1
|
Abdelsattar M, Abdeldaym EA, Alsayied NF, Ahmed E, Abd El-Maksoud RM. Overlapping of copper-nanoparticles with microRNA reveals crippling of heat stress pathway in Solanum lycopersicum: Tomato case study. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2024; 213:108791. [PMID: 38861818 DOI: 10.1016/j.plaphy.2024.108791] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Revised: 05/23/2024] [Accepted: 05/31/2024] [Indexed: 06/13/2024]
Abstract
Despite the tangible benefits of copper nanoparticles (CuNPs) for plants, the increasing use of CuNPs poses a threat to plants and the environment. Although miRNAs have been shown to mediate heat shock and CuNPs by altering gene expression, no study has investigated how CuNPs in combination with heat shock (HS) affect the miRNA expression profile. Here, we exposed tomato plants to 0.01 CuONPs at 42 °C for 1 h after exposure. It was found that the expression levels of miR156a, miR159a and miR172a and their targets SPL3, MYB33 and AP2a were altered under CuNPs and HS + CuNPs. This alteration accelerated the change of vegetative phase and the process of leaf senescence. The overexpression of miR393 under CuNPs and HS + CuNPs could also be an indicator of the attenuation of leaf morphology. Interestingly, the down-regulation of Cu/ZnSOD1 and Cu/ZnSOD2 as target genes of miR398a, which showed strong abnormal expression, was replaced by FeSOD (FSD1), indicating the influence of CuNPs. In addition, CuNPs triggered the expression of some important genes of heat shock response, including HsFA2, HSP70-9 and HSP90-3, which showed lower expression compared to HS. Thus, CuNPs play an important role in altering the gene expression pathway during heat stress.
Collapse
Affiliation(s)
- Mohamed Abdelsattar
- Plant Biology Department, Agricultural Genetic Engineering Research Institute (AGERI), Agricultural Research Center (ARC), Giza, Egypt.
| | - Emad A Abdeldaym
- Department of Vegetable Crops, Faculty of Agriculture, Cairo University, Giza, 12613, Egypt
| | - Nouf F Alsayied
- Department of Biology, Faculty of Applied Science, Umm Al-Qura University, Makka, Saudi Arabia
| | - Esraa Ahmed
- Plant Biology Department, Agricultural Genetic Engineering Research Institute (AGERI), Agricultural Research Center (ARC), Giza, Egypt
| | - Reem M Abd El-Maksoud
- Nucleic Acid and Protein Chemistry Department, Agricultural Genetic Engineering Research Institute (AGERI), Agricultural Research Center (ARC), Giza, Egypt.
| |
Collapse
|
2
|
Luo Y, Wang L, Zhu J, Tian J, You L, Luo Q, Li J, Yao Q, Duan D. The grapevine miR827a regulates the synthesis of stilbenes by targeting VqMYB14 and gives rise to susceptibility in plant immunity. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2024; 137:95. [PMID: 38582777 DOI: 10.1007/s00122-024-04599-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Accepted: 03/13/2024] [Indexed: 04/08/2024]
Abstract
Grapevine (Vitis vinifera L.) is an economically important fruit crop cultivated worldwide. In China, grapevine cultivation is very extensive, and a few Vitis grapes have excellent pathogen and stress resistance, but the molecular mechanisms underlying the grapevine response to stress remain unclear. In this study, a microRNA (miRNA; miR827a), which negatively regulates its target gene VqMYB14, a key regulatory role in the synthesis of stilbenes, was identified in Vitis quinquangularis (V. quinquangularis) using transcriptome sequencing. Using overexpression and silencing approaches, we found that miR827a regulates the synthesis of stilbenes by targeting VqMYB14. We used flagellin N-terminal 22-amino-acid peptide (flg22), the representative elicitor in plant basal immunity, as the elicitor to verify whether miR827a is involved in the basal immunity of V. quinquangularis. Furthermore, the promoter activity of miR827a was alleviated in transgenic grape protoplasts and Arabidopsis thaliana following treatment with flg22 and Pseudomonas syringae pv. Tomato DC3000 (Pst DC3000), respectively. In addition, yeast one-hybrid and dual luciferase reporter assay revealed that the ethylene transcription factor VqERF057 acted as a key regulator in the inhibition of miR827a transcription. These results will contribute to the understanding of the biological functions of miR827a in grapevine and clarify the molecular mechanism of the interaction between miR827a and VqMYB14.
Collapse
Affiliation(s)
- Yangyang Luo
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, College of Life Sciences, Northwest University, Xi'an, 710069, Shaanxi, China
| | - Linxia Wang
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, College of Life Sciences, Northwest University, Xi'an, 710069, Shaanxi, China
| | - Jie Zhu
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, College of Life Sciences, Northwest University, Xi'an, 710069, Shaanxi, China
| | - Jingwen Tian
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, College of Life Sciences, Northwest University, Xi'an, 710069, Shaanxi, China
| | - Lin You
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, College of Life Sciences, Northwest University, Xi'an, 710069, Shaanxi, China
| | - Qin Luo
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, College of Life Sciences, Northwest University, Xi'an, 710069, Shaanxi, China
| | - Jia Li
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, College of Life Sciences, Northwest University, Xi'an, 710069, Shaanxi, China
| | - Qian Yao
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, College of Life Sciences, Northwest University, Xi'an, 710069, Shaanxi, China
| | - Dong Duan
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, College of Life Sciences, Northwest University, Xi'an, 710069, Shaanxi, China.
| |
Collapse
|
3
|
Yang Z, Yuan L, Zhu H, Jiang J, Yang H, Li L. Small RNA profiling reveals the involvement of microRNA-mediated gene regulation in response to symbiosis in raspberry. Front Microbiol 2022; 13:1082494. [PMID: 36620006 PMCID: PMC9810812 DOI: 10.3389/fmicb.2022.1082494] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Accepted: 11/30/2022] [Indexed: 12/24/2022] Open
Abstract
Dark septate endophytes (DSEs) can form reciprocal symbioses with most terrestrial plants, providing them with mineral nutrients in exchange for photosynthetic products. Although the mechanism of plant-DSEs is well understood at the transcriptional level, little is known about their post-transcriptional regulation, and microRNAs (miRNAs) for the symbiotic process of DSE infestation of raspberry have not been identified. In this study, we comprehensively identified the miRNAs of DSE-infested raspberry symbiosis using Illumina sequencing. A total of 361 known miRNAs and 95 novel miRNAs were identified in the roots. Similar to other dicotyledons, most of the identified raspberry miRNAs were 21 nt in length. Thirty-seven miRNAs were differentially expressed during colonization after inoculation with Phialocephala fortinii F5, suggesting a possible role for these miRNAs in the symbiotic process. Notably, two miRNAs (miR171h and miR396) previously reported to be responsive to symbiotic processes in alfalfa also had altered expression during raspberry symbiosis. Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) analyses suggests that miRNAs are mainly involved in regulatory mechanisms, such as biological processes, cellular metabolic processes, biosynthesis of secondary metabolites, plant-pathogen interactions, and phytohormone signaling pathways. This study revealed the potential conservation of miRNA-mediated post-transcriptional regulation in symbiotic processes among plants and provides some novel miRNAs for understanding the regulatory mechanisms of DSE-raspberry symbiosis.
Collapse
Affiliation(s)
- Zhiyu Yang
- Key Laboratory of Saline-alkali Vegetation Ecology Restoration (Northeast Forestry University), Ministry of Education, Harbin, China,College of Life Science, Northeast Forestry University, Harbin, China
| | - Lianmei Yuan
- Key Laboratory of Saline-alkali Vegetation Ecology Restoration (Northeast Forestry University), Ministry of Education, Harbin, China,College of Life Science, Northeast Forestry University, Harbin, China
| | - Haifeng Zhu
- Key Laboratory of Saline-alkali Vegetation Ecology Restoration (Northeast Forestry University), Ministry of Education, Harbin, China,College of Life Science, Northeast Forestry University, Harbin, China
| | - Jing Jiang
- Key Laboratory of Saline-alkali Vegetation Ecology Restoration (Northeast Forestry University), Ministry of Education, Harbin, China,College of Life Science, Northeast Forestry University, Harbin, China
| | - Hongyi Yang
- Key Laboratory of Saline-alkali Vegetation Ecology Restoration (Northeast Forestry University), Ministry of Education, Harbin, China,College of Life Science, Northeast Forestry University, Harbin, China,*Correspondence: Hongyi Yang,
| | - Lili Li
- Institute of Forestry Science of Heilongjiang Province, Harbin, China,Lili Li,
| |
Collapse
|
4
|
Islam W, Naveed H, Idress A, Ishaq DU, Kurfi BG, Zeng F. Plant responses to metals stress: microRNAs in focus. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:69197-69212. [PMID: 35951237 DOI: 10.1007/s11356-022-22451-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Accepted: 08/05/2022] [Indexed: 06/15/2023]
Abstract
Metal toxicity can largely affect the growth and yield of numerous plant species. Plants have developed specific mechanisms to withstand the varying amounts of metals. One approach involves utilization of microRNAs (miRNAs) that are known for cleaving transcripts or inhibiting translation to mediate post-transcriptional control. Use of transcription factors (TFs) or gene regulation in metal detoxification largely depends on metal-responsive miRNAs. Moreover, systemic signals and physiological processes for plants response to metal toxicities are likewise controlled by miRNAs. Therefore, it is necessary to understand miRNAs and their regulatory networks in relation to metal stress. The miRNA-based approach can be important to produce metal-tolerant plant species. Here, we have reviewed the importance of plant miRNAs and their role in mitigating metal toxicities. The current review also discusses the specific advances that have occurred as a result of the identification and validation of several metal stress-responsive miRNAs.
Collapse
Affiliation(s)
- Waqar Islam
- State Key Laboratory of Desert and Oasis Ecology, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi, 830011, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
- Xinjiang Key Laboratory of Desert Plant Roots Ecology and Vegetation Restoration, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi, 830011, China
- Cele National Station of Observation and Research for Desert-Grassland Ecosystems, Cele, 848300, China
| | - Hassan Naveed
- College of Life Sciences, Leshan Normal University, Sichuan, 614004, China
| | - Atif Idress
- Guangdong Key Laboratory of Animal Conservation and Resource Utilization, Guangdong Public Laboratory of Wild Animal Conservation and Utilization, Institute of Zoology, Guangdong Academy of Sciences, Guangzhou, 510260, China
| | - Daha Umar Ishaq
- Centre of Mitochondrial Biology & Medicine, Xian Joiotong University, Xi'An, 710049, China
- Department of Biochemistry, Faculty of Basic Medical Sciences, Bayero University, Kano, 700241, Nigeria
| | - Binta G Kurfi
- Department of Biochemistry, Faculty of Basic Medical Sciences, Bayero University, Kano, 700241, Nigeria
| | - Fanjiang Zeng
- State Key Laboratory of Desert and Oasis Ecology, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi, 830011, China.
- University of Chinese Academy of Sciences, Beijing, 100049, China.
- Xinjiang Key Laboratory of Desert Plant Roots Ecology and Vegetation Restoration, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi, 830011, China.
- Cele National Station of Observation and Research for Desert-Grassland Ecosystems, Cele, 848300, China.
| |
Collapse
|
5
|
Yang Y, Huang J, Sun Q, Wang J, Huang L, Fu S, Qin S, Xie X, Ge S, Li X, Cheng Z, Wang X, Chen H, Zheng B, He Y. microRNAs: Key Players in Plant Response to Metal Toxicity. Int J Mol Sci 2022; 23:ijms23158642. [PMID: 35955772 PMCID: PMC9369385 DOI: 10.3390/ijms23158642] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Revised: 07/28/2022] [Accepted: 07/30/2022] [Indexed: 02/04/2023] Open
Abstract
Environmental metal pollution is a common problem threatening sustainable and safe crop production. Heavy metals (HMs) cause toxicity by targeting key molecules and life processes in plant cells. Plants counteract excess metals in the environment by enhancing defense responses, such as metal chelation, isolation to vacuoles, regulating metal intake through transporters, and strengthening antioxidant mechanisms. In recent years, microRNAs (miRNAs), as a small non-coding RNA, have become the central regulator of a variety of abiotic stresses, including HMs. With the introduction of the latest technologies such as next-generation sequencing (NGS), more and more miRNAs have been widely recognized in several plants due to their diverse roles. Metal-regulated miRNAs and their target genes are part of a complex regulatory network. Known miRNAs coordinate plant responses to metal stress through antioxidant functions, root growth, hormone signals, transcription factors (TF), and metal transporters. This article reviews the research progress of miRNAs in the stress response of plants to the accumulation of HMs, such as Cu, Cd, Hg, Cr, and Al, and the toxicity of heavy metal ions.
Collapse
Affiliation(s)
- Ying Yang
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou 311300, China; (Y.Y.); (Q.S.); (J.W.); (L.H.); (S.F.); (S.Q.); (X.X.); (S.G.); (X.L.); (Z.C.); (X.W.)
| | - Jiu Huang
- School of Environment Science and Spatial Informaftics, China University of Mining and Technology, Xuzhou 221116, China;
| | - Qiumin Sun
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou 311300, China; (Y.Y.); (Q.S.); (J.W.); (L.H.); (S.F.); (S.Q.); (X.X.); (S.G.); (X.L.); (Z.C.); (X.W.)
| | - Jingqi Wang
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou 311300, China; (Y.Y.); (Q.S.); (J.W.); (L.H.); (S.F.); (S.Q.); (X.X.); (S.G.); (X.L.); (Z.C.); (X.W.)
| | - Lichao Huang
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou 311300, China; (Y.Y.); (Q.S.); (J.W.); (L.H.); (S.F.); (S.Q.); (X.X.); (S.G.); (X.L.); (Z.C.); (X.W.)
| | - Siyi Fu
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou 311300, China; (Y.Y.); (Q.S.); (J.W.); (L.H.); (S.F.); (S.Q.); (X.X.); (S.G.); (X.L.); (Z.C.); (X.W.)
| | - Sini Qin
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou 311300, China; (Y.Y.); (Q.S.); (J.W.); (L.H.); (S.F.); (S.Q.); (X.X.); (S.G.); (X.L.); (Z.C.); (X.W.)
| | - Xiaoting Xie
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou 311300, China; (Y.Y.); (Q.S.); (J.W.); (L.H.); (S.F.); (S.Q.); (X.X.); (S.G.); (X.L.); (Z.C.); (X.W.)
| | - Sisi Ge
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou 311300, China; (Y.Y.); (Q.S.); (J.W.); (L.H.); (S.F.); (S.Q.); (X.X.); (S.G.); (X.L.); (Z.C.); (X.W.)
| | - Xiang Li
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou 311300, China; (Y.Y.); (Q.S.); (J.W.); (L.H.); (S.F.); (S.Q.); (X.X.); (S.G.); (X.L.); (Z.C.); (X.W.)
| | - Zhuo Cheng
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou 311300, China; (Y.Y.); (Q.S.); (J.W.); (L.H.); (S.F.); (S.Q.); (X.X.); (S.G.); (X.L.); (Z.C.); (X.W.)
| | - Xiaofei Wang
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou 311300, China; (Y.Y.); (Q.S.); (J.W.); (L.H.); (S.F.); (S.Q.); (X.X.); (S.G.); (X.L.); (Z.C.); (X.W.)
| | - Houming Chen
- Max Planck Institute for Biology, Max Planck Ring 5, 72076 Tübingen, Germany;
| | - Bingsong Zheng
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou 311300, China; (Y.Y.); (Q.S.); (J.W.); (L.H.); (S.F.); (S.Q.); (X.X.); (S.G.); (X.L.); (Z.C.); (X.W.)
- Correspondence: (B.Z.); (Y.H.); Tel./Fax: +86-0571-8663-3652 (Y.H.)
| | - Yi He
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou 311300, China; (Y.Y.); (Q.S.); (J.W.); (L.H.); (S.F.); (S.Q.); (X.X.); (S.G.); (X.L.); (Z.C.); (X.W.)
- Correspondence: (B.Z.); (Y.H.); Tel./Fax: +86-0571-8663-3652 (Y.H.)
| |
Collapse
|
6
|
Begum Y. Regulatory role of microRNAs (miRNAs) in the recent development of abiotic stress tolerance of plants. Gene 2022; 821:146283. [PMID: 35143944 DOI: 10.1016/j.gene.2022.146283] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2021] [Revised: 01/12/2022] [Accepted: 02/03/2022] [Indexed: 12/21/2022]
Abstract
MicroRNAs (miRNAs) are a distinct groups of single-stranded non-coding, tiny regulatory RNAs approximately 20-24 nucleotides in length. miRNAs negatively influence gene expression at the post-transcriptional level and have evolved considerably in the development of abiotic stress tolerance in a number of model plants and economically important crop species. The present review aims to deliver the information on miRNA-mediated regulation of the expression of major genes or Transcription Factors (TFs), as well as genetic and regulatory pathways. Also, the information on adaptive mechanisms involved in plant abiotic stress responses, prediction, and validation of targets, computational tools, and databases available for plant miRNAs, specifically focus on their exploration for engineering abiotic stress tolerance in plants. The regulatory function of miRNAs in plant growth, development, and abiotic stresses consider in this review, which uses high-throughput sequencing (HTS) technologies to generate large-scale libraries of small RNAs (sRNAs) for conventional screening of known and novel abiotic stress-responsive miRNAs adds complexity to regulatory networks in plants. The discoveries of miRNA-mediated tolerance to multiple abiotic stresses, including salinity, drought, cold, heat stress, nutritional deficiency, UV-radiation, oxidative stress, hypoxia, and heavy metal toxicity, are highlighted and discussed in this review.
Collapse
Affiliation(s)
- Yasmin Begum
- Department of Biophysics, Molecular Biology and Bioinformatics, University of Calcutta, 92, APC Road, Kolkata 700009, West Bengal, India; Center of Excellence in Systems Biology and Biomedical Engineering (TEQIP Phase-III), University of Calcutta, JD-2, Sector III, Salt Lake, Kolkata 700106, West Bengal, India.
| |
Collapse
|
7
|
MicroRNA Mediated Plant Responses to Nutrient Stress. Int J Mol Sci 2022; 23:ijms23052562. [PMID: 35269700 PMCID: PMC8910084 DOI: 10.3390/ijms23052562] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Revised: 02/22/2022] [Accepted: 02/23/2022] [Indexed: 01/18/2023] Open
Abstract
To complete their life cycles, plants require several minerals that are found in soil. Plant growth and development can be affected by nutrient shortages or high nutrient availability. Several adaptations and evolutionary changes have enabled plants to cope with inappropriate growth conditions and low or high nutrient levels. MicroRNAs (miRNAs) have been recognized for transcript cleavage and translational reduction, and can be used for post-transcriptional regulation. Aside from regulating plant growth and development, miRNAs play a crucial role in regulating plant’s adaptations to adverse environmental conditions. Additionally, miRNAs are involved in plants’ sensory functions, nutrient uptake, long-distance root transport, and physiological functions related to nutrients. It may be possible to develop crops that can be cultivated in soils that are either deficient in nutrients or have extreme nutrient supplies by understanding how plant miRNAs are associated with nutrient stress. In this review, an overview is presented regarding recent advances in the understanding of plants’ responses to nitrogen, phosphorus, potassium, sulfur, copper, iron, boron, magnesium, manganese, zinc, and calcium deficiencies via miRNA regulation. We conclude with future research directions emphasizing the modification of crops for improving future food security.
Collapse
|
8
|
Fasani E, DalCorso G, Zorzi G, Vitulo N, Furini A. Comparative analysis identifies micro-RNA associated with nutrient homeostasis, development and stress response in Arabidopsis thaliana upon high Zn and metal hyperaccumulator Arabidopsis halleri. PHYSIOLOGIA PLANTARUM 2021; 173:920-934. [PMID: 34171137 PMCID: PMC8597110 DOI: 10.1111/ppl.13488] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Accepted: 06/21/2021] [Indexed: 05/05/2023]
Abstract
miRNAs have been found to be key players in mineral homeostasis, both in the control of nutrient balance and in the response to toxic trace elements. However, the effect of Zn excess on miRNAs has not been elucidated; moreover, no data are present regarding miRNAs in hyperaccumulator species, where metal homeostasis is tightly regulated. Therefore, expression levels of mature miRNAs were measured by RNA-Seq in Zn-sensitive Arabidopsis thaliana grown in control conditions and upon high Zn, in soil and in Zn-hyperaccumulator Arabidopsis halleri grown in control conditions. Differential expression of notable miRNAs and their targets was confirmed by real-time RT-PCR. The comparison in A. thaliana revealed a small subset modulated upon Zn treatment that is associated with stress response and nutrient homeostasis. On the other hand, a more consistent group of miRNAs was differentially expressed in A. halleri compared with A. thaliana, reflecting inherent differences in nutritional requirements and response to stresses and plant growth and development. Overall, these results confirm the involvement of miRNAs in Zn homeostasis and support the hypothesis of distinct regulatory pathways in hyperaccumulator species.
Collapse
Affiliation(s)
- Elisa Fasani
- Department of BiotechnologyUniversity of VeronaVeronaItaly
| | | | - Gianluca Zorzi
- Department of BiotechnologyUniversity of VeronaVeronaItaly
| | - Nicola Vitulo
- Department of BiotechnologyUniversity of VeronaVeronaItaly
| | | |
Collapse
|
9
|
Nandakumar M, Malathi P, Sundar AR, Rajadurai CP, Philip M, Viswanathan R. Role of miRNAs in the host-pathogen interaction between sugarcane and Colletotrichum falcatum, the red rot pathogen. PLANT CELL REPORTS 2021; 40:851-870. [PMID: 33818644 DOI: 10.1007/s00299-021-02682-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/21/2020] [Accepted: 03/15/2021] [Indexed: 02/08/2023]
Abstract
KEY MESSAGE Sugarcane microRNAs specifically involved during compatible and incompatible interactions with red rot pathogen Colletotrichum falcatum were identified. We have identified how the miRNAs regulate their gene targets and elaborated evidently on the underlying molecular mechanism of sugarcane defense response to C. falcatum for the first time. Resistance against the fungal pathogen Colletotrichum falcatum causing red rot is one of the most desirable traits for sustainable crop cultivation in sugarcane. To gain new insight into the host defense mechanism against C. falcatum, we studied the role of sugarcane microRNAs during compatible and incompatible interactions by adopting the NGS platform. We have sequenced a total of 80 miRNA families that comprised 980 miRNAs, and the putative targets of the miRNAs include transcription factors, membrane-bound proteins, glutamate receptor proteins, lignin biosynthesis proteins, signaling cascade proteins, transporter proteins, mitochondrial proteins, ER proteins, defense-related, stress response proteins, translational regulation proteins, cell proliferation, and ubiquitination proteins. Further, qRT-PCR analyses of 8 differentially regulated miRNAs and 26 gene transcript targets expression indicated that these miRNAs have a regulatory effect on the expression of respective target genes in most of the cases. Also, the results suggest that certain miRNA regulates many target genes that are involved in inciting early responses to the pathogen infection, signaling pathways, endoplasmic reticulum stress, and resistance gene activation through feedback response from various cellular processes during the compatible and incompatible interaction with the red rot pathogen C. falcatum. The present study revealed the role of sugarcane miRNAs and their target genes during sugarcane-C. falcatum interaction and provided new insight into the miRNA-mediated defense mechanism in sugarcane for the first time.
Collapse
Affiliation(s)
- M Nandakumar
- ICAR-Sugarcane Breeding Institute, Coimbatore, Tamil Nadu, 641007, India
| | - P Malathi
- ICAR-Sugarcane Breeding Institute, Coimbatore, Tamil Nadu, 641007, India
| | - A R Sundar
- ICAR-Sugarcane Breeding Institute, Coimbatore, Tamil Nadu, 641007, India
| | - C P Rajadurai
- AgriGenome Labs, Infopark-Smart City Short Rd, Kochi, Kerala, 682030, India
| | - Manuel Philip
- AgriGenome Labs, Infopark-Smart City Short Rd, Kochi, Kerala, 682030, India
| | - R Viswanathan
- ICAR-Sugarcane Breeding Institute, Coimbatore, Tamil Nadu, 641007, India.
| |
Collapse
|
10
|
Genome-Wide Identification of Copper Stress-Regulated and Novel MicroRNAs in Mulberry Leaf. Biochem Genet 2021; 59:589-603. [PMID: 33389282 DOI: 10.1007/s10528-020-10021-y] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2020] [Accepted: 11/28/2020] [Indexed: 01/15/2023]
Abstract
Copper (Cu) is an essential trace element for plant growth and development. It is widely involved in respiration, photosynthesis, pollen formation, and other biological processes. Therefore, low or excessive copper causes damage to plants. Mulberry is an essential perennial economic tree. At present, research on the abiotic stress responses in mulberry is mainly focused on the identification of resistant germplasm resources and cloning of resistant genes. In contrast, studies on the resistance function of microRNAs and the regulatory gene responses to stress are rare. In this study, small RNA libraries (control and copper stressed) were constructed from mulberry leaf RNA. High-throughput sequencing and screening were employed, a total of 65 known miRNAs and 78 predicted novel mature miRNAs were identified, among which 40 miRNAs were differentially expressed under copper stress. Subsequently, expression patterns were verified for 14 miRNAs by real-time fluorescence quantitative PCR (qPCR). The target genes of miRNAs were validated by 5' RLM-RACE. Our results provide the bases for further study on the molecular mechanism of copper stress regulation in mulberry.
Collapse
|
11
|
Martínez Núñez M, Ruíz Rivas M, Gregorio Jorge J, Hernández PFV, Luna Suárez S, de Folter S, Chávez Montes RA, Rosas Cárdenas FDF. Identification of genuine and novel miRNAs in Amaranthus hypochondriacus from high-throughput sequencing data. Genomics 2020; 113:88-103. [PMID: 33271330 DOI: 10.1016/j.ygeno.2020.11.027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Revised: 11/18/2020] [Accepted: 11/29/2020] [Indexed: 11/30/2022]
Abstract
Amaranth has been proposed as an exceptional alternative for food security and climate change mitigation. Information about the distribution, abundance, or specificity of miRNAs in amaranth species is scare. Here, small RNAs from seedlings under control, drought, heat, and cold stress conditions of the Amaranthus hypocondriacus variety "Gabriela" were sequenced and miRNA loci identified in the amaranth genome using the ShortStack software. Fifty-three genuine miRNA clustersthirty-nine belonging to conserved families, and fourteen novel, were identified. Identification of their target genes suggests that conserved amaranth miRNAs are involved in growth and developmental processes, as well as stress responses. MiR0005, an amaranth-specific miRNA, exhibited an unusual high level of expression, akin to that of conserved miRNAs. Overall, our results broaden our knowledge regarding the distribution, abundance and expression of miRNAs in amaranth, providing the basis for future research on miRNAs and their functions in this important species.
Collapse
Affiliation(s)
- Marcelino Martínez Núñez
- Instituto Politécnico Nacional, Centro de Investigación en Biotecnología Aplicada, Ex-Hacienda San Juan Molino Carretera Estatal Tecuexcomac-Tepetitla Km 1.5, C.P. 90700 Tlaxcala, México
| | - Magali Ruíz Rivas
- Instituto Politécnico Nacional, Centro de Investigación en Biotecnología Aplicada, Ex-Hacienda San Juan Molino Carretera Estatal Tecuexcomac-Tepetitla Km 1.5, C.P. 90700 Tlaxcala, México
| | - Josefat Gregorio Jorge
- Consejo Nacional de Ciencia y Tecnología, Centro de Investigación en Biotecnología Aplicada del Instituto Politécnico Nacional (CIBA-IPN), Av. Insurgentes Sur 1582, Col. Crédito Constructor, Del. Benito Juárez, Ciudad de México, México
| | - Pedro Fernando Vera Hernández
- Instituto Politécnico Nacional, Centro de Investigación en Biotecnología Aplicada, Ex-Hacienda San Juan Molino Carretera Estatal Tecuexcomac-Tepetitla Km 1.5, C.P. 90700 Tlaxcala, México
| | - Silvia Luna Suárez
- Instituto Politécnico Nacional, Centro de Investigación en Biotecnología Aplicada, Ex-Hacienda San Juan Molino Carretera Estatal Tecuexcomac-Tepetitla Km 1.5, C.P. 90700 Tlaxcala, México
| | - Stefan de Folter
- Unidad de Genómica Avanzada (UGA-LANGEBIO), Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional (CINVESTAV-IPN), Km. 9.6 Libramiento Norte, Carretera Irapuato-León, CP 36824 Irapuato, Guanajuato, México
| | - Ricardo A Chávez Montes
- Unidad de Genómica Avanzada (UGA-LANGEBIO), Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional (CINVESTAV-IPN), Km. 9.6 Libramiento Norte, Carretera Irapuato-León, CP 36824 Irapuato, Guanajuato, México; Institute of Genomics for Crop Abiotic Stress Tolerance, Texas Tech University, Lubbock, TX 79409, USA
| | - Flor de Fátima Rosas Cárdenas
- Instituto Politécnico Nacional, Centro de Investigación en Biotecnología Aplicada, Ex-Hacienda San Juan Molino Carretera Estatal Tecuexcomac-Tepetitla Km 1.5, C.P. 90700 Tlaxcala, México.
| |
Collapse
|
12
|
Yan G, Zhang J, Jiang M, Gao X, Yang H, Li L. Identification of Known and Novel MicroRNAs in Raspberry Organs Through High-Throughput Sequencing. FRONTIERS IN PLANT SCIENCE 2020; 11:728. [PMID: 32582255 PMCID: PMC7284492 DOI: 10.3389/fpls.2020.00728] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/03/2020] [Accepted: 05/06/2020] [Indexed: 05/23/2023]
Abstract
MicroRNAs (miRNAs) are a class of small endogenous RNAs that play important regulatory roles in plants by negatively affecting gene expression. Studies on the identification of miRNAs and their functions in various plant species and organs have significantly contributed to plant development research. In the current study, we utilized high-throughput sequencing to detect the miRNAs in the root, stem, and leaf tissues of raspberry (Rubus idaeus). A total of more than 35 million small RNA reads ranging in size from 18 to 35 nucleotides were obtained, with 147 known miRNAs and 542 novel miRNAs identified among the three organs. Sequence verification and the relative expression profiles of the six known miRNAs were investigated by stem-loop quantitative real-time PCR. Furthermore, the potential target genes of the known and novel miRNAs were predicted and subjected to Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes pathway annotation. Enrichment analysis of the GO-associated biological processes and molecular functions revealed that these target genes were potentially involved in a wide range of metabolic pathways and developmental processes. Moreover, the miRNA target prediction revealed that most of the targets predicted as transcription factor-coding genes are involved in cellular and metabolic processes. This report is the first to identify miRNAs in raspberry. The detected miRNAs were analyzed by cluster analysis according to their expression, which revealed that these conservative miRNAs are necessary for plant functioning. The results add novel miRNAs to the raspberry transcriptome, providing a useful resource for the further elucidation of the functional roles of miRNAs in raspberry growth and development.
Collapse
Affiliation(s)
- Gengxuan Yan
- Key Laboratory of Saline-alkali Vegetation Ecology Restoration (Northeast Forestry University), Ministry of Education, Harbin, China
- College of Life Science, Northeast Forestry University, Harbin, China
| | - Jie Zhang
- Key Laboratory of Saline-alkali Vegetation Ecology Restoration (Northeast Forestry University), Ministry of Education, Harbin, China
- College of Life Science, Northeast Forestry University, Harbin, China
| | - Meng Jiang
- Key Laboratory of Saline-alkali Vegetation Ecology Restoration (Northeast Forestry University), Ministry of Education, Harbin, China
- College of Life Science, Northeast Forestry University, Harbin, China
| | - Xince Gao
- Key Laboratory of Saline-alkali Vegetation Ecology Restoration (Northeast Forestry University), Ministry of Education, Harbin, China
- College of Life Science, Northeast Forestry University, Harbin, China
| | - Hongyi Yang
- Key Laboratory of Saline-alkali Vegetation Ecology Restoration (Northeast Forestry University), Ministry of Education, Harbin, China
- College of Life Science, Northeast Forestry University, Harbin, China
| | - Lili Li
- Institute of Forestry Science of Heilongjiang Province, Harbin, China
| |
Collapse
|
13
|
Pirrò S, Matic I, Guidi A, Zanella L, Gismondi A, Cicconi R, Bernardini R, Colizzi V, Canini A, Mattei M, Galgani A. Identification of microRNAs and relative target genes in Moringa oleifera leaf and callus. Sci Rep 2019; 9:15145. [PMID: 31641153 PMCID: PMC6805943 DOI: 10.1038/s41598-019-51100-4] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2019] [Accepted: 09/20/2019] [Indexed: 01/30/2023] Open
Abstract
MicroRNAs, a class of small, non-coding RNAs, play important roles in plant growth, development and stress response by negatively regulating gene expression. Moringa oleifera Lam. plant has many medical and nutritional uses; however, little attention has been dedicated to its potential for the bio production of active compounds. In this study, 431 conserved and 392 novel microRNA families were identified and 9 novel small RNA libraries constructed from leaf, and cold stress treated callus, using high-throughput sequencing technology. Based on the M. oleifera genome, the microRNA repertoire of the seed was re-evaluated. qRT-PCR analysis confirmed the expression pattern of 11 conserved microRNAs in all groups. MicroRNA159 was found to be the most abundant conserved microRNA in leaf and callus, while microRNA393 was most abundantly expressed in the seed. The majority of predicted microRNA target genes were transcriptional factors involved in plant reproduction, growth/development and abiotic/biotic stress response. In conclusion, this is the first comprehensive analysis of microRNAs in M. oleifera leaf and callus which represents an important addition to the existing M. oleifera seed microRNA database and allows for possible exploitation of plant microRNAs induced with abiotic stress, as a tool for bio-enrichment with pharmacologically important phytochemicals.
Collapse
Affiliation(s)
- Stefano Pirrò
- Mir-Nat s.r.l., Rome, 00133, Italy
- Bioinformatics Unit, Centre for Molecular Oncology, Barts Cancer Institute, Queen Mary University London, London, EC1M 6BQ, UK
| | - Ivana Matic
- Mir-Nat s.r.l., Rome, 00133, Italy
- Department of Biology, University of Rome Tor Vergata, Rome, Italy
| | | | - Letizia Zanella
- Department of Biology, University of Rome Tor Vergata, Rome, Italy
| | - Angelo Gismondi
- Department of Biology, University of Rome Tor Vergata, Rome, Italy
| | | | | | - Vittorio Colizzi
- Mir-Nat s.r.l., Rome, 00133, Italy
- Department of Biology, University of Rome Tor Vergata, Rome, Italy
| | - Antonella Canini
- Department of Biology, University of Rome Tor Vergata, Rome, Italy
| | | | - Andrea Galgani
- Mir-Nat s.r.l., Rome, 00133, Italy.
- CIMETA, University of Rome Tor Vergata, Rome, Italy.
| |
Collapse
|
14
|
Jia X, Wang X, Guo X, Ji J, Lou G, Zhao J, Zhou W, Guo M, Zhang M, Li C, Tai S, Yu S. MicroRNA-124: An emerging therapeutic target in cancer. Cancer Med 2019; 8:5638-5650. [PMID: 31389160 PMCID: PMC6745873 DOI: 10.1002/cam4.2489] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2019] [Revised: 07/24/2019] [Accepted: 07/29/2019] [Indexed: 01/10/2023] Open
Abstract
MicroRNAs (miRNAs) are noncoding single‐stranded RNAs, approximately 20‐24 nucleotides in length, known as powerful posttranscriptional regulators. miRNAs play important regulatory roles in cellular processes by changing messenger RNA expression and are widely involved in human diseases, including tumors. It has been reported in the literature that miRNAs have a precise role in cell proliferation, programmed cell death, differentiation, and expression of coding genes. MicroRNA‐124 (miR‐124) has reduced exparession in various human neoplasms and is believed to be related to the occurrence, development, and prognosis of malignant tumors. In our review, we focus on the specific molecular functions of miR‐124 and the downstream gene targets in major cancers, which provide preclinical evidence for the treatment of human cancer. Although some obstacles exist, miR‐124 is still attracting intensive research focus as a promising and effective anticancer weapon.
Collapse
Affiliation(s)
- Xinqi Jia
- Department of Hepatopancreatobiliary Surgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Xu Wang
- Department of Neurology, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Xiaorong Guo
- Department of Pathology, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Jingjing Ji
- Department of Pathology, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Ge Lou
- Department of Pathology, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Junjie Zhao
- Department of Hepatopancreatobiliary Surgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Wenjia Zhou
- Department of Hepatopancreatobiliary Surgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Mian Guo
- Department of Neurosurgery, the Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Maomao Zhang
- Key Laboratory of Myocardial Ischemia, Department of Cardiology, the Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Chao Li
- Department of Orthopedics, the Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Sheng Tai
- Department of Hepatopancreatobiliary Surgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Shan Yu
- Department of Pathology, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| |
Collapse
|