1
|
Abu Rabe D, Chdid L, Lamson DR, Laudeman CP, Tarpley M, Elsayed N, Smith GR, Zheng W, Dixon MS, Williams KP. Identification of Novel GANT61 Analogs with Activity in Hedgehog Functional Assays and GLI1-Dependent Cancer Cells. Molecules 2024; 29:3095. [PMID: 38999049 PMCID: PMC11243198 DOI: 10.3390/molecules29133095] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Revised: 06/20/2024] [Accepted: 06/21/2024] [Indexed: 07/14/2024] Open
Abstract
Aberrant activation of hedgehog (Hh) signaling has been implicated in various cancers. Current FDA-approved inhibitors target the seven-transmembrane receptor Smoothened, but resistance to these drugs has been observed. It has been proposed that a more promising strategy to target this pathway is at the GLI1 transcription factor level. GANT61 was the first small molecule identified to directly suppress GLI-mediated activity; however, its development as a potential anti-cancer agent has been hindered by its modest activity and aqueous chemical instability. Our study aimed to identify novel GLI1 inhibitors. JChem searches identified fifty-two compounds similar to GANT61 and its active metabolite, GANT61-D. We combined high-throughput cell-based assays and molecular docking to evaluate these analogs. Five of the fifty-two GANT61 analogs inhibited activity in Hh-responsive C3H10T1/2 and Gli-reporter NIH3T3 cellular assays without cytotoxicity. Two of the GANT61 analogs, BAS 07019774 and Z27610715, reduced Gli1 mRNA expression in C3H10T1/2 cells. Treatment with BAS 07019774 significantly reduced cell viability in Hh-dependent glioblastoma and lung cancer cell lines. Molecular docking indicated that BAS 07019774 is predicted to bind to the ZF4 region of GLI1, potentially interfering with its ability to bind DNA. Our findings show promise in developing more effective and potent GLI inhibitors.
Collapse
Affiliation(s)
- Dina Abu Rabe
- INBS PhD Program, North Carolina Central University, Durham, NC 27707, USA
| | - Lhoucine Chdid
- Biomanufacturing Research Institute and Technology Enterprise, North Carolina Central University, Durham, NC 27707, USA
| | - David R Lamson
- Biomanufacturing Research Institute and Technology Enterprise, North Carolina Central University, Durham, NC 27707, USA
| | - Christopher P Laudeman
- Biomanufacturing Research Institute and Technology Enterprise, North Carolina Central University, Durham, NC 27707, USA
| | - Michael Tarpley
- Biomanufacturing Research Institute and Technology Enterprise, North Carolina Central University, Durham, NC 27707, USA
| | - Naglaa Elsayed
- Biomanufacturing Research Institute and Technology Enterprise, North Carolina Central University, Durham, NC 27707, USA
| | - Ginger R Smith
- Biomanufacturing Research Institute and Technology Enterprise, North Carolina Central University, Durham, NC 27707, USA
| | - Weifan Zheng
- Biomanufacturing Research Institute and Technology Enterprise, North Carolina Central University, Durham, NC 27707, USA
- Department of Pharmaceutical Sciences, North Carolina Central University, Durham, NC 27707, USA
| | - Maria S Dixon
- Biomanufacturing Research Institute and Technology Enterprise, North Carolina Central University, Durham, NC 27707, USA
| | - Kevin P Williams
- Biomanufacturing Research Institute and Technology Enterprise, North Carolina Central University, Durham, NC 27707, USA
- Department of Pharmaceutical Sciences, North Carolina Central University, Durham, NC 27707, USA
| |
Collapse
|
2
|
Zarzosa P, Garcia-Gilabert L, Hladun R, Guillén G, Gallo-Oller G, Pons G, Sansa-Girona J, Segura MF, Sánchez de Toledo J, Moreno L, Gallego S, Roma J. Targeting the Hedgehog Pathway in Rhabdomyosarcoma. Cancers (Basel) 2023; 15:727. [PMID: 36765685 PMCID: PMC9913695 DOI: 10.3390/cancers15030727] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Accepted: 01/18/2023] [Indexed: 01/27/2023] Open
Abstract
Aberrant activation of the Hedgehog (Hh) signalling pathway is known to play an oncogenic role in a wide range of cancers; in the particular case of rhabdomyosarcoma, this pathway has been demonstrated to be an important player for both oncogenesis and cancer progression. In this review, after a brief description of the pathway and the characteristics of its molecular components, we describe, in detail, the main activation mechanisms that have been found in cancer, including ligand-dependent, ligand-independent and non-canonical activation. In this context, the most studied inhibitors, i.e., SMO inhibitors, have shown encouraging results for the treatment of basal cell carcinoma and medulloblastoma, both tumour types often associated with mutations that lead to the activation of the pathway. Conversely, SMO inhibitors have not fulfilled expectations in tumours-among them sarcomas-mostly associated with ligand-dependent Hh pathway activation. Despite the controversy existing regarding the results obtained with SMO inhibitors in these types of tumours, several compounds have been (or are currently being) evaluated in sarcoma patients. Finally, we discuss some of the reasons that could explain why, in some cases, encouraging preclinical data turned into disappointing results in the clinical setting.
Collapse
Affiliation(s)
- Patricia Zarzosa
- Childhood Cancer and Blood Disorders, Vall d’Hebron Research Institute (VHIR), Hospital Universitari Vall d’Hebron, Universitat Autònoma de Barcelona, 08035 Barcelona, Spain
| | - Lia Garcia-Gilabert
- Childhood Cancer and Blood Disorders, Vall d’Hebron Research Institute (VHIR), Hospital Universitari Vall d’Hebron, Universitat Autònoma de Barcelona, 08035 Barcelona, Spain
| | - Raquel Hladun
- Pediatric Oncology and Hematology Department, Hospital Universitari Vall d’Hebron, Universitat Autònoma de Barcelona, 08035 Barcelona, Spain
| | - Gabriela Guillén
- Pediatric Surgery Department, Hospital Universitari Vall d’Hebron, Universitat Autònoma de Barcelona, 08035 Barcelona, Spain
| | - Gabriel Gallo-Oller
- Childhood Cancer and Blood Disorders, Vall d’Hebron Research Institute (VHIR), Hospital Universitari Vall d’Hebron, Universitat Autònoma de Barcelona, 08035 Barcelona, Spain
| | - Guillem Pons
- Childhood Cancer and Blood Disorders, Vall d’Hebron Research Institute (VHIR), Hospital Universitari Vall d’Hebron, Universitat Autònoma de Barcelona, 08035 Barcelona, Spain
| | - Julia Sansa-Girona
- Childhood Cancer and Blood Disorders, Vall d’Hebron Research Institute (VHIR), Hospital Universitari Vall d’Hebron, Universitat Autònoma de Barcelona, 08035 Barcelona, Spain
| | - Miguel F. Segura
- Childhood Cancer and Blood Disorders, Vall d’Hebron Research Institute (VHIR), Hospital Universitari Vall d’Hebron, Universitat Autònoma de Barcelona, 08035 Barcelona, Spain
| | - Josep Sánchez de Toledo
- Childhood Cancer and Blood Disorders, Vall d’Hebron Research Institute (VHIR), Hospital Universitari Vall d’Hebron, Universitat Autònoma de Barcelona, 08035 Barcelona, Spain
- Pediatric Oncology and Hematology Department, Hospital Universitari Vall d’Hebron, Universitat Autònoma de Barcelona, 08035 Barcelona, Spain
| | - Lucas Moreno
- Pediatric Oncology and Hematology Department, Hospital Universitari Vall d’Hebron, Universitat Autònoma de Barcelona, 08035 Barcelona, Spain
| | - Soledad Gallego
- Childhood Cancer and Blood Disorders, Vall d’Hebron Research Institute (VHIR), Hospital Universitari Vall d’Hebron, Universitat Autònoma de Barcelona, 08035 Barcelona, Spain
- Pediatric Oncology and Hematology Department, Hospital Universitari Vall d’Hebron, Universitat Autònoma de Barcelona, 08035 Barcelona, Spain
| | - Josep Roma
- Childhood Cancer and Blood Disorders, Vall d’Hebron Research Institute (VHIR), Hospital Universitari Vall d’Hebron, Universitat Autònoma de Barcelona, 08035 Barcelona, Spain
| |
Collapse
|
3
|
Jonchere B, Williams J, Zindy F, Liu J, Robinson S, Farmer DM, Min J, Yang L, Stripay JL, Wang Y, Freeman BB, Yu J, Shelat AA, Rankovic Z, Roussel MF. Combination of Ribociclib with BET-Bromodomain and PI3K/mTOR Inhibitors for Medulloblastoma Treatment In Vitro and In Vivo. Mol Cancer Ther 2023; 22:37-51. [PMID: 36318650 PMCID: PMC9808370 DOI: 10.1158/1535-7163.mct-21-0896] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Revised: 09/15/2022] [Accepted: 10/21/2022] [Indexed: 11/06/2022]
Abstract
Despite improvement in the treatment of medulloblastoma over the last years, numerous patients with MYC- and MYCN-driven tumors still fail current therapies. Medulloblastomas have an intact retinoblastoma protein RB, suggesting that CDK4/6 inhibition might represent a therapeutic strategy for which drug combination remains understudied. We conducted high-throughput drug combination screens in a Group3 (G3) medulloblastoma line using the CDK4/6 inhibitor (CDK4/6i) ribociclib at IC20, referred to as an anchor, and 87 oncology drugs approved by FDA or in clinical trials. Bromodomain and extra terminal (BET) and PI3K/mTOR inhibitors potentiated ribociclib inhibition of proliferation in an established cell line and freshly dissociated tumor cells from intracranial xenografts of G3 and Sonic hedgehog (SHH) medulloblastomas in vitro. A reverse combination screen using the BET inhibitor JQ1 as anchor, revealed CDK4/6i as the most potentiating drugs. In vivo, ribociclib showed single-agent activity in medulloblastoma models whereas JQ1 failed to show efficacy due to high clearance and insufficient free brain concentration. Despite in vitro synergy, combination of ribociclib with the PI3K/mTOR inhibitor paxalisib did not significantly improve the survival of G3 and SHH medulloblastoma-bearing mice compared with ribociclib alone. Molecular analysis of ribociclib and paxalisib-treated tumors revealed that E2F targets and PI3K/AKT/MTORC1 signaling genes were depleted, as expected. Importantly, in one untreated G3MB model HD-MB03, the PI3K/AKT/MTORC1 gene set was enriched in vitro compared with in vivo suggesting that the pathway displayed increased activity in vitro. Our data illustrate the difficulty in translating in vitro findings in vivo. See related article in Mol Cancer Ther (2022) 21(8):1306-1317.
Collapse
Affiliation(s)
- Barbara Jonchere
- Department of Tumor Cell Biology, St. Jude Children's Research Hospital, Memphis, Tennessee
| | - Justin Williams
- Department of Tumor Cell Biology, St. Jude Children's Research Hospital, Memphis, Tennessee
| | - Frederique Zindy
- Department of Tumor Cell Biology, St. Jude Children's Research Hospital, Memphis, Tennessee
| | - Jingjing Liu
- Department of Tumor Cell Biology Computational Biology, St. Jude Children's Research Hospital, Memphis, Tennessee
| | - Sarah Robinson
- Department of Tumor Cell Biology, St. Jude Children's Research Hospital, Memphis, Tennessee
| | - Dana M. Farmer
- Department of Tumor Cell Biology, St. Jude Children's Research Hospital, Memphis, Tennessee
| | - Jaeki Min
- Department of Tumor Cell Biology Chemical Biology, St. Jude Children's Research Hospital, Memphis, Tennessee
| | - Lei Yang
- Department of Tumor Cell Biology Chemical Biology, St. Jude Children's Research Hospital, Memphis, Tennessee
| | - Jennifer L. Stripay
- Department of Tumor Cell Biology, St. Jude Children's Research Hospital, Memphis, Tennessee
| | - Yingzhe Wang
- Department of Tumor Cell Biology Preclinical PK Shared Resource, St. Jude Children's Research Hospital, Memphis, Tennessee
| | - Burgess B. Freeman
- Department of Tumor Cell Biology Preclinical PK Shared Resource, St. Jude Children's Research Hospital, Memphis, Tennessee
| | - Jiyang Yu
- Department of Tumor Cell Biology Computational Biology, St. Jude Children's Research Hospital, Memphis, Tennessee
| | - Anang A. Shelat
- Department of Tumor Cell Biology Chemical Biology, St. Jude Children's Research Hospital, Memphis, Tennessee
| | - Zoran Rankovic
- Department of Tumor Cell Biology Chemical Biology, St. Jude Children's Research Hospital, Memphis, Tennessee
| | - Martine F. Roussel
- Department of Tumor Cell Biology, St. Jude Children's Research Hospital, Memphis, Tennessee
| |
Collapse
|
4
|
Barbarino M, Bottaro M, Spagnoletti L, de Santi MM, Guazzo R, Defraia C, Custoza C, Serio G, Iannelli F, Pesetti M, Aiello R, Rosati D, Zanfrini E, Luzzi L, Bellan C, Giordano A. Analysis of Primary Cilium Expression and Hedgehog Pathway Activation in Mesothelioma Throws Back Its Complex Biology. Cancers (Basel) 2022; 14:5216. [PMID: 36358635 PMCID: PMC9654223 DOI: 10.3390/cancers14215216] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Revised: 10/17/2022] [Accepted: 10/20/2022] [Indexed: 08/06/2023] Open
Abstract
The primary cilium (PC) is a sensory organelle present on the cell surface, modulating the activity of many pathways. Dysfunctions in the PC lead to different pathologic conditions including cancer. Hedgehog signaling (Hh) is regulated by PC and the loss of its control has been observed in many cancers, including mesothelioma. Malignant pleural mesothelioma (MPM) is a fatal cancer of the pleural membranes with poor therapeutic options. Recently, overexpression of the Hh transcriptional activator GL1 has been demonstrated to be associated with poor overall survival (OS) in MPM. However, unlike other cancers, the response to G-protein-coupled receptor smoothened (SMO)/Hh inhibitors is poor, mainly attributable to the lack of markers for patient stratification. For all these reasons, and in particular for the role of PC in the regulation of Hh, we investigated for the first time the status of PC in MPM tissues, demonstrating intra- and inter-heterogeneity in its expression. We also correlated the presence of PC with the activation of the Hh pathway, providing uncovered evidence of a PC-independent regulation of the Hh signaling in MPM. Our study contributes to the understanding MPM heterogeneity, thus helping to identify patients who might benefit from Hh inhibitors.
Collapse
Affiliation(s)
- Marcella Barbarino
- Department of Medical Biotechnologies, Siena University, 53100 Siena, Italy
- Sbarro Institute for Cancer Research and Molecular Medicine, Center for Biotechnology, College of Science and Technology, Temple University, Philadelphia, PA 19122, USA
| | - Maria Bottaro
- Department of Medical Biotechnologies, Siena University, 53100 Siena, Italy
| | - Laura Spagnoletti
- Department of Medical Biotechnologies, Siena University, 53100 Siena, Italy
| | | | - Raffaella Guazzo
- Department of Medical Biotechnologies, Siena University, 53100 Siena, Italy
| | - Chiara Defraia
- Department of Medical Biotechnologies, Siena University, 53100 Siena, Italy
| | - Cosimo Custoza
- Department of Medical Biotechnologies, Siena University, 53100 Siena, Italy
| | - Gabriella Serio
- Department of Emergency and Organ Transplantation-DETO, University of Bari, G. Cesare 1 Sq., 70121 Bari, Italy
| | - Francesco Iannelli
- Department of Medical Biotechnologies, Siena University, 53100 Siena, Italy
| | - Matilde Pesetti
- Department of Medical Biotechnologies, Siena University, 53100 Siena, Italy
| | - Raffaele Aiello
- Toma Institute Srl, Via Cesare Rosaroll 24, 80139 Napoli, Italy
| | - Diletta Rosati
- Department of Medical Biotechnologies, Siena University, 53100 Siena, Italy
| | - Edoardo Zanfrini
- Department of Medicine, Surgery and Neurosciences, Siena University Hospital, 53100 Siena, Italy
| | - Luca Luzzi
- Department of Medicine, Surgery and Neurosciences, Siena University Hospital, 53100 Siena, Italy
| | - Cristiana Bellan
- Department of Medical Biotechnologies, Siena University, 53100 Siena, Italy
| | - Antonio Giordano
- Department of Medical Biotechnologies, Siena University, 53100 Siena, Italy
- Sbarro Institute for Cancer Research and Molecular Medicine, Center for Biotechnology, College of Science and Technology, Temple University, Philadelphia, PA 19122, USA
| |
Collapse
|
5
|
Gong B, Guo D, Zheng C, Ma Z, Zhang J, Qu Y, Li X, Li G, Zhang L, Wang Y. Complement C3a activates astrocytes to promote medulloblastoma progression through TNF-α. J Neuroinflammation 2022; 19:159. [PMID: 35725556 PMCID: PMC9208237 DOI: 10.1186/s12974-022-02516-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2021] [Accepted: 06/05/2022] [Indexed: 12/16/2022] Open
Abstract
Background Medulloblastoma (MB) is the most common malignant brain tumor in children. Approximately one-third of MB patients remain incurable. Understanding the molecular mechanism of MB tumorigenesis is, therefore, critical for developing specific and effective treatment strategies. Our previous work demonstrated that astrocytes constitute the tumor microenvironment (TME) of MB and play an indispensable role in MB progression. However, the underlying mechanisms by which astrocytes are regulated and activated to promote MB remain elusive. Methods By taking advantage of Math1-Cre/Ptch1loxp/loxp mice, which spontaneously develop MB, primary MB cells and astrocytes were isolated and then subjected to administration and coculture in vitro. Immunohistochemistry was utilized to determine the presence of C3a in MB sections. MB cell proliferation was evaluated by immunofluorescent staining. GFAP and cytokine expression levels in C3a-stimulated astrocytes were assessed by immunofluorescent staining, western blotting, q-PCR and ELISA. C3a receptor and TNF-α receptor expression was determined by PCR and immunofluorescent staining. p38 MAPK pathway activation was detected by western blotting. Transplanted MB mice were treated with a C3a receptor antagonist or TNF-α receptor antagonist to investigate their role in MB progression in vivo. Results We found that complement C3a, a fragment released from intact complement C3 following complement activation, was enriched in both human and murine MB tumor tissue, and its receptor was highly expressed on tumor-associated astrocytes (TAAs). We demonstrated that C3a activated astrocytes and promoted MB cell proliferation via the p38 MAPK pathway. Moreover, we discovered that C3a upregulated the production of proinflammatory cytokines, such as IL-6 and TNF-α in astrocytes. Application of the conditioned medium of C3a-stimulated astrocytes promoted MB cell proliferation, which was abolished by preincubation with a TNF-α receptor antagonist, indicating a TNF-α-dependent event. Indeed, we further demonstrated that administration of a selective C3a receptor or TNF-α receptor antagonist to mice subcutaneously transplanted with MB suppressed tumor progression in vivo. Conclusions C3a was released during MB development. C3a triggered astrocyte activation and TNF-α production via the p38 pathway, which promoted MB cell proliferation. Our findings revealed the novel role of C3a-mediated TNF-α production by astrocytes in MB progression. These findings imply that targeting C3a and TNF-α may represent a potential novel therapeutic approach for human MB. Supplementary Information The online version contains supplementary material available at 10.1186/s12974-022-02516-9.
Collapse
Affiliation(s)
- Biao Gong
- Laboratory of Molecular Neuropathology, Pediatric Cancer Center, College of Pharmaceutical Sciences, Soochow University, Suzhou, China
| | - Duancheng Guo
- Laboratory of Molecular Neuropathology, Pediatric Cancer Center, College of Pharmaceutical Sciences, Soochow University, Suzhou, China
| | - Chaonan Zheng
- Laboratory of Molecular Neuropathology, Pediatric Cancer Center, College of Pharmaceutical Sciences, Soochow University, Suzhou, China
| | - Zhen Ma
- Laboratory of Molecular Neuropathology, Pediatric Cancer Center, College of Pharmaceutical Sciences, Soochow University, Suzhou, China
| | - Jie Zhang
- Laboratory of Molecular Neuropathology, Pediatric Cancer Center, College of Pharmaceutical Sciences, Soochow University, Suzhou, China
| | - Yanghui Qu
- Laboratory of Molecular Neuropathology, Pediatric Cancer Center, College of Pharmaceutical Sciences, Soochow University, Suzhou, China
| | - Xinhua Li
- Laboratory of Molecular Neuropathology, Pediatric Cancer Center, College of Pharmaceutical Sciences, Soochow University, Suzhou, China
| | - Gen Li
- Laboratory of Molecular Neuropathology, Pediatric Cancer Center, College of Pharmaceutical Sciences, Soochow University, Suzhou, China
| | - Li Zhang
- Laboratory of Molecular Neuropathology, Pediatric Cancer Center, College of Pharmaceutical Sciences, Soochow University, Suzhou, China.
| | - Yuan Wang
- Laboratory of Molecular Neuropathology, Pediatric Cancer Center, College of Pharmaceutical Sciences, Soochow University, Suzhou, China.
| |
Collapse
|
6
|
Hedgehog Signaling Pathway Orchestrates Human Lung Branching Morphogenesis. Int J Mol Sci 2022; 23:ijms23095265. [PMID: 35563656 PMCID: PMC9100880 DOI: 10.3390/ijms23095265] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Revised: 05/03/2022] [Accepted: 05/05/2022] [Indexed: 01/05/2023] Open
Abstract
The Hedgehog (HH) signaling pathway plays an essential role in mouse lung development. We hypothesize that the HH pathway is necessary for branching during human lung development and is impaired in pulmonary hypoplasia. Single-cell, bulk RNA-sequencing data, and human fetal lung tissues were analyzed to determine the spatiotemporal localization of HH pathway actors. Distal human lung segments were cultured in an air-liquid interface and treated with an SHH inhibitor (5E1) to determine the effect of HH inhibition on human lung branching, epithelial-mesenchymal markers, and associated signaling pathways in vitro. Our results showed an early and regulated expression of HH pathway components during human lung development. Inhibiting HH signaling caused a reduction in branching during development and dysregulated epithelial (SOX2, SOX9) and mesenchymal (ACTA2) progenitor markers. FGF and Wnt pathways were also disrupted upon HH inhibition. Finally, we demonstrated that HH signaling elements were downregulated in lung tissues of patients with a congenital diaphragmatic hernia (CDH). In this study, we show for the first time that HH signaling inhibition alters important genes and proteins required for proper branching of the human developing lung. Understanding the role of the HH pathway on human lung development could lead to the identification of novel therapeutic targets for childhood pulmonary diseases.
Collapse
|
7
|
Nam A, Song WJ, An JH, Rebhun RB, Youn HY, Seo KW. Expression of the hedgehog signaling pathway and the effect of inhibition at the level of Smoothened in canine osteosarcoma cell lines. Vet Comp Oncol 2022; 20:778-787. [PMID: 35521940 DOI: 10.1111/vco.12828] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2022] [Revised: 04/12/2022] [Accepted: 05/03/2022] [Indexed: 11/27/2022]
Abstract
Osteosarcoma (OSA) is the most common malignant bone cancer in dogs. Canine and human OSA share several features, including tumor environments, response to traditional treatment, and several molecular pathways. Hedgehog (Hh) signaling is known to contribute to tumorigenesis and progression of various cancers, including human OSA. This study aimed to identify the role of the Hh signaling pathway in canine OSA cell lines, including Abrams, D17, and Moresco, focusing on the signal transducer Smoothened (SMO). mRNA and protein levels of Hh pathway components, including SHH, IHH, SMO, and PTCH1, were aberrant in all examined OSA cell lines compared with canine osteoblast cells. The SMO inhibitor cyclopamine significantly decreased cell viability and colony-forming ability in the canine OSA cell lines in a dose-dependent manner. Moresco cells, which expressed the highest level of SMO protein, were the most sensitive to the anticancer effect of cyclopamine among the three canine OSA cell lines tested. Hh downstream target gene and protein expression in canine OSA cell lines were downregulated after cyclopamine treatment. In addition, cyclopamine significantly increased apoptotic cell death in Abrams and Moresco cells. The findings that Hh/SMO is activated in canine OSA cell lines and cyclopamine suppresses OSA cell survival via inhibition of SMO suggest that the Hh/SMO signaling pathway might be a novel therapeutic target for canine OSA. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Aryung Nam
- Department of Veterinary Internal Medicine, Konkuk University Veterinary Medical Teaching Hospital, Seoul, South Korea
| | - Woo-Jin Song
- Department of Veterinary Internal Medicine, College of Veterinary Medicine and Research Institute of Veterinary Science, Jeju National University, Jeju, South Korea
| | - Ju-Hyun An
- Laboratory of Veterinary Internal Medicine, College of Veterinary Medicine, Seoul National University, Seoul, South Korea
| | - Robert B Rebhun
- Department of Surgical and Radiological Sciences, University of California Davis, School of Veterinary Medicine, Davis, California, United States of America
| | - Hwa-Young Youn
- Laboratory of Veterinary Internal Medicine, College of Veterinary Medicine, Seoul National University, Seoul, South Korea
| | - Kyoung-Won Seo
- Laboratory of Veterinary Internal Medicine, College of Veterinary Medicine, Seoul National University, Seoul, South Korea
| |
Collapse
|
8
|
Nguyen MP, Seo K, Eaton CD, Lucas CHG, Chen WC, Choudhury A, Young JS, Raleigh DR. A case (report) for mechanistic validation of meningioma molecular therapies. Neurooncol Adv 2022; 4:vdac162. [PMCID: PMC9639353 DOI: 10.1093/noajnl/vdac162] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Affiliation(s)
- Minh P Nguyen
- Department of Radiation Oncology, University of California San Francisco , San Francisco, California , USA
- Department of Neurological Surgery, University of California San Francisco , San Francisco, California , USA
| | - Kyounghee Seo
- Department of Radiation Oncology, University of California San Francisco , San Francisco, California , USA
- Department of Neurological Surgery, University of California San Francisco , San Francisco, California , USA
| | - Charlotte D Eaton
- Department of Radiation Oncology, University of California San Francisco , San Francisco, California , USA
- Department of Neurological Surgery, University of California San Francisco , San Francisco, California , USA
| | - Calixto-Hope G Lucas
- Department of Radiation Oncology, University of California San Francisco , San Francisco, California , USA
- Department of Neurological Surgery, University of California San Francisco , San Francisco, California , USA
- Department of Pathology, University of California San Francisco , San Francisco, California , USA
| | - William C Chen
- Department of Radiation Oncology, University of California San Francisco , San Francisco, California , USA
- Department of Neurological Surgery, University of California San Francisco , San Francisco, California , USA
| | - Abrar Choudhury
- Department of Radiation Oncology, University of California San Francisco , San Francisco, California , USA
- Department of Neurological Surgery, University of California San Francisco , San Francisco, California , USA
| | - Jacob S Young
- Department of Radiation Oncology, University of California San Francisco , San Francisco, California , USA
- Department of Neurological Surgery, University of California San Francisco , San Francisco, California , USA
| | - David R Raleigh
- Department of Radiation Oncology, University of California San Francisco , San Francisco, California , USA
- Department of Neurological Surgery, University of California San Francisco , San Francisco, California , USA
| |
Collapse
|
9
|
Sun J, Lin W, Li C, Ueki H, Xue R, Sadahira T, Hu H, Wada K, Li N, Liu C, Araki M, Xu A, Huang P. Repurposing of posaconazole as a hedgehog/SMO signaling inhibitor for embryonal rhabdomyosarcoma therapy. Am J Cancer Res 2021; 11:4528-4540. [PMID: 34659903 PMCID: PMC8493378] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2021] [Accepted: 07/16/2021] [Indexed: 06/13/2023] Open
Abstract
Posaconazole (POS) is a novel antifungal agent, which has been repurposed as an anti-tumor drug for its potential inhibition of Hedgehog signaling pathway. Hedgehog pathway is reported to be abnormally activated in embryonal rhabdomyosarcoma (ERMS), this study aimed to reveal whether POS could inhibit Hedgehog signaling pathway in ERMS. Following POS treatment, XTT viability assay was used to determine the cell proliferation of ERMS cell lines. Protein changes related to Hedgehog signaling, cell cycle and autophagy were detected by Western blot. The cell cycle distribution was analyzed by flow cytometry. Moreover, a subcutaneous tumor mouse model of ERMS was established to assess the anti-tumor effect of POS. POS was found to inhibit tumor progression by inducing G0/G1 arrest and autophagy of RD, RMS-YM, and KYM-1 cells dose-dependently. Western blot demonstrated that POS downregulated the expressions of SMO, Gli1, c-Myc, CDK4, and CDK6, while upregulated the expressions of autophagy-related proteins. Immunofluorescence microscopy revealed a significant increase of LC3B puncta in POS-treated ERMS cells. Furthermore, POS treatment led to a significant inhibition of tumor growth in mice bearing ERMS. Our findings could provide a theoretical basis and have important clinical implications in developing POS as a promising agent against ERMS by targeting Hedgehog pathway.
Collapse
Affiliation(s)
- Jingkai Sun
- Department of Urology, Zhujiang Hospital, Southern Medical UniversityGuangzhou, China
- Department of Urology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical SciencesOkayama, Japan
| | - Wenfeng Lin
- Department of Urology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical SciencesOkayama, Japan
| | - Chaoming Li
- Department of Urology, Zhujiang Hospital, Southern Medical UniversityGuangzhou, China
- Department of Urology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical SciencesOkayama, Japan
| | - Hideo Ueki
- Department of Urology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical SciencesOkayama, Japan
| | - Ruizhi Xue
- Department of Urology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical SciencesOkayama, Japan
| | - Takuya Sadahira
- Department of Urology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical SciencesOkayama, Japan
| | - Hao Hu
- Laboratory of Medical Systems Biology, Guangzhou Women and Children’s Medical Center, Guangzhou Medical UniversityGuangzhou, China
| | - Koichiro Wada
- Department of Urology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical SciencesOkayama, Japan
| | - Na Li
- Laboratory of Medical Systems Biology, Guangzhou Women and Children’s Medical Center, Guangzhou Medical UniversityGuangzhou, China
| | - Chunxiao Liu
- Department of Urology, Zhujiang Hospital, Southern Medical UniversityGuangzhou, China
| | - Motoo Araki
- Department of Urology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical SciencesOkayama, Japan
| | - Abai Xu
- Department of Urology, Zhujiang Hospital, Southern Medical UniversityGuangzhou, China
| | - Peng Huang
- Department of Urology, Zhujiang Hospital, Southern Medical UniversityGuangzhou, China
- Department of Urology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical SciencesOkayama, Japan
- Okayama Medical Innovation Center, Okayama UniversityOkayama, Japan
| |
Collapse
|
10
|
Alzhrani R, Alsaab HO, Vanamal K, Bhise K, Tatiparti K, Barari A, Sau S, Iyer AK. Overcoming the Tumor Microenvironmental Barriers of Pancreatic Ductal Adenocarcinomas for Achieving Better Treatment Outcomes. ADVANCED THERAPEUTICS 2021; 4:2000262. [PMID: 34212073 PMCID: PMC8240487 DOI: 10.1002/adtp.202000262] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2020] [Indexed: 02/06/2023]
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is a highly aggressive disease with the lowest survival rate among all solid tumors. The lethality of PDAC arises from late detection and propensity of the tumor to metastasize and develop resistance against chemo and radiation therapy. A highly complex tumor microenvironment composed of dense stroma, immune cells, fibroblast, and disorganized blood vessels, is the main obstacle to current PDAC therapy. Despite the tremendous success of immune checkpoint inhibitors (ICIs) in cancers, PDAC remains one of the poorest responders of ICIs therapy. The immunologically "cold" phenotype of PDAC is attributed to the low mutational burden, high infiltration of myeloid-derived suppressor cells and T-regs, contributing to a significant immunotherapy resistance mechanism. Thus, the development of innovative strategies for turning immunologically "cold" tumor into "hot" ones is an unmet need to improve the outcome of PDAC ICIs therapies. Other smart strategies, such as nanomedicines, sonic Hedgehog inhibitor, or smoothened inhibitor, are discussed to enhance chemotherapeutic agents' efficiency by disrupting the PDAC stroma. This review highlights the current challenges and various preclinical and clinical strategies to overcome current PDAC therapy difficulties, thus significantly advancing PDAC research knowledge.
Collapse
Affiliation(s)
- Rami Alzhrani
- Use-Inspired Biomaterials and Integrated Nano Delivery Systems Laboratory, Department of Pharmaceutical Sciences, Eugene Applebaum College of Pharmacy and Health Sciences, Wayne State University, Detroit 48201, United States
- Department of Pharmaceutics and Pharmaceutical Technology, College of Pharmacy, Taif University, Taif 21944, Saudi Arabia
| | - Hashem O. Alsaab
- Department of Pharmaceutics and Pharmaceutical Technology, College of Pharmacy, Taif University, Taif 21944, Saudi Arabia
| | - Kushal Vanamal
- Use-Inspired Biomaterials and Integrated Nano Delivery Systems Laboratory, Department of Pharmaceutical Sciences, Eugene Applebaum College of Pharmacy and Health Sciences, Wayne State University, Detroit 48201, United States
| | - Ketki Bhise
- Use-Inspired Biomaterials and Integrated Nano Delivery Systems Laboratory, Department of Pharmaceutical Sciences, Eugene Applebaum College of Pharmacy and Health Sciences, Wayne State University, Detroit 48201, United States
| | - Katyayani Tatiparti
- Use-Inspired Biomaterials and Integrated Nano Delivery Systems Laboratory, Department of Pharmaceutical Sciences, Eugene Applebaum College of Pharmacy and Health Sciences, Wayne State University, Detroit 48201, United States
| | - Ayatakshi Barari
- Use-Inspired Biomaterials and Integrated Nano Delivery Systems Laboratory, Department of Pharmaceutical Sciences, Eugene Applebaum College of Pharmacy and Health Sciences, Wayne State University, Detroit 48201, United States
| | - Samaresh Sau
- Use-Inspired Biomaterials and Integrated Nano Delivery Systems Laboratory, Department of Pharmaceutical Sciences, Eugene Applebaum College of Pharmacy and Health Sciences, Wayne State University, Detroit 48201, United States
| | - Arun K. Iyer
- Use-Inspired Biomaterials and Integrated Nano Delivery Systems Laboratory, Department of Pharmaceutical Sciences, Eugene Applebaum College of Pharmacy and Health Sciences, Wayne State University, Detroit 48201, United States
- Molecular Therapeutics Program, Barbara Ann Karmanos Cancer Institute, Wayne State University, School of Medicine, Detroit, MI, United States
| |
Collapse
|
11
|
Alves ALV, Gomes INF, Carloni AC, Rosa MN, da Silva LS, Evangelista AF, Reis RM, Silva VAO. Role of glioblastoma stem cells in cancer therapeutic resistance: a perspective on antineoplastic agents from natural sources and chemical derivatives. Stem Cell Res Ther 2021; 12:206. [PMID: 33762015 PMCID: PMC7992331 DOI: 10.1186/s13287-021-02231-x] [Citation(s) in RCA: 92] [Impact Index Per Article: 30.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2020] [Accepted: 02/15/2021] [Indexed: 12/21/2022] Open
Abstract
Glioblastoma (GBM) is the highest-grade form of glioma, as well as one of the most aggressive types of cancer, exhibiting rapid cellular growth and highly invasive behavior. Despite significant advances in diagnosis and therapy in recent decades, the outcomes for high-grade gliomas (WHO grades III-IV) remain unfavorable, with a median overall survival time of 15–18 months. The concept of cancer stem cells (CSCs) has emerged and provided new insight into GBM resistance and management. CSCs can self-renew and initiate tumor growth and are also responsible for tumor cell heterogeneity and the induction of systemic immunosuppression. The idea that GBM resistance could be dependent on innate differences in the sensitivity of clonogenic glial stem cells (GSCs) to chemotherapeutic drugs/radiation prompted the scientific community to rethink the understanding of GBM growth and therapies directed at eliminating these cells or modulating their stemness. This review aims to describe major intrinsic and extrinsic mechanisms that mediate chemoradioresistant GSCs and therapies based on antineoplastic agents from natural sources, derivatives, and synthetics used alone or in synergistic combination with conventional treatment. We will also address ongoing clinical trials focused on these promising targets. Although the development of effective therapy for GBM remains a major challenge in molecular oncology, GSC knowledge can offer new directions for a promising future.
Collapse
Affiliation(s)
- Ana Laura V Alves
- Molecular Oncology Research Center, Barretos Cancer Hospital, Rua Antenor Duarte Villela, 1331, CEP 14784 400, Barretos, São Paulo, Brazil
| | - Izabela N F Gomes
- Molecular Oncology Research Center, Barretos Cancer Hospital, Rua Antenor Duarte Villela, 1331, CEP 14784 400, Barretos, São Paulo, Brazil
| | - Adriana C Carloni
- Molecular Oncology Research Center, Barretos Cancer Hospital, Rua Antenor Duarte Villela, 1331, CEP 14784 400, Barretos, São Paulo, Brazil
| | - Marcela N Rosa
- Molecular Oncology Research Center, Barretos Cancer Hospital, Rua Antenor Duarte Villela, 1331, CEP 14784 400, Barretos, São Paulo, Brazil
| | - Luciane S da Silva
- Molecular Oncology Research Center, Barretos Cancer Hospital, Rua Antenor Duarte Villela, 1331, CEP 14784 400, Barretos, São Paulo, Brazil
| | - Adriane F Evangelista
- Molecular Oncology Research Center, Barretos Cancer Hospital, Rua Antenor Duarte Villela, 1331, CEP 14784 400, Barretos, São Paulo, Brazil
| | - Rui Manuel Reis
- Molecular Oncology Research Center, Barretos Cancer Hospital, Rua Antenor Duarte Villela, 1331, CEP 14784 400, Barretos, São Paulo, Brazil.,Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, 4710-057, Braga, Portugal.,ICVS/3B's PT Government Associate Laboratory, 4806-909, Braga, Portugal
| | - Viviane Aline O Silva
- Molecular Oncology Research Center, Barretos Cancer Hospital, Rua Antenor Duarte Villela, 1331, CEP 14784 400, Barretos, São Paulo, Brazil.
| |
Collapse
|
12
|
Hedgehog Signaling Modulates Glial Proteostasis and Lifespan. Cell Rep 2021; 30:2627-2643.e5. [PMID: 32101741 DOI: 10.1016/j.celrep.2020.02.006] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2019] [Revised: 11/11/2019] [Accepted: 01/31/2020] [Indexed: 12/18/2022] Open
Abstract
The conserved Hedgehog signaling pathway has well-established roles in development. However, its function during adulthood remains largely unknown. Here, we investigated whether the Hedgehog signaling pathway is active during adult life in Drosophila melanogaster, and we uncovered a protective function for Hedgehog signaling in coordinating correct proteostasis in glial cells. Adult-specific depletion of Hedgehog reduces lifespan, locomotor activity, and dopaminergic neuron integrity. Conversely, increased expression of Hedgehog extends lifespan and improves fitness. Moreover, Hedgehog pathway activation in glia rescues the lifespan and age-associated defects of hedgehog mutants. The Hedgehog pathway regulates downstream chaperones, whose overexpression in glial cells was sufficient to rescue the shortened lifespan and proteostasis defects of hedgehog mutants. Finally, we demonstrate the protective ability of Hedgehog signaling in a Drosophila Alzheimer's disease model expressing human amyloid beta in the glia. Overall, we propose that Hedgehog signaling is requisite for lifespan determination and correct proteostasis in glial cells.
Collapse
|
13
|
Statins repress hedgehog signaling in medulloblastoma with no bone toxicities. Oncogene 2021; 40:2258-2272. [PMID: 33649536 DOI: 10.1038/s41388-021-01701-z] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2020] [Revised: 01/30/2021] [Accepted: 02/05/2021] [Indexed: 02/06/2023]
Abstract
The Hedgehog (Hh) pathway plays an indispensable role in bone development and genetic activation of the pathway results in medulloblastoma (MB), the most common malignant brain tumor in children. Inhibitors of Hh pathway (such as vismodegib and sonedigib), which are used to treat MB, cause irreversible defects in bone growth in young children. Cholesterol is required for the activation of the Hh pathway, and statins, inhibitors of cholesterol biosynthesis, suppress MB growth by repressing Hh signaling in tumor cells. Here, we investigate the role of cholesterol biosynthesis in the proliferation and Hh signaling in chondrocytes, and examine the bone development in mice after statin treatment. Statins significantly inhibited MB growth in young mice, but caused no defects in bone development. Conditional deletion of NADP steroid dehydrogenase-like (NSDHL), an enzyme necessary for cholesterol biosynthesis, suppressed cholesterol synthesis in chondrocytes, and disrupted the growth plate in mouse femur and tibia, indicating the important function of intracellular cholesterol in bone development. Hh pathway activation and the proliferation of chondrocytes were inhibited by statin treatment in vitro; however, statins did not impair bone growth in vivo due to insufficient penetration into the bone. Our studies reveal a critical role of cholesterol in bone development, and support the utilization of statins for treatment of MB as well as other Hh pathway-associated malignancies.
Collapse
|
14
|
Sustained hedgehog signaling in medulloblastoma tumoroids is attributed to stromal astrocytes and astrocyte-derived extracellular matrix. J Transl Med 2020; 100:1208-1222. [PMID: 32457352 PMCID: PMC7442735 DOI: 10.1038/s41374-020-0443-2] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2019] [Revised: 05/08/2020] [Accepted: 05/10/2020] [Indexed: 12/13/2022] Open
Abstract
Aberrant activation of the hedgehog (Hh) signaling pathway is associated with the formation of medulloblastoma (MB), the most common malignant pediatric brain tumor. However, tumor cells from human and mouse MB can not be passaged or preserved after being adherently cultured. Moreover, Hh signaling in MB cells is inactivated in such culture. Here we demonstrate that MB cells are capable of forming tumoroids (tumor spheroids) in vitro under optimized conditions, which can be further passaged and cryopreserved. More importantly, MB cells maintain Hh pathway activation and cell proliferation in tumoroids. Our studies further reveal that tumoroids-forming capacity of MB cells relies on astrocytes, a major component of the MB microenvironment. Astrocytes facilitate the formation of MB tumoroids by secreting sonic hedgehog (Shh) and generating astrocyte-derived extracellular matrix. These findings demonstrate the critical role of stromal astrocytes in supporting the survival and proliferation of MB cells in vitro. This study establishes a valid model for long-term culture of primary MB cells, which could be greatly beneficial for future investigation of MB tumorigenicity and the development of improved approaches to treat MB.
Collapse
|
15
|
Findakly S, Choudhury A, Daggubati V, Pekmezci M, Lang UE, Raleigh DR. Meningioma cells express primary cilia but do not transduce ciliary Hedgehog signals. Acta Neuropathol Commun 2020; 8:114. [PMID: 32690089 PMCID: PMC7370519 DOI: 10.1186/s40478-020-00994-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2020] [Accepted: 07/09/2020] [Indexed: 11/24/2022] Open
Abstract
Meningiomas are the most common primary intracranial tumors, but treatment options for meningioma patients are limited due to incomplete understanding of tumor biology. A small percentage of meningiomas harbor somatic variants in the Hedgehog pathway, a conserved gene expression program that is essential for development and adult stem cell homeostasis. Hedgehog signals are transduced through primary cilia, and misactivation of the Hedgehog pathway is known to underlie cancer. Nevertheless, the mechanisms of Hedgehog signaling in meningioma are unknown. Here, we investigate mechanisms of ciliary Hedgehog signaling in meningioma using tissue microarrays containing 154 human meningioma samples, NanoString transcriptional profiling, primary meningioma cells, pharmacology, and CRISPR interference. Our results reveal that meningiomas of all grades can express primary cilia, but that cilia are less prevalent among anaplastic tumors. Moreover, we find that expression of Smoothened alleles that are oncogenic in other contexts fail to activate the Hedgehog transcriptional program or promote proliferation in primary meningioma cells. These data reveal that meningiomas can express the subcellular structure necessary for canonical Hedgehog signaling, but suggest that they do not transduce ciliary Hedgehog signals.
Collapse
|
16
|
Wyatt TD. Reproducible research into human chemical communication by cues and pheromones: learning from psychology's renaissance. Philos Trans R Soc Lond B Biol Sci 2020; 375:20190262. [PMID: 32306877 PMCID: PMC7209928 DOI: 10.1098/rstb.2019.0262] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/16/2020] [Indexed: 12/27/2022] Open
Abstract
Despite the lack of evidence that the 'putative human pheromones' androstadienone and estratetraenol ever were pheromones, almost 60 studies have claimed 'significant' results. These are quite possibly false positives and can be best seen as potential examples of the 'reproducibility crisis', sadly common in the rest of the life and biomedical sciences, which has many instances of whole fields based on false positives. Experiments on the effects of olfactory cues on human behaviour are also at risk of false positives because they look for subtle effects but use small sample sizes. Research on human chemical communication, much of it falling within psychology, would benefit from vigorously adopting the proposals made by psychologists to enable better, more reliable science, with an emphasis on enhancing reproducibility. A key change is the adoption of study pre-registration and/or Registered Reports which will also reduce publication bias. As we are mammals, and chemical communication is important to other mammals, it is likely that chemical cues are important in our behaviour and that humans may have pheromones, but new approaches will be needed to reliably demonstrate them. This article is part of the Theo Murphy meeting issue 'Olfactory communication in humans'.
Collapse
Affiliation(s)
- Tristram D Wyatt
- Department of Zoology, University of Oxford, South Parks Road, Oxford OX1 3PS, UK
- Centre for Biodiversity and Environment Research, University College London, Gower Street, London WC1E 6BT, UK
| |
Collapse
|
17
|
Grund-Gröschke S, Stockmaier G, Aberger F. Hedgehog/GLI signaling in tumor immunity - new therapeutic opportunities and clinical implications. Cell Commun Signal 2019; 17:172. [PMID: 31878932 PMCID: PMC6933925 DOI: 10.1186/s12964-019-0459-7] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2019] [Accepted: 10/10/2019] [Indexed: 12/13/2022] Open
Abstract
Uncontrolled activation of the Hedgehog/Glioma-associated oncogene (HH/GLI) pathway is a potent oncogenic driver signal promoting numerous cancer hallmarks such as proliferation, survival, angiogenesis, metastasis and metabolic rewiring. Several HH pathway inhibitors have already been approved for medical therapy of advanced and metastatic basal cell carcinoma and acute myeloid leukemia with partially impressive therapeutic activity. However, de novo and acquired resistance as well as severe side effects and unexplained lack of therapeutic efficacy are major challenges that urgently call for improved treatment options with more durable responses. The recent breakthroughs in cancer immunotherapy have changed our current understanding of targeted therapy and opened up promising therapeutic opportunities including combinations of selective cancer pathway and immune checkpoint inhibitors. Although HH/GLI signaling has been intensely studied with respect to the classical hallmarks of cancer, its role in the modulation of the anti-tumoral immune response has only become evident in recent studies. These have uncovered HH/GLI regulated immunosuppressive mechanisms such as enhanced regulatory T-cell formation and production of immunosuppressive cytokines. In light of these exciting novel data on oncogenic HH/GLI signaling in immune cross-talk and modulation, we summarize and connect in this review the existing knowledge from different HH-related cancers and chronic inflammatory diseases. This is to provide a basis for the investigation and evaluation of novel treatments combining immunotherapeutic strategies with approved as well as next-generation HH/GLI inhibitors. Further, we also critically discuss recent studies demonstrating a possible negative impact of current HH/GLI pathway inhibitors on the anti-tumoral immune response, which may explain some of the disappointing results of several oncological trials with anti-HH drugs. Video abstract. (9500 kb)
Collapse
Affiliation(s)
- Sandra Grund-Gröschke
- Department of Biosciences, Cancer Cluster Salzburg, University of Salzburg, Hellbrunner Strasse, 34, 5020, Salzburg, Austria
| | - Georg Stockmaier
- Department of Biosciences, Cancer Cluster Salzburg, University of Salzburg, Hellbrunner Strasse, 34, 5020, Salzburg, Austria
| | - Fritz Aberger
- Department of Biosciences, Cancer Cluster Salzburg, University of Salzburg, Hellbrunner Strasse, 34, 5020, Salzburg, Austria.
| |
Collapse
|
18
|
Zeiss CJ, Shin D, Vander Wyk B, Beck AP, Zatz N, Sneiderman CA, Kilicoglu H. Menagerie: A text-mining tool to support animal-human translation in neurodegeneration research. PLoS One 2019; 14:e0226176. [PMID: 31846471 PMCID: PMC6917268 DOI: 10.1371/journal.pone.0226176] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2019] [Accepted: 11/19/2019] [Indexed: 02/06/2023] Open
Abstract
Discovery studies in animals constitute a cornerstone of biomedical research, but suffer from lack of generalizability to human populations. We propose that large-scale interrogation of these data could reveal patterns of animal use that could narrow the translational divide. We describe a text-mining approach that extracts translationally useful data from PubMed abstracts. These comprise six modules: species, model, genes, interventions/disease modifiers, overall outcome and functional outcome measures. Existing National Library of Medicine natural language processing tools (SemRep, GNormPlus and the Chemical annotator) underpin the program and are further augmented by various rules, term lists, and machine learning models. Evaluation of the program using a 98-abstract test set achieved F1 scores ranging from 0.75-0.95 across all modules, and exceeded F1 scores obtained from comparable baseline programs. Next, the program was applied to a larger 14,481 abstract data set (2008-2017). Expected and previously identified patterns of species and model use for the field were obtained. As previously noted, the majority of studies reported promising outcomes. Longitudinal patterns of intervention type or gene mentions were demonstrated, and patterns of animal model use characteristic of the Parkinson's disease field were confirmed. The primary function of the program is to overcome low external validity of animal model systems by aggregating evidence across a diversity of models that capture different aspects of a multifaceted cellular process. Some aspects of the tool are generalizable, whereas others are field-specific. In the initial version presented here, we demonstrate proof of concept within a single disease area, Parkinson's disease. However, the program can be expanded in modular fashion to support a wider range of neurodegenerative diseases.
Collapse
Affiliation(s)
- Caroline J. Zeiss
- Department of Comparative Medicine, Yale School of Medicine, New Haven, Connecticut, United States of America
- * E-mail:
| | - Dongwook Shin
- Lister Hill National Center for Biomedical Communications, National Library of Medicine, Bethesda, Maryland, United States of America
| | - Brent Vander Wyk
- Department of Internal Medicine, Yale School of Medicine, New Haven, Connecticut, United States of America
| | - Amanda P. Beck
- Department of Pathology, Albert Einstein College of Medicine, New York, United States of America
| | - Natalie Zatz
- Department of Ecology and Evolutionary Biology, Yale University, New Haven, Connecticut, United States of America
| | - Charles A. Sneiderman
- Lister Hill National Center for Biomedical Communications, National Library of Medicine, Bethesda, Maryland, United States of America
| | - Halil Kilicoglu
- Lister Hill National Center for Biomedical Communications, National Library of Medicine, Bethesda, Maryland, United States of America
| |
Collapse
|
19
|
Felley-Bosco E. Hedgehog Signaling in Mesothelioma: 2019 Status. Front Genet 2019; 10:1121. [PMID: 31788004 PMCID: PMC6854028 DOI: 10.3389/fgene.2019.01121] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2019] [Accepted: 10/16/2019] [Indexed: 12/21/2022] Open
Affiliation(s)
- Emanuela Felley-Bosco
- Laboratory of Molecular Oncology, Division of Thoracic Surgery, University Hospital Zurich, Zurich, Switzerland
| |
Collapse
|
20
|
Konings K, Vandevoorde C, Belmans N, Vermeesen R, Baselet B, Walleghem MV, Janssen A, Isebaert S, Baatout S, Haustermans K, Moreels M. The Combination of Particle Irradiation With the Hedgehog Inhibitor GANT61 Differently Modulates the Radiosensitivity and Migration of Cancer Cells Compared to X-Ray Irradiation. Front Oncol 2019; 9:391. [PMID: 31139573 PMCID: PMC6527843 DOI: 10.3389/fonc.2019.00391] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2018] [Accepted: 04/26/2019] [Indexed: 12/13/2022] Open
Abstract
Due to the advantages of charged particles compared to conventional radiotherapy, a vast increase is noted in the use of particle therapy in the clinic. These advantages include an improved dose deposition and increased biological effectiveness. Metastasis is still an important cause of mortality in cancer patients and evidence has shown that conventional radiotherapy can increase the formation of metastasizing cells. An important pathway involved in the process of metastasis is the Hedgehog (Hh) signaling pathway. Recent studies have demonstrated that activation of the Hh pathway, in response to X-rays, can lead to radioresistance and increased migratory, and invasive capabilities of cancer cells. Here, we investigated the effect of X-rays, protons, and carbon ions on cell survival, migration, and Hh pathway gene expression in prostate cancer (PC3) and medulloblastoma (DAOY) cell lines. In addition, the potential modulation of cell survival and migration by the Hh pathway inhibitor GANT61 was investigated. We found that in both cell lines, carbon ions were more effective in decreasing cell survival and migration as well as inducing more significant alterations in the Hh pathway genes compared to X-rays or protons. In addition, we show here for the first time that the Hh inhibitor GANT61 is able to sensitize DAOY medulloblastoma cells to particle radiation (proton and carbon ion) but not to conventional X-rays. This important finding demonstrates that the results of combination treatment strategies with X-ray radiotherapy cannot be automatically extrapolated to particle therapy and should be investigated separately. In conclusion, combining GANT61 with particle radiation could offer a benefit for specific cancer types with regard to cancer cell survival.
Collapse
Affiliation(s)
- Katrien Konings
- Radiobiology Unit, Belgian Nuclear Research Center (SCK•CEN), Institute for Environment, Health and Safety, Mol, Belgium.,Laboratory of Experimental Radiotherapy, Department of Oncology, KU Leuven, Leuven, Belgium
| | | | - Niels Belmans
- Radiobiology Unit, Belgian Nuclear Research Center (SCK•CEN), Institute for Environment, Health and Safety, Mol, Belgium.,Laboratory of Morphology, Biomedical Research Institute (BIOMED), Hasselt University, Diepenbeek, Belgium
| | - Randy Vermeesen
- Radiobiology Unit, Belgian Nuclear Research Center (SCK•CEN), Institute for Environment, Health and Safety, Mol, Belgium
| | - Bjorn Baselet
- Radiobiology Unit, Belgian Nuclear Research Center (SCK•CEN), Institute for Environment, Health and Safety, Mol, Belgium
| | - Merel Van Walleghem
- Radiobiology Unit, Belgian Nuclear Research Center (SCK•CEN), Institute for Environment, Health and Safety, Mol, Belgium
| | - Ann Janssen
- Radiobiology Unit, Belgian Nuclear Research Center (SCK•CEN), Institute for Environment, Health and Safety, Mol, Belgium
| | - Sofie Isebaert
- Laboratory of Experimental Radiotherapy, Department of Oncology, KU Leuven, Leuven, Belgium.,Department of Radiation Oncology, University Hospitals Leuven, Leuven, Belgium
| | - Sarah Baatout
- Radiobiology Unit, Belgian Nuclear Research Center (SCK•CEN), Institute for Environment, Health and Safety, Mol, Belgium
| | - Karin Haustermans
- Laboratory of Experimental Radiotherapy, Department of Oncology, KU Leuven, Leuven, Belgium.,Department of Radiation Oncology, University Hospitals Leuven, Leuven, Belgium
| | - Marjan Moreels
- Radiobiology Unit, Belgian Nuclear Research Center (SCK•CEN), Institute for Environment, Health and Safety, Mol, Belgium
| |
Collapse
|
21
|
Genomic testing, tumor microenvironment and targeted therapy of Hedgehog-related human cancers. Clin Sci (Lond) 2019; 133:953-970. [PMID: 31036756 DOI: 10.1042/cs20180845] [Citation(s) in RCA: 73] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2019] [Revised: 03/24/2019] [Accepted: 04/11/2019] [Indexed: 12/12/2022]
Abstract
Hedgehog signals are transduced through Patched receptors to the Smoothened (SMO)-SUFU-GLI and SMO-Gi-RhoA signaling cascades. MTOR-S6K1 and MEK-ERK signals are also transduced to GLI activators through post-translational modifications. The GLI transcription network up-regulates target genes, such as BCL2, FOXA2, FOXE1, FOXF1, FOXL1, FOXM1, GLI1, HHIP, PTCH1 and WNT2B, in a cellular context-dependent manner. Aberrant Hedgehog signaling in tumor cells leads to self-renewal, survival, proliferation and invasion. Paracrine Hedgehog signaling in the tumor microenvironment (TME), which harbors cancer-associated fibroblasts, leads to angiogenesis, fibrosis, immune evasion and neuropathic pain. Hedgehog-related genetic alterations occur frequently in basal cell carcinoma (BCC) (85%) and Sonic Hedgehog (SHH)-subgroup medulloblastoma (87%) and less frequently in breast cancer, colorectal cancer, gastric cancer, pancreatic cancer, non-small-cell lung cancer (NSCLC) and ovarian cancer. Among investigational SMO inhibitors, vismodegib and sonidegib are approved for the treatment of patients with BCC, and glasdegib is approved for the treatment of patients with acute myeloid leukemia (AML). Resistance to SMO inhibitors is caused by acquired SMO mutations, SUFU deletions, GLI2 amplification, other by-passing mechanisms of GLI activation and WNT/β-catenin signaling activation. GLI-DNA-interaction inhibitors (glabrescione B and GANT61), GLI2 destabilizers (arsenic trioxide and pirfenidone) and a GLI-deacetylation inhibitor (4SC-202) were shown to block GLI-dependent transcription and tumorigenesis in preclinical studies. By contrast, SMO inhibitors can remodel the immunosuppressive TME that is dominated by M2-like tumor-associated macrophages (M2-TAMs), myeloid-derived suppressor cells and regulatory T cells, and thus, a Phase I/II clinical trial of the immune checkpoint inhibitor pembrolizumab with or without vismodegib in BCC patients is ongoing.
Collapse
|
22
|
Galperin I, Dempwolff L, Diederich WE, Lauth M. Inhibiting Hedgehog: An Update on Pharmacological Compounds and Targeting Strategies. J Med Chem 2019; 62:8392-8411. [DOI: 10.1021/acs.jmedchem.9b00188] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Ilya Galperin
- Center for Tumor and Immune Biology (ZTI), Philipps University Marburg, Hans-Meerwein-Straße 3, 35043 Marburg, Germany
| | - Lukas Dempwolff
- School of Pharmacy, Center for Tumor and Immune Biology (ZTI), Philipps University Marburg, Hans-Meerwein-Straße 3, 35043 Marburg, Germany
| | - Wibke E. Diederich
- School of Pharmacy, Center for Tumor and Immune Biology (ZTI), Philipps University Marburg, Hans-Meerwein-Straße 3, 35043 Marburg, Germany
- Core Facility Medicinal Chemistry, Philipps University Marburg, Hans-Meerwein-Straße 3, 35043 Marburg, Germany
| | - Matthias Lauth
- Center for Tumor and Immune Biology (ZTI), Philipps University Marburg, Hans-Meerwein-Straße 3, 35043 Marburg, Germany
| |
Collapse
|
23
|
Raleigh DR, Reiter JF. Misactivation of Hedgehog signaling causes inherited and sporadic cancers. J Clin Invest 2019; 129:465-475. [PMID: 30707108 DOI: 10.1172/jci120850] [Citation(s) in RCA: 61] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
The Hedgehog pathway is critical for the development of diverse organs. Misactivation of the Hedgehog pathway can cause developmental abnormalities and cancers, including medulloblastoma, the most common pediatric brain tumor, and basal cell carcinoma, the most common cancer in the United States. Here, we review how basic, translational, and clinical studies of the Hedgehog pathway have helped reveal how cells communicate, how intercellular communication controls development, how signaling goes awry to cause cancer, and how to use targeted molecular agents to treat both inherited and sporadic cancers.
Collapse
Affiliation(s)
- David R Raleigh
- Department of Radiation Oncology.,Department of Neurological Surgery, and
| | - Jeremy F Reiter
- Department of Biochemistry and Biophysics, UCSF, San Francisco, California, USA
| |
Collapse
|
24
|
Geyer N, Ridzewski R, Bauer J, Kuzyakova M, Dittmann K, Dullin C, Rosenberger A, Schildhaus HU, Uhmann A, Fulda S, Hahn H. Different Response of Ptch Mutant and Ptch Wildtype Rhabdomyosarcoma Toward SMO and PI3K Inhibitors. Front Oncol 2018; 8:396. [PMID: 30319965 PMCID: PMC6168716 DOI: 10.3389/fonc.2018.00396] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2018] [Accepted: 08/31/2018] [Indexed: 01/10/2023] Open
Abstract
Rhabdomyosarcoma (RMS) is the most common pediatric soft tissue sarcoma with poor prognosis. RMS frequently show Hedgehog (HH) pathway activity, which is predominantly seen in the embryonal subtype (ERMS). They also show activation of Phosphatidylinositol-4,5-bisphosphate 3-kinase (PI3K) signaling. Here we compared the therapeutic effectiveness and the impact on HH target gene expression of Smoothened (SMO) antagonists with those of the PI3K inhibitor pictilisib in ERMS with and without mutations in the HH receptor Patched1 (PTCH). Our data demonstrate that growth of ERMS showing canonical Hh signaling activity due to Ptch germline mutations is efficiently reduced by SMO antagonists. This goes along with strong downregulation of the Hh target Gli1. Likewise Ptch mutant tumors are highly responsive toward the PI3K inhibitor pictilisib, which involves modulation of AKT and caspase activity. Pictilisib also modulates Hh target gene expression, which, however, is rather not correlated with its antitumoral effects. In contrast, sporadic ERMS, which usually express HH target genes without having PTCH mutation, apparently lack canonical HH signaling activity. Thus, stimulation by Sonic HE (SHH) or SAG (Smoothened agonist) or inhibition by SMO antagonists do not modulate HH target gene expression. In addition, SMO antagonists do not provoke efficient anticancer effects and rather exert off-target effects. In contrast, pictilisib and other PI3K/AKT/mTOR inhibitors potently inhibit cellular growth. They also efficiently inhibit HH target gene expression. However, of whether this is correlated with their antitumoral effects it is not clear. Together, these data suggest that PI3K inhibitors are a good and reliable therapeutic option for all ERMS, whereas SMO inhibitors might only be beneficial for ERMS driven by PTCH mutations.
Collapse
Affiliation(s)
- Natalie Geyer
- Institute for Human Genetics, University Medical Center Goettingen, Goettingen, Germany
| | - Rosalie Ridzewski
- Institute for Human Genetics, University Medical Center Goettingen, Goettingen, Germany
| | - Julia Bauer
- Institute for Human Genetics, University Medical Center Goettingen, Goettingen, Germany
| | - Maria Kuzyakova
- Institute for Human Genetics, University Medical Center Goettingen, Goettingen, Germany
| | - Kai Dittmann
- Institute for Celluar and Molecular Immunology, University Medical Center Goettingen, Goettingen, Germany
| | - Christian Dullin
- Institute for Diagnostic and Interventional Radiology, University Medical Center Goettingen, Goettingen, Germany
| | - Albert Rosenberger
- Department of Genetic Epidemiology, University Medical Center Goettingen, Goettingen, Germany
| | | | - Anja Uhmann
- Institute for Human Genetics, University Medical Center Goettingen, Goettingen, Germany
| | - Simone Fulda
- Institute for Experimental Cancer Research in Pediatrics, Goethe-University Frankfurt, Frankfurt, Germany
| | - Heidi Hahn
- Institute for Human Genetics, University Medical Center Goettingen, Goettingen, Germany
| |
Collapse
|