centrosome amplification, this evidence raises the possibility that it may be advantageous for tetraploid cells to initially restore centrosome number homeostasis and for a fraction of the population to reacquire additional centrosomes in the later stages of cancer evolution. In this review, we explore the different evolutionary paths available to newly formed tetraploid cells, their effects on centrosome and chromosome number distribution in daughter cells, and their probabilities of long-term survival. We then discuss the mechanisms that may alter centrosome and chromosome numbers in tetraploid cells and their relevance to cancer progression following WGD.
Collapse
Affiliation(s)
- Mathew Bloomfield
- Department of Biological Sciences and Fralin Life Sciences Institute, Virginia Tech, Blacksburg, VA, United States
| | - Daniela Cimini
- Department of Biological Sciences and Fralin Life Sciences Institute, Virginia Tech, Blacksburg, VA, United States
| |
Collapse
|
21
|
Hassan A, Bagu ET, Patten SA, Molidperee S, Parent S, Barchi S, Villemure I, Tremblay A, Moldovan F. Differential Regulation of POC5 by ERα in Human Normal and Scoliotic Cells. Genes (Basel) 2023; 14:genes14051111. [PMID: 37239471 DOI: 10.3390/genes14051111] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Revised: 05/13/2023] [Accepted: 05/17/2023] [Indexed: 05/28/2023] Open
Abstract
Adolescent idiopathic scoliosis (AIS) is a complex three-dimensional spinal deformity. The incidence of AIS in females is 8.4 times higher than in males. Several hypotheses on the role of estrogen have been postulated for the progression of AIS. Recently, Centriolar protein gene POC5 (POC5) was identified as a causative gene of AIS. POC5 is a centriolar protein that is important for cell cycle progression and centriole elongation. However, the hormonal regulation of POC5 remains to be determined. Here, we identify POC5 as an estrogen-responsive gene under the regulation of estrogen receptor ERα in normal osteoblasts (NOBs) and other ERα-positive cells. Using promoter activity, gene, and protein expression assays, we found that the POC5 gene was upregulated by the treatment of osteoblasts with estradiol (E2) through direct genomic signaling. We observed different effects of E2 in NOBs and mutant POC5A429V AIS osteoblasts. Using promoter assays, we identified an estrogen response element (ERE) in the proximal promoter of POC5, which conferred estrogen responsiveness through ERα. The recruitment of ERα to the ERE of the POC5 promoter was also potentiated by estrogen. Collectively, these findings suggest that estrogen is an etiological factor in scoliosis through the deregulation of POC5.
Collapse
Affiliation(s)
- Amani Hassan
- Research Center CHU Sainte-Justine, 3175 Chemin de la Cote-Sainte-Catherine, Montréal, QC H3T 1C5, Canada
| | - Edward T Bagu
- Department of Basic Biomedical Sciences, Sanford Medical School, University of South Dakota, Vermillion, SD 57069, USA
| | - Shunmoogum A Patten
- INRS Center Armand-Frappier Santé Biotechnologie, 531 Boul des Prairies, Laval, QC H7V 1B7, Canada
| | - Sirinart Molidperee
- Research Center CHU Sainte-Justine, 3175 Chemin de la Cote-Sainte-Catherine, Montréal, QC H3T 1C5, Canada
| | - Stefan Parent
- Research Center CHU Sainte-Justine, 3175 Chemin de la Cote-Sainte-Catherine, Montréal, QC H3T 1C5, Canada
| | - Soraya Barchi
- Research Center CHU Sainte-Justine, 3175 Chemin de la Cote-Sainte-Catherine, Montréal, QC H3T 1C5, Canada
| | - Isabelle Villemure
- Department of Mechanical Engineering, Polytechnique Montréal, 2500 Chemin de Polytechnique, Montréal, QC H3T 1J4, Canada
| | - André Tremblay
- Research Center CHU Sainte-Justine, 3175 Chemin de la Cote-Sainte-Catherine, Montréal, QC H3T 1C5, Canada
- Department of Obstetrics & Gynecology, Université de Montréal, Montréal, QC H3T 1J4, Canada
- Department of Biochemistry and Molecular Medicine, Université de Montréal, Montréal, QC H3C 3J7, Canada
- Centre de Recherche en Reproduction et Fertilité, Université de Montréal, Saint-Hyacinthe, QC J2S 2M2, Canada
| | - Florina Moldovan
- Research Center CHU Sainte-Justine, 3175 Chemin de la Cote-Sainte-Catherine, Montréal, QC H3T 1C5, Canada
- Department of Stomatology, Faculty of Dentistry, Université de Montréal, 2900 Edouard Monpetit Boulevard, Montréal, QC H3T 1J4, Canada
| |
Collapse
|
22
|
Song S, Jung S, Kwon M. Expanding roles of centrosome abnormalities in cancers. BMB Rep 2023; 56:216-224. [PMID: 36945828 PMCID: PMC10140484] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Revised: 03/15/2023] [Accepted: 03/22/2023] [Indexed: 03/23/2023] Open
Abstract
Centrosome abnormalities are hallmarks of human cancers. Structural and numerical centrosome abnormalities correlate with tumor aggressiveness and poor prognosis, implicating that centrosome abnormalities could be a cause of tumorigenesis. Since Boveri made his pioneering recognition of the potential causal link between centrosome abnormalities and cancer more than a century ago, there has been significant progress in the field. Here, we review recent advances in the understanding of the causes and consequences of centrosome abnormalities and their connection to cancers. Centrosome abnormalities can drive the initiation and progression of cancers in multiple ways. For example, they can generate chromosome instability through abnormal mitosis, accelerating cancer genome evolution. Remarkably, it is becoming clear that the mechanisms by which centrosome abnormalities promote several steps of tumorigenesis are far beyond what Boveri had initially envisioned. We highlight various cancer-promoting mechanisms exerted by cells with centrosome abnormalities and how these cells possessing oncogenic potential can be monitored. [BMB Reports 2023; 56(4): 216-224].
Collapse
Affiliation(s)
- Soohyun Song
- Department of Life Science, Ewha Womans University, Seoul 03760, Korea
- Research Center for Cellular Homeostasis, Ewha Womans University, Seoul 03760, Korea
| | - Surim Jung
- Department of Life Science, Ewha Womans University, Seoul 03760, Korea
- Research Center for Cellular Homeostasis, Ewha Womans University, Seoul 03760, Korea
| | - Mijung Kwon
- Department of Life Science, Ewha Womans University, Seoul 03760, Korea
- Research Center for Cellular Homeostasis, Ewha Womans University, Seoul 03760, Korea
| |
Collapse
|
23
|
Thaiparambil J, Amara CS, Sen S, Putluri N, El‐Zein R. Cigarette smoke condensate induces centrosome clustering in normal lung epithelial cells. Cancer Med 2023; 12:8499-8509. [PMID: 36621828 PMCID: PMC10134322 DOI: 10.1002/cam4.5599] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Revised: 12/16/2022] [Accepted: 12/21/2022] [Indexed: 01/10/2023] Open
Abstract
BACKGROUND Unlike normal cells, cancer cells frequently have multiple centrosomes that can cluster to form bipolar mitotic spindles and allow for successful cell division. Inhibiting centrosome clustering, therefore, holds therapeutic promise to promote cancer cell-specific cell death. METHODS We used confocal microscopy, real-time PCR, siRNA knockdown, and western blot to analyze centrosome clustering and declustering using normal lung bronchial epithelial and nonsmall-cell lung cancer (NSCLC) cell lines. Also, we used Ingenuity Pathway Analysis software to identify novel pathways associated with centrosome clustering. RESULTS In this study, we found that exposure to cigarette smoke condensate induces centrosome amplification and clustering in human lung epithelial cells. We observed a similar increase in centrosome amplification and clustering in unexposed NSCLC cell lines which may suggest a common underlying mechanism for lung carcinogenesis. We identified a cyclin D2-mediated centrosome clustering pathway that involves a sonic hedgehog-forkhead box protein M1 axis which is critical for mitosis. We also observed that cyclin D2 knockdown induced multipolar mitotic spindles that could eventually lead to cell death. CONCLUSIONS Here we report a novel role of cyclin D2 in the regulation of centrosome clustering, which could allow the identification of tumors sensitive to cyclin D2 inhibitors. Our data reveal a pathway that can be targeted to inhibit centrosome clustering by interfering with the expression of cyclin D2-associated genes.
Collapse
Affiliation(s)
| | - Chandra S. Amara
- Department of Molecular and Cellular BiologyBaylor College of MedicineHoustonTexasUSA
| | - Subrata Sen
- Department of Translational Molecular PathologyUT MD Anderson Cancer CenterHoustonTexasUSA
| | - Nagireddy Putluri
- Department of Molecular and Cellular BiologyBaylor College of MedicineHoustonTexasUSA
| | | |
Collapse
|
24
|
Fonseca I, Horta C, Ribeiro AS, Sousa B, Marteil G, Bettencourt-Dias M, Paredes J. Polo-like kinase 4 (Plk4) potentiates anoikis-resistance of p53KO mammary epithelial cells by inducing a hybrid EMT phenotype. Cell Death Dis 2023; 14:133. [PMID: 36797240 PMCID: PMC9935921 DOI: 10.1038/s41419-023-05618-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Revised: 01/23/2023] [Accepted: 01/25/2023] [Indexed: 02/18/2023]
Abstract
Polo-like kinase 4 (Plk4), the major regulator of centriole biogenesis, has emerged as a putative therapeutic target in cancer due to its abnormal expression in human carcinomas, leading to centrosome number deregulation, mitotic defects and chromosomal instability. Moreover, Plk4 deregulation promotes tumor growth and metastasis in mouse models and is significantly associated with poor patient prognosis. Here, we further investigate the role of Plk4 in carcinogenesis and show that its overexpression significantly potentiates resistance to cell death by anoikis of nontumorigenic p53 knock-out (p53KO) mammary epithelial cells. Importantly, this effect is independent of Plk4's role in centrosome biogenesis, suggesting that this kinase has additional cellular functions. Interestingly, the Plk4-induced anoikis resistance is associated with the induction of a stable hybrid epithelial-mesenchymal phenotype and is partially dependent on P-cadherin upregulation. Furthermore, we found that the conditioned media of Plk4-induced p53KO mammary epithelial cells also induces anoikis resistance of breast cancer cells in a paracrine way, being also partially dependent on soluble P-cadherin secretion. Our work shows, for the first time, that high expression levels of Plk4 induce anoikis resistance of both mammary epithelial cells with p53KO background, as well as of breast cancer cells exposed to their secretome, which is partially mediated through P-cadherin upregulation. These results reinforce the idea that Plk4, independently of its role in centrosome biogenesis, functions as an oncogene, by impacting the tumor microenvironment to promote malignancy.
Collapse
Affiliation(s)
- Irina Fonseca
- Instituto Gulbenkian de Ciência (IGC), Oeiras, 2780-156, Portugal.
- Instituto de Investigação e Inovação em Saúde (i3S), Porto, 4200-135, Portugal.
- Cancel Stem, Portuguese Consortium on Cancer Stem Cells, Porto, Portugal.
| | - Cíntia Horta
- Instituto Gulbenkian de Ciência (IGC), Oeiras, 2780-156, Portugal
- Instituto de Investigação e Inovação em Saúde (i3S), Porto, 4200-135, Portugal
- Cancel Stem, Portuguese Consortium on Cancer Stem Cells, Porto, Portugal
| | - Ana Sofia Ribeiro
- Instituto de Investigação e Inovação em Saúde (i3S), Porto, 4200-135, Portugal
- Cancel Stem, Portuguese Consortium on Cancer Stem Cells, Porto, Portugal
| | - Barbara Sousa
- Instituto de Investigação e Inovação em Saúde (i3S), Porto, 4200-135, Portugal
| | | | - Mónica Bettencourt-Dias
- Instituto Gulbenkian de Ciência (IGC), Oeiras, 2780-156, Portugal.
- Cancel Stem, Portuguese Consortium on Cancer Stem Cells, Porto, Portugal.
| | - Joana Paredes
- Instituto de Investigação e Inovação em Saúde (i3S), Porto, 4200-135, Portugal.
- Cancel Stem, Portuguese Consortium on Cancer Stem Cells, Porto, Portugal.
| |
Collapse
|
25
|
Morretton J, Simon A, Herbette A, Barbazan J, Pérez‐González C, Cosson C, Mboup B, Latouche A, Popova T, Kieffer Y, Macé A, Gestraud P, Bataillon G, Becette V, Meseure D, Nicolas A, Mariani O, Vincent‐Salomon A, Stern M, Mechta‐Grigoriou F, Roman Roman S, Vignjevic DM, Rouzier R, Sastre‐Garau X, Goundiam O, Basto R. A catalog of numerical centrosome defects in epithelial ovarian cancers. EMBO Mol Med 2022; 14:e15670. [PMID: 36069081 PMCID: PMC9449595 DOI: 10.15252/emmm.202215670] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2022] [Revised: 07/21/2022] [Accepted: 07/21/2022] [Indexed: 11/16/2022] Open
Abstract
Centrosome amplification, the presence of more than two centrosomes in a cell is a common feature of most human cancer cell lines. However, little is known about centrosome numbers in human cancers and whether amplification or other numerical aberrations are frequently present. To address this question, we have analyzed a large cohort of primary human epithelial ovarian cancers (EOCs) from 100 patients. We found that rigorous quantitation of centrosome number in tumor samples was extremely challenging due to tumor heterogeneity and extensive tissue disorganization. Interestingly, even if centrosome clusters could be identified, the incidence of centrosome amplification was not comparable to what has been described in cultured cancer cells. Surprisingly, centrosome loss events where a few or many nuclei were not associated with centrosomes were clearly noticed and overall more frequent than centrosome amplification. Our findings highlight the difficulty of characterizing centrosome numbers in human tumors, while revealing a novel paradigm of centrosome number defects in EOCs.
Collapse
Affiliation(s)
- Jean‐Philippe Morretton
- Biology of Centrosomes and Genetic Instability, Institut CuriePSL Research University, CNRS UMR 144ParisFrance
| | - Anthony Simon
- Biology of Centrosomes and Genetic Instability, Institut CuriePSL Research University, CNRS UMR 144ParisFrance
| | - Aurélie Herbette
- Department of Translational Research, Institut CuriePSL UniversityParis Cedex 05France
| | - Jorge Barbazan
- Migration and Invasion Laboratory, Institut CuriePSL Research University, CNRS UMR 144ParisFrance
| | - Carlos Pérez‐González
- Migration and Invasion Laboratory, Institut CuriePSL Research University, CNRS UMR 144ParisFrance
| | - Camille Cosson
- Department of Translational Research, Institut CuriePSL UniversityParis Cedex 05France
| | - Bassirou Mboup
- Statistical Methods for Precision MedicineINSERM U900, Institut CurieSaint‐CloudFrance
| | - Aurélien Latouche
- Statistical Methods for Precision MedicineINSERM U900, Institut CurieSaint‐CloudFrance
| | - Tatiana Popova
- DNA Repair & Uveal Melanoma (D.R.U.M.), INSERM U830, Institut CuriePSL Research UniversityParis Cedex 05France
| | - Yann Kieffer
- Stress and Cancer Laboratory, INSERM U830, Institut Curie, Team Ligue Nationale Contre le CancerPSL Research UniversityParisFrance
| | - Anne‐Sophie Macé
- Cell and Tissue Imaging Facility (PICT‐IBiSA), Institut CuriePSL Research University, Centre National de la Recherche ScientifiqueParisFrance
| | - Pierre Gestraud
- Bioinformatics and Computational Systems Biology of Cancer, Mines Paristech, INSERM U900, Institut CuriePSL UniversityParis Cedex 05France
| | | | | | - Didier Meseure
- Department of PathologyInstitut CurieParis Cedex 05France
| | - André Nicolas
- Department of PathologyInstitut CurieParis Cedex 05France
| | - Odette Mariani
- Department of PathologyInstitut CurieParis Cedex 05France
- Biological Resource Center, Department of Pathology, Institut CuriePSL Research UniversityParisFrance
| | | | - Marc‐Henri Stern
- DNA Repair & Uveal Melanoma (D.R.U.M.), INSERM U830, Institut CuriePSL Research UniversityParis Cedex 05France
| | - Fatima Mechta‐Grigoriou
- Stress and Cancer Laboratory, INSERM U830, Institut Curie, Team Ligue Nationale Contre le CancerPSL Research UniversityParisFrance
| | - Sergio Roman Roman
- Department of Translational Research, Institut CuriePSL UniversityParis Cedex 05France
| | - Danijela Matic Vignjevic
- Migration and Invasion Laboratory, Institut CuriePSL Research University, CNRS UMR 144ParisFrance
| | - Roman Rouzier
- Statistical Methods for Precision MedicineINSERM U900, Institut CurieSaint‐CloudFrance
- Department of SurgeryInstitut CurieSaint‐CloudFrance
- UFR Simone Veil – SantéUniversité Versailles Saint Quentin, Université Paris SaclayMontigny le BretonneuxFrance
| | - Xavier Sastre‐Garau
- Department of PathologyInstitut CurieParis Cedex 05France
- Present address:
Laboratory of PathologyIntercommunal Hospital Center of CreteilCreteil CedexFrance
| | - Oumou Goundiam
- Department of Translational Research, Institut CuriePSL UniversityParis Cedex 05France
| | - Renata Basto
- Biology of Centrosomes and Genetic Instability, Institut CuriePSL Research University, CNRS UMR 144ParisFrance
| |
Collapse
|
26
|
Sladky VC, Akbari H, Tapias-Gomez D, Evans LT, Drown CG, Strong MA, LoMastro GM, Larman T, Holland AJ. Centriole signaling restricts hepatocyte ploidy to maintain liver integrity. Genes Dev 2022; 36:gad.349727.122. [PMID: 35981754 PMCID: PMC9480857 DOI: 10.1101/gad.349727.122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Accepted: 07/27/2022] [Indexed: 01/03/2023]
Abstract
Hepatocyte polyploidization is a tightly controlled process that is initiated at weaning and increases with age. The proliferation of polyploid hepatocytes in vivo is restricted by the PIDDosome-P53 axis, but how this pathway is triggered remains unclear. Given that increased hepatocyte ploidy protects against malignant transformation, the evolutionary driver that sets the upper limit for hepatocyte ploidy remains unknown. Here we show that hepatocytes accumulate centrioles during cycles of polyploidization in vivo. The presence of excess mature centrioles containing ANKRD26 was required to activate the PIDDosome in polyploid cells. As a result, mice lacking centrioles in the liver or ANKRD26 exhibited increased hepatocyte ploidy. Under normal homeostatic conditions, this increase in liver ploidy did not impact organ function. However, in response to chronic liver injury, blocking centriole-mediated ploidy control leads to a massive increase in hepatocyte polyploidization, severe liver damage, and impaired liver function. These results show that hyperpolyploidization sensitizes the liver to injury, posing a trade-off for the cancer-protective effect of increased hepatocyte ploidy. Our results may have important implications for unscheduled polyploidization that frequently occurs in human patients with chronic liver disease.
Collapse
Affiliation(s)
- Valentina C Sladky
- Department of Molecular Biology and Genetics, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, USA
| | - Hanan Akbari
- Department of Molecular Biology and Genetics, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, USA
| | - Daniel Tapias-Gomez
- Department of Molecular Biology and Genetics, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, USA
| | - Lauren T Evans
- Department of Molecular Biology and Genetics, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, USA
| | - Chelsea G Drown
- Department of Molecular Biology and Genetics, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, USA
| | - Margaret A Strong
- Department of Molecular Biology and Genetics, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, USA
| | - Gina M LoMastro
- Department of Molecular Biology and Genetics, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, USA
| | - Tatianna Larman
- Divison of Gastrointestinal and Liver Pathology, Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, Maryland 21287, USA
| | - Andrew J Holland
- Department of Molecular Biology and Genetics, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, USA
| |
Collapse
|
27
|
Yin F, Wei Z, Chen F, Xin C, Chen Q. Molecular targets of primary cilia defects in cancer (Review). Int J Oncol 2022; 61:98. [DOI: 10.3892/ijo.2022.5388] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Accepted: 06/20/2022] [Indexed: 11/05/2022] Open
Affiliation(s)
- Fengying Yin
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center for Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Hangzhou, Zhejiang 310006, P.R. China
| | - Zihao Wei
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center for Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Hangzhou, Zhejiang 310006, P.R. China
| | - Fangman Chen
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center for Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Hangzhou, Zhejiang 310006, P.R. China
| | - Chuan Xin
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center for Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Hangzhou, Zhejiang 310006, P.R. China
| | - Qianming Chen
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center for Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Hangzhou, Zhejiang 310006, P.R. China
| |
Collapse
|
28
|
Centrosome Defects in Hematological Malignancies: Molecular Mechanisms and Therapeutic Insights. BLOOD SCIENCE 2022; 4:143-151. [DOI: 10.1097/bs9.0000000000000127] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Accepted: 06/07/2022] [Indexed: 11/26/2022] Open
|
29
|
Tkach JM, Philip R, Sharma A, Strecker J, Durocher D, Pelletier L. Global cellular response to chemical perturbation of PLK4 activity and abnormal centrosome number. eLife 2022; 11:e73944. [PMID: 35758262 PMCID: PMC9236612 DOI: 10.7554/elife.73944] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Accepted: 06/04/2022] [Indexed: 11/13/2022] Open
Abstract
Centrosomes act as the main microtubule organizing center (MTOC) in metazoans. Centrosome number is tightly regulated by limiting centriole duplication to a single round per cell cycle. This control is achieved by multiple mechanisms, including the regulation of the protein kinase PLK4, the most upstream facilitator of centriole duplication. Altered centrosome numbers in mouse and human cells cause p53-dependent growth arrest through poorly defined mechanisms. Recent work has shown that the E3 ligase TRIM37 is required for cell cycle arrest in acentrosomal cells. To gain additional insights into this process, we undertook a series of genome-wide CRISPR/Cas9 screens to identify factors important for growth arrest triggered by treatment with centrinone B, a selective PLK4 inhibitor. We found that TRIM37 is a key mediator of growth arrest after partial or full PLK4 inhibition. Interestingly, PLK4 cellular mobility decreased in a dose-dependent manner after centrinone B treatment. In contrast to recent work, we found that growth arrest after PLK4 inhibition correlated better with PLK4 activity than with mitotic length or centrosome number. These data provide insights into the global response to changes in centrosome number and PLK4 activity and extend the role for TRIM37 in regulating the abundance, localization, and function of centrosome proteins.
Collapse
Affiliation(s)
- Johnny M Tkach
- Lunenfeld-Tanenbaum Research Institute, Sinai Health SystemTorontoCanada
| | - Reuben Philip
- Lunenfeld-Tanenbaum Research Institute, Sinai Health SystemTorontoCanada
- Department of Molecular Genetics, University of TorontoTorontoCanada
| | - Amit Sharma
- Lunenfeld-Tanenbaum Research Institute, Sinai Health SystemTorontoCanada
| | - Jonathan Strecker
- Lunenfeld-Tanenbaum Research Institute, Sinai Health SystemTorontoCanada
- Department of Molecular Genetics, University of TorontoTorontoCanada
| | - Daniel Durocher
- Lunenfeld-Tanenbaum Research Institute, Sinai Health SystemTorontoCanada
- Department of Molecular Genetics, University of TorontoTorontoCanada
| | - Laurence Pelletier
- Lunenfeld-Tanenbaum Research Institute, Sinai Health SystemTorontoCanada
- Department of Molecular Genetics, University of TorontoTorontoCanada
| |
Collapse
|
30
|
Huang RL, Liu C, Fu R, Yan Y, Yang J, Wang X, Li Q. Downregulation of PLK4 expression induces apoptosis and G0/G1-phase cell cycle arrest in keloid fibroblasts. Cell Prolif 2022; 55:e13271. [PMID: 35670224 PMCID: PMC9251049 DOI: 10.1111/cpr.13271] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Revised: 05/04/2022] [Accepted: 05/06/2022] [Indexed: 02/05/2023] Open
Abstract
Objectives Keloids are benign fibroproliferative tumors that display many cancer‐like characteristics, such as progressive uncontrolled growth, lack of spontaneous regression, and extremely high rates of recurrence. Polo‐like kinase 4 (PLK4) was recently identified as a master regulator of centriole replication, and its aberrant expression is closely associated with tumorigenesis. This study aimed to investigate the expression and biological role of PLK4 in the pathogenesis of keloids. Materials and Methods We evaluated the expression of PLK4 in keloids and adjacent normal skin tissue samples. Then, we established PLK4 knockdown and overexpression cell lines in keloid fibroblasts (KFs) and normal skin fibroblasts (NFs), respectively, to investigate the roles of PLK4 in the regulation of proliferation, migration, invasion, apoptosis, and cell cycle in KFs. Centrinone B (Cen‐B), a highly selective PLK4 inhibitor, was used to inhibit PLK4 activity in KFs to evaluate the therapeutic effect on KFs. Results We discovered that PLK4 was overexpressed in keloid dermal samples and KFs compared with adjacent normal skin samples and NFs derived from the same patients. High PLK4 expression was positively associated with the proliferation, migration, and invasion of KFs. Furthermore, knockdown of PLK4 expression or inhibition of PLK4 activity by Cen‐B suppressed KF growth, induced KF apoptosis via the caspase‐9/3 pathway, and induced cell cycle arrest at the G0/G1 phase in vitro. Conclusions These findings demonstrate that PLK4 is a critical regulator of KF proliferation, migration, and invasion, and thus, Cen‐B is a promising candidate drug for keloid treatment.
Collapse
Affiliation(s)
- Ru-Lin Huang
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Chuanqi Liu
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,Department of Plastic and Burn Surgery, West China Hospital, Sichuan University, Chengdu, China
| | - Rao Fu
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yuxin Yan
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jing Yang
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xinggang Wang
- Department of Assisted Reproduction, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Qingfeng Li
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
31
|
Phan TP, Boatwright CA, Drown CG, Skinner MW, Strong MA, Jordan PW, Holland AJ. Upstream open reading frames control PLK4 translation and centriole duplication in primordial germ cells. Genes Dev 2022; 36:718-736. [PMID: 35772791 PMCID: PMC9296005 DOI: 10.1101/gad.349604.122] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2022] [Accepted: 06/09/2022] [Indexed: 11/24/2022]
Abstract
Centrosomes are microtubule-organizing centers comprised of a pair of centrioles and the surrounding pericentriolar material. Abnormalities in centriole number are associated with cell division errors and can contribute to diseases such as cancer. Centriole duplication is limited to once per cell cycle and is controlled by the dosage-sensitive Polo-like kinase 4 (PLK4). Here, we show that PLK4 abundance is translationally controlled through conserved upstream open reading frames (uORFs) in the 5' UTR of the mRNA. Plk4 uORFs suppress Plk4 translation and prevent excess protein synthesis. Mice with homozygous knockout of Plk4 uORFs (Plk4 Δu/Δu ) are viable but display dramatically reduced fertility because of a significant depletion of primordial germ cells (PGCs). The remaining PGCs in Plk4 Δu/Δu mice contain extra centrioles and display evidence of increased mitotic errors. PGCs undergo hypertranscription and have substantially more Plk4 mRNA than somatic cells. Reducing Plk4 mRNA levels in mice lacking Plk4 uORFs restored PGC numbers and fully rescued fertility. Together, our data uncover a specific requirement for uORF-dependent control of PLK4 translation in counterbalancing the increased Plk4 transcription in PGCs. Thus, uORF-mediated translational suppression of PLK4 has a critical role in preventing centriole amplification and preserving the genomic integrity of future gametes.
Collapse
Affiliation(s)
- Thao P Phan
- Department of Molecular Biology and Genetics, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, USA
| | - Christina A Boatwright
- Department of Molecular Biology and Genetics, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, USA
| | - Chelsea G Drown
- Department of Molecular Biology and Genetics, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, USA
| | - Marnie W Skinner
- Department of Biochemistry and Molecular Biology, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, Maryland 21205, USA
- Department of Biochemistry and Molecular Biology, Uniformed Services University of the Health Sciences, Bethesda, Maryland 20814, USA
| | - Margaret A Strong
- Department of Molecular Biology and Genetics, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, USA
| | - Philip W Jordan
- Department of Biochemistry and Molecular Biology, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, Maryland 21205, USA
- Department of Biochemistry and Molecular Biology, Uniformed Services University of the Health Sciences, Bethesda, Maryland 20814, USA
| | - Andrew J Holland
- Department of Molecular Biology and Genetics, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, USA
| |
Collapse
|
32
|
Wang YW, Chen SC, Gu DL, Yeh YC, Tsai JJ, Yang KT, Jou YS, Chou TY, Tang TK. A novel HIF1α-STIL-FOXM1 axis regulates tumor metastasis. J Biomed Sci 2022; 29:24. [PMID: 35365182 PMCID: PMC8973879 DOI: 10.1186/s12929-022-00807-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2021] [Accepted: 03/24/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Metastasis is the major cause of morbidity and mortality in cancer that involves in multiple steps including epithelial-mesenchymal transition (EMT) process. Centrosome is an organelle that functions as the major microtubule organizing center (MTOC), and centrosome abnormalities are commonly correlated with tumor aggressiveness. However, the conclusive mechanisms indicating specific centrosomal proteins participated in tumor progression and metastasis remain largely unknown. METHODS The expression levels of centriolar/centrosomal genes in various types of cancers were first examined by in silico analysis of the data derived from The Cancer Genome Atlas (TCGA), Gene Expression Omnibus (GEO), and European Bioinformatics Institute (EBI) datasets. The expression of STIL (SCL/TAL1-interrupting locus) protein in clinical specimens was further assessed by Immunohistochemistry (IHC) analysis and the oncogenic roles of STIL in tumorigenesis were analyzed using in vitro and in vivo assays, including cell migration, invasion, xenograft tumor formation, and metastasis assays. The transcriptome differences between low- and high-STIL expression cells were analyzed by RNA-seq to uncover candidate genes involved in oncogenic pathways. The quantitative polymerase chain reaction (qPCR) and reporter assays were performed to confirm the results. The chromatin immunoprecipitation (ChIP)-qPCR assay was applied to demonstrate the binding of transcriptional factors to the promoter. RESULTS The expression of STIL shows the most significant increase in lung and various other types of cancers, and is highly associated with patients' survival rate. Depletion of STIL inhibits tumor growth and metastasis. Interestingly, excess STIL activates the EMT pathway, and subsequently enhances cancer cell migration and invasion. Importantly, we reveal an unexpected role of STIL in tumor metastasis. A subset of STIL translocate into nucleus and associate with FOXM1 (Forkhead box protein M1) to promote tumor metastasis and stemness via FOXM1-mediated downstream target genes. Furthermore, we demonstrate that hypoxia-inducible factor 1α (HIF1α) directly binds to the STIL promoter and upregulates STIL expression under hypoxic condition. CONCLUSIONS Our findings indicate that STIL promotes tumor metastasis through the HIF1α-STIL-FOXM1 axis, and highlight the importance of STIL as a promising therapeutic target for lung cancer treatment.
Collapse
Affiliation(s)
- Yi-Wei Wang
- Institute of Biomedical Sciences, Academia Sinica, 128 Academia Rd., Sec. 2, Taipei, 11529, Taiwan
| | - Shu-Chuan Chen
- Institute of Biomedical Sciences, Academia Sinica, 128 Academia Rd., Sec. 2, Taipei, 11529, Taiwan
| | - De-Leung Gu
- Institute of Biomedical Sciences, Academia Sinica, 128 Academia Rd., Sec. 2, Taipei, 11529, Taiwan
| | - Yi-Chen Yeh
- Department of Pathology and Laboratory Medicine, Taipei Veterans General Hospital, Taipei, Taiwan
| | - Jhih-Jie Tsai
- Institute of Biomedical Sciences, Academia Sinica, 128 Academia Rd., Sec. 2, Taipei, 11529, Taiwan
| | - Kuo-Tai Yang
- Institute of Biomedical Sciences, Academia Sinica, 128 Academia Rd., Sec. 2, Taipei, 11529, Taiwan
- Dept. of Animal Science, National Pingtung University of Science and Technology, Pingtung, Taiwan
| | - Yuh-Shan Jou
- Institute of Biomedical Sciences, Academia Sinica, 128 Academia Rd., Sec. 2, Taipei, 11529, Taiwan
| | - Teh-Ying Chou
- Department of Pathology and Laboratory Medicine, Taipei Veterans General Hospital, Taipei, Taiwan
| | - Tang K Tang
- Institute of Biomedical Sciences, Academia Sinica, 128 Academia Rd., Sec. 2, Taipei, 11529, Taiwan.
| |
Collapse
|
33
|
Hoffmann I. Role of Polo-like Kinases Plk1 and Plk4 in the Initiation of Centriole Duplication-Impact on Cancer. Cells 2022; 11:786. [PMID: 35269408 PMCID: PMC8908989 DOI: 10.3390/cells11050786] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2021] [Revised: 02/16/2022] [Accepted: 02/22/2022] [Indexed: 02/04/2023] Open
Abstract
Centrosomes nucleate and anchor microtubules and therefore play major roles in spindle formation and chromosome segregation during mitosis. Duplication of the centrosome occurs, similar to DNA, only once during the cell cycle. Aberration of the centrosome number is common in human tumors. At the core of centriole duplication is the conserved polo-like kinase 4, Plk4, and two structural proteins, STIL and Sas-6. In this review, I summarize and discuss developments in our understanding of the first steps of centriole duplication and their regulation.
Collapse
Affiliation(s)
- Ingrid Hoffmann
- F045, Cell Cycle Control and Carcinogenesis, Im Neuenheimer Feld 242, 69115 Heidelberg, Germany
| |
Collapse
|
34
|
Keep Calm and Carry on with Extra Centrosomes. Cancers (Basel) 2022; 14:cancers14020442. [PMID: 35053604 PMCID: PMC8774008 DOI: 10.3390/cancers14020442] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Revised: 01/01/2022] [Accepted: 01/03/2022] [Indexed: 02/01/2023] Open
Abstract
Simple Summary Precise chromosome segregation during mitosis is a vital event orchestrated by formation of bipolar spindle poles. Supernumerary centrosomes, caused by centrosome amplification, deteriorates mitotic processes, resulting in segregation defects leading to chromosomal instability (CIN). Centrosome amplification is frequently observed in various types of cancer and considered as a significant contributor to destabilization of chromosomes. This review provides a comprehensive overview of causes and consequences of centrosome amplification thoroughly describing molecular mechanisms. Abstract Aberrations in the centrosome number and structure can readily be detected at all stages of tumor progression and are considered hallmarks of cancer. Centrosome anomalies are closely linked to chromosome instability and, therefore, are proposed to be one of the driving events of tumor formation and progression. This concept, first posited by Boveri over 100 years ago, has been an area of interest to cancer researchers. We have now begun to understand the processes by which these numerical and structural anomalies may lead to cancer, and vice-versa: how key events that occur during carcinogenesis could lead to amplification of centrosomes. Despite the proliferative advantages that having extra centrosomes may confer, their presence can also lead to loss of essential genetic material as a result of segregational errors and cancer cells must deal with these deadly consequences. Here, we review recent advances in the current literature describing the mechanisms by which cancer cells amplify their centrosomes and the methods they employ to tolerate the presence of these anomalies, focusing particularly on centrosomal clustering.
Collapse
|
35
|
TEC kinase stabilizes PLK4 to promote liver cancer metastasis. Cancer Lett 2022; 524:70-81. [PMID: 34637843 DOI: 10.1016/j.canlet.2021.08.038] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Revised: 08/12/2021] [Accepted: 08/27/2021] [Indexed: 01/09/2023]
Abstract
Aberrated PLK4 expression has been reported in different malignancies and causes centrosome amplification, aneuploidy, and genomic instability. However, the mechanism by which PLK4 is regulated in carcinogenesis remains not fully characterised. Here, we showed that PLK4 was overexpressed in human HCC and overexpression of PLK4 predicted poorer patient prognosis. Unexpectedly, we found that induced expression of PLK4 promotes, but knockdown of PLK4 inhibits, HCC cell migration and invasion. Mechanistically, we found that TEC tyrosine kinase, which also promotes HCC cell migration, stabilizes PLK4 by phosphorylation. TEC directly phosphorylates PLK4 at tyrosine 86 residue, which not only stabilizes the protein but also enhances PLK4-mediated HCC cell invasion. Further investigation by transcriptome sequencing indicated that PLK4 promotes the phosphorylation of focal adhesion kinase to regulate the focal adhesion pathway in HCC cell migration. Taken together, our results demonstrated that PLK4 plays an important role in HCC metastasis and revealed for the first time the mechanism by which PLK4 promotes HCC metastasis via TEC phosphorylation.
Collapse
|
36
|
Krenning L, Sonneveld S, Tanenbaum M. Time-resolved single-cell sequencing identifies multiple waves of mRNA decay during the mitosis-to-G1 phase transition. eLife 2022; 11:71356. [PMID: 35103592 PMCID: PMC8806192 DOI: 10.7554/elife.71356] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2021] [Accepted: 01/17/2022] [Indexed: 01/20/2023] Open
Abstract
Accurate control of the cell cycle is critical for development and tissue homeostasis, and requires precisely timed expression of many genes. Cell cycle gene expression is regulated through transcriptional and translational control, as well as through regulated protein degradation. Here, we show that widespread and temporally controlled mRNA decay acts as an additional mechanism for gene expression regulation during the cell cycle in human cells. We find that two waves of mRNA decay occur sequentially during the mitosis-to-G1 phase transition, and we identify the deadenylase CNOT1 as a factor that contributes to mRNA decay during this cell cycle transition. Collectively, our data show that, akin to protein degradation, scheduled mRNA decay helps to reshape cell cycle gene expression as cells move from mitosis into G1 phase.
Collapse
Affiliation(s)
- Lenno Krenning
- Oncode Institute, Hubrecht Institute – KNAW and University Medical Center UtrechtUtrechtNetherlands
| | - Stijn Sonneveld
- Oncode Institute, Hubrecht Institute – KNAW and University Medical Center UtrechtUtrechtNetherlands
| | - Marvin Tanenbaum
- Oncode Institute, Hubrecht Institute – KNAW and University Medical Center UtrechtUtrechtNetherlands
| |
Collapse
|
37
|
Aurora A and AKT Kinase Signaling Associated with Primary Cilia. Cells 2021; 10:cells10123602. [PMID: 34944109 PMCID: PMC8699881 DOI: 10.3390/cells10123602] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2021] [Revised: 12/16/2021] [Accepted: 12/17/2021] [Indexed: 02/07/2023] Open
Abstract
Dysregulation of kinase signaling is associated with various pathological conditions, including cancer, inflammation, and autoimmunity; consequently, the kinases involved have become major therapeutic targets. While kinase signaling pathways play crucial roles in multiple cellular processes, the precise manner in which their dysregulation contributes to disease is dependent on the context; for example, the cell/tissue type or subcellular localization of the kinase or substrate. Thus, context-selective targeting of dysregulated kinases may serve to increase the therapeutic specificity while reducing off-target adverse effects. Primary cilia are antenna-like structures that extend from the plasma membrane and function by detecting extracellular cues and transducing signals into the cell. Cilia formation and signaling are dynamically regulated through context-dependent mechanisms; as such, dysregulation of primary cilia contributes to disease in a variety of ways. Here, we review the involvement of primary cilia-associated signaling through aurora A and AKT kinases with respect to cancer, obesity, and other ciliopathies.
Collapse
|
38
|
Oh H, Kim SG, Bae SU, Byun SJ, Kim S, Lee JH, Hwang I, Kwon SY, Lee HW. Polo-like kinase 4 as a potential predictive biomarker of chemoradioresistance in locally advanced rectal cancer. J Pathol Transl Med 2021; 56:40-47. [PMID: 34775733 PMCID: PMC8743804 DOI: 10.4132/jptm.2021.10.07] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Accepted: 10/07/2021] [Indexed: 11/17/2022] Open
Abstract
Background Polo-like kinase 4 (PLK4) is a serine/threonine protein kinase located in the centriole of the chromosome during the cell cycle. PLK4 overexpression has been described in a variety of many common human epithelial tumors. Conversely, PLK4 acts as a haploinsufficient tumor suppressor in some situations, highlighting the importance of strict regulation of PLK4 expression, activity, and function. Meanwhile, the importance of chemoradiation resistance in rectal cancer is being emphasized more than ever. We aimed to analyze PLK4 expression and the tumor regression grade (TRG) in patients with rectal cancer, treated with chemoradiotherapy (CRT). Materials and Methods A retrospective study was conducted on 102 patients with rectal cancer who received preoperative CRT. Immunohistochemistry for PLK4 in paraffin-embedded tissue was performed from the biopsy and surgical specimens. Results We found significant association between high expression of PLK4 and poor response to neoadjuvant CRT (according to both Mandard and The Korean Society of Pathologists TRG systems) in the pre-CRT specimens. Other clinicopathologic parameters did not reveal any correlation with PLK4 expression. Conclusion This study revealed an association between high expression of PLK4 in the pre-CRT specimens and TRG. Our results indicated that PLK4 could potentially be a new predictor for CRT effect in patients with rectal cancer.
Collapse
Affiliation(s)
- Hyunseung Oh
- Department of Pathology, Keimyung University School of Medicine, Daegu, Korea
| | - Soon Gu Kim
- Department of Education Support Center, Keimyung University School of Medicine, Daegu, Korea
| | - Sung Uk Bae
- Division of Colorectal Surgery, Department of Surgery, Keimyung University School of Medicine, Daegu, Korea
| | - Sang Jun Byun
- Department of Radiation Oncology, Keimyung University School of Medicine, Daegu, Korea
| | - Shin Kim
- Department of Immunology, Keimyung University School of Medicine, Daegu, Korea
| | - Jae-Ho Lee
- Department of Anatomy, Keimyung University School of Medicine, Daegu, Korea
| | - Ilseon Hwang
- Department of Pathology, Keimyung University School of Medicine, Daegu, Korea
| | - Sun Young Kwon
- Department of Pathology, Keimyung University School of Medicine, Daegu, Korea
| | - Hye Won Lee
- Department of Pathology, Keimyung University School of Medicine, Daegu, Korea
| |
Collapse
|
39
|
Tilwani S, Gandhi K, Narayan S, Ainavarapu SRK, Dalal SN. Disruption of desmosome function leads to increased centrosome clustering in 14-3-3γ-knockout cells with supernumerary centrosomes. FEBS Lett 2021; 595:2675-2690. [PMID: 34626438 DOI: 10.1002/1873-3468.14204] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2021] [Revised: 08/09/2021] [Accepted: 10/04/2021] [Indexed: 01/02/2023]
Abstract
14-3-3 proteins are conserved, dimeric, acidic proteins that regulate multiple cellular pathways. Loss of either 14-3-3ε or 14-3-3γ leads to centrosome amplification. However, we find that while the knockout of 14-3-3ε leads to multipolar mitoses, the knockout of 14-3-3γ results in centrosome clustering and pseudo-bipolar mitoses. 14-3-3γ knockouts demonstrate compromised desmosome function and a decrease in keratin levels, leading to decreased cell stiffness and an increase in centrosome clustering. Restoration of desmosome function increased multipolar mitoses, whereas knockdown of either plakoglobin or keratin 5 led to decreased cell stiffness and increased pseudo-bipolar mitoses. These results suggest that the ability of the desmosome to anchor keratin filaments maintains cell stiffness, thus inhibiting centrosome clustering, and that phenotypes observed upon 14-3-3 loss reflect the dysregulation of multiple pathways.
Collapse
Affiliation(s)
- Sarika Tilwani
- Cell and Tumor Biology, Advanced Centre for Treatment Research and Education in Cancer (ACTREC), Tata Memorial Centre, Navi Mumbai, India
- Homi Bhabha National Institute, Training School Complex, Mumbai, India
| | - Karan Gandhi
- Cell and Tumor Biology, Advanced Centre for Treatment Research and Education in Cancer (ACTREC), Tata Memorial Centre, Navi Mumbai, India
| | - Satya Narayan
- Department of Chemical Sciences, TIFR, Mumbai, India
| | | | - Sorab Nariman Dalal
- Cell and Tumor Biology, Advanced Centre for Treatment Research and Education in Cancer (ACTREC), Tata Memorial Centre, Navi Mumbai, India
- Homi Bhabha National Institute, Training School Complex, Mumbai, India
| |
Collapse
|
40
|
Shin B, Kim MS, Lee Y, Jung GI, Rhee K. Generation and Fates of Supernumerary Centrioles in Dividing Cells. Mol Cells 2021; 44:699-705. [PMID: 34711687 PMCID: PMC8560585 DOI: 10.14348/molcells.2021.0220] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Revised: 09/25/2021] [Accepted: 09/30/2021] [Indexed: 11/27/2022] Open
Abstract
The centrosome is a subcellular organelle from which a cilium assembles. Since centrosomes function as spindle poles during mitosis, they have to be present as a pair in a cell. How the correct number of centrosomes is maintained in a cell has been a major issue in the fields of cell cycle and cancer biology. Centrioles, the core of centrosomes, assemble and segregate in close connection to the cell cycle. Abnormalities in centriole numbers are attributed to decoupling from cell cycle regulation. Interestingly, supernumerary centrioles are commonly observed in cancer cells. In this review, we discuss how supernumerary centrioles are generated in diverse cellular conditions. We also discuss how the cells cope with supernumerary centrioles during the cell cycle.
Collapse
Affiliation(s)
- Byungho Shin
- Department of Biological Sciences, Seoul National University, Seoul 08826, Korea
| | - Myung Se Kim
- Department of Biological Sciences, Seoul National University, Seoul 08826, Korea
| | - Yejoo Lee
- Department of Biological Sciences, Seoul National University, Seoul 08826, Korea
| | - Gee In Jung
- Department of Biological Sciences, Seoul National University, Seoul 08826, Korea
| | - Kunsoo Rhee
- Department of Biological Sciences, Seoul National University, Seoul 08826, Korea
| |
Collapse
|
41
|
Primary cilia and the reciprocal activation of AKT and SMAD2/3 regulate stretch-induced autophagy in trabecular meshwork cells. Proc Natl Acad Sci U S A 2021; 118:2021942118. [PMID: 33753495 DOI: 10.1073/pnas.2021942118] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Activation of autophagy is one of the responses elicited by high intraocular pressure (IOP) and mechanical stretch in trabecular meshwork (TM) cells. However, the mechanosensor and the molecular mechanisms by which autophagy is induced by mechanical stretch in these or other cell types is largely unknown. Here, we have investigated the mechanosensor and downstream signaling pathway that regulate cyclic mechanical stretch (CMS)-induced autophagy in TM cells. We report that primary cilia act as a mechanosensor for CMS-induced autophagy and identified a cross-regulatory talk between AKT1 and noncanonical SMAD2/3 signaling as critical components of primary cilia-mediated activation of autophagy by mechanical stretch. Furthermore, we demonstrated the physiological significance of our findings in ex vivo perfused eyes. Removal of primary cilia disrupted the homeostatic IOP compensatory response and prevented the increase in LC3-II protein levels in response to elevated pressure challenge, strongly supporting a role of primary cilia-mediated autophagy in regulating IOP homeostasis.
Collapse
|
42
|
Nishimura Y, Yamakawa D, Uchida K, Shiromizu T, Watanabe M, Inagaki M. Primary cilia and lipid raft dynamics. Open Biol 2021; 11:210130. [PMID: 34428960 PMCID: PMC8385361 DOI: 10.1098/rsob.210130] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
Primary cilia, antenna-like structures of the plasma membrane, detect various extracellular cues and transduce signals into the cell to regulate a wide range of functions. Lipid rafts, plasma membrane microdomains enriched in cholesterol, sphingolipids and specific proteins, are also signalling hubs involved in a myriad of physiological functions. Although impairment of primary cilia and lipid rafts is associated with various diseases, the relationship between primary cilia and lipid rafts is poorly understood. Here, we review a newly discovered interaction between primary cilia and lipid raft dynamics that occurs during Akt signalling in adipogenesis. We also discuss the relationship between primary cilia and lipid raft-mediated Akt signalling in cancer biology. This review provides a novel perspective on primary cilia in the regulation of lipid raft dynamics.
Collapse
Affiliation(s)
- Yuhei Nishimura
- Department of Integrative Pharmacology, Mie University Graduate School of Medicine, Tsu, Mie, Japan
| | - Daishi Yamakawa
- Department of Physiology, Mie University Graduate School of Medicine, Tsu, Mie, Japan
| | - Katsunori Uchida
- Department of Oncologic Pathology, Mie University Graduate School of Medicine, Tsu, Mie, Japan
| | - Takashi Shiromizu
- Department of Integrative Pharmacology, Mie University Graduate School of Medicine, Tsu, Mie, Japan
| | - Masatoshi Watanabe
- Department of Oncologic Pathology, Mie University Graduate School of Medicine, Tsu, Mie, Japan
| | - Masaki Inagaki
- Department of Physiology, Mie University Graduate School of Medicine, Tsu, Mie, Japan
| |
Collapse
|
43
|
Liu C, Yu F, Ma R, Zhang L, Du G, Niu D, Yin D. Cep63 knockout inhibits the malignant phenotypes of papillary thyroid cancer cell line TPC‑1. Oncol Rep 2021; 46:199. [PMID: 34296302 PMCID: PMC8317149 DOI: 10.3892/or.2021.8150] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2020] [Accepted: 06/30/2021] [Indexed: 01/05/2023] Open
Abstract
The present study was designed to observe the expression of the centrosomal protein 63 in papillary thyroid cancer (PTC) tissues and cells and to explore the clinical significance of Cep63 expression in PTC. Primary PTC tissues and matched normal thyroid tissues were collected, and the Cep63 expression level was determined by reverse transcription-quantitative PCR and western blotting. A stable Cep63-knockout cell line was constructed to assess the proliferation, invasion, migration and apoptosis abilities in vitro. A subcutaneous tumorigenesis model was established in nude mice to evaluate the effect of Cep63 on tumor growth and proliferation in vivo. Western blotting was used to explore the relevant signaling pathways. The results revealed that the expression level of Cep63 in PTC tissues was significantly increased. The proliferation, invasion and migration abilities of TPC-1 cells were decreased after Cep63 knockout, and silencing of Cep63 resulted in TPC-1 cell cycle arrest in the S phase. Mechanistically, Cep63 knockout inhibited the activation of the Janus kinase/signal transducer and activator of transcription 3 signaling pathway. In conclusion, Cep63 knockout significantly inhibited biological functions of TPC-1 cells in vitro and in vivo, indicating that Cep63 may be an important oncogene of PTC.
Collapse
Affiliation(s)
- Chenguang Liu
- Department of Thyroid Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, P.R. China
| | - Fangqin Yu
- Department of Thyroid Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, P.R. China
| | - Runsheng Ma
- Department of Thyroid Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, P.R. China
| | - Lele Zhang
- Department of Thyroid Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, P.R. China
| | - Gongbo Du
- Department of Thyroid Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, P.R. China
| | - Dongpeng Niu
- Department of Thyroid Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, P.R. China
| | - Detao Yin
- Department of Thyroid Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, P.R. China
| |
Collapse
|
44
|
Shoshani O, Bakker B, de Haan L, Tijhuis AE, Wang Y, Kim DH, Maldonado M, Demarest MA, Artates J, Zhengyu O, Mark A, Wardenaar R, Sasik R, Spierings DCJ, Vitre B, Fisch K, Foijer F, Cleveland DW. Transient genomic instability drives tumorigenesis through accelerated clonal evolution. Genes Dev 2021; 35:1093-1108. [PMID: 34266887 PMCID: PMC8336898 DOI: 10.1101/gad.348319.121] [Citation(s) in RCA: 46] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Accepted: 06/10/2021] [Indexed: 12/13/2022]
Abstract
In this study, Shoshani et al. tested the role of aneuploidy in tumor initiation and progression, and generated mice with random aneuploidies by transient induction of polo-like kinase 4 (Plk4), a master regulator of centrosome number. Their findings show how transient CIN generates cells with random aneuploidies from which ones that acquire a karyotype with specific chromosome gains are sufficient to drive cancer formation, and that distinct CIN mechanisms can lead to similar karyotypic cancer-causing outcomes. Abnormal numerical and structural chromosome content is frequently found in human cancer. To test the role of aneuploidy in tumor initiation and progression, we generated mice with random aneuploidies by transient induction of polo-like kinase 4 (Plk4), a master regulator of centrosome number. Short-term chromosome instability (CIN) from transient Plk4 induction resulted in formation of aggressive T-cell lymphomas in mice with heterozygous inactivation of one p53 allele and accelerated tumor development in the absence of p53. Transient CIN increased the frequency of lymphoma-initiating cells with a specific karyotype profile, including trisomy of chromosomes 4, 5, 14, and 15 occurring early in tumorigenesis. Tumor development in mice with chronic CIN induced by an independent mechanism (through inactivation of the spindle assembly checkpoint) gradually trended toward a similar karyotypic profile, as determined by single-cell whole-genome DNA sequencing. Overall, we show how transient CIN generates cells with random aneuploidies from which ones that acquire a karyotype with specific chromosome gains are sufficient to drive cancer formation, and that distinct CIN mechanisms can lead to similar karyotypic cancer-causing outcomes.
Collapse
Affiliation(s)
- Ofer Shoshani
- Ludwig Cancer Research, Department of Cellular and Molecular Medicine, University of California at San Diego, La Jolla, California 92093, USA
| | - Bjorn Bakker
- European Research Institute for the Biology of Ageing (ERIBA), University of Groningen, University Medical Center Groningen, 9713 AV Groningen, The Netherlands
| | - Lauren de Haan
- Ludwig Cancer Research, Department of Cellular and Molecular Medicine, University of California at San Diego, La Jolla, California 92093, USA.,European Research Institute for the Biology of Ageing (ERIBA), University of Groningen, University Medical Center Groningen, 9713 AV Groningen, The Netherlands
| | - Andréa E Tijhuis
- European Research Institute for the Biology of Ageing (ERIBA), University of Groningen, University Medical Center Groningen, 9713 AV Groningen, The Netherlands
| | - Yin Wang
- Ludwig Cancer Research, Department of Cellular and Molecular Medicine, University of California at San Diego, La Jolla, California 92093, USA
| | - Dong Hyun Kim
- Ludwig Cancer Research, Department of Cellular and Molecular Medicine, University of California at San Diego, La Jolla, California 92093, USA
| | - Marcus Maldonado
- Ludwig Cancer Research, Department of Cellular and Molecular Medicine, University of California at San Diego, La Jolla, California 92093, USA
| | - Matthew A Demarest
- Ludwig Cancer Research, Department of Cellular and Molecular Medicine, University of California at San Diego, La Jolla, California 92093, USA
| | - Jon Artates
- Ludwig Cancer Research, Department of Cellular and Molecular Medicine, University of California at San Diego, La Jolla, California 92093, USA
| | - Ouyang Zhengyu
- Department of Cellular and Molecular Medicine, University of California at San Diego, La Jolla, California 92093, USA
| | - Adam Mark
- Center for Computational Biology and Bioinformatics, Department of Medicine, University of California at San Diego, La Jolla, California 92093, USA
| | - René Wardenaar
- European Research Institute for the Biology of Ageing (ERIBA), University of Groningen, University Medical Center Groningen, 9713 AV Groningen, The Netherlands
| | - Roman Sasik
- Center for Computational Biology and Bioinformatics, Department of Medicine, University of California at San Diego, La Jolla, California 92093, USA
| | - Diana C J Spierings
- European Research Institute for the Biology of Ageing (ERIBA), University of Groningen, University Medical Center Groningen, 9713 AV Groningen, The Netherlands
| | - Benjamin Vitre
- Ludwig Cancer Research, Department of Cellular and Molecular Medicine, University of California at San Diego, La Jolla, California 92093, USA
| | - Kathleen Fisch
- Center for Computational Biology and Bioinformatics, Department of Medicine, University of California at San Diego, La Jolla, California 92093, USA
| | - Floris Foijer
- European Research Institute for the Biology of Ageing (ERIBA), University of Groningen, University Medical Center Groningen, 9713 AV Groningen, The Netherlands
| | - Don W Cleveland
- Ludwig Cancer Research, Department of Cellular and Molecular Medicine, University of California at San Diego, La Jolla, California 92093, USA
| |
Collapse
|
45
|
Jung GI, Rhee K. Triple deletion of TP53, PCNT, and CEP215 promotes centriole amplification in the M phase. Cell Cycle 2021; 20:1500-1517. [PMID: 34233584 DOI: 10.1080/15384101.2021.1950386] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
Supernumerary centrioles are frequently observed in diverse types of cancer cells. In this study, we investigated the mechanism underlying the generation of supernumerary centrioles during the M phase. We generated the TP53;PCNT;CEP215 triple knockout (KO) cells and determined the configurations of the centriole during the cell cycle. The triple KO cells exhibited a precocious separation of centrioles and unscheduled centriole assembly in the M phase. Supernumerary centrioles in the triple KO cells were present throughout the cell cycle; however, among all the centrioles, only two maintained an intact composition, including CEP135, CEP192, CEP295 and CEP152. Intact centrioles were formed during the S phase and the rest of the centrioles may be generated during the M phase. M-phase-assembled centrioles lacked the ability to organize microtubules in the interphase; however, a fraction of them may acquire pericentriolar material to organize microtubules during the M phase. Taken together, our work reveals the heterogeneity of the supernumerary centrioles in the triple KO cells. .
Collapse
Affiliation(s)
- Gee In Jung
- Department of Biological Sciences, Seoul National University, Seoul, Korea
| | - Kunsoo Rhee
- Department of Biological Sciences, Seoul National University, Seoul, Korea
| |
Collapse
|
46
|
Badarudeen B, Anand U, Mukhopadhyay S, Manna TK. Ubiquitin signaling in the control of centriole duplication. FEBS J 2021; 289:4830-4849. [PMID: 34115927 DOI: 10.1111/febs.16069] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Revised: 04/22/2021] [Accepted: 06/10/2021] [Indexed: 12/14/2022]
Abstract
The centrosome plays an essential role in maintaining genetic stability, ciliogenesis and cell polarisation. The core of the centrosome is made up of two centrioles that duplicate precisely once during every cell cycle to generate two centrosomes that are required for bipolar spindle assembly and chromosome segregation. Abundance of centriole proteins at optimal levels and their recruitment to the centrosome are tightly regulated in time and space in order to restrict aberrant duplication of centrioles, a phenomenon that is observed in many cancers. Recent advances have conclusively shown that dedicated ubiquitin ligase-dependent protein degradation machineries are involved in governing centriole duplication. These studies revealed intricate mechanistic insights into how the ubiquitin ligases target different centriole proteins. In certain cases, a specific ubiquitin ligase targets a number of substrate proteins that co-regulate centriole assembly, prompting the possibility that substrate-targeting occurs during formation of the sub-centriolar structures. There are also instances where a specific centriole duplication protein is targeted by several ubiquitin ligases at different stages of the cell cycle, suggesting synchronised actions. Recent evidence also indicated a direct association of E3 ubiquitin ligase with the centrioles, supporting the notion that substrate-targeting occurs in the organelle itself. In this review, we highlight these advances by underlining the mechanisms of how different ubiquitin ligase machineries control centriole duplication and discuss our views on their coordination.
Collapse
Affiliation(s)
- Binshad Badarudeen
- School of Biology, Indian Institute of Science Education and Research, Thiruvananthapuram, Vithura, India
| | - Ushma Anand
- School of Biology, Indian Institute of Science Education and Research, Thiruvananthapuram, Vithura, India
| | - Swarnendu Mukhopadhyay
- School of Biology, Indian Institute of Science Education and Research, Thiruvananthapuram, Vithura, India
| | - Tapas K Manna
- School of Biology, Indian Institute of Science Education and Research, Thiruvananthapuram, Vithura, India
| |
Collapse
|
47
|
Yanardag S, Pugacheva EN. Primary Cilium Is Involved in Stem Cell Differentiation and Renewal through the Regulation of Multiple Signaling Pathways. Cells 2021; 10:1428. [PMID: 34201019 PMCID: PMC8226522 DOI: 10.3390/cells10061428] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Revised: 06/02/2021] [Accepted: 06/04/2021] [Indexed: 12/15/2022] Open
Abstract
Signaling networks guide stem cells during their lineage specification and terminal differentiation. Primary cilium, an antenna-like protrusion, directly or indirectly plays a significant role in this guidance. All stem cells characterized so far have primary cilia. They serve as entry- or check-points for various signaling events by controlling the signal transduction and stability. Thus, defects in the primary cilia formation or dynamics cause developmental and health problems, including but not limited to obesity, cardiovascular and renal anomalies, hearing and vision loss, and even cancers. In this review, we focus on the recent findings of how primary cilium controls various signaling pathways during stem cell differentiation and identify potential gaps in the field for future research.
Collapse
Affiliation(s)
- Sila Yanardag
- Department of Biochemistry, School of Medicine, West Virginia University, Morgantown, WV 26506, USA;
| | - Elena N. Pugacheva
- Department of Biochemistry, School of Medicine, West Virginia University, Morgantown, WV 26506, USA;
- West Virginia University Cancer Institute, School of Medicine, West Virginia University, Morgantown, WV 26506, USA
| |
Collapse
|
48
|
Ye J, Sheahon KM, LeBoit PE, McCalmont TH, Lang UE. BAP1-inactivated melanocytic tumors show prominent centrosome amplification and associated loss of primary cilia. J Cutan Pathol 2021; 48:1353-1360. [PMID: 34085298 DOI: 10.1111/cup.14073] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2021] [Revised: 05/14/2021] [Accepted: 05/30/2021] [Indexed: 11/30/2022]
Abstract
BACKGROUND BRCA1-associated protein (BAP1) is a tumor suppressor whose loss is associated with various malignancies. The primary cilium is an organelle involved in signal transduction and cell cycle progression. Primary cilia have been shown to be absent in melanoma but retained to some extent in melanocytic nevi, and the severity of dysplasia influences the degree of cilia loss. Additionally, studies have revealed roles for BAP1 in centrosome and mitotic spindle formation. Because the primary cilium is nucleated on the mother centriole, we examined the connection between the presence of primary cilia and the formation of centrosomes in BAP1-inactivated melanocytic tumors (BIMTs). METHODS We evaluated the cilia and centrosomes in 11 BIMTs and five conventional melanocytic nevi using immunofluorescence staining of acetylated alpha-tubulin and gamma-tubulin. RESULTS We found that, compared to nevi, BIMTs show loss of primary cilia and amplification of centrosomes. Occasional nevi also showed increased centrioles; however, these foci of amplification were more likely to be ciliated than those in BIMTs. CONCLUSIONS Although centrosome amplification does not absolutely correlate with loss of primary cilia in melanocytic neoplasms, absence of BAP1 exacerbates the phenotype. Moreover, aberrant centrosome and cilia formation are likely critical in the pathogenesis of other BAP1-inactivated tumors.
Collapse
Affiliation(s)
- Julia Ye
- Department of Anatomic Pathology, University of California, San Francisco, California, USA
| | - Kathleen M Sheahon
- Department of Anatomic Pathology, University of California, San Francisco, California, USA
| | - Philip E LeBoit
- Department of Anatomic Pathology, University of California, San Francisco, California, USA.,Department of Dermatology, University of California, San Francisco, California, USA.,Helen Diller Comprehensive Cancer Center, University of California, San Francisco, California, USA
| | - Timothy H McCalmont
- Department of Anatomic Pathology, University of California, San Francisco, California, USA.,Department of Dermatology, University of California, San Francisco, California, USA.,Helen Diller Comprehensive Cancer Center, University of California, San Francisco, California, USA
| | - Ursula E Lang
- Department of Anatomic Pathology, University of California, San Francisco, California, USA.,Department of Dermatology, University of California, San Francisco, California, USA
| |
Collapse
|
49
|
Kressin M, Fietz D, Becker S, Strebhardt K. Modelling the Functions of Polo-Like Kinases in Mice and Their Applications as Cancer Targets with a Special Focus on Ovarian Cancer. Cells 2021; 10:1176. [PMID: 34065956 PMCID: PMC8151477 DOI: 10.3390/cells10051176] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Revised: 05/06/2021] [Accepted: 05/08/2021] [Indexed: 12/12/2022] Open
Abstract
Polo-like kinases (PLKs) belong to a five-membered family of highly conserved serine/threonine kinases (PLK1-5) that play differentiated and essential roles as key mitotic kinases and cell cycle regulators and with this in proliferation and cellular growth. Besides, evidence is accumulating for complex and vital non-mitotic functions of PLKs. Dysregulation of PLKs is widely associated with tumorigenesis and by this, PLKs have gained increasing significance as attractive targets in cancer with diagnostic, prognostic and therapeutic potential. PLK1 has proved to have strong clinical relevance as it was found to be over-expressed in different cancer types and linked to poor patient prognosis. Targeting the diverse functions of PLKs (tumor suppressor, oncogenic) are currently at the center of numerous investigations in particular with the inhibition of PLK1 and PLK4, respectively in multiple cancer trials. Functions of PLKs and the effects of their inhibition have been extensively studied in cancer cell culture models but information is rare on how these drugs affect benign tissues and organs. As a step further towards clinical application as cancer targets, mouse models therefore play a central role. Modelling PLK function in animal models, e.g., by gene disruption or by treatment with small molecule PLK inhibitors offers promising possibilities to unveil the biological significance of PLKs in cancer maintenance and progression and give important information on PLKs' applicability as cancer targets. In this review we aim at summarizing the approaches of modelling PLK function in mice so far with a special glimpse on the significance of PLKs in ovarian cancer and of orthotopic cancer models used in this fatal malignancy.
Collapse
Affiliation(s)
- Monika Kressin
- Institute for Veterinary Anatomy, Histology and Embryology, Justus Liebig University Giessen, 35392 Giessen, Germany;
| | - Daniela Fietz
- Institute for Veterinary Anatomy, Histology and Embryology, Justus Liebig University Giessen, 35392 Giessen, Germany;
| | - Sven Becker
- Department of Gynecology, Goethe-University, 60590 Frankfurt, Germany; (S.B.); (K.S.)
| | - Klaus Strebhardt
- Department of Gynecology, Goethe-University, 60590 Frankfurt, Germany; (S.B.); (K.S.)
- German Cancer Consortium (DKTK), German Cancer Research Center, Partner Site Frankfurt am Main, 60590 Frankfurt, Germany
| |
Collapse
|
50
|
Adams SD, Csere J, D'angelo G, Carter EP, Romao M, Arnandis T, Dodel M, Kocher HM, Grose R, Raposo G, Mardakheh F, Godinho SA. Centrosome amplification mediates small extracellular vesicle secretion via lysosome disruption. Curr Biol 2021; 31:1403-1416.e7. [PMID: 33592190 PMCID: PMC8047808 DOI: 10.1016/j.cub.2021.01.028] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2020] [Revised: 12/01/2020] [Accepted: 01/08/2021] [Indexed: 01/08/2023]
Abstract
Bidirectional communication between cells and their surrounding environment is critical in both normal and pathological settings. Extracellular vesicles (EVs), which facilitate the horizontal transfer of molecules between cells, are recognized as an important constituent of cell-cell communication. In cancer, alterations in EV secretion contribute to the growth and metastasis of tumor cells. However, the mechanisms underlying these changes remain largely unknown. Here, we show that centrosome amplification is associated with and sufficient to promote small extracellular vesicle (SEV) secretion in pancreatic cancer cells. This is a direct result of lysosomal dysfunction, caused by increased reactive oxygen species (ROS) downstream of extra centrosomes. We propose that defects in lysosome function could promote multivesicular body fusion with the plasma membrane, thereby enhancing SEV secretion. Furthermore, we find that SEVs secreted in response to amplified centrosomes are functionally distinct and activate pancreatic stellate cells (PSCs). These activated PSCs promote the invasion of pancreatic cancer cells in heterotypic 3D cultures. We propose that SEVs secreted by cancer cells with amplified centrosomes influence the bidirectional communication between the tumor cells and the surrounding stroma to promote malignancy.
Collapse
Affiliation(s)
- Sophie D Adams
- Centre for Cancer Cell and Molecular Biology, Barts Cancer Institute, Queen Mary University of London, Charterhouse Square, London EC1M 6BQ, UK
| | - Judit Csere
- Centre for Cancer Cell and Molecular Biology, Barts Cancer Institute, Queen Mary University of London, Charterhouse Square, London EC1M 6BQ, UK
| | - Gisela D'angelo
- Structure and Membrane Compartments, Institute Curie, Paris Sciences & Lettres Research University, Centre for National de la Recherche Scientifique, UMR144, Paris, France
| | - Edward P Carter
- Centre for Tumour Biology, Barts Cancer Institute, Queen Mary University of London, Charterhouse Square, London EC1M 6BQ, UK
| | - Maryse Romao
- Structure and Membrane Compartments, Institute Curie, Paris Sciences & Lettres Research University, Centre for National de la Recherche Scientifique, UMR144, Paris, France
| | - Teresa Arnandis
- Centre for Cancer Cell and Molecular Biology, Barts Cancer Institute, Queen Mary University of London, Charterhouse Square, London EC1M 6BQ, UK
| | - Martin Dodel
- Centre for Cancer Cell and Molecular Biology, Barts Cancer Institute, Queen Mary University of London, Charterhouse Square, London EC1M 6BQ, UK
| | - Hemant M Kocher
- Centre for Tumour Biology, Barts Cancer Institute, Queen Mary University of London, Charterhouse Square, London EC1M 6BQ, UK
| | - Richard Grose
- Centre for Tumour Biology, Barts Cancer Institute, Queen Mary University of London, Charterhouse Square, London EC1M 6BQ, UK
| | - Graça Raposo
- Structure and Membrane Compartments, Institute Curie, Paris Sciences & Lettres Research University, Centre for National de la Recherche Scientifique, UMR144, Paris, France
| | - Faraz Mardakheh
- Centre for Cancer Cell and Molecular Biology, Barts Cancer Institute, Queen Mary University of London, Charterhouse Square, London EC1M 6BQ, UK
| | - Susana A Godinho
- Centre for Cancer Cell and Molecular Biology, Barts Cancer Institute, Queen Mary University of London, Charterhouse Square, London EC1M 6BQ, UK.
| |
Collapse
|