1
|
Jin XF, Ye ZM, He YD, Yang CF, Orr M, Luo A, Williams P, Zhu CD. Intraspecific and interspecific resource partitioning between bumblebee workers and males related to nectar quantity and quality. INSECT SCIENCE 2024. [PMID: 39099473 DOI: 10.1111/1744-7917.13425] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Revised: 06/15/2024] [Accepted: 06/17/2024] [Indexed: 08/06/2024]
Abstract
Bumblebees are important pollinators for many natural and agricultural systems in temperate regions. Interspecific and intraspecific variation in floral resource preferences have been proposed to influence bumblebee community structure. In particular, sexual dimorphism is a major source of intraspecific niche variation. Although interspecific resource partitioning is well studied, few studies have explored the intraspecific dynamics between workers and males. Here, we report a study on a total of 11 528 workers and 2220 males of 14 bumblebee species recorded over 5 years in the Hengduan Mountains of Southwest China. We first compared the potential for interspecific and intraspecific competition between workers and males using visitation records and resource partitioning indices (overlap index). We then evaluated the influence of nectar traits on flower preference, including nectar volume and the levels of hexose, sucrose and 10 essential amino acids (EAAs). We found that the niche overlap between intraspecific workers and males was higher than that between different species, and temporal overlap alone did not strongly determine diet overlap. Males of most species preferred flowers with high levels of EAAs and hexose, whereas workers of some species preferred flowers with high nectar volume and sucrose levels. This study suggests that there is floral resource partitioning among bumblebee species, and between workers and males, which may play a key role in alleviating interspecific and intraspecific competition. These findings also provide a useful guide for which kinds of plants might be most valuable for bumblebees, especially the understudied males, in this biodiversity hotspot.
Collapse
Affiliation(s)
- Xiao-Fang Jin
- Key Laboratory of Zoological Systematics and Evolution, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- College of Life Sciences, Wuhan University, Wuhan, China
| | - Zhong-Ming Ye
- State Key Laboratory of Plant Diversity and Specialty Crops, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, China
| | - Yong-Deng He
- State Key Laboratory of Plant Diversity and Specialty Crops, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, China
| | - Chun-Feng Yang
- State Key Laboratory of Plant Diversity and Specialty Crops, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, China
| | - Michael Orr
- Key Laboratory of Zoological Systematics and Evolution, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- Entomologie, Staatliches Museum für Naturkunde Stuttgart, Stuttgart, Germany
| | - Arong Luo
- Key Laboratory of Zoological Systematics and Evolution, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | | | - Chao-Dong Zhu
- Key Laboratory of Zoological Systematics and Evolution, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- College of Biological Sciences, University of Chinese Academy of Sciences, Beijing, China
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
2
|
Bieber BV, Lockett SG, Glasser SK, St Clair FA, Portillo NO, Adler LS, Povelones ML. Genetic modification of the bee parasite Crithidia bombi for improved visualization and protein localization. Exp Parasitol 2024; 262:108789. [PMID: 38762201 DOI: 10.1016/j.exppara.2024.108789] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Revised: 05/02/2024] [Accepted: 05/15/2024] [Indexed: 05/20/2024]
Abstract
Crithidia bombi is a trypanosomatid parasite that infects several species of bumble bees (Bombus spp.), by adhering to their intestinal tract. Crithidia bombi infection impairs learning and reduces survival of workers and the fitness of overwintering queens. Although there is extensive research on the ecology of this host-pathogen system, we understand far less about the mechanisms that mediate internal infection dynamics. Crithidia bombi infects hosts by attaching to the hindgut via the flagellum, and one previous study found that a nectar secondary compound removed the flagellum, preventing attachment. However, approaches that allow more detailed observation of parasite attachment and growth would allow us to better understand factors mediating this host-pathogen relationship. We established techniques for genetic manipulation and visualization of cultured C. bombi. Using constructs established for Crithidia fasciculata, we successfully generated C. bombi cells expressing ectopic fluorescent transgenes using two different selectable markers. To our knowledge, this is the first genetic modification of this species. We also introduced constructs that label the mitochondrion and nucleus of the parasite, showing that subcellular targeting signals can function across parasite species to highlight specific organelles. Finally, we visualized fluorescently tagged parasites in vitro in both their swimming and attached forms, and in vivo in bumble bee (Bombus impatiens) hosts. Expanding our cell and molecular toolkit for C. bombi will help us better understand how factors such as host diet, immune system, and physiology mediate outcomes of infection by these common parasites.
Collapse
Affiliation(s)
| | - Sarah G Lockett
- Department of Biology, Villanova University, Villanova, PA, 19085, USA
| | - Sonja K Glasser
- Department of Biology, University of Massachusetts Amherst, Amherst, MA, 01003, USA
| | - Faith A St Clair
- Department of Biology, Villanova University, Villanova, PA, 19085, USA
| | - Neida O Portillo
- Department of Biology, University of Massachusetts Amherst, Amherst, MA, 01003, USA
| | - Lynn S Adler
- Department of Biology, University of Massachusetts Amherst, Amherst, MA, 01003, USA
| | - Megan L Povelones
- Department of Biology, Villanova University, Villanova, PA, 19085, USA.
| |
Collapse
|
3
|
Anjum SI, Ullah A, Gohar F, Raza G, Khan MI, Hameed M, Ali A, Chen CC, Tlak Gajger I. Bee pollen as a food and feed supplement and a therapeutic remedy: recent trends in nanotechnology. Front Nutr 2024; 11:1371672. [PMID: 38899322 PMCID: PMC11186459 DOI: 10.3389/fnut.2024.1371672] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Accepted: 04/22/2024] [Indexed: 06/21/2024] Open
Abstract
Pollen grains are the male reproductive part of the flowering plants. It is collected by forager honey bees and mixed with their salivary secretions, enzymes, and nectar, which form fermented pollen or "bee bread" which is stored in cells of wax honeycombs. Bee pollen (BP) is a valuable apitherapeutic product and is considered a nutritional healthy food appreciated by natural medicine from ancient times. Recently, BP has been considered a beneficial food supplement and a value-added product that contains approximately 250 different bioactive components. It contains numerous beneficial elements such as Mg, Ca, Mn, K, and phenolic compounds. BP possesses strong antioxidant, anti-inflammatory, antimicrobial, antiviral, analgesic, immunostimulant, neuroprotective, anti-cancer, and hepatoprotective properties. It is used for different purposes for the welfare of mankind. Additionally, there is a growing interest in honey bee products harvesting and utilizing for many purposes as a natural remedy and nutritive function. In this review, the impacts of BP on different organisms in different ways by highlighting its apitherapeutic efficacy are described.
Collapse
Affiliation(s)
- Syed Ishtiaq Anjum
- Department of Zoology, Kohat University of Science and Technology, Kohat, Khyber Pakhtunkhwa, Pakistan
| | - Amjad Ullah
- Department of Zoology, Kohat University of Science and Technology, Kohat, Khyber Pakhtunkhwa, Pakistan
- Department of Plant Protection, Ministry of National Food Security and Research, Karachi, Pakistan
| | - Faryal Gohar
- Department of Zoology, Kohat University of Science and Technology, Kohat, Khyber Pakhtunkhwa, Pakistan
| | - Ghulam Raza
- Department of Biological Sciences, University of Baltistan, Skardu, Pakistan
| | - Muhammad Ilyas Khan
- Department of Zoology, Kohat University of Science and Technology, Kohat, Khyber Pakhtunkhwa, Pakistan
| | - Mehwish Hameed
- Department of Zoology, Kohat University of Science and Technology, Kohat, Khyber Pakhtunkhwa, Pakistan
| | - Abid Ali
- Department of Zoology, Abdul Wali Khan University, Mardan, Khyber Pakhtunkhwa, Pakistan
| | - Chien-Chin Chen
- Department of Pathology, Ditmanson Medical Foundation Chia-Yi Christian Hospital, Chiayi, Taiwan
- Department of Cosmetic Science, Chia Nan University of Pharmacy and Science, Tainan, Taiwan
- Ph.D. Program in Translational Medicine, Rong Hsing Research Center for Translational Medicine, National Chung Hsing University, Taichung, Taiwan
- Department of Biotechnology and Bioindustry Sciences, College of Bioscience and Biotechnology, National Cheng Kung University, Tainan, Taiwan
- Biotechnology Center, National Chung Hsing University, Taichung, Taiwan
| | - Ivana Tlak Gajger
- Department for Biology and Pathology of Fish and Bees, Faculty of Veterinary Medicine, University of Zagreb, Zagreb, Croatia
| |
Collapse
|
4
|
Wolmuth-Gordon HS, Sharmin A, Brown MJF. Methods matter: the influence of method on infection estimates of the bumblebee parasite Crithidia bombi. Parasitology 2023; 150:1236-1241. [PMID: 37859420 PMCID: PMC10941228 DOI: 10.1017/s0031182023001002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Revised: 10/05/2023] [Accepted: 10/16/2023] [Indexed: 10/21/2023]
Abstract
The bumblebee gut parasite, Crithidia bombi, is widespread and prevalent in the field. Its interaction with Bombus spp. is a well-established epidemiological model. It is spread faecal-orally between colonies via the shared use of flowers when foraging. Accurately measuring the level of infection in bumblebees is important for assessing its distribution in the field, and also when conducting epidemiological experiments. Studies generally use 1 of 2 methods for measuring infection. One approach measures infection in faeces whereas the other method measures infection in guts. We tested whether the method of measuring infection affected the estimation of infection. Bumblebees were inoculated with a standardized inoculum and infection was measured 1 week later using either the faecal or gut method. We found that when the gut method was used to measure infection intensity estimates were significantly different to and approximately double those from the faecal method. These results have implications for the interpretation of previous study results and for the planning of future studies. Given the importance of bumblebees as pollinators, the impact of C. bombi on bumblebee health, and its use as an epidemiological model, we call on researchers to move towards consistent quantification of infections to enable future comparisons and meta-analyses of studies.
Collapse
|
5
|
Bernklau E, Arathi HS. Seasonal patterns of beneficial phytochemical availability in honey and stored pollen from honey bee colonies in large apiaries. JOURNAL OF ECONOMIC ENTOMOLOGY 2023; 116:1069-1077. [PMID: 37247384 DOI: 10.1093/jee/toad096] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/04/2022] [Revised: 04/24/2023] [Accepted: 05/10/2023] [Indexed: 05/31/2023]
Abstract
Honey bees (Apis mellifera L.; Hymenoptera, Apidae) are the most efficient pollinators in agroecosystems, responsible for the successful production of fruits, nuts, and vegetables, but they continue to face debilitating challenges. One of the major factors leading to these challenges could be linked to poor nutrition that results in weakening the colony, increasing susceptibility to pests and pathogens, and reducing the ability of bees to adapt to other abiotic stresses. Extensively used for commercial pollination, honey bee colonies regularly face exposure to limited diversity in their pollen diet as they are placed in flowering monocrops. Lack of access to diverse plant species compromises the availability of plant secondary compounds (phytochemicals), which, in small amounts, provide significant benefits to honey bee health. We analyzed the beneficial phytochemical content of honey and stored pollen (bee bread) samples from colonies in large apiaries through the active bee season. Samples were evaluated for 4 beneficial phytochemicals (caffeine, kaempferol, gallic acid, and p-coumaric acid), which have previously been shown to improve honey bee health. Our results, as relevant to the apiary locations in the study, indicated that p-coumaric acid is uniformly available throughout the season. Caffeine is completely absent, and gallic acid and kaempferol are not regularly available. Our results suggest the need to explore the potential to deliver beneficial phytochemicals as nutritional supplements to improve bee health. It may be vital for the pollination industry to consider such targeted dietary supplementation as beekeepers strive to meet the increasing demand for crop pollination services.
Collapse
Affiliation(s)
- Elisa Bernklau
- Department of Agricultural Biology, Colorado State University, Fort Collins, CO 80525, USA
| | - H S Arathi
- Invasive Species and Pollinator Health Research Unit, USDA-ARS, Davis, CA 95616, USA
| |
Collapse
|
6
|
Dahake A, Raguso RA, Goyret J. Context and the functional use of information in insect sensory ecology. CURRENT OPINION IN INSECT SCIENCE 2023; 58:101058. [PMID: 37217002 DOI: 10.1016/j.cois.2023.101058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Revised: 03/26/2023] [Accepted: 05/18/2023] [Indexed: 05/24/2023]
Abstract
Context-specific behaviors emerge from the interaction between an animal's internal state and its external environment. Although the importance of context is acknowledged in the field of insect sensory ecology, there is a lack of synthesis on this topic stemming from challenges in conceptualizing 'context'. We address this challenge by gleaning over the recent findings on the sensory ecology of mosquitoes and other insect pollinators. We discuss internal states and their temporal dynamics, from those lasting minutes to hours (host-seeking) to those lasting days to weeks (diapause, migration). Of the many patterns reviewed, at least three were common to all taxa studied. First, different sensory cues gain prominence depending on the insect's internal state. Second, similar sensory circuits between related species can result in different behavioral outcomes. And third, ambient conditions can dramatically alter internal states and behaviors.
Collapse
Affiliation(s)
- Ajinkya Dahake
- Department of Neurobiology and Behavior, Cornell University, Ithaca, NY, USA
| | - Robert A Raguso
- Department of Neurobiology and Behavior, Cornell University, Ithaca, NY, USA
| | - Joaquin Goyret
- Department of Biological Sciences, University of Tennessee Martin, Martin, TN, USA.
| |
Collapse
|
7
|
Malfi RL, McFrederick QS, Lozano G, Irwin RE, Adler LS. Sunflower plantings reduce a common gut pathogen and increase queen production in common eastern bumblebee colonies. Proc Biol Sci 2023; 290:20230055. [PMID: 37015273 PMCID: PMC10072944 DOI: 10.1098/rspb.2023.0055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Accepted: 03/10/2023] [Indexed: 04/06/2023] Open
Abstract
Community diversity can reduce the prevalence and spread of disease, but certain species may play a disproportionate role in diluting or amplifying pathogens. Flowers act as both sources of nutrition and sites of pathogen transmission, but the effects of specific plant species in shaping bee disease dynamics are not well understood. We evaluated whether plantings of sunflower (Helianthus annuus), whose pollen reduces infection by some pathogens when fed to bees in captivity, lowered pathogen levels and increased reproduction in free-foraging bumblebee colonies (Bombus impatiens). Sunflower abundance reduced the prevalence of a common gut pathogen, Crithidia bombi, and reduced infection intensity, with an order of magnitude lower infection intensity at high sunflower sites compared with sites with little to no sunflower. Sunflower abundance was also positively associated with greater queen production in colonies. Sunflower did not affect prevalence of other detected pathogens. This work demonstrates that a single plant species can drive disease dynamics in foraging B. impatiens, and that sunflower plantings can be used as a tool for mitigating a prevalent pathogen while also increasing reproduction of an agriculturally important bee species.
Collapse
Affiliation(s)
- Rosemary L. Malfi
- Department of Biology, University of Massachusetts, Amherst, MA 01003, USA
| | | | - Giselle Lozano
- Department of Entomology, University of California, Riverside, CA 92521, USA
| | - Rebecca E. Irwin
- Department of Applied Ecology, North Carolina State University, Raleigh, NC 27695, USA
| | - Lynn S. Adler
- Department of Biology, University of Massachusetts, Amherst, MA 01003, USA
| |
Collapse
|
8
|
Giacomini JJ, Adler LS, Reading BJ, Irwin RE. Differential bumble bee gene expression associated with pathogen infection and pollen diet. BMC Genomics 2023; 24:157. [PMID: 36991318 DOI: 10.1186/s12864-023-09143-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Accepted: 01/18/2023] [Indexed: 03/31/2023] Open
Abstract
BACKGROUND Diet and parasitism can have powerful effects on host gene expression. However, how specific dietary components affect host gene expression that could feed back to affect parasitism is relatively unexplored in many wild species. Recently, it was discovered that consumption of sunflower (Helianthus annuus) pollen reduced severity of gut protozoan pathogen Crithidia bombi infection in Bombus impatiens bumble bees. Despite the dramatic and consistent medicinal effect of sunflower pollen, very little is known about the mechanism(s) underlying this effect. However, sunflower pollen extract increases rather than suppresses C. bombi growth in vitro, suggesting that sunflower pollen reduces C. bombi infection indirectly via changes in the host. Here, we analyzed whole transcriptomes of B. impatiens workers to characterize the physiological response to sunflower pollen consumption and C. bombi infection to isolate the mechanisms underlying the medicinal effect. B. impatiens workers were inoculated with either C. bombi cells (infected) or a sham control (un-infected) and fed either sunflower or wildflower pollen ad libitum. Whole abdominal gene expression profiles were then sequenced with Illumina NextSeq 500 technology. RESULTS Among infected bees, sunflower pollen upregulated immune transcripts, including the anti-microbial peptide hymenoptaecin, Toll receptors and serine proteases. In both infected and un-infected bees, sunflower pollen upregulated putative detoxification transcripts and transcripts associated with the repair and maintenance of gut epithelial cells. Among wildflower-fed bees, infected bees downregulated immune transcripts associated with phagocytosis and the phenoloxidase cascade. CONCLUSIONS Taken together, these results indicate dissimilar immune responses between sunflower- and wildflower-fed bumble bees infected with C. bombi, a response to physical damage to gut epithelial cells caused by sunflower pollen, and a strong detoxification response to sunflower pollen consumption. Identifying host responses that drive the medicinal effect of sunflower pollen in infected bumble bees may broaden our understanding of plant-pollinator interactions and provide opportunities for effective management of bee pathogens.
Collapse
Affiliation(s)
- Jonathan J Giacomini
- Department of Applied Ecology, North Carolina State University, Raleigh, NC, 27695, USA.
| | - Lynn S Adler
- Department of Biology, University of Massachusetts Amherst, Amherst, MA, 01003, USA
| | - Benjamin J Reading
- Department of Applied Ecology, North Carolina State University, Raleigh, NC, 27695, USA
| | - Rebecca E Irwin
- Department of Applied Ecology, North Carolina State University, Raleigh, NC, 27695, USA
| |
Collapse
|
9
|
Palmer-Young EC, Malfi R, Zhou Y, Joyce B, Whitehead H, Van Wyk JI, Baylis K, Grubbs K, Boncristiani DL, Evans JD, Irwin RE, Adler LS. Sunflower-Associated Reductions in Varroa Mite Infestation of Honey Bee Colonies. JOURNAL OF ECONOMIC ENTOMOLOGY 2023; 116:68-77. [PMID: 36573405 DOI: 10.1093/jee/toac196] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Indexed: 06/18/2023]
Abstract
Landscapes can affect parasite epidemiology in wild and agricultural animals. Honey bees are threatened by loss of floral resources and by parasites, principally the mite Varroa destructor and the viruses it vectors. Existing mite control relies heavily on chemical treatments that can adversely affect bees. Alternative, pesticide-free control methods are needed to mitigate infestation with these ectoparasites. Many flowering plants provide nectar and pollen that confer resistance to parasites. Enrichment of landscapes with antiparasitic floral resources could therefore provide a sustainable means of parasite control in pollinators. Floral rewards of Asteraceae plants can reduce parasitic infection in diverse bee species, including honey and bumble bees. Here, we tested the effects of sunflower (Helianthus annuus) cropland and pollen supplementation on honey bee resistance to macro- and microparasites. Although sunflower had nonsignificant effects on microparasites, We found that increased sunflower pollen availability correlated with reduced Varroa mite infestation in landscapes and pollen-supplemented colonies. At the landscape level, each doubling of sunflower crop area was associated with a 28% reduction in mite infestation. In field trials, late-summer supplementation of colonies with sunflower pollen reduced mite infestation by 2.75-fold relative to artificial pollen. United States sunflower crop acreage has declined by 2% per year since 1980, however, suggesting reduced availability of this floral resource. Although further research is needed to determine whether the observed effects represent direct inhibition of mite fecundity or mite-limiting reductions in honey bee brood-rearing, our findings suggest the potential for sunflower plantings or pollen supplements to counteract a major driver of honey bee losses worldwide.
Collapse
Affiliation(s)
| | - Rosemary Malfi
- Department of Biology, University of Massachusetts Amherst, Amherst, MA, USA
| | - Yujun Zhou
- Department of Agricultural & Consumer Economics, University of Illinois at Urbana-Champaign, Urbana and Champaign, IL, USA
| | - Bryanna Joyce
- Department of Biology, University of Massachusetts Amherst, Amherst, MA, USA
| | - Hannah Whitehead
- Department of Biology, University of Massachusetts Amherst, Amherst, MA, USA
| | - Jennifer I Van Wyk
- Department of Biology, University of Massachusetts Amherst, Amherst, MA, USA
| | - Kathy Baylis
- Department of Agricultural & Consumer Economics, University of Illinois at Urbana-Champaign, Urbana and Champaign, IL, USA
| | - Kyle Grubbs
- USDA-ARS Bee Research Laboratory, Beltsville, MD, USA
| | | | - Jay D Evans
- USDA-ARS Bee Research Laboratory, Beltsville, MD, USA
| | - Rebecca E Irwin
- Department of Applied Ecology, North Carolina State University, Raleigh, NC, USA
| | - Lynn S Adler
- Department of Biology, University of Massachusetts Amherst, Amherst, MA, USA
| |
Collapse
|
10
|
Woodcock BA, Oliver AE, Newbold LK, Soon Gweon H, Read DS, Sayed U, Savage J, Bacon J, Upcott E, Howell K, Turvey K, Roy DB, Gloria Pereira M, Sleep D, Greenop A, Pywell RF. Citizen science monitoring reveals links between honeybee health, pesticide exposure and seasonal availability of floral resources. Sci Rep 2022; 12:14331. [PMID: 35995928 PMCID: PMC9395358 DOI: 10.1038/s41598-022-18672-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Accepted: 08/17/2022] [Indexed: 11/23/2022] Open
Abstract
We use a national citizen science monitoring scheme to quantify how agricultural intensification affects honeybee diet breadth (number of plant species). To do this we used DNA metabarcoding to identify the plants present in 527 honey samples collected in 2019 across Great Britain. The species richness of forage plants was negatively correlated with arable cropping area, although this was only found early in the year when the abundance of flowering plants was more limited. Within intensively farmed areas, honeybee diets were dominated by Brassica crops (including oilseed rape). We demonstrate how the structure and complexity of honeybee foraging relationships with plants is negatively affected by the area of arable crops surrounding hives. Using information collected from the beekeepers on the incidence of an economically damaging bee disease (Deformed Wing Virus) we found that the occurrence of this disease increased where bees foraged in agricultural land where there was a high use of foliar insecticides. Understanding impacts of land use on resource availability is fundamental to assessing long-term viability of pollinator populations. These findings highlight the importance of supporting temporally timed resources as mitigation strategies to support wider pollinator population viability.
Collapse
Affiliation(s)
- Ben A Woodcock
- UK Centre for Ecology & Hydrology (UKCEH), Wallingford, Oxfordshire, OX10 8BB, UK.
| | - Anna E Oliver
- UK Centre for Ecology & Hydrology (UKCEH), Wallingford, Oxfordshire, OX10 8BB, UK
| | - Lindsay K Newbold
- UK Centre for Ecology & Hydrology (UKCEH), Wallingford, Oxfordshire, OX10 8BB, UK
| | - H Soon Gweon
- School of Biological Sciences, University of Reading, Reading, RG6 6UR, UK
| | - Daniel S Read
- UK Centre for Ecology & Hydrology (UKCEH), Wallingford, Oxfordshire, OX10 8BB, UK
| | - Ujala Sayed
- UK Centre for Ecology & Hydrology (UKCEH), Wallingford, Oxfordshire, OX10 8BB, UK
| | - Joanna Savage
- UK Centre for Ecology & Hydrology (UKCEH), Wallingford, Oxfordshire, OX10 8BB, UK
| | - Jim Bacon
- UK Centre for Ecology & Hydrology (UKCEH), Lancaster Environment Centre, Library Ave., Bailrigg, Lancaster, LA1 4AP, UK
| | - Emily Upcott
- UK Centre for Ecology & Hydrology (UKCEH), Wallingford, Oxfordshire, OX10 8BB, UK
| | - Katherine Howell
- UK Centre for Ecology & Hydrology (UKCEH), Wallingford, Oxfordshire, OX10 8BB, UK
| | - Katharine Turvey
- UK Centre for Ecology & Hydrology (UKCEH), Wallingford, Oxfordshire, OX10 8BB, UK
| | - David B Roy
- UK Centre for Ecology & Hydrology (UKCEH), Wallingford, Oxfordshire, OX10 8BB, UK
| | - M Gloria Pereira
- UK Centre for Ecology & Hydrology (UKCEH), Lancaster Environment Centre, Library Ave., Bailrigg, Lancaster, LA1 4AP, UK
| | - Darren Sleep
- UK Centre for Ecology & Hydrology (UKCEH), Lancaster Environment Centre, Library Ave., Bailrigg, Lancaster, LA1 4AP, UK
| | - Arran Greenop
- UK Centre for Ecology & Hydrology (UKCEH), Wallingford, Oxfordshire, OX10 8BB, UK
| | - Richard F Pywell
- UK Centre for Ecology & Hydrology (UKCEH), Wallingford, Oxfordshire, OX10 8BB, UK
| |
Collapse
|
11
|
Tuerlings T, Buydens L, Smagghe G, Piot N. The impact of mass-flowering crops on bee pathogen dynamics. Int J Parasitol Parasites Wildl 2022; 18:135-147. [PMID: 35586790 PMCID: PMC9108762 DOI: 10.1016/j.ijppaw.2022.05.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Revised: 04/29/2022] [Accepted: 05/01/2022] [Indexed: 11/24/2022]
Abstract
Nearly two fifths of the Earth's land area is currently used for agriculture, substantially impacting the environment and ecosystems. Besides the direct impact through land use change, intensive agriculture can also have an indirect impact, for example by changing wildlife epidemiology. We review here the potential effects of mass-flowering crops (MFCs), which are rapidly expanding in global cropping area, on the epidemiology of known pathogens in bee pollinators. We bring together the fifty MFCs with largest global area harvested and give an overview of their pollination dependency as well as their impact on bee pollinators. When in bloom these crops provide an abundance of flowers, which can provide nutrition for bees and increase bee reproduction. After their short bloom peak, however, the fields turn into green deserts. These big changes in floral availability strongly affect the plant-pollinator network, which in turn affects the pathogen transmission network, mediated by shared flowers. We address this dual role of flowers provided by MFCs, serving as nutritional resources as well as pathogen transmission spots, and bring together the current knowledge to assess how MFCs could affect pathogen prevalence in bee pollinator communities.
Collapse
Affiliation(s)
| | | | - Guy Smagghe
- Laboratory of Agrozoology, Department of Plants and Crops, Faculty of Bioscience Engineering, Coupure links 653, Ghent University, Ghent, Belgium
| | - Niels Piot
- Laboratory of Agrozoology, Department of Plants and Crops, Faculty of Bioscience Engineering, Coupure links 653, Ghent University, Ghent, Belgium
| |
Collapse
|
12
|
Wintermantel D, Pereira-Peixoto MH, Warth N, Melcher K, Faller M, Feurer J, Allan MJ, Dean R, Tamburini G, Knauer AC, Schwarz JM, Albrecht M, Klein AM. Flowering resources modulate the sensitivity of bumblebees to a common fungicide. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 829:154450. [PMID: 35276144 DOI: 10.1016/j.scitotenv.2022.154450] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Revised: 02/12/2022] [Accepted: 03/06/2022] [Indexed: 06/14/2023]
Abstract
Bees are exposed to various stressors, including pesticides and lack of flowering resources. Despite potential interactions between these stressors, the impacts of pesticides on bees are generally assumed to be consistent across bee-attractive crops, and regulatory risk assessments of pesticides neglect interactions with flowering resources. Furthermore, impacts of fungicides on bees are rarely examined in peer-reviewed studies, although these are often the pesticides that bees are most exposed to. In a full-factorial semi-field experiment with 39 large flight cages, we assessed the single and combined impacts of the globally used azoxystrobin-based fungicide Amistar® and three types of flowering resources (Phacelia, buckwheat, and a floral mix) on Bombus terrestris colonies. Although Amistar is classified as bee-safe, Amistar exposure through Phacelia monocultures reduced adult worker body mass and colony growth (including a 55% decline in workers and an 88% decline in males), while the fungicide had no impact on colonies in buckwheat or the floral mix cages. Furthermore, buckwheat monocultures hampered survival and fecundity irrespective of fungicide exposure. This shows that bumblebees require access to complementary flowering species to gain both fitness and fungicide tolerance and that Amistar impacts are flowering resource-dependent. Our findings call for further research on how different flowering plants affect bees and their pesticide tolerance to improve guidelines for regulatory pesticide risk assessments and inform the choice of plants that are cultivated to safeguard pollinators.
Collapse
Affiliation(s)
- Dimitry Wintermantel
- University of Freiburg, Nature Conservation and Landscape Ecology, Freiburg, Germany.
| | | | - Nadja Warth
- University of Freiburg, Nature Conservation and Landscape Ecology, Freiburg, Germany
| | - Kristin Melcher
- University of Freiburg, Nature Conservation and Landscape Ecology, Freiburg, Germany
| | - Michael Faller
- University of Freiburg, Nature Conservation and Landscape Ecology, Freiburg, Germany
| | - Joachim Feurer
- University of Freiburg, Nature Conservation and Landscape Ecology, Freiburg, Germany
| | | | - Robin Dean
- Red Beehive Company, Bishops Waltham, United Kingdom
| | - Giovanni Tamburini
- University of Bari, Department of Soil, Plant and Food Sciences (DiSSPA - Entomology), Bari, Italy
| | - Anina C Knauer
- Agroscope, Agroecology and Environment, Zurich, Switzerland
| | | | | | - Alexandra-Maria Klein
- University of Freiburg, Nature Conservation and Landscape Ecology, Freiburg, Germany
| |
Collapse
|
13
|
Brown MJF. Complex networks of parasites and pollinators: moving towards a healthy balance. Philos Trans R Soc Lond B Biol Sci 2022; 377:20210161. [PMID: 35491603 DOI: 10.1098/rstb.2021.0161] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
Parasites are viewed as a major threat to wild pollinator health. While this may be true for epidemics driven by parasite spillover from managed or invasive species, the picture is more complex for endemic parasites. Wild pollinator species host and share a species-rich, generalist parasite community. In contrast to the negative health impacts that these parasites impose on individual hosts, at a community level they may act to reduce competition from common and abundant pollinator species. By providing rare species with space in which to exist, this will act to support and maintain a diverse and thus healthier pollinator community. At this level, and perhaps paraxodically, parasites may be good for pollinators. This stands in clear contrast to the obvious negative impacts of epidemic and spillover parasites on wild pollinator communities. Research into floral resources that control parasites could be best employed to help design landscapes that provide pollinators with the opportunity to moderate their parasite community, rather than attempting to eliminate specific parasites from wild pollinator communities. This article is part of the theme issue 'Natural processes influencing pollinator health: from chemistry to landscapes'.
Collapse
Affiliation(s)
- Mark J F Brown
- Centre for Ecology, Evolution and Behaviour, Department of Biological Sciences, School of Life Sciences and the Environment, Royal Holloway University of London, Egham TW20 0EX, UK
| |
Collapse
|
14
|
Fowler AE, Sadd BM, Bassingthwaite T, Irwin RE, Adler LS. Consuming sunflower pollen reduced pathogen infection but did not alter measures of immunity in bumblebees. Philos Trans R Soc Lond B Biol Sci 2022; 377:20210160. [PMID: 35491606 PMCID: PMC9058531 DOI: 10.1098/rstb.2021.0160] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Accepted: 11/23/2021] [Indexed: 11/12/2022] Open
Abstract
Certain diets can benefit bee health by reducing pathogens, but the mechanism(s) driving these medicinal effects are largely unexplored. Recent research found that sunflower (Helianthus annuus) pollen reduces the gut pathogen Crithidia bombi in the common eastern bumblebee (Bombus impatiens). Here, we tested the effects of sunflower pollen and infection on two bee immune metrics to determine whether sunflower pollen diet drives changes in host immunity that can explain this medicinal effect. Bees were infected with C. bombi or not and given either sunflower or wildflower pollen. Subsequently, bees received a benign immune challenge or were left naive to test the induced and constitutive immune responses, respectively. We measured haemolymph phenoloxidase activity, involved in the melanization cascade, and antibacterial activity. Sunflower pollen reduced C. bombi infection, but we found no significant pollen diet effect on either immune measure. Phenoloxidase activity was also not affected by C. bombi infection status; however, uninfected bees were more likely to have measurable constitutive antibacterial activity, while infected bees had higher induced antibacterial activity. Overall, we found that sunflower pollen does not significantly affect the immune responses we measured, suggesting that the mechanisms underlying its medicinal effect do not involve these bee immune parameters. This article is part of the theme issue 'Natural processes influencing pollinator health: from chemistry to landscapes'.
Collapse
Affiliation(s)
- Alison E. Fowler
- Department of Biology, University of Massachusetts Amherst, 221 Morrill Science Center South, 611 North Pleasant Street, Amherst, MA 01003, USA
| | - Ben M. Sadd
- School of Biological Sciences, Illinois State University, Normal, IL 61790, USA
| | - Toby Bassingthwaite
- School of Biological Sciences, Illinois State University, Normal, IL 61790, USA
| | - Rebecca E. Irwin
- Department of Applied Ecology, North Carolina State University, Raleigh, NC 27695, USA
| | - Lynn S. Adler
- Department of Biology, University of Massachusetts Amherst, 221 Morrill Science Center South, 611 North Pleasant Street, Amherst, MA 01003, USA
| |
Collapse
|
15
|
Ruiz-González MX, Kelly M, Moret Y, Brown MJF. Parasite resistance and immunity across female castes in a social insect. Behav Ecol Sociobiol 2022. [DOI: 10.1007/s00265-022-03162-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
Abstract
Living in a social group increases the risks of parasitism, especially in highly-related groups. In homogenous groups, with no reproductive division of labour, the impact of parasitism is unlikely to vary with host identity. Many social systems, however, do exhibit division of reproductive labour, most famously in social insects with their reproductive queens and generally infertile workers. In such systems, the impact of parasitism will differ for each group. Consequently, we predict that susceptibility to parasites will vary to reflect such differential impact. We tested this prediction using a trypanosome-bumble bee system, where Crithidia bombi infects both gynes and workers of Bombus terrestris. We studied both susceptibility to the parasite and relevant measures of the immune function. As predicted, gynes were significantly less susceptible to the parasite than workers, but while gynes and workers expressed different immune profiles, how these link to differential susceptibility remains unclear. In conclusion, our results suggest that differential selection pressures exerted by parasites may produce multiple phenotypes from a single genotype in order to maximise fitness in a social group context.
Significance statement
Social insect colonies dominate terrestrial ecology, and as such are targets for parasites. How they defend themselves against such threats is a key question. Here, we show that bumble bee gynes — the reproductive individuals that overwinter and found colonies in this annual social system — are more resistant to a parasite that disproportionately affects reproductive fitness than their sister workers. Differential patterns of susceptibility may help to explain the success of these social insects.
Collapse
|
16
|
Fitch G, Figueroa LL, Koch H, Stevenson PC, Adler LS. Understanding effects of floral products on bee parasites: Mechanisms, synergism, and ecological complexity. Int J Parasitol Parasites Wildl 2022; 17:244-256. [PMID: 35299588 PMCID: PMC8920997 DOI: 10.1016/j.ijppaw.2022.02.011] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Revised: 02/24/2022] [Accepted: 02/25/2022] [Indexed: 12/27/2022]
Abstract
Floral nectar and pollen commonly contain diverse secondary metabolites. While these compounds are classically thought to play a role in plant defense, recent research indicates that they may also reduce disease in pollinators. Given that parasites have been implicated in ongoing bee declines, this discovery has spurred interest in the potential for 'medicinal' floral products to aid in pollinator conservation efforts. We review the evidence for antiparasitic effects of floral products on bee diseases, emphasizing the importance of investigating the mechanism underlying antiparasitic effects, including direct or host-mediated effects. We discuss the high specificity of antiparasitic effects of even very similar compounds, and highlight the need to consider how nonadditive effects of multiple compounds, and the post-ingestion transformation of metabolites, mediate the disease-reducing capacity of floral products. While the bulk of research on antiparasitic effects of floral products on bee parasites has been conducted in the lab, we review evidence for the impact of such effects in the field, and highlight areas for future research at the floral product-bee disease interface. Such research has great potential both to enhance our understanding of the role of parasites in shaping plant-bee interactions, and the role of plants in determining bee-parasite dynamics. This understanding may in turn reveal new avenues for pollinator conservation.
Collapse
Affiliation(s)
- Gordon Fitch
- Department of Biology, University of Massachusetts Amherst, Amherst, MA, 01003, USA
| | - Laura L. Figueroa
- Department of Entomology, Cornell University, Ithaca, NY, 14853, USA
- Department of Environmental Conservation, University of Massachusetts Amherst, Amherst, MA, 01003, USA
| | - Hauke Koch
- Royal Botanic Gardens, Kew Green, Kew, Richmond, Surrey, TW9 3AE, UK
| | - Philip C. Stevenson
- Royal Botanic Gardens, Kew Green, Kew, Richmond, Surrey, TW9 3AE, UK
- Natural Resources Institute, University of Greenwich, Kent, ME4 4TB, UK
| | - Lynn S. Adler
- Department of Biology, University of Massachusetts Amherst, Amherst, MA, 01003, USA
| |
Collapse
|
17
|
Gekière A, Semay I, Gérard M, Michez D, Gerbaux P, Vanderplanck M. Poison or Potion: Effects of Sunflower Phenolamides on Bumble Bees and Their Gut Parasite. BIOLOGY 2022; 11:545. [PMID: 35453744 PMCID: PMC9030180 DOI: 10.3390/biology11040545] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Revised: 03/28/2022] [Accepted: 03/30/2022] [Indexed: 11/29/2022]
Abstract
Specific floral resources may help bees to face environmental challenges such as parasite infection, as recently shown for sunflower pollen. Whereas this pollen diet is known to be unsuitable for the larval development of bumble bees, it has been shown to reduce the load of a trypanosomatid parasite (Crithidia bombi) in the bumble bee gut. Recent studies suggested it could be due to phenolamides, a group of compounds commonly found in flowering plants. We, therefore, decided to assess separately the impacts of sunflower pollen and its phenolamides on a bumble bee and its gut parasite. We fed Crithidia-infected and -uninfected microcolonies of Bombus terrestris either with a diet of willow pollen (control), a diet of sunflower pollen (natural diet) or a diet of willow pollen supplemented with sunflower phenolamides (supplemented diet). We measured several parameters at both microcolony (i.e., food collection, parasite load, brood development and stress responses) and individual (i.e., fat body content and phenotypic variation) levels. As expected, the natural diet had detrimental effects on bumble bees but surprisingly, we did not observe any reduction in parasite load, probably because of bee species-specific outcomes. The supplemented diet also induced detrimental effects but by contrast to our a priori hypothesis, it led to an increase in parasite load in infected microcolonies. We hypothesised that it could be due to physiological distress or gut microbiota alteration induced by phenolamide bioactivities. We further challenged the definition of medicinal effects and questioned the way to assess them in controlled conditions, underlining the necessity to clearly define the experimental framework in this research field.
Collapse
Affiliation(s)
- Antoine Gekière
- Laboratoire de Zoologie, Research Institute for Biosciences, University of Mons, 7000 Mons, Belgium;
| | - Irène Semay
- Organic Synthesis and Mass Spectrometry Laboratory, Research Institute for Biosciences, University of Mons, 7000 Mons, Belgium; (I.S.); (P.G.)
| | - Maxence Gérard
- Insect Lab., Division of Functional Morphology, Department of Zoology, Stockholm University, 11418 Stockholm, Sweden;
| | - Denis Michez
- Laboratoire de Zoologie, Research Institute for Biosciences, University of Mons, 7000 Mons, Belgium;
| | - Pascal Gerbaux
- Organic Synthesis and Mass Spectrometry Laboratory, Research Institute for Biosciences, University of Mons, 7000 Mons, Belgium; (I.S.); (P.G.)
| | | |
Collapse
|
18
|
Fowler AE, Giacomini JJ, Connon SJ, Irwin RE, Adler LS. Sunflower pollen reduces a gut pathogen in the model bee species, Bombus impatiens, but has weaker effects in three wild congeners. Proc Biol Sci 2022; 289:20211909. [PMID: 35105241 PMCID: PMC8809364 DOI: 10.1098/rspb.2021.1909] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2021] [Accepted: 01/04/2022] [Indexed: 12/17/2022] Open
Abstract
Commercial bumblebees have become popular models to understand stressors and solutions for pollinator health, but few studies test whether results translate to other pollinators. Consuming sunflower pollen dramatically reduces infection by the gut parasite Crithidia bombi in commercially reared Bombus impatiens. We assessed the effect of sunflower pollen on infection in wild B. impatiens, Bombus griseocollis, Bombus bimaculatus and Bombus vagans. We also asked how pollen diet (50% sunflower pollen versus wildflower pollen) and infection (yes/no) affected performance in wild B. impatiens microcolonies. Compared to controls, sunflower pollen dramatically reduced Crithidia infection in commercial and wild B. impatiens, had similar but less dramatic effects in B. bimaculatus and B. vagans, and no effect in B. griseocollis. Bombus impatiens, B. bimaculatus and B. vagans are in the same subgenus, suggesting that responses to sunflower pollen may be phylogenetically conserved. In microcolonies, 50% sunflower pollen reduced infection compared to wildflower pollen, but also reduced reproduction. Sunflower pollen could control Crithidia infections in B. impatiens and potentially close relatives, but may hinder reproduction if other resources are scarce. We caution that research using managed bee species, such as B. impatiens, be interpreted carefully as findings may not relate to all bee species.
Collapse
Affiliation(s)
- Alison E. Fowler
- Department of Biology, University of Massachusetts Amherst, 221 Morrill Science Center South, 611 North Pleasant Street, Amherst, MA 01003, USA
| | - Jonathan J. Giacomini
- Department of Applied Ecology, North Carolina State University, Raleigh, NC 27695, USA
| | - Sara June Connon
- Department of Applied Ecology, North Carolina State University, Raleigh, NC 27695, USA
| | - Rebecca E. Irwin
- Department of Applied Ecology, North Carolina State University, Raleigh, NC 27695, USA
| | - Lynn S. Adler
- Department of Biology, University of Massachusetts Amherst, 221 Morrill Science Center South, 611 North Pleasant Street, Amherst, MA 01003, USA
| |
Collapse
|
19
|
Giacomini JJ, Moore N, Adler LS, Irwin RE. Sunflower pollen induces rapid excretion in bumble bees: Implications for host-pathogen interactions. JOURNAL OF INSECT PHYSIOLOGY 2022; 137:104356. [PMID: 35016876 DOI: 10.1016/j.jinsphys.2022.104356] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Revised: 12/08/2021] [Accepted: 01/05/2022] [Indexed: 06/14/2023]
Abstract
Host diet can have a profound effect on host-pathogen interactions, including indirect effects on pathogens mediated through host physiology. In bumble bees (Bombus impatiens), the consumption of sunflower (Helianthus annuus) pollen dramatically reduces infection by the gut protozoan pathogen Crithidia bombi. One hypothesis for the medicinal effect of sunflower pollen is that consumption changes host gut physiological function, causing rapid excretion that flushes C. bombi from the system. We tested the effect of pollen diet and C. bombi infection on gut transit properties using a 2x2 factorial experiment in which bees were infected with C. bombi or not and fed sunflower or wildflower pollen diet. We measured several non-mutually exclusive physiological processes that underlie the insect excretory system, including gut transit time, bi-hourly excretion rate, the total number of excretion events and the total volume of excrement. Sunflower pollen significantly reduced gut transit time in uninfected bees, and increased the total number of excretion events and volume of excrement by 66 % and 68 %, respectively, in both infected and uninfected bees. Here we show that a sunflower pollen diet can affect host physiology gut function, causing more rapid and greater excretion. These results provide important insight into a mechanism that could underlie the medicinal effect of sunflower pollen for bumble bees.
Collapse
Affiliation(s)
- Jonathan J Giacomini
- Department of Applied Ecology, North Carolina State University, Raleigh, NC 27695 USA.
| | - Nicholas Moore
- Department of Applied Ecology, North Carolina State University, Raleigh, NC 27695 USA
| | - Lynn S Adler
- Department of Biology, University of Massachusetts Amherst, Amherst, MA 01003 USA
| | - Rebecca E Irwin
- Department of Applied Ecology, North Carolina State University, Raleigh, NC 27695 USA
| |
Collapse
|
20
|
Cohen H, Smith GP, Sardiñas H, Zorn JF, McFrederick QS, Woodard SH, Ponisio LC. Mass-flowering monoculture attracts bees, amplifying parasite prevalence. Proc Biol Sci 2021; 288:20211369. [PMID: 34641730 DOI: 10.1098/rspb.2021.1369] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
As the global agricultural footprint expands, it is increasingly important to address the link between the resource pulses characteristic of monoculture farming and wildlife epidemiology. To understand how mass-flowering crops impact host communities and subsequently amplify or dilute parasitism, we surveyed wild and managed bees in a monoculture landscape with varying degrees of floral diversification. We screened 1509 bees from 16 genera in sunflower fields and in non-crop flowering habitat across 200 km2 of the California Central Valley. We found that mass-flowering crops increase bee abundance. Wild bee abundance was subsequently associated with higher parasite presence, but only in sites with a low abundance of non-crop flowers. Bee traits related to higher dispersal ability (body size) and diet breadth (pollen lecty) were also positively related to parasite presence. Our results highlight the importance of non-crop flowering habitat for supporting bee communities. We suggest monoculture alone cannot support healthy bees.
Collapse
Affiliation(s)
- Hamutahl Cohen
- Institute of Food and Agricultural Sciences, University of Florida, Collier County Extension Service, 14700 Immokalee Road, Naples, FL 34120, USA.,Institute for Ecology and Evolution, University of Oregon, 272 Onyx Bridge, Eugene, OR 97403, USA.,Department of Entomology, University of California, Riverside, 417 Entomology Building, Riverside, CA 92521, USA
| | - Gordon P Smith
- Institute for Ecology and Evolution, University of Oregon, 272 Onyx Bridge, Eugene, OR 97403, USA.,Department of Entomology, University of California, Riverside, 417 Entomology Building, Riverside, CA 92521, USA
| | - Hillary Sardiñas
- California Association of Resource Conservation Districts, 801 K Street, MS 14-15, Sacramento, CA 95814, USA
| | - Jocelyn F Zorn
- Institute for Ecology and Evolution, University of Oregon, 272 Onyx Bridge, Eugene, OR 97403, USA.,Department of Entomology, University of California, Riverside, 417 Entomology Building, Riverside, CA 92521, USA
| | - Quinn S McFrederick
- Department of Entomology, University of California, Riverside, 417 Entomology Building, Riverside, CA 92521, USA
| | - S Hollis Woodard
- Department of Entomology, University of California, Riverside, 417 Entomology Building, Riverside, CA 92521, USA
| | - Lauren C Ponisio
- Institute for Ecology and Evolution, University of Oregon, 272 Onyx Bridge, Eugene, OR 97403, USA.,Department of Entomology, University of California, Riverside, 417 Entomology Building, Riverside, CA 92521, USA
| |
Collapse
|
21
|
Giacomini JJ, Connon SJ, Marulanda D, Adler LS, Irwin RE. The costs and benefits of sunflower pollen diet on bumble bee colony disease and health. Ecosphere 2021. [DOI: 10.1002/ecs2.3663] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Affiliation(s)
- Jonathan J. Giacomini
- Department of Applied Ecology North Carolina State University Raleigh North Carolina 27695 USA
| | - Sara J. Connon
- Department of Applied Ecology North Carolina State University Raleigh North Carolina 27695 USA
| | - Daniel Marulanda
- Department of Applied Ecology North Carolina State University Raleigh North Carolina 27695 USA
| | - Lynn S. Adler
- Department of Biology University of Massachusetts Amherst Amherst Massachusetts 01003 USA
| | - Rebecca E. Irwin
- Department of Applied Ecology North Carolina State University Raleigh North Carolina 27695 USA
| |
Collapse
|
22
|
Figueroa LL, Compton S, Grab H, McArt SH. Functional traits linked to pathogen prevalence in wild bee communities. Sci Rep 2021; 11:7529. [PMID: 33824396 PMCID: PMC8024325 DOI: 10.1038/s41598-021-87103-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2020] [Accepted: 03/17/2021] [Indexed: 11/09/2022] Open
Abstract
Reports of pollinator declines have prompted efforts to understand contributing factors and protect vulnerable species. While pathogens can be widespread in bee communities, less is known about factors shaping pathogen prevalence among species. Functional traits are often used to predict susceptibility to stressors, including pathogens, in other species-rich communities. Here, we evaluated the relationship between bee functional traits (body size, phenology, nesting location, sociality, and foraging choice) and prevalence of trypanosomes, neogregarines, and the microsporidian Nosema ceranae in wild bee communities. For the most abundant bee species in our system, Bombus impatiens, we also evaluated the relationship between intra-specific size variation and pathogen prevalence. A trait-based model fit the neogregarine prevalence data better than a taxa-based model, while the taxonomic model provided a better model fit for N. ceranae prevalence, and there was no marked difference between the models for trypanosome prevalence. We found that Augochlorella aurata was more likely to harbor trypanosomes than many other bee taxa. Similarly, we found that bigger bees and those with peak activity later in the season were less likely to harbor trypanosomes, though the effect of size was largely driven by A. aurata. We found no clear intra-specific size patterns for pathogen prevalence in B. impatiens. These results indicate that functional traits are not always better than taxonomic affinity in predicting pathogen prevalence, but can help to explain prevalence depending on the pathogen in species-rich bee communities.
Collapse
Affiliation(s)
- Laura L Figueroa
- Department of Entomology, Cornell University, Ithaca, NY, 14853, USA.
- Department of Environmental Conservation, University of Massachusetts, Amherst, MA, 01003, USA.
| | - Sally Compton
- Department of Entomology, Cornell University, Ithaca, NY, 14853, USA
| | - Heather Grab
- Department of Entomology, Cornell University, Ithaca, NY, 14853, USA
| | - Scott H McArt
- Department of Entomology, Cornell University, Ithaca, NY, 14853, USA
| |
Collapse
|
23
|
Figueroa LL, Grincavitch C, McArt SH. Crithidia bombi can infect two solitary bee species while host survivorship depends on diet. Parasitology 2021; 148:435-442. [PMID: 33256872 PMCID: PMC7933061 DOI: 10.1017/s0031182020002218] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2020] [Revised: 10/30/2020] [Accepted: 11/19/2020] [Indexed: 12/29/2022]
Abstract
Pathogens and lack of floral resources interactively impair global pollinator health. However, epidemiological and nutritional studies aimed at understanding bee declines have historically focused on social species, with limited evaluations of solitary bees. Here, we asked whether Crithidia bombi, a trypanosomatid gut pathogen known to infect bumble bees, could infect the solitary bees Osmia lignaria (females) and Megachile rotundata (males), and whether nutritional stress influenced infection patterns and bee survival. We found that C. bombi was able to infect both solitary bee species, with 59% of O. lignaria and 29% of M. rotundata bees experiencing pathogen replication 5–11 days following inoculation. Moreover, access to pollen resulted in O. lignaria living longer, although it did not influence M. rotundata survival. Access to pollen did not affect infection probability or resulting pathogen load in either species. Similarly, inoculating with the pathogen did not drive survival patterns in either species during the 5–11-day laboratory assays. Our results demonstrate that solitary bees can be hosts of a known bumble bee pathogen, and that access to pollen is an important contributing factor for bee survival, thus expanding our understanding of factors contributing to solitary bee health.
Collapse
Affiliation(s)
| | - Cali Grincavitch
- Department of Entomology, Cornell University, Ithaca, NY14853, USA
- Department of Integrative Biology at Harvard, Harvard University, Cambridge, MA02138, USA
| | - Scott H. McArt
- Department of Entomology, Cornell University, Ithaca, NY14853, USA
| |
Collapse
|
24
|
The Herbal Supplements NOZEMAT HERB ® and NOZEMAT HERB PLUS ®: An Alternative Therapy for N. ceranae Infection and Its Effects on Honey Bee Strength and Production Traits. Pathogens 2021; 10:pathogens10020234. [PMID: 33669663 PMCID: PMC7922068 DOI: 10.3390/pathogens10020234] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2020] [Revised: 02/17/2021] [Accepted: 02/18/2021] [Indexed: 12/21/2022] Open
Abstract
Honey bees (Apis mellifera L.) are the most effective pollinators for different crops and wild flowering plants, thus maintaining numerous ecosystems in the world. However, honey bee colonies often suffer from stress or even death due to various pests and diseases. Among the latter, nosemosis is considered to be one of the most common diseases, causing serious damage to beekeeping every year. Here, we present, for the first time, the effects from the application of the herbal supplements NOZEMAT HERB® (NH) and NOZEMAT HERB PLUS® (NHP) for treating N. ceranae infection and positively influencing the general development of honey bee colonies. To achieve this, in autumn 2019, 45 colonies were selected based on the presence of N. ceranae infections. The treatment was carried out for 11 months (August 2019–June 2020). All colonies were sampled pre- and post-treatment for the presence of N. ceranae by means of light microscopy and PCR analysis. The honey bee colonies’ performance and health were evaluated pre- and post-treatment. The obtained results have shown that both supplements have exhibited statistically significant biological activity against N. ceranae in infected apiaries. Considerable enhancement in the strength of honey bee colonies and the amount of sealed workers was observed just one month after the application of NH and NHP. Although the mechanisms of action of NH and NHP against N. ceranae infection are yet to be completely elucidated, our results suggest a new holistic approach as an alternative therapy to control nosemosis and to improve honey bee colonies’ performance and health.
Collapse
|
25
|
Parasite defense mechanisms in bees: behavior, immunity, antimicrobials, and symbionts. Emerg Top Life Sci 2020; 4:59-76. [PMID: 32558901 DOI: 10.1042/etls20190069] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2019] [Revised: 11/14/2019] [Accepted: 11/26/2019] [Indexed: 12/11/2022]
Abstract
Parasites are linked to the decline of some bee populations; thus, understanding defense mechanisms has important implications for bee health. Recent advances have improved our understanding of factors mediating bee health ranging from molecular to landscape scales, but often as disparate literatures. Here, we bring together these fields and summarize our current understanding of bee defense mechanisms including immunity, immunization, and transgenerational immune priming in social and solitary species. Additionally, the characterization of microbial diversity and function in some bee taxa has shed light on the importance of microbes for bee health, but we lack information that links microbial communities to parasite infection in most bee species. Studies are beginning to identify how bee defense mechanisms are affected by stressors such as poor-quality diets and pesticides, but further research on this topic is needed. We discuss how integrating research on host traits, microbial partners, and nutrition, as well as improving our knowledge base on wild and semi-social bees, will help inform future research, conservation efforts, and management.
Collapse
|
26
|
Boff S, Raizer J, Lupi D. Environmental Display Can Buffer the Effect of Pesticides on Solitary Bees. INSECTS 2020; 11:E417. [PMID: 32635667 PMCID: PMC7412123 DOI: 10.3390/insects11070417] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Revised: 06/25/2020] [Accepted: 07/03/2020] [Indexed: 02/07/2023]
Abstract
Environmental quality (e.g., diversity of resource availability, nesting sites, environmental display) plays an important role in an animal's life. While homogeneous environments can restrict organisms from developing activities such as food seeking (behavioral impairment), more complex environments allow animals to perform activities with learning and behavioral perfecting outcomes. Pesticides are known to affect the learning and foraging behaviors of bees; however, little is known about the counterbalance displayed by the environment. Herein, we conducted two experiments that simulated distinct environmental displays, in which the effects of a fungicide (IndarTM 5EW-febunconazole) on solitary bee foraging activities were tested. We found that the fungicide only impaired the activities of bees in one of the studied environments. The difference in visitation rates and flower exploitation of bees between the two different environmental displays led to changes in metrics of bee-flower networks across environments. Linkage density, a metric associated with pollination efficiency that is known to be impacted by different environments, differed across environments. Our results showed that ecological interaction network metrics can differ regarding the different environmental displays. This study indicates that environmental complexity helps balance the negative effects of pesticides on solitary bees and highlights the potential use of solitary bees as model organisms for experimental simulations of environmental change.
Collapse
Affiliation(s)
- Samuel Boff
- University of Milan, Department of Food Environmental and Nutritional Sciences, 20133 Milan, Italy;
| | - Josué Raizer
- Universidade Federal da Grande Dourados, Faculdade de Ciências Biológicas e Ambientais, Dourados 79840-970, Brazil;
| | - Daniela Lupi
- University of Milan, Department of Food Environmental and Nutritional Sciences, 20133 Milan, Italy;
| |
Collapse
|
27
|
Trunz V, Lucchetti MA, Bénon D, Dorchin A, Desurmont GA, Kast C, Rasmann S, Glauser G, Praz CJ. To bee or not to bee: The ‘raison d'être’ of toxic secondary compounds in the pollen of Boraginaceae. Funct Ecol 2020. [DOI: 10.1111/1365-2435.13581] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Vincent Trunz
- Institute of Biology University of Neuchatel Neuchatel Switzerland
| | - Matteo A. Lucchetti
- Institute of Biology University of Neuchatel Neuchatel Switzerland
- Agroscope Swiss Bee Research Centre Bern Switzerland
| | - Dimitri Bénon
- Institute of Biology University of Neuchatel Neuchatel Switzerland
| | - Achik Dorchin
- The Steinhardt Museum of Natural History Tel Aviv University Tel Aviv Israel
| | | | | | - Sergio Rasmann
- Institute of Biology University of Neuchatel Neuchatel Switzerland
| | - Gaétan Glauser
- Neuchatel Platform of Analytical Chemistry University of Neuchatel Neuchâtel Switzerland
| | | |
Collapse
|
28
|
Adler LS, Barber NA, Biller OM, Irwin RE. Flowering plant composition shapes pathogen infection intensity and reproduction in bumble bee colonies. Proc Natl Acad Sci U S A 2020; 117:11559-11565. [PMID: 32393622 PMCID: PMC7261119 DOI: 10.1073/pnas.2000074117] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Pathogens pose significant threats to pollinator health and food security. Pollinators can transmit diseases during foraging, but the consequences of plant species composition for infection is unknown. In agroecosystems, flowering strips or hedgerows are often used to augment pollinator habitat. We used canola as a focal crop in tents and manipulated flowering strip composition using plant species we had previously shown to result in higher or lower bee infection in short-term trials. We also manipulated initial colony infection to assess impacts on foraging behavior. Flowering strips using high-infection plant species nearly doubled bumble bee colony infection intensity compared to low-infection plant species, with intermediate infection in canola-only tents. Both infection treatment and flowering strips reduced visits to canola, but we saw no evidence that infection treatment shifted foraging preferences. Although high-infection flowering strips increased colony infection intensity, colony reproduction was improved with any flowering strips compared to canola alone. Effects of flowering strips on colony reproduction were explained by nectar availability, but effects of flowering strips on infection intensity were not. Thus, flowering strips benefited colony reproduction by adding floral resources, but certain plant species also come with a risk of increased pathogen infection intensity.
Collapse
Affiliation(s)
- Lynn S Adler
- Department of Biology, University of Massachusetts, Amherst, MA 01003;
| | - Nicholas A Barber
- Ecology Program Area, Department of Biology, San Diego State University, San Diego, CA 92182
| | - Olivia M Biller
- Department of Occupational Therapy, Thomas Jefferson University, Philadelphia, PA 19107
| | - Rebecca E Irwin
- Department of Applied Ecology, North Carolina State University, Raleigh, NC 27695
| |
Collapse
|
29
|
Mullins JL, Strange JP, Tripodi AD. Why Are Queens Broodless? Failed Nest Initiation Not Linked to Parasites, Mating Status, or Ovary Development in Two Bumble Bee Species of Pyrobombus (Hymenoptera: Apidae: Bombus). JOURNAL OF ECONOMIC ENTOMOLOGY 2020; 113:575-581. [PMID: 31814010 DOI: 10.1093/jee/toz330] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/22/2019] [Indexed: 06/10/2023]
Abstract
Bumble bees (Bombus [Hymenoptera: Apidae]) are important pollinators for agricultural crops, which has led to their commercial domestication. Despite their importance, little is known about the reproductive biology of bumble bees native to North America. The Hunt bumble bee (Bombus huntii Greene [Hymenoptera: Apidae]) and the Vosnesensky bumble bee (Bombus vosnesenskii Radoszkowski [Hymenoptera: Apidae] are native candidates for commercial production in western North America due to their efficacy in providing commercial pollination services. Availability of pollinators native to the region in which services would be provided would minimize the likelihood of introducing exotic species and spreading novel disease. Some parasites are known to affect bumble bee reproduction, but little is known about their prevalence in North America or how they affect queen success. Only 38% of wild-caught B. huntii and 51% wild-caught B. vosnesenskii queens collected between 2015 and 2017 initiated nests in the laboratory. Our objective was to identify causal factors leading to a queen's inability to oviposit. To address this, we dissected each broodless queen and diagnosed diseases, assessed mating status, and characterized ovary development. Nematodes, arthropods, and microorganisms were detected in both species. Overall, 20% of queens were infected by parasites, with higher rates in B. vosnesenskii. Over 95% of both species were mated, and over 88% had developed ovaries. This suggests that parasitism and mating status were not primary causes of broodlessness. Although some failure to nest can be attributed to assessed factors, additional research is needed to fully understand the challenges presented by captive rearing.
Collapse
Affiliation(s)
- Jessica L Mullins
- United States Department of Agriculture, Agricultural Research Service-Pollinating Insects Research Unit, Logan, UT
- University of Colorado Museum of Natural History, 265 UCB-MCOL, Boulder, CO
| | - James P Strange
- United States Department of Agriculture, Agricultural Research Service-Pollinating Insects Research Unit, Logan, UT
- Department of Entomology, The Ohio State University, 216 Kottman Hall, Columbus, OH
| | - Amber D Tripodi
- United States Department of Agriculture, Agricultural Research Service-Pollinating Insects Research Unit, Logan, UT
| |
Collapse
|
30
|
Adler LS, Fowler AE, Malfi RL, Anderson PR, Coppinger LM, Deneen PM, Lopez S, Irwin RE, Farrell IW, Stevenson PC. Assessing Chemical Mechanisms Underlying the Effects of Sunflower Pollen on a Gut Pathogen in Bumble Bees. J Chem Ecol 2020; 46:649-658. [DOI: 10.1007/s10886-020-01168-4] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2019] [Revised: 02/04/2020] [Accepted: 03/06/2020] [Indexed: 12/16/2022]
|
31
|
Vanderplanck M, Roger N, Moerman R, Ghisbain G, Gérard M, Popowski D, Granica S, Fournier D, Meeus I, Piot N, Smagghe G, Terrana L, Michez D. Bumble bee parasite prevalence but not genetic diversity impacted by the invasive plant
Impatiens glandulifera. Ecosphere 2019. [DOI: 10.1002/ecs2.2804] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Affiliation(s)
- Maryse Vanderplanck
- Research Institute for Biosciences Laboratory of Zoology University of Mons Place du Parc 20 Mons B‐7000 Belgium
- Evo‐Eco‐Paleo ‐ UMR 8198 CNRS Université de Lille Lille F‐59000 France
| | - Nathalie Roger
- Research Institute for Biosciences Laboratory of Zoology University of Mons Place du Parc 20 Mons B‐7000 Belgium
| | - Romain Moerman
- Research Institute for Biosciences Laboratory of Zoology University of Mons Place du Parc 20 Mons B‐7000 Belgium
- Evolutionary Biology and Ecology Université libre de Bruxelles Av. F.D. Roosevelt 50 Brussels B‐1000 Belgium
| | - Guillaume Ghisbain
- Research Institute for Biosciences Laboratory of Zoology University of Mons Place du Parc 20 Mons B‐7000 Belgium
| | - Maxence Gérard
- Research Institute for Biosciences Laboratory of Zoology University of Mons Place du Parc 20 Mons B‐7000 Belgium
| | - Dominik Popowski
- Department of Pharmacognosy and Molecular Basis of Phytotherapy Medical University of Warsaw Banacha 1 Warsaw 02‐097 Poland
| | - Sebastian Granica
- Department of Pharmacognosy and Molecular Basis of Phytotherapy Medical University of Warsaw Banacha 1 Warsaw 02‐097 Poland
| | - Denis Fournier
- Evolutionary Biology and Ecology Université libre de Bruxelles Av. F.D. Roosevelt 50 Brussels B‐1000 Belgium
| | - Ivan Meeus
- Department of Crop Protection Faculty of Bioscience Engineering Laboratory of Agrozoology Ghent University Coupure Links 653 Ghent B‐9000 Belgium
| | - Niels Piot
- Department of Crop Protection Faculty of Bioscience Engineering Laboratory of Agrozoology Ghent University Coupure Links 653 Ghent B‐9000 Belgium
| | - Guy Smagghe
- Department of Crop Protection Faculty of Bioscience Engineering Laboratory of Agrozoology Ghent University Coupure Links 653 Ghent B‐9000 Belgium
| | - Lucas Terrana
- Research Institute for Biosciences Biology of Marine Organisms and Biomimetics University of Mons Place du Parc 20 Mons B‐7000 Belgium
| | - Denis Michez
- Research Institute for Biosciences Laboratory of Zoology University of Mons Place du Parc 20 Mons B‐7000 Belgium
| |
Collapse
|