1
|
Harrison SL, Sutton GP, Herrel A, Deeming DC. Estimated and in vivo measurements of bite force demonstrate exceptionally large bite forces in parrots (Psittaciformes). J Anat 2024. [PMID: 39315554 DOI: 10.1111/joa.14144] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Revised: 09/10/2024] [Accepted: 09/11/2024] [Indexed: 09/25/2024] Open
Abstract
Jaw morphology and function determine the range of dietary items that an organism can consume. Bite force is a function of the force exerted by the jaw musculature and applied via the skeleton. Bite force has been studied in a wide range of taxa using various methods, including direct measurement, or calculation from skulls or jaw musculature. Data for parrots (Psittaciformes), considered to have strong bites, are rare. This study calculated bite force for a range of parrot species of differing sizes using a novel method that relied on forces calculated using the area of jaw muscles measured in situ and their masses. The values for bite force were also recorded in vivo using force transducers, allowing for a validation of the dissection-based models. The analysis investigated allometric relationships between measures of body size and calculated bite force. Additionally, the study examined whether a measure of a muscle scar could be a useful proxy to estimate bite force in parrots. Bite force was positively allometric relative to body and skull mass, with macaws having the strongest bite recorded to date for a bird. Calculated values for bite force were not statistically different from measured values. Muscle scars from the adductor muscle attachment on the mandible can be used to accurately predict bite force in parrots. These results have implications for how parrots process hard food items and how bite forces are estimated in other taxa using morphological characteristics of the jaw musculature.
Collapse
Affiliation(s)
- Shannon L Harrison
- School of Natural Sciences, University of Lincoln, Joseph Banks Laboratories, Lincoln, UK
| | - Gregory P Sutton
- School of Natural Sciences, University of Lincoln, Joseph Banks Laboratories, Lincoln, UK
| | - Anthony Herrel
- Département Adaptations du Vivant, Bâtiment d'Anatomie Comparée, UMR 7179 C.N.R.S/M.N.H.N., Paris, France
- Department of Biology, Evolutionary Morphology of Vertebrates, Ghent University, Ghent, Belgium
- Department of Biology, University of Antwerp, Wilrijk, Belgium
- Naturhistorisches Museum Bern, Bern, Switzerland
| | - D Charles Deeming
- School of Natural Sciences, University of Lincoln, Joseph Banks Laboratories, Lincoln, UK
| |
Collapse
|
2
|
Cuff JP, Labonte D, Windsor FM. Understanding Trophic Interactions in a Warming World by Bridging Foraging Ecology and Biomechanics with Network Science. Integr Comp Biol 2024; 64:306-321. [PMID: 38872009 PMCID: PMC11406160 DOI: 10.1093/icb/icae070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Revised: 06/04/2024] [Accepted: 06/08/2024] [Indexed: 06/15/2024] Open
Abstract
Climate change will disrupt biological processes at every scale. Ecosystem functions and services vital to ecological resilience are set to shift, with consequences for how we manage land, natural resources, and food systems. Increasing temperatures cause morphological shifts, with concomitant implications for biomechanical performance metrics crucial to trophic interactions. Biomechanical performance, such as maximum bite force or running speed, determines the breadth of resources accessible to consumers, the outcome of interspecific interactions, and thus the structure of ecological networks. Climate change-induced impacts to ecosystem services and resilience are therefore on the horizon, mediated by disruptions of biomechanical performance and, consequently, trophic interactions across whole ecosystems. Here, we argue that there is an urgent need to investigate the complex interactions between climate change, biomechanical traits, and foraging ecology to help predict changes to ecological networks and ecosystem functioning. We discuss how these seemingly disparate disciplines can be connected through network science. Using an ant-plant network as an example, we illustrate how different data types could be integrated to investigate the interaction between warming, bite force, and trophic interactions, and discuss what such an integration will achieve. It is our hope that this integrative framework will help to identify a viable means to elucidate previously intractable impacts of climate change, with effective predictive potential to guide management and mitigation.
Collapse
Affiliation(s)
- Jordan P Cuff
- School of Natural and Environmental Sciences, Newcastle University, Newcastle-upon-Tyne, NE1 7RU, UK
| | - David Labonte
- Department of Bioengineering, Imperial College London, London, SW7 2AZ, UK
| | | |
Collapse
|
3
|
Dhawale N, Labonte D, Holt NC. The effect of muscle ultrastructure on the force, displacement and work capacity of skeletal muscle. J R Soc Interface 2024; 21:20230658. [PMID: 38774960 DOI: 10.1098/rsif.2023.0658] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Accepted: 03/28/2024] [Indexed: 07/31/2024] Open
Abstract
Skeletal muscle powers animal movement through interactions between the contractile proteins, actin and myosin. Structural variation contributes greatly to the variation in mechanical performance observed across muscles. In vertebrates, gross structural variation occurs in the form of changes in the muscle cross-sectional area : fibre length ratio. This results in a trade-off between force and displacement capacity, leaving work capacity unaltered. Consequently, the maximum work per unit volume-the work density-is considered constant. Invertebrate muscle also varies in muscle ultrastructure, i.e. actin and myosin filament lengths. Increasing actin and myosin filament lengths increases force capacity, but the effect on muscle fibre displacement, and thus work, capacity is unclear. We use a sliding-filament muscle model to predict the effect of actin and myosin filament lengths on these mechanical parameters for both idealized sarcomeres with fixed actin : myosin length ratios, and for real sarcomeres with known filament lengths. Increasing actin and myosin filament lengths increases stress without reducing strain capacity. A muscle with longer actin and myosin filaments can generate larger force over the same displacement and has a higher work density, so seemingly bypassing an established trade-off. However, real sarcomeres deviate from the idealized length ratio suggesting unidentified constraints or selective pressures.
Collapse
Affiliation(s)
- Nihav Dhawale
- Department of Evolution, Ecology and Organismal Biology, UC Riverside , Riverside, CA, USA
| | - David Labonte
- Department of Bioengineering, Imperial College London , London, UK
| | - Natalie C Holt
- Department of Evolution, Ecology and Organismal Biology, UC Riverside , Riverside, CA, USA
| |
Collapse
|
4
|
Klunk CL, Heethoff M, Hammel JU, Gorb SN, Krings W. Mechanical and elemental characterization of ant mandibles: consequences for bite mechanics. Interface Focus 2024; 14:20230056. [PMID: 38618235 PMCID: PMC11008963 DOI: 10.1098/rsfs.2023.0056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Accepted: 02/16/2024] [Indexed: 04/16/2024] Open
Abstract
Mandible morphology has an essential role in biting performance, but the mandible cuticle can have regional differences in its mechanical properties. The effects of such a heterogeneous distribution of cuticle material properties in the mandible responses to biting loading are still poorly explored in chewing insects. Here, we tested the mechanical properties of mandibles of the ant species Formica cunicularia by nanoindentation and investigated the effects of the cuticular variation in Young's modulus (E) under bite loading with finite-element analysis (FEA). The masticatory margin of the mandible, which interacts with the food, was the hardest and stiffest region. To unravel the origins of the mechanical property gradients, we characterized the elemental composition by energy-dispersive X-ray spectroscopy. The masticatory margin possessed high proportions of Cu and Zn. When incorporated into the FEA, variation in E effectively changed mandible stress patterns, leading to a relatively higher concentration of stresses in the stiffer mandibular regions and leaving the softer mandible blade with relatively lower stress. Our results demonstrated the relevance of cuticle E heterogeneity in mandibles under bite loading, suggesting that the accumulation of transition metals such as Cu and Zn has a relevant correlation with the mechanical characteristics in F. cunicularia mandibles.
Collapse
Affiliation(s)
- Cristian L. Klunk
- Animal Evolutionary Ecology, Technische Universität Darmstadt, Schnittspahnstr. 3, Darmstadt 64287, Germany
| | - Michael Heethoff
- Animal Evolutionary Ecology, Technische Universität Darmstadt, Schnittspahnstr. 3, Darmstadt 64287, Germany
| | - Jörg U. Hammel
- Institute of Materials Physics, Helmholtz-Zentrum Hereon, Geesthacht, Germany
| | - Stanislav N. Gorb
- Department of Functional Morphology and Biomechanics, Zoological Institute, Christian-Albrechts-Universität zu Kiel, Am Botanischen Garten 1-9, Kiel 24118, Germany
| | - Wencke Krings
- Department of Functional Morphology and Biomechanics, Zoological Institute, Christian-Albrechts-Universität zu Kiel, Am Botanischen Garten 1-9, Kiel 24118, Germany
- Department of Cariology, Endodontology and Periodontology, Universität Leipzig, Liebigstraße 12, Leipzig, Germany
- Department of Electron Microscopy, Institute of Cell and Systems Biology of Animals, Universität Hamburg, Martin-Luther-King-Platz 3, Hamburg 20146, Germany
| |
Collapse
|
5
|
Birkenfeld V, Gorb SN, Krings W. Mandible elemental composition and mechanical properties from distinct castes of the leafcutter ant Atta laevigata (Attini; Formicidae). Interface Focus 2024; 14:20230048. [PMID: 38618230 PMCID: PMC11008964 DOI: 10.1098/rsfs.2023.0048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Accepted: 12/18/2023] [Indexed: 04/16/2024] Open
Abstract
Leafcutter ant colonies are divided into castes with the individuals performing different tasks, based mostly on size. With the mandibles, the small minims care for the brood or the fungus, whereas the larger minors and mediae cut and transport plant material, with the ant size positively related to the material size. The mechanical properties and composition of the mandible cuticle have been previously tested in the soldiers as the largest caste, revealing that the cutting edges contained high contents of the cross-linking transition metal zinc (Zn). With regard to the smaller castes, no data are present. To study how the mandible size and function relates to its mechanical properties, we here tested the mandibles of minims, minors and mediae by nanoindentation. We found that the hardness (H) and Young's modulus (E) values increased with increasing ant size and that the mandible cutting edges in each caste have the highest H- and E-values. To gain insight into the origins of these properties, we characterized the elemental composition by energy-dispersive X-ray analysis, revealing that minors and mediae possessed higher content of Zn in the cutting edges in contrast to the minims containing significantly less Zn. This shows, that Zn content relates to higher mechanical property values. Additionally, it shows that all of these parameters can differ within a single species.
Collapse
Affiliation(s)
- Valentin Birkenfeld
- Department of Functional Morphology and Biomechanics, Zoological Institute, Christian-Albrechts-Universität zu Kiel, Am Botanischen Garten 1–9, 24118 Kiel, Germany
| | - Stanislav N. Gorb
- Department of Functional Morphology and Biomechanics, Zoological Institute, Christian-Albrechts-Universität zu Kiel, Am Botanischen Garten 1–9, 24118 Kiel, Germany
| | - Wencke Krings
- Department of Functional Morphology and Biomechanics, Zoological Institute, Christian-Albrechts-Universität zu Kiel, Am Botanischen Garten 1–9, 24118 Kiel, Germany
- Department of Cariology, Endodontology and Periodontology, Universität Leipzig, Liebigstraße 12, 04103 Leipzig, Germany
- Department of Electron Microscopy, Institute of Cell and Systems Biology of Animals, Universität Hamburg, Martin-Luther-King-Platz 3, 20146 Hamburg, Germany
- Department of Mammalogy and Palaeoanthropology, Leibniz Institute for the Analysis of Biodiversity Change, Martin-Luther-King-Platz 3, 20146 Hamburg, Germany
| |
Collapse
|
6
|
Rühr PT, Edel C, Frenzel M, Blanke A. A bite force database of 654 insect species. Sci Data 2024; 11:58. [PMID: 38200056 PMCID: PMC10781734 DOI: 10.1038/s41597-023-02731-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Accepted: 11/07/2023] [Indexed: 01/12/2024] Open
Abstract
Bite force is a decisive performance trait in animals because it plays a role for numerous life history components such as food consumption, inter- and intraspecific interactions, and reproductive success. Bite force has been studied across a wide range of vertebrate species, but only for 32 species of insects, the most speciose animal lineage. Here we present the insect bite force database with bite force measurements for 654 insect species covering 476 genera, 111 families, and 13 orders with body lengths ranging from 3.76 to 180.12 mm. In total we recorded 1906 bite force series from 1290 specimens, and, in addition, present basal head, body, and wing metrics. As such, the database will facilitate a wide range of studies on the characteristics, predictors, and macroevolution of bite force in the largest clade of the animal kingdom and may serve as a basis to further our understanding of macroevolutionary processes in relation to bite force across all biting metazoans.
Collapse
Affiliation(s)
- Peter Thomas Rühr
- Bonn Institute for Organismic Biology (BIOB), Section 2: Animal Biodiversity, University of Bonn, An der Immenburg 1, 53121, Bonn, Germany.
- Institute of Zoology, University of Cologne, Zülpicher Str. 47b, Cologne, 50674, Germany.
| | - Carina Edel
- Bonn Institute for Organismic Biology (BIOB), Section 2: Animal Biodiversity, University of Bonn, An der Immenburg 1, 53121, Bonn, Germany
| | - Melina Frenzel
- Bonn Institute for Organismic Biology (BIOB), Section 2: Animal Biodiversity, University of Bonn, An der Immenburg 1, 53121, Bonn, Germany
| | - Alexander Blanke
- Bonn Institute for Organismic Biology (BIOB), Section 2: Animal Biodiversity, University of Bonn, An der Immenburg 1, 53121, Bonn, Germany
| |
Collapse
|
7
|
Kang V, Püffel F, Labonte D. Three-dimensional kinematics of leaf-cutter ant mandibles: not all dicondylic joints are simple hinges. Philos Trans R Soc Lond B Biol Sci 2023; 378:20220546. [PMID: 37839448 PMCID: PMC10577034 DOI: 10.1098/rstb.2022.0546] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Accepted: 07/15/2023] [Indexed: 10/17/2023] Open
Abstract
Insects use their mandibles for a variety of tasks, including food processing, material transport, nest building, brood care, and fighting. Despite this functional diversity, mandible motion is typically thought to be constrained to rotation about a single fixed axis. Here, we conduct a direct quantitative test of this 'hinge joint hypothesis' in a species that uses its mandibles for a wide range of tasks: Atta vollenweideri leaf-cutter ants. Mandible movements from live restrained ants were reconstructed in three dimensions using a multi-camera rig. Rigid body kinematic analyses revealed strong evidence that mandible movement occupies a kinematic space that requires more than one rotational degree of freedom: at large opening angles, mandible motion is dominated by yaw. But at small opening angles, mandibles both yaw and pitch. The combination of yaw and pitch allows mandibles to 'criss-cross': either mandible can be on top when mandibles are closed. We observed criss-crossing in freely cutting ants, suggesting that it is functionally important. Combined with recent reports on the diversity of joint articulations in other insects, our results show that insect mandible kinematics are more diverse than traditionally assumed, and thus worthy of further detailed investigation. This article is part of the theme issue 'Food processing and nutritional assimilation in animals'.
Collapse
Affiliation(s)
- Victor Kang
- Department of Bioengineering, Imperial College London, London SW7 2AZ, UK
| | - Frederik Püffel
- Department of Bioengineering, Imperial College London, London SW7 2AZ, UK
| | - David Labonte
- Department of Bioengineering, Imperial College London, London SW7 2AZ, UK
| |
Collapse
|
8
|
Püffel F, Walthaus OK, Kang V, Labonte D. Biomechanics of cutting: sharpness, wear sensitivity and the scaling of cutting forces in leaf-cutter ant mandibles. Philos Trans R Soc Lond B Biol Sci 2023; 378:20220547. [PMID: 37839449 PMCID: PMC10577030 DOI: 10.1098/rstb.2022.0547] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Accepted: 06/01/2023] [Indexed: 10/17/2023] Open
Abstract
Herbivores large and small need to mechanically process plant tissue. Their ability to do so is determined by two forces: the maximum force they can generate, and the minimum force required to fracture the plant tissue. The ratio of these forces determines the relative mechanical effort; how this ratio varies with animal size is challenging to predict. We measured the forces required to cut thin polymer sheets with mandibles from leaf-cutter ant workers which vary by more than one order of magnitude in body mass. Cutting forces were independent of mandible size, but differed by a factor of two between pristine and worn mandibles. Mandibular wear is thus likely a more important determinant of cutting force than mandible size. We rationalize this finding with a biomechanical analysis, which suggests that pristine mandibles are ideally 'sharp'-cutting forces are close to a theoretical minimum, which is independent of tool size and shape, and instead solely depends on the geometric and mechanical properties of the cut tissue. The increase of cutting force due to mandibular wear may be particularly problematic for small ants, which generate lower absolute bite forces, and thus require a larger fraction of their maximum bite force to cut the same plant. This article is part of the theme issue 'Food processing and nutritional assimilation in animals'.
Collapse
Affiliation(s)
- Frederik Püffel
- Department of Bioengineering, Imperial College London, London SW7 2AZ, UK
| | - O. K. Walthaus
- Department of Bioengineering, Imperial College London, London SW7 2AZ, UK
| | - Victor Kang
- Department of Bioengineering, Imperial College London, London SW7 2AZ, UK
| | - David Labonte
- Department of Bioengineering, Imperial College London, London SW7 2AZ, UK
| |
Collapse
|
9
|
Qi H, Ma Z, Xu Z, Wang S, Ma Y, Wu S, Guo M. The Design and Experimental Validation of a Biomimetic Stubble-Cutting Device Inspired by a Leaf-Cutting Ant's Mandibles. Biomimetics (Basel) 2023; 8:555. [PMID: 37999196 PMCID: PMC10669215 DOI: 10.3390/biomimetics8070555] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Revised: 11/09/2023] [Accepted: 11/16/2023] [Indexed: 11/25/2023] Open
Abstract
Under the conditions of conservation tillage, the existence of the root-soil complex greatly increases the resistance and energy consumption of stubble-cutting blades, especially in Northeast China. In this research, the corn root-soil complex in Northeast China was selected as the research object. Based on the multi-toothed structure of the leaf-cutting ant's mandibles and the unique bite mode of its mandibles on leaves, a gear-tooth, double-disk, bionic stubble-cutting device (BSCD) was developed by using a combination of power cutting and passive cutting. The effects of rotary speed, tillage depth, and forward speed on the torque and power of the BSCD were analyzed using orthogonal tests, and the results showed that all of the factors had a large influence on the torque and power, in the order of tillage depth > rotary speed > forward speed. The performance of the BSCD and the traditional power straight blade (TPSB) was explored using comparative tests. It was found that the optimal stubble-cutting rate of the BSCD was 97.4%. Compared with the TPSB, the torque of the BSCD was reduced by 15.2-16.4%, and the power was reduced by 9.2-11.3%. The excellent performance of the BSCD was due to the multi-toothed structure of the cutting edge and the cutting mode.
Collapse
Affiliation(s)
- Hongyan Qi
- The College of Biological and Agricultural Engineering, Jilin University, 5988 Renmin Street, Changchun 130025, China; (H.Q.); (Z.X.); (S.W.)
- The Key Laboratory of Bionic Engineering, Ministry of Education, Jilin University, 5988 Renmin Street, Changchun 130025, China
| | - Zichao Ma
- Department of Mechanical Engineering, 137 Reber Building, The Pennsylvania State University, University Park, PA 16802-440, USA;
| | - Zihe Xu
- The College of Biological and Agricultural Engineering, Jilin University, 5988 Renmin Street, Changchun 130025, China; (H.Q.); (Z.X.); (S.W.)
- The Key Laboratory of Bionic Engineering, Ministry of Education, Jilin University, 5988 Renmin Street, Changchun 130025, China
| | - Shuo Wang
- The College of Biological and Agricultural Engineering, Jilin University, 5988 Renmin Street, Changchun 130025, China; (H.Q.); (Z.X.); (S.W.)
- The Key Laboratory of Bionic Engineering, Ministry of Education, Jilin University, 5988 Renmin Street, Changchun 130025, China
| | - Yunhai Ma
- The College of Biological and Agricultural Engineering, Jilin University, 5988 Renmin Street, Changchun 130025, China; (H.Q.); (Z.X.); (S.W.)
- The Key Laboratory of Bionic Engineering, Ministry of Education, Jilin University, 5988 Renmin Street, Changchun 130025, China
| | - Siyang Wu
- The College of Engineering and Technology, Jilin Agricultural University, Changchun 130118, China;
| | - Mingzhuo Guo
- The College of Biological and Agricultural Engineering, Jilin University, 5988 Renmin Street, Changchun 130025, China; (H.Q.); (Z.X.); (S.W.)
- The Key Laboratory of Bionic Engineering, Ministry of Education, Jilin University, 5988 Renmin Street, Changchun 130025, China
| |
Collapse
|
10
|
Klunk CL, Argenta MA, Rosumek FB, Schmelzle S, van de Kamp T, Hammel JU, Pie MR, Heethoff M. Simulated biomechanical performance of morphologically disparate ant mandibles under bite loading. Sci Rep 2023; 13:16833. [PMID: 37803099 PMCID: PMC10558566 DOI: 10.1038/s41598-023-43944-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Accepted: 09/30/2023] [Indexed: 10/08/2023] Open
Abstract
Insects evolved various modifications to their mouthparts, allowing for a broad exploration of feeding modes. In ants, workers perform non-reproductive tasks like excavation, food processing, and juvenile care, relying heavily on their mandibles. Given the importance of biting for ant workers and the significant mandible morphological diversity across species, it is essential to understand how mandible shape influences its mechanical responses to bite loading. We employed Finite Element Analysis to simulate biting scenarios on mandible volumetric models from 25 ant species classified in different feeding habits. We hypothesize that mandibles of predatory ants, especially trap-jaw ants, would perform better than mandibles of omnivorous species due to their necessity to subdue living prey. We defined simulations to allow only variation in mandible morphology between specimens. Our results demonstrated interspecific differences in mandible mechanical responses to biting loading. However, we found no evident differences in biting performance between the predatory and the remaining ants, and trap-jaw mandibles did not show lower stress levels than other mandibles under bite loading. These results suggest that ant feeding habit is not a robust predictor of mandible biting performance, a possible consequence of mandibles being employed as versatile tools to perform several tasks.
Collapse
Affiliation(s)
- C L Klunk
- Graduate Program in Ecology and Conservation, Universidade Federal do Paraná, Centro Politécnico, Av. Cel. Francisco H. dos Santos, 100 - Jardim das Américas, Curitiba, PR, 81531-980, Brazil.
- Animal Evolutionary Ecology, Technische Universität Darmstadt, Schnittspahnstr. 3, 64287, Darmstadt, Germany.
| | - M A Argenta
- Department of Civil Construction, Universidade Federal do Paraná, Curitiba, PR, Brazil
| | - F B Rosumek
- Department of Ecology and Zoology, Universidade Federal de Santa Catarina, Florianópolis, SC, Brazil
| | - S Schmelzle
- Animal Evolutionary Ecology, Technische Universität Darmstadt, Schnittspahnstr. 3, 64287, Darmstadt, Germany
| | - T van de Kamp
- Institute for Photon Science and Synchrotron Radiation (IPS), Karlsruhe Institute of Technology (KIT), Eggenstein-Leopoldshafen, Germany
- Laboratory for Applications of Synchrotron Radiation (LAS), Karlsruhe Institute of Technology (KIT), Karlsruhe, Germany
| | - J U Hammel
- Institute of Materials Physics, Helmholtz-Zentrum Hereon, Geesthacht, Germany
| | - M R Pie
- Biology Department, Edge Hill University, Ormskirk, Lancashire, UK
| | - M Heethoff
- Animal Evolutionary Ecology, Technische Universität Darmstadt, Schnittspahnstr. 3, 64287, Darmstadt, Germany.
| |
Collapse
|
11
|
Aibekova L, Keller RA, Katzke J, Allman DM, Hita-Garcia F, Labonte D, Narendra A, Economo EP. Parallel And Divergent Morphological Adaptations Underlying The Evolution of Jumping Ability in Ants. Integr Org Biol 2023; 5:obad026. [PMID: 37545740 PMCID: PMC10401624 DOI: 10.1093/iob/obad026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2023] [Revised: 06/16/2023] [Accepted: 07/12/2023] [Indexed: 08/08/2023] Open
Abstract
Jumping is a rapid locomotory mode widespread in terrestrial organisms. However, it is a rare specialization in ants. Forward jumping has been reported within four distantly related ant genera: Gigantiops, Harpegnathos, Myrmecia, and Odontomachus. The temporal engagement of legs/body parts during jump, however, varies across these genera. It is unknown what morphological adaptations underlie such behaviors and whether jumping in ants is solely driven directly by muscle contraction or additionally relies on elastic recoil mechanism. We investigated the morphological adaptations for jumping behavior by comparing differences in the locomotory musculature between jumping and non-jumping relatives using X-ray micro-CT and 3D morphometrics. We found that the size-specific volumes of the trochanter depressor muscle (scm6) of the middle and hind legs are 3-5 times larger in jumping ants, and that one coxal remotor muscle (scm2) is reduced in volume in the middle and/or hind legs. Notably, the enlargement in the volume of other muscle groups is directly linked to the legs or body parts engaged during the jump. Furthermore, a direct comparison of the muscle architecture revealed two significant differences between jumping vs. non-jumping ants: First, the relative Physiological Cross-Sectional Area (PCSA) of the trochanter depressor muscles of all three legs were larger in jumping ants, except in the front legs of Odontomachus rixosus and Myrmecia nigrocincta; second, the relative muscle fiber length was shorter in jumping ants compared to non-jumping counterparts, except in the front legs of O. rixosus and M. nigrocincta. These results suggest that the difference in relative muscle volume in jumping ants is largely invested in the area (PCSA), and not in fiber length. There was no clear difference in the pennation angle between jumping and non-jumping ants. Additionally, we report that the hind leg length relative to body length was longer in jumping ants. Based on direct comparison of the observed vs. possible work and power output during jumps, we surmise that direct muscle contractions suffice to explain jumping performance in three species, except for O. rixosus, where the lack of data on jumping performance prevents us from drawing definitive conclusions for this particular species. We suggest that increased investment in jumping-relevant musculature is a primary morphological adaptation that separates jumping from non-jumping ants. These results elucidate the common and idiosyncratic morphological changes underlying this rare adaptation in ants. まとぅみ (Okinawan language-Uchinaaguchi) (Japanese) РЕЗЮМЕ (Kazakh) ZUSAMMENFASSUNG (German).
Collapse
Affiliation(s)
| | - R A Keller
- Museu Nacional de Historia Natural e da Ciência & Centre for Ecology, Evolution and Environmental Changes & CHANGE - Global Change and Sustainability Institute, Universidade de Lisboa, Lisbon, Portugal
| | - J Katzke
- Biodiversity and Biocomplexity Unit, Okinawa Institute of Science and Technology Graduate University, 1919-1 Tancha, Onna-son, Okinawa 904-0495, Japan
| | - D M Allman
- Ecological Neuroscience Group, School of Natural Sciences, Macquarie University, Sydney, NSW 2109, Australia
| | - F Hita-Garcia
- Biodiversity and Biocomplexity Unit, Okinawa Institute of Science and Technology Graduate University, 1919-1 Tancha, Onna-son, Okinawa 904-0495, Japan
| | - D Labonte
- Department of Bioengineering, Imperial College London, London SW7 2AZ, UK
| | - A Narendra
- Ecological Neuroscience Group, School of Natural Sciences, Macquarie University, Sydney, NSW 2109, Australia
| | - E P Economo
- Biodiversity and Biocomplexity Unit, Okinawa Institute of Science and Technology Graduate University, 1919-1 Tancha, Onna-son, Okinawa 904-0495, Japan
| |
Collapse
|
12
|
Püffel F, Meyer L, Imirzian N, Roces F, Johnston R, Labonte D. Developmental biomechanics and age polyethism in leaf-cutter ants. Proc Biol Sci 2023; 290:20230355. [PMID: 37312549 PMCID: PMC10265030 DOI: 10.1098/rspb.2023.0355] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Accepted: 05/05/2023] [Indexed: 06/15/2023] Open
Abstract
Many social insects display age polyethism: young workers stay inside the nest, and only older workers forage. This behavioural transition is accompanied by genetic and physiological changes, but the mechanistic origin of it remains unclear. To investigate if the mechanical demands on the musculoskeletal system effectively prevent young workers from foraging, we studied the biomechanical development of the bite apparatus in Atta vollenweideri leaf-cutter ants. Fully matured foragers generated peak in vivo bite forces of around 100 mN, more than one order of magnitude in excess of those measured for freshly eclosed callows of the same size. This change in bite force was accompanied by a sixfold increase in the volume of the mandible closer muscle, and by a substantial increase of the flexural rigidity of the head capsule, driven by a significant increase in both average thickness and indentation modulus of the head capsule cuticle. Consequently, callows lack the muscle force capacity required for leaf-cutting, and their head capsule is so compliant that large muscle forces would be likely to cause damaging deformations. On the basis of these results, we speculate that continued biomechanical development post eclosion may be a key factor underlying age polyethism, wherever foraging is associated with substantial mechanical demands.
Collapse
Affiliation(s)
- Frederik Püffel
- Department of Bioengineering, Imperial College London, London, UK
| | - Lara Meyer
- Faculty of Nature and Engineering, City University of Applied Sciences Bremen, Bremen, Germany
| | - Natalie Imirzian
- Department of Bioengineering, Imperial College London, London, UK
| | - Flavio Roces
- Department of Behavioural Physiology and Sociobiology, University of Würzburg, Würzburg, Germany
| | | | - David Labonte
- Department of Bioengineering, Imperial College London, London, UK
| |
Collapse
|
13
|
Labonte D. A theory of physiological similarity in muscle-driven motion. Proc Natl Acad Sci U S A 2023; 120:e2221217120. [PMID: 37285395 PMCID: PMC10268211 DOI: 10.1073/pnas.2221217120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Accepted: 05/02/2023] [Indexed: 06/09/2023] Open
Abstract
Muscle contraction is the primary source of all animal movement. I show that the maximum mechanical output of such contractions is determined by a characteristic dimensionless number, the "effective inertia," Γ, defined by a small set of mechanical, physiological, and anatomical properties of the interrogated musculoskeletal complex. Different musculoskeletal systems with equal Γ may be considered physiologically similar, in the sense that maximum performance involves equal fractions of the muscle's maximum strain rate, strain capacity, work, and power density. It can be demonstrated that there exists a unique, "optimal" musculoskeletal anatomy which enables a unit volume of muscle to deliver maximum work and power simultaneously, corresponding to Γ close to unity. External forces truncate the mechanical performance space accessible to muscle by introducing parasitic losses, and subtly alter how musculoskeletal anatomy modulates muscle performance, challenging canonical notions of skeletal force-velocity trade-offs. Γ varies systematically under isogeometric transformations of musculoskeletal systems, a result which provides fundamental insights into the key determinants of animal locomotor performance across scales.
Collapse
Affiliation(s)
- David Labonte
- Evolutionary Biomechanics Laboratory, Department of Bioengineering, Imperial College London, LondonSW7 2BX, United Kingdom
| |
Collapse
|