1
|
Kirk EA, Hope KT, Sober SJ, Sauerbrei BA. An output-null signature of inertial load in motor cortex. Nat Commun 2024; 15:7309. [PMID: 39181866 PMCID: PMC11344817 DOI: 10.1038/s41467-024-51750-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Accepted: 08/15/2024] [Indexed: 08/27/2024] Open
Abstract
Coordinated movement requires the nervous system to continuously compensate for changes in mechanical load across different conditions. For voluntary movements like reaching, the motor cortex is a critical hub that generates commands to move the limbs and counteract loads. How does cortex contribute to load compensation when rhythmic movements are sequenced by a spinal pattern generator? Here, we address this question by manipulating the mass of the forelimb in unrestrained mice during locomotion. While load produces changes in motor output that are robust to inactivation of motor cortex, it also induces a profound shift in cortical dynamics. This shift is minimally affected by cerebellar perturbation and significantly larger than the load response in the spinal motoneuron population. This latent representation may enable motor cortex to generate appropriate commands when a voluntary movement must be integrated with an ongoing, spinally-generated rhythm.
Collapse
Affiliation(s)
- Eric A Kirk
- Department of Neurosciences, Case Western Reserve University School of Medicine, Cleveland, OH, USA
| | - Keenan T Hope
- Department of Neurosciences, Case Western Reserve University School of Medicine, Cleveland, OH, USA
| | - Samuel J Sober
- Department of Biology, Emory University, Atlanta, GA, USA
| | - Britton A Sauerbrei
- Department of Neurosciences, Case Western Reserve University School of Medicine, Cleveland, OH, USA.
| |
Collapse
|
2
|
Cross KP, Cook DJ, Scott SH. Rapid Online Corrections for Proprioceptive and Visual Perturbations Recruit Similar Circuits in Primary Motor Cortex. eNeuro 2024; 11:ENEURO.0083-23.2024. [PMID: 38238081 PMCID: PMC10867723 DOI: 10.1523/eneuro.0083-23.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2023] [Revised: 12/22/2023] [Accepted: 01/09/2024] [Indexed: 02/16/2024] Open
Abstract
An important aspect of motor function is our ability to rapidly generate goal-directed corrections for disturbances to the limb or behavioral goal. The primary motor cortex (M1) is a key region involved in processing feedback for rapid motor corrections, yet we know little about how M1 circuits are recruited by different sources of sensory feedback to make rapid corrections. We trained two male monkeys (Macaca mulatta) to make goal-directed reaches and on random trials introduced different sensory errors by either jumping the visual location of the goal (goal jump), jumping the visual location of the hand (cursor jump), or applying a mechanical load to displace the hand (proprioceptive feedback). Sensory perturbations evoked a broad response in M1 with ∼73% of neurons (n = 257) responding to at least one of the sensory perturbations. Feedback responses were also similar as response ranges between the goal and cursor jumps were highly correlated (range of r = [0.91, 0.97]) as were the response ranges between the mechanical loads and the visual perturbations (range of r = [0.68, 0.86]). Lastly, we identified the neural subspace each perturbation response resided in and found a strong overlap between the two visual perturbations (range of overlap index, 0.73-0.89) and between the mechanical loads and visual perturbations (range of overlap index, 0.36-0.47) indicating each perturbation evoked similar structure of activity at the population level. Collectively, our results indicate rapid responses to errors from different sensory sources target similar overlapping circuits in M1.
Collapse
Affiliation(s)
- Kevin P Cross
- Neuroscience Center, University of North Carolina, Chapel Hill, North Carolina 27599
| | - Douglas J Cook
- Department of Surgery, Queen's University, Kingston, Ontario K7L 3N6, Canada
- Centre for Neuroscience Studies, Queen's University, Kingston, Ontario K7L 3N6, Canada
| | - Stephen H Scott
- Centre for Neuroscience Studies, Queen's University, Kingston, Ontario K7L 3N6, Canada
- Departments of Biomedical and Molecular Sciences, Queen's University, Kingston, Ontario K7L 3N6, Canada
- Medicine, Queen's University, Kingston, Ontario K7L 3N6, Canada
| |
Collapse
|
3
|
Sharini H, Zolghadriha S, Riyahi Alam N, Jalalvandi M, Khabiri H, Arabalibeik H, Nadimi M. Assessment of Motor Cortex in Active, Passive and Imagery Wrist Movement Using Functional MRI. J Biomed Phys Eng 2021; 11:515-526. [PMID: 34458199 PMCID: PMC8385213 DOI: 10.31661/jbpe.v0i0.1034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2018] [Accepted: 10/17/2018] [Indexed: 11/28/2022]
Abstract
Background: Functional Magnetic resonance imaging (fMRI) measures the small fluctuation of blood flow happening during task-fMRI in brain regions. Objective: This research investigated these active, imagery and passive movements in volunteers design to permit a comparison of their capabilities in activating the brain areas. Material and Methods: In this applied research, the activity of the motor cortex during the right-wrist movement was evaluated in 10 normal volunteers under active, passive, and imagery conditions.
T2* weighted, three-dimensional functional images were acquired using a BOLD sensitive gradient-echo EPI (echo planar imaging) sequence with echo time (TE)
of 30 ms and repetition time (TR) of 2000 ms. The functional data, which included 248 volumes per subject and condition, were acquired using the blocked design paradigm.
The images were analyzed by the SPM12 toolbox, MATLAB software. Results: The findings determined a significant increase in signal intensity of the motor cortex while performing the test compared to the rest time (p< 0.05).
It was also observed that the active areas in hand representation of the motor cortex are different in terms of locations and the number of voxels in different wrist directions.
Moreover, the findings showed that the position of active centers in the brain is different in active, passive, and imagery conditions. Conclusion: Results confirm that primary motor cortex neurons play an essential role in the processing of complex information and are designed to control the direction of movement.
It seems that the findings of this study can be applied for rehabilitation studies.
Collapse
Affiliation(s)
- Hamid Sharini
- PhD, Department of Medical Physics and Biomedical Engineering, School of Medicine, Kermanshah University of Medical Sciences (KUMS), Kermanshah, Iran
| | - Shokufeh Zolghadriha
- MSc, Department of Medical Physics and Biomedical Engineering, School of Medicine, Tehran University of Medical Sciences (TUMS), Tehran, Iran
| | - Nader Riyahi Alam
- PhD, Department of Medical Physics and Biomedical Engineering, School of Medicine, Tehran University of Medical Sciences (TUMS), Tehran, Iran
- PhD, PERFORM Center, Preventive Medicine and Personal Health Care Center, Concordia University, Montreal, Quebec, Canada
- PhD, Medical Pharmaceutical Sciences Research Center (MPRC), the institute of Pharmaceutical Sciences, Tehran University of Medical Sciences, Tehran, Iran
| | - Maziar Jalalvandi
- MSc, Department of Medical Physics and Biomedical Engineering, School of Medicine, Tehran University of Medical Sciences (TUMS), Tehran, Iran
| | - Hamid Khabiri
- PhD, Department of Medical Physics and Biomedical Engineering, School of Medicine, Tehran University of Medical Sciences (TUMS), Tehran, Iran
| | - Hossein Arabalibeik
- PhD, Department of Medical Physics and Biomedical Engineering, School of Medicine, Tehran University of Medical Sciences (TUMS), Tehran, Iran
- PhD, Research Center for Science and Technology in Medicine (RCSTM), Tehran University of Medical Sciences (TUMS), Tehran, Iran
| | - Mohadeseh Nadimi
- MSc, Department of Medical Physics and Biomedical Engineering, School of Medicine, Tehran University of Medical Sciences (TUMS), Tehran, Iran
| |
Collapse
|
4
|
Eisen A, Lemon R. The motor deficit of ALS reflects failure to generate muscle synergies for complex motor tasks, not just muscle strength. Neurosci Lett 2021; 762:136171. [PMID: 34391870 DOI: 10.1016/j.neulet.2021.136171] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Revised: 08/09/2021] [Accepted: 08/10/2021] [Indexed: 11/17/2022]
Abstract
Customarily the motor deficits that develop in ALS are considered in terms of muscle weakness. Functional rating scales used to assess ALS in terms of functional decline do not measure the deficits when performing complex motor tasks, that make up the human skilled motor repertoire, best exemplified by tasks requiring skilled hand and finger movement. This repertoire depends primarily upon the strength of direct corticomotoneuronal (CM) connectivity from primary motor cortex to the motor units subserving skilled movements. Our review prompts the question: if accumulating evidence suggests involvement of the CM system in the early stages of ALS, what kinds of motor deficit might be expected to result, and is current methodology able to identify such deficits? We point out that the CM system is organized not in "commands" to individual muscles, but rather encodes the building blocks of complex and intricate movements, which depend upon synergy between not only the prime mover muscles, but other muscles that stabilize the limb during skilled movement. Our knowledge of the functional organization of the CM system has come both from invasive studies in non-human primates and from advanced imaging and neurophysiological techniques in humans, some of which are now being applied in ALS. CM pathology in ALS has consequences not only for muscle strength, but importantly in the failure to generate complex motor tasks, often involving elaborate muscle synergies. Our aim is to encourage innovative methodology specifically directed to assessing complex motor tasks, failure of which is likely a very early clinical deficit in ALS.
Collapse
Affiliation(s)
- Andrew Eisen
- Division of Neurology, Department of Medicine, University of British Columbia, Vancouver, Canada.
| | - Roger Lemon
- Department of Clinical and Motor Neurosciences, UCL Institute of Neurology, Queen Square, London WC1N 3BG, UK.
| |
Collapse
|
5
|
Customizing Robot-Assisted Passive Neurorehabilitation Exercise Based on Teaching Training Mechanism. BIOMED RESEARCH INTERNATIONAL 2021; 2021:9972560. [PMID: 34195289 PMCID: PMC8184331 DOI: 10.1155/2021/9972560] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/10/2021] [Accepted: 05/23/2021] [Indexed: 12/21/2022]
Abstract
Passive movement is an important mean of rehabilitation for stroke survivors in the early stage or with greater paralysis. The upper extremity robot is required to assist therapists with passive movement during clinical rehabilitation, while customizing is one of the crucial issues for robot-assisted upper extremity training, which fits the patient-centeredness. Robot-assisted teaching training could address the need well. However, the existing control strategies of teaching training are usually commanded by position merely, having trouble to achieve the efficacy of treatment by therapists. And deficiency of flexibility and compliance comes to the training trajectory. This research presents a novel motion control strategy for customized robot-assisted passive neurorehabilitation. The teaching training mechanism is developed to coordinate the movement of the shoulder and elbow, ensuring the training trajectory correspondence with human kinematics. Furthermore, the motion trajectory is adjusted by arm strength to realize dexterity and flexibility. Meanwhile, the torque sensor employed in the human-robot interactive system identifies movement intention of human. The goal-directed games and feedbacks promote the motor positivity of stroke survivors. In addition, functional experiments and clinical experiments are investigated with a healthy adult and five recruited stroke survivors, respectively. The experimental results present that the suggested control strategy not only serves with safety training but also presents rehabilitation efficacy.
Collapse
|
6
|
Cardellicchio P, Hilt PM, Dolfini E, Fadiga L, D'Ausilio A. Beta Rebound as an Index of Temporal Integration of Somatosensory and Motor Signals. Front Syst Neurosci 2020; 14:63. [PMID: 32982705 PMCID: PMC7492746 DOI: 10.3389/fnsys.2020.00063] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2020] [Accepted: 07/29/2020] [Indexed: 01/15/2023] Open
Abstract
Modulation of cortical beta rhythm (15–30 Hz) is present during preparation for and execution of voluntary movements as well as during somatosensory stimulation. A rebound in beta synchronization is observed after the end of voluntary movements as well as after somatosensory stimulation and is believed to describe the return to baseline of sensorimotor networks. However, the contribution of efferent and afferent signals to the beta rebound remains poorly understood. Here, we applied electrical median nerve stimulation (MNS) to the right side followed by transcranial magnetic stimulation (TMS) on the left primary motor cortex after either 15 or 25 ms. Because the afferent volley reaches the somatosensory cortex after about 20 ms, TMS on the motor cortex was either anticipating or following the cortical arrival of the peripheral stimulus. We show modulations in different beta sub-bands and in both hemispheres, following a pattern of greater resynchronization when motor signals are paired with a peripheral one. The beta rebound in the left hemisphere (stimulated) is modulated in its lower frequency range when TMS precedes the cortical arrival of the afferent volley. In the right hemisphere (unstimulated), instead, the increase is limited to higher beta frequencies when TMS is delivered after the arrival of the afferent signal. In general, we demonstrate that the temporal integration of afferent and efferent signals plays a key role in the genesis of the beta rebound and that these signals may be carried in parallel by different beta sub-bands.
Collapse
Affiliation(s)
- Pasquale Cardellicchio
- IIT@UniFe Center for Translational Neurophysiology of Speech and Communication, Italian Institute of Technology, Ferrara, Italy
| | - Pauline M Hilt
- IIT@UniFe Center for Translational Neurophysiology of Speech and Communication, Italian Institute of Technology, Ferrara, Italy
| | - Elisa Dolfini
- IIT@UniFe Center for Translational Neurophysiology of Speech and Communication, Italian Institute of Technology, Ferrara, Italy.,Department of Biomedical and Specialized Surgical Sciences, Division of Human Physiology, University of Ferrara, Ferrara, Italy
| | - Luciano Fadiga
- IIT@UniFe Center for Translational Neurophysiology of Speech and Communication, Italian Institute of Technology, Ferrara, Italy.,Department of Biomedical and Specialized Surgical Sciences, Division of Human Physiology, University of Ferrara, Ferrara, Italy
| | - Alessandro D'Ausilio
- IIT@UniFe Center for Translational Neurophysiology of Speech and Communication, Italian Institute of Technology, Ferrara, Italy.,Department of Biomedical and Specialized Surgical Sciences, Division of Human Physiology, University of Ferrara, Ferrara, Italy
| |
Collapse
|
7
|
Long-latency Responses to a Mechanical Perturbation of the Index Finger Have a Spinal Component. J Neurosci 2020; 40:3933-3948. [PMID: 32245828 PMCID: PMC7219296 DOI: 10.1523/jneurosci.1901-19.2020] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2019] [Revised: 01/21/2020] [Accepted: 01/25/2020] [Indexed: 11/21/2022] Open
Abstract
In an uncertain external environment, the motor system may need to respond rapidly to an unexpected stimulus. Limb displacement causes muscle stretch; the corrective response has multiple activity bursts, which are suggested to originate from different parts of the neuraxis. The earliest response is so fast, it can only be produced by spinal circuits; this is followed by slower components thought to arise from primary motor cortex (M1) and other supraspinal areas. In an uncertain external environment, the motor system may need to respond rapidly to an unexpected stimulus. Limb displacement causes muscle stretch; the corrective response has multiple activity bursts, which are suggested to originate from different parts of the neuraxis. The earliest response is so fast, it can only be produced by spinal circuits; this is followed by slower components thought to arise from primary motor cortex (M1) and other supraspinal areas. Spinal cord (SC) contributions to the slower components are rarely considered. To address this, we recorded neural activity in M1 and the cervical SC during a visuomotor tracking task, in which 2 female macaque monkeys moved their index finger against a resisting motor to track an on-screen target. Following the behavioral trial, an increase in motor torque rapidly returned the finger to its starting position (lever velocity >200°/s). Many cells responded to this passive mechanical perturbation (M1: 148 of 211 cells, 70%; SC: 67 of 119 cells, 56%). The neural onset latency was faster for SC compared with M1 cells (21.7 ± 11.2 ms vs 25.5 ± 10.7 ms, respectively, mean ± SD). Using spike-triggered averaging, some cells in both regions were identified as likely premotor cells, with monosynaptic connections to motoneurons. Response latencies for these cells were compatible with a contribution to the muscle responses following the perturbation. Comparable fractions of responding neurons in both areas were active up to 100 ms after the perturbation, suggesting that both SC circuits and supraspinal centers could contribute to later response components. SIGNIFICANCE STATEMENT Following a limb perturbation, multiple reflexes help to restore limb position. Given conduction delays, the earliest part of these reflexes can only arise from spinal circuits. By contrast, long-latency reflex components are typically assumed to originate from supraspinal centers. We recorded from both spinal and motor cortical cells in monkeys responding to index finger perturbations. Many spinal interneurons, including those identified as projecting to motoneurons, responded to the perturbation; the timing of responses was compatible with a contribution to both short- and long-latency reflexes. We conclude that spinal circuits also contribute to long-latency reflexes in distal and forearm muscles, alongside supraspinal regions, such as the motor cortex and brainstem.
Collapse
|
8
|
Reorganization of the Primate Dorsal Horn in Response to a Deafferentation Lesion Affecting Hand Function. J Neurosci 2020; 40:1625-1639. [PMID: 31959698 DOI: 10.1523/jneurosci.2330-19.2020] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2019] [Revised: 01/09/2020] [Accepted: 01/11/2020] [Indexed: 11/21/2022] Open
Abstract
The loss of sensory input following a spinal deafferentation injury can be debilitating, and this is especially true in primates when the hand is involved. Although significant recovery of function occurs, little is currently understood about the reorganization of the neuronal circuitry, particularly within the dorsal horn. This region receives primary afferent input from the periphery, and cortical input via the somatosensory subcomponent of the corticospinal tract (S1 CST), and is critically important in modulating sensory transmission, both in normal and lesioned states. To determine how dorsal horn circuitry alters to facilitate recovery post-injury, we used an established deafferentation lesion model (dorsal root/dorsal column) in male monkeys to remove sensory input from just the opposing digits (digits 1-3) of one hand. This results in a deficit in fine dexterity that recovers over several months. Electrophysiological mapping, tract tracing, and immunolabeling techniques were combined to delineate specific changes to dorsal horn input circuitry. Our main findings show that (1) there is complementary sprouting of the primary afferent and S1 CST populations into an overlapping region of the reorganizing dorsal horn; (2) S1 CST and primary afferent inputs connect in different ways within this region to facilitate sensory integration; and (3) there is a loss of larger S1 CST terminal boutons in the affected dorsal horn, but no change in the size profile of the spared/sprouted primary afferent terminal boutons post-lesion. Understanding such changes helps to inform new and targeted therapies that best promote recovery.SIGNIFICANCE STATEMENT Spinal injuries that remove sensation from the hand, can be debilitating, though functional recovery does occur. We examined changes to the neuronal circuitry of the dorsal horn in monkeys following a lesion that deafferented three digits of one hand. Little is understood about dorsal horn circuitry, despite the fact that this region loses most of its normal input after such an injury, and is clearly a major focus of reorganization. We found that both the spared primary afferents and somatosensory corticospinal efferents sprouted in an overlapping region of the dorsal horn after injury, and that larger (presumably faster) corticospinal terminals are lost, suggesting a significantly altered cortical modulation of primary afferents. Understanding this changing circuitry is important for designing targeted therapies.
Collapse
|
9
|
Mazurek KA, Schieber MH. How is electrical stimulation of the brain experienced, and how can we tell? Selected considerations on sensorimotor function and speech. Cogn Neuropsychol 2019; 36:103-116. [PMID: 31076014 PMCID: PMC6744321 DOI: 10.1080/02643294.2019.1609918] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2018] [Revised: 04/14/2019] [Accepted: 04/15/2019] [Indexed: 01/05/2023]
Abstract
Electrical stimulation of the nervous system is a powerful tool for localizing and examining the function of numerous brain regions. Delivered to certain regions of the cerebral cortex, electrical stimulation can evoke a variety of first-order effects, including observable movements or an urge to move, or somatosensory, visual, or auditory percepts. In still other regions the subject may be oblivious to the stimulation. Often overlooked, however, is whether the subject is aware of the stimulation, and if so, how the stimulation is experienced by the subject. In this review of how electrical stimulation has been used to study selected aspects of sensorimotor and language function, we raise questions that future studies might address concerning the subjects' second-order experiences of intention and agency regarding evoked movements, of the naturalness of evoked sensory percepts, and of other qualia that might be evoked in the absence of an overt first-order experience.
Collapse
Affiliation(s)
- Kevin A. Mazurek
- Department of Neurology, University of Rochester, Rochester, NY
- Del Monte Institute for Neuroscience, University of Rochester, Rochester, NY
| | - Marc H. Schieber
- Department of Neurology, University of Rochester, Rochester, NY
- Department of Neuroscience, University of Rochester, Rochester, NY
- Department of Biomedical Engineering, University of Rochester, Rochester, NY
- Del Monte Institute for Neuroscience, University of Rochester, Rochester, NY
| |
Collapse
|
10
|
Kraskov A, Soteropoulos DS, Glover IS, Lemon RN, Baker SN. Slowly-Conducting Pyramidal Tract Neurons in Macaque and Rat. Cereb Cortex 2019; 30:3403-3418. [PMID: 32026928 PMCID: PMC7197198 DOI: 10.1093/cercor/bhz318] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2019] [Revised: 08/22/2019] [Accepted: 09/02/2019] [Indexed: 01/19/2023] Open
Abstract
Anatomical studies report a large proportion of fine myelinated fibers in the primate pyramidal tract (PT), while very few PT neurons (PTNs) with slow conduction velocities (CV) (<~10 m/s) are reported electrophysiologically. This discrepancy might reflect recording bias toward fast PTNs or prevention of antidromic invasion by recurrent inhibition (RI) of slow PTNs from faster axons. We investigated these factors in recordings made with a polyprobe (32 closely-spaced contacts) from motor cortex of anesthetized rats (n = 2) and macaques (n = 3), concentrating our search on PTNs with long antidromic latencies (ADLs). We identified 21 rat PTNs with ADLs >2.6 ms and estimated CV 3-8 m/s, and 67 macaque PTNs (>3.9 ms, CV 6-12 m/s). Spikes of most slow PTNs were small and present on only some recording contacts, while spikes from simultaneously recorded fast-conducting PTNs were large and appeared on all contacts. Antidromic thresholds were similar for fast and slow PTNS, while spike duration was considerably longer in slow PTNs. Most slow PTNs showed no signs of failure to respond antidromically. A number of tests, including intracortical microinjection of bicuculline (GABAA antagonist), failed to provide any evidence that RI prevented antidromic invasion of slow PTNs. Our results suggest that recording bias is the main reason why previous studies were dominated by fast PTNs.
Collapse
Affiliation(s)
- A Kraskov
- Department of Clinical and Movement Neurosciences, UCL Queen Square Institute of Neurology, London, WC1N 3BG, UK
| | - D S Soteropoulos
- Institute of Neuroscience, Newcastle University, Newcastle upon Tyne, NE2 4HH, UK
| | - I S Glover
- Institute of Neuroscience, Newcastle University, Newcastle upon Tyne, NE2 4HH, UK
| | - R N Lemon
- Department of Clinical and Movement Neurosciences, UCL Queen Square Institute of Neurology, London, WC1N 3BG, UK
| | - S N Baker
- Institute of Neuroscience, Newcastle University, Newcastle upon Tyne, NE2 4HH, UK
| |
Collapse
|
11
|
Dos Anjos LA, Balasubramanian K, Stilson K, Balcer C, Hatsopoulos NG, Kamper DG. Using monkey hand exoskeleton to explore finger passive joint movement response in primary motor cortex. ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. ANNUAL INTERNATIONAL CONFERENCE 2018; 2017:3624-3627. [PMID: 29060683 DOI: 10.1109/embc.2017.8037642] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
While neurons in primary motor cortex (M1) have been shown to respond to sensory stimuli, exploration of this phenomenon has proven challenging. Accurate and repeatable presentation of sensory inputs is difficult. Here, we describe a novel paradigm to study response to joint motion and fingertip force. We employed a custom exoskeleton to drive index finger metacarpophalangeal joint (MCP) of a macaque to follow sinusoid trajectories at 4 different frequencies (0.2, 0.5, 1, 2Hz) and 2 movement ranges (68.4, 34.2 degrees). We highlight results of a specific M1 unit that displayed sensitivity to direction (more active during flexion than extension), frequency (greater firing rate at higher frequencies), and movement amplitude (higher rate at larger amplitude). Joint movement trajectories were accurately reconstructed from this single unit with mean R2 =0.64 ± 0.13. The exoskeleton holds promise for examination of sensory feedback. In addition, it can be used as an external device controlled by a brain-machine interface (BMI) system. The proprioceptive related units in M1 may contribute to improving BMI control performance.
Collapse
|
12
|
Schroeder KE, Irwin ZT, Bullard AJ, Thompson DE, Bentley JN, Stacey WC, Patil PG, Chestek CA. Robust tactile sensory responses in finger area of primate motor cortex relevant to prosthetic control. J Neural Eng 2018; 14:046016. [PMID: 28504971 DOI: 10.1088/1741-2552/aa7329] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
OBJECTIVE Challenges in improving the performance of dexterous upper-limb brain-machine interfaces (BMIs) have prompted renewed interest in quantifying the amount and type of sensory information naturally encoded in the primary motor cortex (M1). Previous single unit studies in monkeys showed M1 is responsive to tactile stimulation, as well as passive and active movement of the limbs. However, recent work in this area has focused primarily on proprioception. Here we examined instead how tactile somatosensation of the hand and fingers is represented in M1. APPROACH We recorded multi- and single units and thresholded neural activity from macaque M1 while gently brushing individual finger pads at 2 Hz. We also recorded broadband neural activity from electrocorticogram (ECoG) grids placed on human motor cortex, while applying the same tactile stimulus. MAIN RESULTS Units displaying significant differences in firing rates between individual fingers (p < 0.05) represented up to 76.7% of sorted multiunits across four monkeys. After normalizing by the number of channels with significant motor finger responses, the percentage of electrodes with significant tactile responses was 74.9% ± 24.7%. No somatotopic organization of finger preference was obvious across cortex, but many units exhibited cosine-like tuning across multiple digits. Sufficient sensory information was present in M1 to correctly decode stimulus position from multiunit activity above chance levels in all monkeys, and also from ECoG gamma power in two human subjects. SIGNIFICANCE These results provide some explanation for difficulties experienced by motor decoders in clinical trials of cortically controlled prosthetic hands, as well as the general problem of disentangling motor and sensory signals in primate motor cortex during dextrous tasks. Additionally, examination of unit tuning during tactile and proprioceptive inputs indicates cells are often tuned differently in different contexts, reinforcing the need for continued refinement of BMI training and decoding approaches to closed-loop BMI systems for dexterous grasping.
Collapse
Affiliation(s)
- Karen E Schroeder
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI 48109, United States of America
| | | | | | | | | | | | | | | |
Collapse
|
13
|
Mirror Neuron Populations Represent Sequences of Behavioral Epochs During Both Execution and Observation. J Neurosci 2018; 38:4441-4455. [PMID: 29654188 DOI: 10.1523/jneurosci.3481-17.2018] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2017] [Revised: 03/26/2018] [Accepted: 04/03/2018] [Indexed: 01/15/2023] Open
Abstract
Mirror neurons (MNs) have the distinguishing characteristic of modulating during both execution and observation of an action. Although most studies of MNs have focused on various features of the observed movement, MNs also may monitor the behavioral circumstances in which the movement is embedded, including time periods preceding and following the observed movement. Here, we recorded multiple MNs simultaneously from implanted electrode arrays as two male monkeys executed and observed a reach, grasp, and manipulate task involving different target objects. MNs were recorded from premotor cortex (PM-MNs) and primary motor cortex (M1-MNs). During execution trials, hidden Markov models (HMMs) applied to the activity of either PM-MN or M1-MN populations most often detected sequences of four hidden states, which we named according to the behavioral epoch during which each state began: initial, reaction, movement, and final. The hidden states of MN populations thus reflected not only the movement, but also three behavioral epochs during which no movement occurred. HMMs trained on execution trials could decode similar sequences of hidden states in observation trials, with complete hidden state sequences decoded more frequently from PM-MN populations than from M1-MN populations. Moreover, population trajectories projected in a 2D plane defined by execution trials were preserved in observation trials more for PM-MN than for M1-MN populations. These results suggest that MN populations represent entire behavioral sequences, including both movement and non-movement. PM-MN populations showed greater similarity than M1-MN populations in their representation of behavioral sequences during execution versus observation.SIGNIFICANCE STATEMENT Mirror neurons (MNs) are thought to provide a neural mechanism for understanding the actions of others. However, for an action to be understood, both the movement per se and the non-movement context before and after the movement need to be represented. We found that simultaneously recorded MN populations encoded sequential hidden neural states corresponding approximately to sequential behavioral epochs of a reach, grasp, and manipulate task. During observation trials, hidden state sequences were similar to those identified in execution trials. Hidden state similarity was stronger for MN populations in premotor cortex than for those in primary motor cortex. Execution/observation similarity of hidden state sequences may contribute to understanding the actions of others without actually performing the action oneself.
Collapse
|
14
|
Fischer B, Wegener D. Emphasizing the "positive" in positive reinforcement: using nonbinary rewarding for training monkeys on cognitive tasks. J Neurophysiol 2018; 120:115-128. [PMID: 29617217 DOI: 10.1152/jn.00572.2017] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Nonhuman primates constitute an indispensable model system for studying higher brain functions at the neurophysiological level. Studies involving these animals elucidated the neuronal mechanisms of various cognitive and executive functions, such as visual attention, working memory, and decision-making. Positive reinforcement training (PRT) constitutes the gold standard for training animals on the cognitive tasks employed in these studies. In the laboratory, PRT is usually based on application of a liquid reward as the reinforcer to strengthen the desired behavior and absence of the reward if the animal's response is wrong. By trial and error, the monkey may adapt its behavior and successfully reduce the number of error trials, and eventually learn even very sophisticated tasks. However, progress and success of the training strongly depend on reasonable error rates. If errors get too frequent, they may cause a drop in the animal's motivation to cooperate or its adaptation to high error rates and poor overall performance. We introduce in this report an alternative training regime to minimize errors and base the critical information for learning on graded rewarding. For every new task rule, the feedback to the animal is provided by different amounts of reward to distinguish the desired, optimal behavior from less optimal behavior. We applied this regime in different situations during training of visual attention tasks and analyzed behavioral performance and reaction times to evaluate its effectiveness. For both simple and complex behaviors, graded rewarding was found to constitute a powerful technique allowing for effective training without trade-off in accessible task difficulty or task performance. NEW & NOTEWORTHY Laboratory training of monkeys usually builds on providing a fixed amount of reward for the desired behavior, and no reward otherwise. We present a nonbinary, graded reward schedule to emphasize the positive, desired behavior and to keep errors on a moderate level. Using data from typical training situations, we demonstrate that graded rewards help to effectively guide the animal by success rather than errors and provide a powerful new tool for positive reinforcement training.
Collapse
Affiliation(s)
- Benjamin Fischer
- Brain Research Institute, Center for Cognitive Sciences, University of Bremen , Bremen , Germany
| | - Detlef Wegener
- Brain Research Institute, Center for Cognitive Sciences, University of Bremen , Bremen , Germany
| |
Collapse
|
15
|
Avanzini P, Pelliccia V, Lo Russo G, Orban GA, Rizzolatti G. Multiple time courses of somatosensory responses in human cortex. Neuroimage 2018; 169:212-226. [PMID: 29248698 PMCID: PMC5864517 DOI: 10.1016/j.neuroimage.2017.12.037] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2017] [Revised: 11/22/2017] [Accepted: 12/13/2017] [Indexed: 02/04/2023] Open
Abstract
Here we show how anatomical and functional data recorded from patients undergoing stereo-EEG can be used to decompose the cortical processing following nerve stimulation in different stages characterized by specific topography and time course. Tibial, median and trigeminal nerves were stimulated in 96 patients, and the increase in gamma power was evaluated over 11878 cortical sites. All three nerve datasets exhibited similar clusters of time courses: phasic, delayed/prolonged and tonic, which differed in topography, temporal organization and degree of spatial overlap. Strong phasic responses of the three nerves followed the classical somatotopic organization of SI, with no overlap in either time or space. Delayed responses presented overlaps between pairs of body parts in both time and space, and were confined to the dorsal motor cortices. Finally, tonic responses occurred in the perisylvian region including posterior insular cortex and were evoked by the stimulation of all three nerves, lacking any spatial and temporal specificity. These data indicate that the somatosensory processing following nerve stimulation is a multi-stage hierarchical process common to all three nerves, with the different stages likely subserving different functions. While phasic responses represent the neural basis of tactile perception, multi-nerve tonic responses may represent the neural signature of processes sustaining the capacity to become aware of tactile stimuli.
Collapse
Affiliation(s)
- P Avanzini
- Istituto di Neuroscienze, Consiglio nazionale delle Ricerche - CNR, Parma, Italy; Dipartimento di Medicina e Chirurgia, University of Parma, Italy.
| | - V Pelliccia
- Dipartimento di Medicina e Chirurgia, University of Parma, Italy; Centro per la chirurgia dell'Epilessia "Claudio Munari", Ospedale Ca'Granda-Niguarda, Milano, Italy
| | - G Lo Russo
- Centro per la chirurgia dell'Epilessia "Claudio Munari", Ospedale Ca'Granda-Niguarda, Milano, Italy
| | - G A Orban
- Dipartimento di Medicina e Chirurgia, University of Parma, Italy
| | - G Rizzolatti
- Istituto di Neuroscienze, Consiglio nazionale delle Ricerche - CNR, Parma, Italy; Dipartimento di Medicina e Chirurgia, University of Parma, Italy
| |
Collapse
|
16
|
Tomassini A, D'Ausilio A. Passive sensorimotor stimulation triggers long lasting alpha-band fluctuations in visual perception. J Neurophysiol 2017; 119:380-388. [PMID: 29046424 DOI: 10.1152/jn.00496.2017] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Movement planning and execution rely on the anticipation and online control of the incoming sensory input. Evidence suggests that sensorimotor processes may synchronize visual rhythmic activity in preparation of action performance. Indeed, we recently reported periodic fluctuations of visual contrast sensitivity that are time-locked to the onset of an intended movement of the arm. However, the origin of the observed visual modulations has so far remained unclear because of the endogenous (and thus temporally undetermined) activation of the sensorimotor system that is associated with voluntary movement initiation. In this study, we activated the sensorimotor circuitry involved in the hand control in an exogenous and controlled way by means of peripheral stimulation of the median nerve and characterized the spectrotemporal dynamics of the ensuing visual perception. The stimulation of the median nerve triggers robust and long-lasting (∼1 s) alpha-band oscillations in visual perception, whose strength is temporally modulated in a way that is consistent with the changes in alpha power described at the neurophysiological level after sensorimotor stimulation. These findings provide evidence in support of a causal role of the sensorimotor system in modulating oscillatory activity in visual areas with consequences for visual perception. NEW & NOTEWORTHY This study shows that the peripheral activation of the somatomotor hand system triggers long-lasting alpha periodicity in visual perception. This demonstrates that not only the endogenous sensorimotor processes involved in movement preparation but also the passive stimulation of the sensorimotor system can synchronize visual activity. The present work suggests that oscillation-based mechanisms may subserve core (task independent) sensorimotor integration functions.
Collapse
Affiliation(s)
- Alice Tomassini
- Center for Translational Neurophysiology for Speech and Communication, Fondazione Istituto Italiano di Tecnologia , Ferrara , Italy.,Department of Robotics, Brain and Cognitive Sciences (RBCS), Fondazione Istituto Italiano di Tecnologia, Genova, Italy
| | - Alessandro D'Ausilio
- Center for Translational Neurophysiology for Speech and Communication, Fondazione Istituto Italiano di Tecnologia , Ferrara , Italy.,Università di Ferrara, Dipartimento di Scienze Biomediche e Chirurgico Specialistiche , Ferrara , Italy.,Department of Robotics, Brain and Cognitive Sciences (RBCS), Fondazione Istituto Italiano di Tecnologia, Genova, Italy
| |
Collapse
|
17
|
Brown KI, Williams ER, de Carvalho F, Baker SN. Plastic Changes in Human Motor Cortical Output Induced by Random but not Closed-Loop Peripheral Stimulation: the Curse of Causality. Front Hum Neurosci 2016; 10:590. [PMID: 27895572 PMCID: PMC5108789 DOI: 10.3389/fnhum.2016.00590] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2016] [Accepted: 11/04/2016] [Indexed: 11/13/2022] Open
Abstract
Previous work showed that repetitive peripheral nerve stimulation can induce plastic changes in motor cortical output. Triggering electrical stimulation of central structures from natural activity can also generate plasticity. In this study, we tested whether triggering peripheral nerve stimulation from muscle activity would likewise induce changes in motor output. We developed a wearable electronic device capable of recording electromyogram (EMG) and delivering electrical stimulation under closed-loop control. This allowed paired stimuli to be delivered over longer periods than standard laboratory-based protocols. We tested this device in healthy human volunteers. Motor cortical output in relaxed thenar muscles was first assessed via the recruitment curve of responses to contralateral transcranial magnetic stimulation. The wearable device was then configured to record thenar EMG and stimulate the median nerve at the wrist (intensity around motor threshold, rate ~0.66 Hz). Subjects carried out normal daily activities for 4-7 h, before returning to the laboratory for repeated recruitment curve assessment. Four stimulation protocols were tested (9-14 subjects each): No Stim, no stimuli delivered; Activity, stimuli triggered by EMG activity above threshold; Saved, stimuli timed according to a previous Activity session in the same subject; Rest, stimuli given when EMG was silent. As expected, No Stim did not modify the recruitment curve. Activity and Rest conditions produced no significant effects across subjects, although there were changes in some individuals. Saved produced a significant and substantial increase, with average responses 2.14 times larger at 30% stimulator intensity above threshold. We argue that unavoidable delays in the closed loop feedback, due mainly to central and peripheral conduction times, mean that stimuli in the Activity paradigm arrived too late after cortical activation to generate consistent plastic changes. By contrast, stimuli delivered essentially at random during the Saved paradigm may have caused a generalized increase in cortical excitability akin to stochastic resonance, leading to plastic changes in corticospinal output. Our study demonstrates that non-invasive closed loop stimulation may be critically limited by conduction delays and the unavoidable constraint of causality.
Collapse
Affiliation(s)
- Kenneth I Brown
- Institute of Neuroscience, Newcastle University Newcastle upon Tyne, UK
| | | | | | - Stuart N Baker
- Institute of Neuroscience, Newcastle University Newcastle upon Tyne, UK
| |
Collapse
|
18
|
Abstract
Human studies in the past three decades have provided us with an emerging understanding of how cortical and spinal networks collaborate to ensure the vast repertoire of human behaviors. Humans have direct cortical connections to spinal motoneurons, which bypass spinal interneurons and exert a direct (willful) muscle control with the aid of a context-dependent integration of somatosensory and visual information at cortical level. However, spinal networks also play an important role. Sensory feedback through spinal circuitries is integrated with central motor commands and contributes importantly to the muscle activity underlying voluntary movements. Regulation of spinal interneurons is used to switch between motor states such as locomotion (reciprocal innervation) and stance (coactivation pattern). Cortical regulation of presynaptic inhibition of sensory afferents may focus the central motor command by opening or closing sensory feedback pathways. In the future, human studies of spinal motor control, in close collaboration with animal studies on the molecular biology of the spinal cord, will continue to document the neural basis for human behavior.
Collapse
Affiliation(s)
- Jens Bo Nielsen
- Department of Neuroscience and Pharmacology and Department of Nutrition, Exercise and Sports, University of Copenhagen, DK-2200 Copenhagen N, Denmark;
| |
Collapse
|
19
|
Pasquereau B, DeLong MR, Turner RS. Primary motor cortex of the parkinsonian monkey: altered encoding of active movement. Brain 2016; 139:127-43. [PMID: 26490335 PMCID: PMC4794619 DOI: 10.1093/brain/awv312] [Citation(s) in RCA: 57] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2015] [Revised: 08/21/2015] [Accepted: 09/08/2015] [Indexed: 01/15/2023] Open
Abstract
Abnormalities in the movement-related activation of the primary motor cortex (M1) are thought to be a major contributor to the motor signs of Parkinson's disease. The existing evidence, however, variably indicates that M1 is under-activated with movement, overactivated (due to a loss of functional specificity) or activated with abnormal timing. In addition, few models consider the possibility that distinct cortical neuron subtypes may be affected differently. Those gaps in knowledge were addressed by studying the extracellular activity of antidromically-identified lamina 5b pyramidal-tract type neurons (n = 153) and intratelencephalic-type corticostriatal neurons (n = 126) in the M1 of two monkeys as they performed a step-tracking arm movement task. We compared movement-related discharge before and after the induction of parkinsonism by administration of MPTP (1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine) and quantified the spike rate encoding of specific kinematic parameters of movement using a generalized linear model. The fraction of M1 neurons with movement-related activity declined following MPTP but only marginally. The strength of neuronal encoding of parameters of movement was reduced markedly (mean 29% reduction in the coefficients from the generalized linear model). This relative decoupling of M1 activity from kinematics was attributable to reductions in the coefficients that estimated the spike rate encoding of movement direction (-22%), speed (-40%), acceleration (-49%) and hand position (-33%). After controlling for MPTP-induced changes in motor performance, M1 activity related to movement itself was reduced markedly (mean 36% hypoactivation). This reduced activation was strong in pyramidal tract-type neurons (-50%) but essentially absent in corticostriatal neurons. The timing of M1 activation was also abnormal, with earlier onset times, prolonged response durations, and a 43% reduction in the prevalence of movement-related changes beginning in the 150-ms period that immediately preceded movement. Overall, the results are consistent with proposals that under-activation and abnormal timing of movement-related activity in M1 contribute to parkinsonian motor signs but are not consistent with the idea that a loss of functional specificity plays an important role. Given that pyramidal tract-type neurons form the primary efferent pathway that conveys motor commands to the spinal cord, the dysfunction of movement-related activity in pyramidal tract-type neurons is likely to be a central factor in the pathophysiology of parkinsonian motor signs.
Collapse
Affiliation(s)
- Benjamin Pasquereau
- 1 Department of Neurobiology, Center for Neuroscience and The Center for the Neural Basis of Cognition, University of Pittsburgh, Pittsburgh, Pennsylvania 15261, USA
| | - Mahlon R DeLong
- 2 Department of Neurology, Emory University, Atlanta, Georgia, USA
| | - Robert S Turner
- 1 Department of Neurobiology, Center for Neuroscience and The Center for the Neural Basis of Cognition, University of Pittsburgh, Pittsburgh, Pennsylvania 15261, USA
| |
Collapse
|
20
|
Modroño C, Plata-Bello J, Zelaya F, García S, Galván I, Marcano F, Navarrete G, Casanova Ó, Mas M, González-Mora JL. Enhancing sensorimotor activity by controlling virtual objects with gaze. PLoS One 2015; 10:e0121562. [PMID: 25799431 PMCID: PMC4370397 DOI: 10.1371/journal.pone.0121562] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2014] [Accepted: 02/02/2015] [Indexed: 11/18/2022] Open
Abstract
This fMRI work studies brain activity of healthy volunteers who manipulated a virtual object in the context of a digital game by applying two different control methods: using their right hand or using their gaze. The results show extended activations in sensorimotor areas, not only when participants played in the traditional way (using their hand) but also when they used their gaze to control the virtual object. Furthermore, with the exception of the primary motor cortex, regional motor activity was similar regardless of what the effector was: the arm or the eye. These results have a potential application in the field of the neurorehabilitation as a new approach to generate activation of the sensorimotor system to support the recovery of the motor functions.
Collapse
Affiliation(s)
- Cristián Modroño
- Department of Physiology, School of Medicine, University of La Laguna, Santa Cruz de Tenerife, Spain
- * E-mail:
| | - Julio Plata-Bello
- Department of Neurosurgery, University Hospital of the Canary Islands, Santa Cruz de Tenerife, Spain
| | - Fernando Zelaya
- Centre for Neuroimaging Sciences, Institute of Psychiatry, King’s College London, London, United Kingdomm
| | - Sofía García
- Department of Physiology, School of Medicine, University of La Laguna, Santa Cruz de Tenerife, Spain
| | - Iván Galván
- Department of Physiology, School of Medicine, University of La Laguna, Santa Cruz de Tenerife, Spain
| | - Francisco Marcano
- Department of Physiology, School of Medicine, University of La Laguna, Santa Cruz de Tenerife, Spain
| | - Gorka Navarrete
- Laboratory of Cognitive and Social Neuroscience (LaNCyS), UDP-INECO Foundation Core on Neuroscience (UIFCoN), Diego Portales University, Santiago de Chile, Chile
| | - Óscar Casanova
- Department of Physiology, School of Medicine, University of La Laguna, Santa Cruz de Tenerife, Spain
| | - Manuel Mas
- Department of Physiology, School of Medicine, University of La Laguna, Santa Cruz de Tenerife, Spain
| | - José Luis González-Mora
- Department of Physiology, School of Medicine, University of La Laguna, Santa Cruz de Tenerife, Spain
| |
Collapse
|
21
|
Abstract
Following damage to the motor system (e.g., after stroke or spinal cord injury), recovery of upper limb function exploits the multiple pathways which allow motor commands to be sent to the spinal cord. Corticospinal fibers originate from premotor as well as primary motor cortex. While some corticospinal fibers make direct monosynaptic connections to motoneurons, there are also many connections to interneurons which allow control of motoneurons indirectly. Such interneurons may be placed within the cervical enlargement, or more rostrally (propriospinal interneurons). In addition, connections from cortex to the reticular formation in the brainstem allow motor commands to be sent over the reticulospinal tract to these spinal centers. In this review, we consider the relative roles of these different routes for the control of hand function, both in healthy primates and after recovery from lesion.
Collapse
|
22
|
Budini F, McManus LM, Berchicci M, Menotti F, Macaluso A, Di Russo F, Lowery MM, De Vito G. Alpha band cortico-muscular coherence occurs in healthy individuals during mechanically-induced tremor. PLoS One 2014; 9:e115012. [PMID: 25514444 PMCID: PMC4267728 DOI: 10.1371/journal.pone.0115012] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2014] [Accepted: 11/17/2014] [Indexed: 11/18/2022] Open
Abstract
The present work aimed at investigating the effects of mechanically amplified tremor on cortico-muscular coherence (CMC) in the alpha band. The study of CMC in this specific band is of particular interest because this coherence is usually absent in healthy individuals and it is an aberrant feature in patients affected by pathological tremors; understanding its mechanisms is therefore important. Thirteen healthy volunteers (23±4 years) performed elbow flexor sustained contractions both against a spring load and in isometric conditions at 20% of maximal voluntary isometric contraction (MVC). Spring stiffness was selected to induce instability in the stretch reflex servo loop. 64 EEG channels, surface EMG from the biceps brachii muscle and force were simultaneously recorded. Contractions against the spring resulted in greater fluctuations of the force signal and EMG amplitude compared to isometric conditions (p<.05). During isometric contractions CMC was systematically found in the beta band and sporadically observed in the alpha band. However, during the contractions against the spring load, CMC in the alpha band was observed in 12 out of 13 volunteers. Partial directed coherence (PDC) revealed an increased information flow in the EMG to EEG direction in the alpha band (p<.05). Therefore, coherence in the alpha band between the sensory-motor cortex and the biceps brachii muscle can be systematically induced in healthy individuals by mechanically amplifying tremor. The increased information flow in the EMG to EEG direction may reflect enhanced afferent activity from the muscle spindles. These results may contribute to the understanding of the presence of alpha band CMC in tremor related pathologies by suggesting that the origin of this phenomenon may not only be at cortical level but may also be affected by spinal circuit loops.
Collapse
Affiliation(s)
- Francesco Budini
- Department of Movement, Human and Health Sciences, University of Rome Foro Italico, Rome, Italy
- School of Public Health, Physiotherapy and Population Science, University College Dublin, Dublin, Ireland
| | - Lara M. McManus
- School of Electrical, Electronic and Communications Engineering, University College Dublin, Dublin, Ireland
| | - Marika Berchicci
- Department of Movement, Human and Health Sciences, University of Rome Foro Italico, Rome, Italy
| | - Federica Menotti
- Department of Movement, Human and Health Sciences, University of Rome Foro Italico, Rome, Italy
| | - Andrea Macaluso
- Department of Movement, Human and Health Sciences, University of Rome Foro Italico, Rome, Italy
| | - Francesco Di Russo
- Department of Movement, Human and Health Sciences, University of Rome Foro Italico, Rome, Italy
- Neuropsychology Unit, IRCCS Santa Lucia Foundation, Rome, Italy
| | - Madeleine M. Lowery
- School of Electrical, Electronic and Communications Engineering, University College Dublin, Dublin, Ireland
| | - Giuseppe De Vito
- School of Public Health, Physiotherapy and Population Science, University College Dublin, Dublin, Ireland
| |
Collapse
|
23
|
Wardman DL, Gandevia SC, Colebatch JG. Cerebral, subcortical, and cerebellar activation evoked by selective stimulation of muscle and cutaneous afferents: an fMRI study. Physiol Rep 2014; 2:e00270. [PMID: 24771687 PMCID: PMC4001872 DOI: 10.1002/phy2.270] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2014] [Accepted: 02/20/2014] [Indexed: 11/08/2022] Open
Abstract
Abstract We compared the brain areas that showed significant flow changes induced by selective stimulation of muscle and cutaneous afferents using fMRI BOLD imaging. Afferents arising from the right hand were studied in eight volunteers with electrical stimulation of the digital nerve of the index finger and over the motor point of the FDI muscle. Both methods evoked areas of significant activation cortically, subcortically, and in the cerebellum. Selective muscle afferent stimulation caused significant activation in motor-related areas. It also caused significantly greater activation within the contralateral precentral gyrus, insula, and within the ipsilateral cerebellum as well as greater areas of reduced blood flow when compared to the cutaneous stimuli. We demonstrated separate precentral and postcentral foci of excitation with muscle afferent stimulation. We conclude, contrary to the findings with evoked potentials, that muscle afferents evoke more widespread cortical, subcortical, and cerebellar activation than do cutaneous afferents. This emphasizes the importance, for studies of movement, of matching the kinematic aspects in order to avoid the results being confounded by alterations in muscle afferent activation. The findings are consistent with clinical observations of the movement consequences of sensory loss and may also be the basis for the contribution of disturbed sensorimotor processing to disorders of movement.
Collapse
Affiliation(s)
- Daniel L. Wardman
- Faculty of Medicine, University of Sydney, Sydney, 2052, New South Wales, Australia
- Neuroscience Research Australia, Barker Street, RandwickSydney, 2031, New South Wales, Australia
| | - Simon C. Gandevia
- Neuroscience Research Australia, Barker Street, RandwickSydney, 2031, New South Wales, Australia
- Prince of Wales Hospital Clinical School, University of New South Wales, Sydney, 2052, New South Wales, Australia
| | - James G. Colebatch
- Neuroscience Research Australia, Barker Street, RandwickSydney, 2031, New South Wales, Australia
- Prince of Wales Hospital Clinical School, University of New South Wales, Sydney, 2052, New South Wales, Australia
| |
Collapse
|
24
|
Neural representations of ethologically relevant hand/mouth synergies in the human precentral gyrus. Proc Natl Acad Sci U S A 2014; 111:5718-22. [PMID: 24706796 DOI: 10.1073/pnas.1321909111] [Citation(s) in RCA: 71] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Complex motor responses are often thought to result from the combination of elemental movements represented at different neural sites. However, in monkeys, evidence indicates that some behaviors with critical ethological value, such as self-feeding, are represented as motor primitives in the precentral gyrus (PrG). In humans, such primitives have not yet been described. This could reflect well-known interspecies differences in the organization of sensorimotor regions (including PrG) or the difficulty of identifying complex neural representations in peroperative settings. To settle this alternative, we focused on the neural bases of hand/mouth synergies, a prominent example of human behavior with high ethological value. By recording motor- and somatosensory-evoked potentials in the PrG of patients undergoing brain surgery (2-60 y), we show that two complex nested neural representations can mediate hand/mouth actions within this structure: (i) a motor representation, resembling self-feeding, where electrical stimulation causes the closing hand to approach the opening mouth, and (ii) a motor-sensory representation, likely associated with perioral exploration, where cross-signal integration is accomplished at a cortical site that generates hand/arm actions while receiving mouth sensory inputs. The first finding extends to humans' previous observations in monkeys. The second provides evidence that complex neural representations also exist for perioral exploration, a finely tuned skill requiring the combination of motor and sensory signals within a common control loop. These representations likely underlie the ability of human children and newborns to accurately produce coordinated hand/mouth movements, in an otherwise general context of motor immaturity.
Collapse
|
25
|
Koželj S, Baker SN. Different phase delays of peripheral input to primate motor cortex and spinal cord promote cancellation at physiological tremor frequencies. J Neurophysiol 2014; 111:2001-16. [PMID: 24572094 PMCID: PMC4044345 DOI: 10.1152/jn.00935.2012] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
Neurons in the spinal cord and motor cortex (M1) are partially phase-locked to cycles of physiological tremor, but with opposite phases. Convergence of spinal and cortical activity onto motoneurons may thus produce phase cancellation and a reduction in tremor amplitude. The mechanisms underlying this phase difference are unknown. We investigated coherence between spinal and M1 activity with sensory input. In two anesthetized monkeys, we electrically stimulated the medial, ulnar, deep radial, and superficial radial nerves; stimuli were timed as independent Poisson processes (rate 10 Hz). Single units were recorded from M1 (147 cells) or cervical spinal cord (61 cells). Ninety M1 cells were antidromically identified as pyramidal tract neurons (PTNs); M1 neurons were additionally classified according to M1 subdivision (rostral/caudal, M1r/c). Spike-stimulus coherence analysis revealed significant coupling over a broad range of frequencies, with the strongest coherence at <50 Hz. Delays implied by the slope of the coherence phase-frequency relationship were greater than the response onset latency, reflecting the importance of late response components for the transmission of oscillatory inputs. The spike-stimulus coherence phase over the 6–13 Hz physiological tremor band differed significantly between M1 and spinal cells (phase differences relative to the cord of 2.72 ± 0.29 and 1.72 ± 0.37 radians for PTNs from M1c and M1r, respectively). We conclude that different phases of the response to peripheral input could partially underlie antiphase M1 and spinal cord activity during motor behavior. The coordinated action of spinal and cortical feedback will act to reduce tremulous oscillations, possibly improving the overall stability and precision of motor control.
Collapse
Affiliation(s)
- Saša Koželj
- Institute of Neuroscience, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Stuart N Baker
- Institute of Neuroscience, Newcastle University, Newcastle upon Tyne, United Kingdom
| |
Collapse
|
26
|
Rapid feedback responses correlate with reach adaptation and properties of novel upper limb loads. J Neurosci 2013; 33:15903-14. [PMID: 24089496 DOI: 10.1523/jneurosci.0263-13.2013] [Citation(s) in RCA: 78] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
A hallmark of voluntary motor control is the ability to adjust motor patterns for novel mechanical or visuomotor contexts. Recent work has also highlighted the importance of feedback for voluntary control, leading to the hypothesis that feedback responses should adapt when we learn new motor skills. We tested this prediction with a novel paradigm requiring that human subjects adapt to a viscous elbow load while reaching to three targets. Target 1 required combined shoulder and elbow motion, target 2 required only elbow motion, and target 3 (probe target) required shoulder but no elbow motion. This simple approach controlled muscle activity at the probe target before, during, and after the application of novel elbow loads. Our paradigm allowed us to perturb the elbow during reaching movements to the probe target and identify several key properties of adapted stretch responses. Adapted long-latency responses expressed (de-) adaptation similar to reaching errors observed when we introduced (removed) the elbow load. Moreover, reaching errors during learning correlated with changes in the long-latency response, showing subjects who adapted more to the elbow load displayed greater modulation of their stretch responses. These adapted responses were sensitive to the size and direction of the viscous training load. Our results highlight an important link between the adaptation of feedforward and feedback control and suggest a key part of motor adaptation is to adjust feedback responses to the requirements of novel motor skills.
Collapse
|
27
|
Herz DM, Florin E, Christensen MS, Reck C, Barbe MT, Tscheuschler MK, Tittgemeyer M, Siebner HR, Timmermann L. Dopamine replacement modulates oscillatory coupling between premotor and motor cortical areas in Parkinson's disease. Cereb Cortex 2013; 24:2873-83. [PMID: 23733911 PMCID: PMC4193459 DOI: 10.1093/cercor/bht140] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022] Open
Abstract
Efficient neural communication between premotor and motor cortical areas is critical for manual motor control. Here, we used high-density electroencephalography to study cortical connectivity in patients with Parkinson's disease (PD) and age-matched healthy controls while they performed repetitive movements of the right index finger at maximal repetition rate. Multiple source beamformer analysis and dynamic causal modeling were used to assess oscillatory coupling between the lateral premotor cortex (lPM), supplementary motor area (SMA), and primary motor cortex (M1) in the contralateral hemisphere. Elderly healthy controls showed task-related modulation in connections from lPM to SMA and M1, mainly within the γ-band (>30 Hz). Nonmedicated PD patients also showed task-related γ-γ coupling from lPM to M1, but γ coupling from lPM to SMA was absent. Levodopa reinstated physiological γ-γ coupling from lPM to SMA and significantly strengthened coupling in the feedback connection from M1 to lPM expressed as β-β as well as θ-β coupling. Enhancement in cross-frequency θ-β coupling from M1 to lPM was correlated with levodopa-induced improvement in motor function. The results show that PD is associated with an altered neural communication between premotor and motor cortical areas, which can be modulated by dopamine replacement.
Collapse
Affiliation(s)
- Damian Marc Herz
- Department of Neurology, University Hospital Cologne, Cologne, Germany, Danish Research Centre for Magnetic Resonance, Copenhagen University Hospital Hvidovre, Hvidovre, Denmark
| | - Esther Florin
- Department of Neurology, University Hospital Cologne, Cologne, Germany, Cognitive Neurology Section, Institute of Neurosciences and Medicine (INM-3), Research Centre Juelich, Juelich, Germany, McConnell Brain Imaging Centre, Montreal Neurological Institute, McGill University, Montreal, QC, Canada
| | - Mark Schram Christensen
- Danish Research Centre for Magnetic Resonance, Copenhagen University Hospital Hvidovre, Hvidovre, Denmark, Department of Nutrition, Exercise and Sports, Department of Neuroscience and Pharmacology, University of Copenhagen, Copenhagen, Denmark and
| | - Christiane Reck
- Department of Neurology, University Hospital Cologne, Cologne, Germany
| | - Michael Thomas Barbe
- Department of Neurology, University Hospital Cologne, Cologne, Germany, Cognitive Neurology Section, Institute of Neurosciences and Medicine (INM-3), Research Centre Juelich, Juelich, Germany
| | | | - Marc Tittgemeyer
- Max Planck Institute for Neurological Research, Cologne, Germany
| | - Hartwig Roman Siebner
- Danish Research Centre for Magnetic Resonance, Copenhagen University Hospital Hvidovre, Hvidovre, Denmark
| | - Lars Timmermann
- Department of Neurology, University Hospital Cologne, Cologne, Germany
| |
Collapse
|
28
|
Adams RA, Shipp S, Friston KJ. Predictions not commands: active inference in the motor system. Brain Struct Funct 2013; 218:611-43. [PMID: 23129312 PMCID: PMC3637647 DOI: 10.1007/s00429-012-0475-5] [Citation(s) in RCA: 380] [Impact Index Per Article: 34.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2012] [Accepted: 10/25/2012] [Indexed: 12/04/2022]
Abstract
The descending projections from motor cortex share many features with top-down or backward connections in visual cortex; for example, corticospinal projections originate in infragranular layers, are highly divergent and (along with descending cortico-cortical projections) target cells expressing NMDA receptors. This is somewhat paradoxical because backward modulatory characteristics would not be expected of driving motor command signals. We resolve this apparent paradox using a functional characterisation of the motor system based on Helmholtz's ideas about perception; namely, that perception is inference on the causes of visual sensations. We explain behaviour in terms of inference on the causes of proprioceptive sensations. This explanation appeals to active inference, in which higher cortical levels send descending proprioceptive predictions, rather than motor commands. This process mirrors perceptual inference in sensory cortex, where descending connections convey predictions, while ascending connections convey prediction errors. The anatomical substrate of this recurrent message passing is a hierarchical system consisting of functionally asymmetric driving (ascending) and modulatory (descending) connections: an arrangement that we show is almost exactly recapitulated in the motor system, in terms of its laminar, topographic and physiological characteristics. This perspective casts classical motor reflexes as minimising prediction errors and may provide a principled explanation for why motor cortex is agranular.
Collapse
Affiliation(s)
- Rick A Adams
- The Wellcome Trust Centre for Neuroimaging, Institute of Neurology, University College London, 12 Queen Square, London, WC1N 3BG, UK.
| | | | | |
Collapse
|
29
|
Reciprocal inhibition versus unloading response during stretch reflex in humans. Exp Brain Res 2013; 226:33-43. [PMID: 23354665 DOI: 10.1007/s00221-013-3408-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2012] [Accepted: 01/03/2013] [Indexed: 01/08/2023]
Abstract
Rotation of an upper limb joint produces excitatory stretch reflex peaks M1 and M2 in the stretched muscles and simultaneous decrease in electromyographic (EMG) activity in the shortened muscles. The objective of this study was to examine whether the decreased activity in the antagonists (rINHIB) is purely from unloading of the spindles or receives active inhibition involving inhibitory interneurons. If rINHIB is due only to unloading, then the termination of rINHIB should vary with the duration of perturbation used to elicit stretch reflex, namely shorter stretches should result in shorter values of decreased periods of EMG. To examine this question, rectangular pulses, ranging in duration from 25 to 150 ms, were used to stretch wrist flexors or extensors with a torque motor. These rectangular pulses resulted in joint rotations which peaked at times (T(peak)) ranging from approximately 75-160 ms. As shown by previous authors, when the duration of rotation was shortened, the magnitude of M1 did not change, while the magnitude of M2 decreased. However, termination time of rINHIB in the shortened muscles did not change with change in T(peak), implying thereby that unloading of spindles of the antagonist muscles is not the only mechanism for the reduction in activity and that inhibitory reflex pathways most likely contribute. Possible sources of inhibition are discussed for the short- and long-latency inhibition.
Collapse
|
30
|
Shaikhouni A, Donoghue JP, Hochberg LR. Somatosensory responses in a human motor cortex. J Neurophysiol 2013; 109:2192-204. [PMID: 23343902 DOI: 10.1152/jn.00368.2012] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Somatic sensory signals provide a major source of feedback to motor cortex. Changes in somatosensory systems after stroke or injury could profoundly influence brain computer interfaces (BCI) being developed to create new output signals from motor cortex activity patterns. We had the unique opportunity to study the responses of hand/arm area neurons in primary motor cortex to passive joint manipulation in a person with a long-standing brain stem stroke but intact sensory pathways. Neurons responded to passive manipulation of the contralateral shoulder, elbow, or wrist as predicted from prior studies of intact primates. Thus fundamental properties and organization were preserved despite arm/hand paralysis and damage to cortical outputs. The same neurons were engaged by attempted arm actions. These results indicate that intact sensory pathways retain the potential to influence primary motor cortex firing rates years after cortical outputs are interrupted and may contribute to online decoding of motor intentions for BCI applications.
Collapse
Affiliation(s)
- Ammar Shaikhouni
- Department of Neuroscience, Brown University, Providence, Rhode Island, USA.
| | | | | |
Collapse
|
31
|
That's near my hand! Parietal and premotor coding of hand-centered space contributes to localization and self-attribution of the hand. J Neurosci 2013; 32:14573-82. [PMID: 23077043 DOI: 10.1523/jneurosci.2660-12.2012] [Citation(s) in RCA: 203] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
The ability to identify and localize our own limbs is crucial for survival. Indeed, the majority of our interactions with objects occur within the space surrounding the hands. In non-human primates, neurons in the posterior parietal and premotor cortices dynamically represent the space near the upper limbs in hand-centered coordinates. Neuronal populations selective for the space near the hand also exist in humans. It is unclear whether these remap the peri-hand representation as the arm is moved in space. Furthermore, no combined neuronal and behavioral data are available about the possible involvement of peri-hand neurons in the perception of the upper limbs in any species. We used fMRI adaptation to demonstrate dynamic hand-centered encoding of space by reporting response suppression in human premotor and posterior parietal cortices to repeated presentations of an object near the hand for different arm postures. Furthermore, we show that such spatial representation is related to changes in body perception, being remapped onto a prosthetic hand if perceived as one's own during an illusion. Interestingly, our results further suggest that peri-hand space remapping in the premotor cortex is most tightly linked to the subjective feeling of ownership of the seen limb, whereas remapping in the posterior parietal cortex closely reflects changes in the position sense of the arm. These findings identify the neural bases for dynamic hand-centered encoding of peripersonal space in humans and provide hitherto missing evidence for the link between the peri-hand representation of space and the perceived self-attribution and position of the upper limb.
Collapse
|
32
|
Szameitat AJ, Shen S, Conforto A, Sterr A. Cortical activation during executed, imagined, observed, and passive wrist movements in healthy volunteers and stroke patients. Neuroimage 2012; 62:266-80. [PMID: 22584231 DOI: 10.1016/j.neuroimage.2012.05.009] [Citation(s) in RCA: 103] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2011] [Revised: 04/27/2012] [Accepted: 05/05/2012] [Indexed: 11/29/2022] Open
Abstract
Motor imagery, passive movement, and movement observation have been suggested to activate the sensorimotor system without overt movement. The present study investigated these three covert movement modes together with overt movement in a within-subject design to allow for a fine-grained comparison of their abilities in activating the sensorimotor system, i.e. premotor, primary motor, and somatosensory cortices. For this, 21 healthy volunteers underwent functional magnetic resonance imaging (fMRI). In addition we explored the abilities of the different covert movement modes in activating the sensorimotor system in a pilot study of 5 stroke patients suffering from chronic severe hemiparesis. Results demonstrated that while all covert movement modes activated sensorimotor areas, there were profound differences between modes and between healthy volunteers and patients. In healthy volunteers, the pattern of neural activation in overt execution was best resembled by passive movement, followed by motor imagery, and lastly by movement observation. In patients, attempted overt execution was best resembled by motor imagery, followed by passive movement, and lastly by movement observation. Our results indicate that for severely hemiparetic stroke patients motor imagery may be the preferred way to activate the sensorimotor system without overt behavior. In addition, the clear differences between the covert movement modes point to the need for within-subject comparisons.
Collapse
Affiliation(s)
- André J Szameitat
- Department of Psychology, Ludwig Maximilians University, Munich, Germany.
| | | | | | | |
Collapse
|
33
|
Pruszynski JA, Scott SH. Optimal feedback control and the long-latency stretch response. Exp Brain Res 2012; 218:341-59. [PMID: 22370742 DOI: 10.1007/s00221-012-3041-8] [Citation(s) in RCA: 190] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2011] [Accepted: 02/13/2012] [Indexed: 12/27/2022]
Abstract
There has traditionally been a separation between voluntary control processes and the fast feedback responses which follow mechanical perturbations (i.e., stretch "reflexes"). However, a recent theory of motor control, based on optimal control, suggests that voluntary motor behavior involves the sophisticated manipulation of sensory feedback. We have recently proposed that one implication of this theory is that the long-latency stretch "reflex", like voluntary control, should support a rich assortment of behaviors because these two processes are intimately linked through shared neural circuitry including primary motor cortex. In this review, we first describe the basic principles of optimal feedback control related to voluntary motor behavior. We then explore the functional properties of upper-limb stretch responses, with a focus on how the sophistication of the long-latency stretch response rivals voluntary control. And last, we describe the neural circuitry that underlies the long-latency stretch response and detail the evidence that primary motor cortex participates in sophisticated feedback responses to mechanical perturbations.
Collapse
|
34
|
Pasquereau B, Turner RS. Primary motor cortex of the parkinsonian monkey: differential effects on the spontaneous activity of pyramidal tract-type neurons. Cereb Cortex 2011; 21:1362-78. [PMID: 21045003 PMCID: PMC3097989 DOI: 10.1093/cercor/bhq217] [Citation(s) in RCA: 109] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Dysfunction of primary motor cortex (M1) is thought to contribute to the pathophysiology of parkinsonism. What specific aspects of M1 function are abnormal remains uncertain, however. Moreover, few models consider the possibility that distinct cortical neuron subtypes may be affected differently. Those questions were addressed by studying the resting activity of intratelencephalic-type corticostriatal neurons (CSNs) and distant-projecting lamina 5b pyramidal-tract type neurons (PTNs) in the macaque M1 before and after the induction of parkinsonism by administration of 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP). Contrary to previous reports, the general population of M1 neurons (i.e., PTNs, CSNs, and unidentified neurons) showed reduced baseline firing rates following MPTP, attributable largely to a marked decrease in PTN firing rates. CSN firing rates were unmodified. Although burstiness and firing patterns remained constant in M1 neurons as a whole and CSNs in particular, PTNs became more bursty post-MPTP and less likely to fire in a regular-spiking pattern. Rhythmic spiking (found in PTNs predominantly) occurred at beta frequencies (14-32 Hz) more frequently following MPTP. These results indicate that MPTP intoxication induced distinct modifications in the activity of different M1 neuronal subtypes. The particular susceptibility of PTNs suggests that PTN dysfunction may be an important contributor to the pathophysiology of parkinsonian motor signs.
Collapse
Affiliation(s)
- Benjamin Pasquereau
- Department of Neurobiology, Center for Neuroscience and Center for the Neural Basis of Cognition, University of Pittsburgh, Pittsburgh, PA 15261, USA.
| | | |
Collapse
|
35
|
Degrees of freedom between somatosensory and somatomotor processes; or, One nonsequitur deserves another. Behav Brain Sci 2011. [DOI: 10.1017/s0140525x00062695] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
36
|
|
37
|
|
38
|
|
39
|
|
40
|
|
41
|
Prescott MJ, Brown VJ, Flecknell PA, Gaffan D, Garrod K, Lemon RN, Parker AJ, Ryder K, Schultz W, Scott L, Watson J, Whitfield L. Refinement of the use of food and fluid control as motivational tools for macaques used in behavioural neuroscience research: Report of a Working Group of the NC3Rs. J Neurosci Methods 2010; 193:167-88. [DOI: 10.1016/j.jneumeth.2010.09.003] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2006] [Revised: 09/09/2010] [Accepted: 09/15/2010] [Indexed: 10/19/2022]
|
42
|
Legon W, Dionne JK, Meehan SK, Staines WR. Non-dominant hand movement facilitates the frontal N30 somatosensory evoked potential. BMC Neurosci 2010; 11:112. [PMID: 20822535 PMCID: PMC2940928 DOI: 10.1186/1471-2202-11-112] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2010] [Accepted: 09/07/2010] [Indexed: 11/16/2022] Open
Abstract
Background Previous literature has shown that the frontal N30 is increased during movement of the hand contralateral to median nerve stimulation. This finding was a result of non-dominant left hand movement in right-handed participants. It is unclear however if the effect depends upon non-dominant hand movement or if this is a generalized phenomenon across the upper-limbs. This study tests the effect of dominant and non-dominant hand movement upon contralateral frontal and parietal somatosensory evoked potentials (SEPs) and further tests if this relationship persists in left hand dominant participants. Median nerve SEPs were elicited from the wrist contralateral to movement in both right hand and left hand dominant participants alternating the movement hand in separate blocks. Participants were required to volitionally squeeze (~ 20% of a maximal voluntary contraction) a pressure-sensitive bulb every ~3 seconds with the hand contralateral to median nerve stimulation. SEPs were continuously collected during the task and individual traces were grouped into time bins relative to movement according to the timing of components of the Bereitschaftspotential. SEPs were then averaged and quantified from both FCZ and CP3/4 scalp electrode sites during both the squeeze task and at rest. Results The N30 is facilitated during non-dominant hand movement in both right and left hand dominant individuals. There was no effect for dominant hand movement in either group. Conclusions N30 amplitude increase may be a result of altered sensory gating from motor areas known to be specifically active during non-dominant hand movement.
Collapse
Affiliation(s)
- Wynn Legon
- Department of Kinesiology, University of Waterloo, 200 University Ave, West, Waterloo, Ontario N2L3G1, Canada
| | | | | | | |
Collapse
|
43
|
Huang MX, Lee RR, Gaa KM, Song T, Harrington DL, Loh C, Theilmann RJ, Edgar JC, Miller GA, Canive JM, Granholm E. Somatosensory system deficits in schizophrenia revealed by MEG during a median-nerve oddball task. Brain Topogr 2010; 23:82-104. [PMID: 19943100 PMCID: PMC2816821 DOI: 10.1007/s10548-009-0122-5] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2009] [Accepted: 11/12/2009] [Indexed: 12/19/2022]
Abstract
Although impairments related to somatosensory perception are common in schizophrenia, they have rarely been examined in functional imaging studies. In the present study, magnetoencephalography (MEG) was used to identify neural networks that support attention to somatosensory stimuli in healthy adults and abnormalities in these networks in patient with schizophrenia. A median-nerve oddball task was used to probe attention to somatosensory stimuli, and an advanced, high-resolution MEG source-imaging method was applied to assess activity throughout the brain. In nineteen healthy subjects, attention-related activation was seen in a sensorimotor network involving primary somatosensory (S1), secondary somatosensory (S2), primary motor (M1), pre-motor (PMA), and paracentral lobule (PCL) areas. A frontal-parietal-temporal "attention network", containing dorsal- and ventral-lateral prefrontal cortex (DLPFC and VLPFC), orbitofrontal cortex (OFC), anterior cingulate cortex (ACC), superior parietal lobule (SPL), inferior parietal lobule (IPL)/supramarginal gyrus (SMG), and temporal lobe areas, was also activated. Seventeen individuals with schizophrenia showed early attention-related hyperactivations in S1 and M1 but hypo-activation in S1, S2, M1, and PMA at later latency in the sensorimotor network. Within this attention network, hypoactivation was found in SPL, DLPFC, orbitofrontal cortex, and the dorsal aspect of ACC. Hyperactivation was seen in SMG/IPL, frontal pole, and the ventral aspect of ACC in patients. These findings link attention-related somatosensory deficits to dysfunction in both sensorimotor and frontal-parietal-temporal networks in schizophrenia.
Collapse
Affiliation(s)
- Ming-Xiong Huang
- Research, Radiology, and Psychiatry Services, VA San Diego Healthcare System, CA, USA.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
44
|
|
45
|
Some further observations on the functional properties of neurons in the parietal lobe of the waking monkey. Behav Brain Sci 2010. [DOI: 10.1017/s0140525x00006567] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
46
|
Is the parietal lobe guilty of association? Behav Brain Sci 2010. [DOI: 10.1017/s0140525x00006373] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
47
|
|
48
|
|
49
|
|
50
|
Inner structure of cortical columns. Behav Brain Sci 2010. [DOI: 10.1017/s0140525x0000635x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|