1
|
Hamilton MB. GENETIC FINGERPRINT‐INFERRED POPULATION SUBDIVISION AND SPATIAL GENETIC TESTS FOR ISOLATION BY DISTANCE AND ADAPTATION IN THE COASTAL PLANT
LIMONIUM CAROLINIANUM. Evolution 2017; 51:1457-1468. [DOI: 10.1111/j.1558-5646.1997.tb01469.x] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/1996] [Accepted: 06/11/1997] [Indexed: 11/29/2022]
Affiliation(s)
- Matthew B. Hamilton
- Department of Ecology and Evolutionary Biology Brown University Box G‐W Providence Rhode Island 02912
| |
Collapse
|
2
|
Non-random distribution of homo-repeats: links with biological functions and human diseases. Sci Rep 2016; 6:26941. [PMID: 27256590 PMCID: PMC4891720 DOI: 10.1038/srep26941] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2016] [Accepted: 05/06/2016] [Indexed: 12/22/2022] Open
Abstract
The biological function of multiple repetitions of single amino acids, or homo-repeats, is largely unknown, but their occurrence in proteins has been associated with more than 20 hereditary diseases. Analysing 122 bacterial and eukaryotic genomes, we observed that the number of proteins containing homo-repeats is significantly larger than expected from theoretical estimates. Analysis of statistical significance indicates that the minimal size of homo-repeats varies with amino acid type and proteome. In an attempt to characterize proteins harbouring long homo-repeats, we found that those containing polar or small amino acids S, P, H, E, D, K, Q and N are enriched in structural disorder as well as protein- and RNA-interactions. We observed that E, S, Q, G, L, P, D, A and H homo-repeats are strongly linked with occurrence in human diseases. Moreover, S, E, P, A, Q, D and T homo-repeats are significantly enriched in neuronal proteins associated with autism and other disorders. We release a webserver for further exploration of homo-repeats occurrence in human pathology at http://bioinfo.protres.ru/hradis/.
Collapse
|
3
|
Chambers GK, Curtis C, Millar CD, Huynen L, Lambert DM. DNA fingerprinting in zoology: past, present, future. INVESTIGATIVE GENETICS 2014; 5:3. [PMID: 24490906 PMCID: PMC3909909 DOI: 10.1186/2041-2223-5-3] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/03/2013] [Accepted: 12/19/2013] [Indexed: 01/07/2023]
Abstract
In 1962, Thomas Kuhn famously argued that the progress of scientific knowledge results from periodic 'paradigm shifts' during a period of crisis in which new ideas dramatically change the status quo. Although this is generally true, Alec Jeffreys' identification of hypervariable repeat motifs in the human beta-globin gene, and the subsequent development of a technology known now as 'DNA fingerprinting', also resulted in a dramatic shift in the life sciences, particularly in ecology, evolutionary biology, and forensics. The variation Jeffreys recognized has been used to identify individuals from tissue samples of not just humans, but also of many animal species. In addition, the technology has been used to determine the sex of individuals, as well as paternity/maternity and close kinship. We review a broad range of such studies involving a wide diversity of animal species. For individual researchers, Jeffreys' invention resulted in many ecologists and evolutionary biologists being given the opportunity to develop skills in molecular biology to augment their whole organism focus. Few developments in science, even among the subsequent genome discoveries of the 21st century, have the same wide-reaching significance. Even the later development of PCR-based genotyping of individuals using microsatellite repeats sequences, and their use in determining multiple paternity, is conceptually rooted in Alec Jeffreys' pioneering work.
Collapse
Affiliation(s)
| | | | | | | | - David M Lambert
- Environmental Futures Research Institute, Griffith University, Nathan, QLD 4111, Australia.
| |
Collapse
|
4
|
Kodaira M, Ryo H, Kamada N, Furukawa K, Takahashi N, Nakajima H, Nomura T, Nakamura N. No Evidence of Increased Mutation Rates at Microsatellite Loci in Offspring of A-Bomb Survivors. Radiat Res 2010; 173:205-13. [DOI: 10.1667/rr1991.1] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Affiliation(s)
- M. Kodaira
- Departments of Genetics and, Radiation Effects Research Foundation, Hiroshima, Japan
| | - H. Ryo
- Department of Radiation Biology and Medical Genetics, Graduate School of Medicine, Osaka University, Osaka, Japan
| | - N. Kamada
- Departments of Statistics and, Radiation Effects Research Foundation, Hiroshima, Japan
| | - K. Furukawa
- Departments of Statistics and, Radiation Effects Research Foundation, Hiroshima, Japan
| | - N. Takahashi
- Departments of Genetics and, Radiation Effects Research Foundation, Hiroshima, Japan
| | - H. Nakajima
- Department of Radiation Biology and Medical Genetics, Graduate School of Medicine, Osaka University, Osaka, Japan
| | - T. Nomura
- Department of Radiation Biology and Medical Genetics, Graduate School of Medicine, Osaka University, Osaka, Japan
| | - N. Nakamura
- Departments of Chief Scientist, Radiation Effects Research Foundation, Hiroshima, Japan
| |
Collapse
|
5
|
mStruct: inference of population structure in light of both genetic admixing and allele mutations. Genetics 2009; 182:575-93. [PMID: 19363128 DOI: 10.1534/genetics.108.100222] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Traditional methods for analyzing population structure, such as the Structure program, ignore the influence of the effect of allele mutations between the ancestral and current alleles of genetic markers, which can dramatically influence the accuracy of the structural estimation of current populations. Studying these effects can also reveal additional information about population evolution such as the divergence time and migration history of admixed populations. We propose mStruct, an admixture of population-specific mixtures of inheritance models that addresses the task of structure inference and mutation estimation jointly through a hierarchical Bayesian framework, and a variational algorithm for inference. We validated our method on synthetic data and used it to analyze the Human Genome Diversity Project-Centre d'Etude du Polymorphisme Humain (HGDP-CEPH) cell line panel of microsatellites and HGDP single-nucleotide polymorphism (SNP) data. A comparison of the structural maps of world populations estimated by mStruct and Structure is presented, and we also report potentially interesting mutation patterns in world populations estimated by mStruct.
Collapse
|
6
|
Verhofstad N, Linschooten JO, van Benthem J, Dubrova YE, van Steeg H, van Schooten FJ, Godschalk RWL. New methods for assessing male germ line mutations in humans and genetic risks in their offspring. Mutagenesis 2008; 23:241-7. [DOI: 10.1093/mutage/gen022] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
|
7
|
Yauk C, Polyzos A, Rowan-Carroll A, Somers CM, Godschalk RW, Van Schooten FJ, Berndt ML, Pogribny IP, Koturbash I, Williams A, Douglas GR, Kovalchuk O. Germ-line mutations, DNA damage, and global hypermethylation in mice exposed to particulate air pollution in an urban/industrial location. Proc Natl Acad Sci U S A 2008; 105:605-10. [PMID: 18195365 PMCID: PMC2206583 DOI: 10.1073/pnas.0705896105] [Citation(s) in RCA: 205] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2007] [Indexed: 11/18/2022] Open
Abstract
Particulate air pollution is widespread, yet we have little understanding of the long-term health implications associated with exposure. We investigated DNA damage, mutation, and methylation in gametes of male mice exposed to particulate air pollution in an industrial/urban environment. C57BL/CBA mice were exposed in situ to ambient air near two integrated steel mills and a major highway, alongside control mice breathing high-efficiency air particulate (HEPA) filtered ambient air. PCR analysis of an expanded simple tandem repeat (ESTR) locus revealed a 1.6-fold increase in sperm mutation frequency in mice exposed to ambient air for 10 wks, followed by a 6-wk break, compared with HEPA-filtered air, indicating that mutations were induced in spermatogonial stem cells. DNA collected after 3 or 10 wks of exposure did not exhibit increased mutation frequency. Bulky DNA adducts were below the detection threshold in testes samples, suggesting that DNA reactive chemicals do not reach the germ line and cause ESTR mutation. In contrast, DNA strand breaks were elevated at 3 and 10 wks, possibly resulting from oxidative stress arising from exposure to particles and associated airborne pollutants. Sperm DNA was hypermethylated in mice breathing ambient relative to HEPA-filtered air and this change persisted following removal from the environmental exposure. Increased germ-line DNA mutation frequencies may cause population-level changes in genetic composition and disease. Changes in methylation can have widespread repercussions for chromatin structure, gene expression and genome stability. Potential health effects warrant extensive further investigation.
Collapse
Affiliation(s)
- Carole Yauk
- Environmental and Occupational Toxicology Division, HECSB, Ottawa, ON, Canada K1A 0K9.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
8
|
Singer TM, Lambert IB, Williams A, Douglas GR, Yauk CL. Detection of induced male germline mutation: correlations and comparisons between traditional germline mutation assays, transgenic rodent assays and expanded simple tandem repeat instability assays. Mutat Res 2006; 598:164-93. [PMID: 16542687 DOI: 10.1016/j.mrfmmm.2006.01.017] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/07/2023]
Abstract
Several rodent assays are capable of monitoring germline mutation. These include traditional assays, such as the dominant lethal (DL) assay, the morphological specific locus (SL) test and the heritable translocation (HT) assay, and two assays that have been developed more recently--the expanded simple tandem repeat (ESTR) and transgenic rodent (TGR) mutation assays. In this paper, we have compiled the limited amount of experimental data that are currently available to make conclusions regarding the comparative ability of the more recently developed assays to detect germline mutations induced by chemical and radiological agents. The data suggest that ESTR and TGR assays are generally comparable with SL in detecting germline mutagenicity induced by alkylating agents and radiation, though TGR offered less sensitivity than ESTR in some cases. The DL and HT assays detect clastogenic events and are most susceptible to mutations arising in post-spermatogonial cells, and they may not provide the best comparisons with TGR and ESTR instability. The measurement of induced ESTR instability represents a relatively sensitive method of identifying agents causing germline mutation in rodents, and may also be useful for bio-monitoring exposed individuals in the human population. Any future use of the TGR and ESTR germline mutation assays in a regulatory testing context will entail more robust and extensive characterization of assay performance. This will require substantially more data, including experiments measuring multiple endpoints, a greatly expanded database of chemical agents and a focus on characterizing stage-specific activity of mutagens in these assays, preferably by sampling epididymal sperm exposed at defined pre-meiotic, meiotic and post-meiotic stages of development.
Collapse
Affiliation(s)
- Timothy M Singer
- Mutagenesis Section, Environmental and Occupational Toxicology Division, Safe Environments Programme, 0803A, Health Canada, Ottawa, Ont., Canada K1A 0K9
| | | | | | | | | |
Collapse
|
9
|
Bouffler SD, Bridges BA, Cooper DN, Dubrova Y, McMillan TJ, Thacker J, Wright EG, Waters R. Assessing radiation-associated mutational risk to the germline: repetitive DNA sequences as mutational targets and biomarkers. Radiat Res 2006; 165:249-68. [PMID: 16494513 DOI: 10.1667/rr3506.1] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
This review assesses recent data on mutational risk to the germline after radiation exposure obtained by molecular analysis of tandemly repeated DNA loci (TRDLs): minisatellites in humans and expanded simple tandem repeats in mice. Some studies, particularly those including exposure to internal emitters, indicate that TRDL mutation can be used as a marker of human radiation exposure; most human studies, however, are negative. Although mouse studies have suggested that TRDL mutation analysis may be more widely applicable in biomonitoring, there are important differences between the structure of mouse and human TRDLs. Mutational mechanisms probably differ between the two species, and so care should be taken in predicting effects in humans from mouse data. In mice and humans, TRDL mutations are largely untargeted with only limited evidence of dose dependence. Transgenerational mutation has been observed in mice but not in humans, but the mechanisms driving such mutation transmission are unknown. Some minisatellite variants are associated with human diseases and may affect gene transcription, but causal relationships have not yet been established. It is concluded that at present the TRDL mutation data do not warrant a dramatic revision of germline or cancer risk estimates for radiation.
Collapse
Affiliation(s)
- S D Bouffler
- Health Protection Agency Radiation Protection Division, Chilton, Didcot, Oxon OX11 0RQ, United Kingdom.
| | | | | | | | | | | | | | | |
Collapse
|
10
|
Polyzos A, Parfett C, Healy C, Douglas G, Yauk C. A single-molecule PCR approach to the measurement of induced expanded simple tandem repeat instability in vitro. Mutat Res 2006; 594:93-100. [PMID: 16310811 DOI: 10.1016/j.mrfmmm.2005.08.010] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2005] [Revised: 07/29/2005] [Accepted: 08/10/2005] [Indexed: 05/05/2023]
Abstract
Sensitive and precise models are needed to identify potential genotoxicity at environmentally relevant doses of mutagens. The size length alterations in expanded simple tandem repeat (ESTR) loci have been used as a biomarker of genetic instability caused by a variety of agents in the mouse germline. The mechanisms operating in both spontaneous and induced instability are poorly understood. We have developed a single-molecule polymerase chain reaction (SM-PCR) method to investigate mutation at the mouse ESTR locus Ms6-hm in the murine C3H/10T1/2 embryonic cell line. Growth of cells to levels of high cell density induced increased ESTR instability, with mutation frequencies 5.1-fold (+/-2.8) over sub-confluent cultures. Accordingly, cell cultures were maintained at sub-confluent levels for further investigations of the induction of ESTR mutation by genotoxic agents. Treatment with the DNA alkylating agent N-nitroso-N-ethylurea (ENU) resulted in a 1.94-fold (+/-1.1) increase in mutation frequency, similar to responses measured previously in the germline in vivo. Therefore, mutagen exposure can also affect somatic (non-meiotic) rapidly dividing mouse cells. This SM-PCR approach eliminates the requirement of sub-cloning individual treated cells, thereby, reducing the time needed to screen for ESTR mutation, and will be a very useful tool for future investigations into the mechanisms involved in ESTR mutation.
Collapse
Affiliation(s)
- Aris Polyzos
- Mutagenesis Section, Environmental and Occupational Toxicology Division, Environmental Health Centre, Health Canada, Tunney's Pasture, P.L. 0803A, Ottawa, Ont., Canada K1A 0L2
| | | | | | | | | |
Collapse
|
11
|
Snijders AM, Nowak NJ, Huey B, Fridlyand J, Law S, Conroy J, Tokuyasu T, Demir K, Chiu R, Mao JH, Jain AN, Jones SJM, Balmain A, Pinkel D, Albertson DG. Mapping segmental and sequence variations among laboratory mice using BAC array CGH. Genome Res 2005; 15:302-11. [PMID: 15687294 PMCID: PMC546532 DOI: 10.1101/gr.2902505] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2004] [Accepted: 11/15/2004] [Indexed: 01/14/2023]
Abstract
We used arrays of 2069 BACs (1303 nonredundant autosomal clones) to map sequence variation among Mus spretus (SPRET/Ei and SPRET/Glasgow) and Mus musculus (C3H/HeJ, BALB/cJ, 129/J, DBA/2J, NIH, FVB/N, and C57BL/6) strains. We identified 80 clones representing 74 autosomal loci of copy number variation (|log(2)ratio| >/= 0.4). These variant loci distinguish laboratory strains. By FISH mapping, we determined that 63 BACs mapped to a single site on C57BL/6J chromosomes, while 17 clones mapped to multiple chromosomes (n = 16) or multiple sites on one chromosome (n = 1). We also show that small ratio changes (Delta log(2)ratio approximately 0.1) distinguish homozygous and heterozygous regions of the genome in interspecific backcross mice, providing an efficient method for genotyping progeny of backcrosses.
Collapse
Affiliation(s)
- Antoine M Snijders
- Cancer Research Institute, University of California San Francisco, San Francisco, California 94143, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
12
|
Sátková-Jakabová D, Trandzík J, Hudecová-Kvasnáková L, Hegedüsová-Zetochová E, Bugarský A, Buleca J, Zöldág L, Jakab F, Fl'ak P. Genetic variation within and relationships among five subpopulations of Slovak Thoroughbred. Acta Vet Hung 2004; 52:259-65. [PMID: 15379441 DOI: 10.1556/avet.52.2004.3.2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Genetic variation at six microsatellite loci was analysed for five Thoroughbred subpopulations to determine the magnitude of genetic differentiation and the genetic relationships among the subpopulations. Significant deviations from Hardy-Weinberg equilibrium were shown for a number of locus-population combinations, with all subpopulations. The genetic diversities and relationships of five Thoroughbred subpopulations were evaluated using six microsatellites recommended by the International Society of Animal Genetics (ISAG). The allele frequencies, the effective numbers of alleles, and the observed and expected heterozygosities were calculated. POPGENE v. 1.31 (Yeh et al., 1997) was used to test for deviations from the Hardy-Weinberg (H-W) equilibrium and to assign F(IS) estimates (Weir, 1990). The utility of microsatellites for evaluating genetic diversity of horses is discussed.
Collapse
|
13
|
Yauk CL. Advances in the application of germline tandem repeat instability for in situ monitoring. MUTATION RESEARCH-REVIEWS IN MUTATION RESEARCH 2004; 566:169-82. [PMID: 15164979 DOI: 10.1016/j.mrrev.2003.08.001] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/29/2003] [Accepted: 08/26/2003] [Indexed: 10/26/2022]
Abstract
Alterations in tandem repetitive DNA sequences such as minisatellite DNA and expanded simple tandem repeats (ESTRs) may provide useful biomarkers of induced germline effects. In this review, I describe the differences between ESTRs and minisatellites with respect to their structure and mutational mechanisms, and discuss field applications measuring induced germline instability. It is evident that both types of loci have high rates of mutation that facilitate the measurement of induced mutation measured in relatively small numbers of samples following environmentally relevant exposures. Several research groups have used these loci to demonstrate a significant increase in germline mutation in humans and animals exposed to radioactive or chemical pollutants in their natural environment. Mutations are manifested as gains or losses in repeat units and are detected either by pedigree screening or by PCR amplification of sperm DNA. Mutations at both ESTRs and minisatellites appear to arise via indirect mechanisms rather than by direct damage to the repeat locus itself. Most interestingly, ESTR instability following radiation has been shown to be heritable and transmitted to subsequent generations. An understanding of the mechanisms involved in induced instability is required in order to begin to decipher the potential biological implications of increased germline tandem repeat mutation. Furthermore, relatively few studies have investigated the ability of different genotoxins to induce tandem repeat instability. Such laboratory-based experiments will be crucial in clarifying the particular environmental or occupational exposures that should be targeted for future studies and for isolating and subsequently identifying the putative mutagens in complex environmental matrices.
Collapse
Affiliation(s)
- Carole L Yauk
- Environmental Health Centre, Health Canada, Tunney's Pasture, 0803A, Ottawa, Ont., Canada, K1A 0L2.
| |
Collapse
|
14
|
Abstract
Minisatellites are a class of highly polymorphic GC-rich tandem repeats. They include some of the most variable loci in the human genome, with mutation rates ranging from 0.5% to >20% per generation. Structurally, they consist of 10- to 100-bp intermingled variant repeats, making them ideal tools for dissecting mechanisms of instability at tandem repeats. Distinct mutation processes generate rare intra-allelic somatic events and frequent complex conversion-like germline mutations in these repeats. Furthermore, turnover of repeats at human minisatellites is controlled by intense recombinational activity in DNA flanking the repeat array. Surprisingly, whereas other mammalian genomes possess minisatellite-like sequences, hypermutable loci have not been identified that suggest human-specific turnover processes at minisatellite arrays. Attempts to transfer minisatellite germline instability to the mouse have failed. However, yeast models are now revealing valuable information regarding the mechanisms regulating instability at these tandem repeats. Finally, minisatellites and tandem repeats provide exquisitely sensitive molecular tools to detect genomic insults such as ionizing radiation exposure. Surprisingly, by a mechanism that remains elusive, there are transgenerational increases in minisatellite instability.
Collapse
Affiliation(s)
- Philippe R J Bois
- St. Jude Children's Research Hospital, Department of Genetics and Tumor Cell Biology, 332 North Lauderdale, Memphis, TN 38105, USA.
| |
Collapse
|
15
|
Yauk CL, Dubrova YE, Grant GR, Jeffreys AJ. A novel single molecule analysis of spontaneous and radiation-induced mutation at a mouse tandem repeat locus. Mutat Res 2002; 500:147-56. [PMID: 11890944 DOI: 10.1016/s0027-5107(02)00005-2] [Citation(s) in RCA: 87] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Expanded simple tandem repeat (ESTR) loci include some of the most unstable DNA in the mouse genome and have been extensively used in pedigree studies of germline mutation. We now show that repeat DNA instability at the mouse ESTR locus Ms6-hm can also be monitored by single molecule PCR analysis of genomic DNA. Unlike unstable human minisatellites which mutate almost exclusively in the germline by a meiotic recombination-based process, mouse Ms6-hm shows repeat instability both in germinal (sperm) DNA and in somatic (spleen, brain) DNA. There is no significant variation in mutation frequency between mice of the same inbred strain. However, significant variation occurs between tissues, with mice showing the highest mutation frequency in sperm. The size spectra of somatic and sperm mutants are indistinguishable and heavily biased towards gains and losses of only a few repeat units, suggesting repeat turnover by a mitotic replication slippage process operating both in the soma and in the germline. Analysis of male mice following acute pre-meiotic exposure to X-rays showed a significant increase in sperm but not somatic mutation frequency, though no change in the size spectrum of mutants. The level of radiation-induced mutation at Ms6-hm was indistinguishable from that established by conventional pedigree analysis following paternal irradiation. This confirms that mouse ESTR loci are very sensitive to ionizing radiation and establishes that induced germline mutation results from radiation-induced mutant alleles being present in sperm, rather than from unrepaired sperm DNA lesions that subsequently lead to the appearance of mutants in the early embryo. This single molecule monitoring system has the potential to substantially reduce the number of mice needed for germline mutation monitoring, and can be used to study not only germline mutation but also somatic mutation in vivo and in cell culture.
Collapse
Affiliation(s)
- Carole L Yauk
- Department of Genetics, University of Leicester, Leicester LE1 7RH, UK.
| | | | | | | |
Collapse
|
16
|
Kan NG, Martyrosyan IA, Darevsky IS, Danielyan FD, Arakelyan MS, Aslanyan AV, Grechko VV, Tokarskaya ON, Ryskov AP. Detection of genetically unstable loci in parthenogenic families of lizards of theLacerta genus by DNA fingerprinting. Mol Biol 2000. [DOI: 10.1007/bf02759612] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
17
|
Jones AG, Rosenqvist G, Berglund A, Avise JC. Clustered microsatellite mutations in the pipefish Syngnathus typhle. Genetics 1999; 152:1057-63. [PMID: 10388824 PMCID: PMC1460651 DOI: 10.1093/genetics/152.3.1057] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Clustered mutations are copies of a mutant allele that enter a population's gene pool together due to replication from a premeiotic germline mutation and distribution to multiple successful gametes of an individual. Although the phenomenon has been studied in Drosophila and noted in a few other species, the topic has received scant attention despite claims of being of major importance to population genetics theory. Here we capitalize upon the reproductive biology of male-pregnant pipefishes to document the occurrence of clustered microsatellite mutations and to estimate their rates and patterns from family data. Among a total of 3195 embryos genetically screened from 110 families, 40% of the 35 detected de novo mutant alleles resided in documented mutational clusters. Most of the microsatellite mutations appeared to involve small-integer changes in repeat copy number, and they arose in approximately equal frequency in paternal and maternal germlines. These findings extend observations on clustered mutations to another organismal group and motivate a broader critique of the mutation cluster phenomenon. They also carry implications for the evolution of microsatellites with respect to mutational models and homoplasy among alleles.
Collapse
Affiliation(s)
- A G Jones
- Department of Genetics, University of Georgia, Athens, Georgia 30602, USA.
| | | | | | | |
Collapse
|
18
|
Lawson PR, Perkins VC, Holmskov U, Reid KB. Genomic organization of the mouse gene for lung surfactant protein D. Am J Respir Cell Mol Biol 1999; 20:953-63. [PMID: 10226065 DOI: 10.1165/ajrcmb.20.5.3343] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Lung surfactant protein (SP)-D belongs to the family of soluble collagenous C-type lectins, named collectins. SP-D participates in the local innate immune defense of the lung, eliciting various effector functions by acting as a pattern recognition receptor for the carbohydrate structures on inhaled microorganisms and particulate matter. This work describes the isolation and characterization of the mouse SP-D gene (Sftpd), which spans 8 exons over 14 kb of sequence and shows an overall organization similar to other collectin genes. The complete 5' untranslated region of the messenger RNA, absent from the published complementary DNA for mouse SP-D, was also cloned and is shown to be encoded by a single exon. Analysis of 3.5 kb of 5' flanking nucleotide sequence for Sftpd is described and reveals positional conservation of a number of transcription factor binding sites on comparison of Sftpd with the human SP-D gene and the bovine conglutinin gene. In addition, a single copy SP-D-like gene has been shown to be present in mammals, birds, and amphibians but is absent in fish. An atypical, rodent-specific, long terminal repeat of retroviral origin containing a minisatellite that has become inserted in Sftpd is described. Three new polymorphic microsatellites are also described, one of which is just 160 base pairs upstream of Sftpd. This microsatellite was used to map the gene to the central region of chromosome 14; fine-scale mapping indicates that it lies in a 5. 64-centimorgan area between D14Mit45 and D14Mit60. This will allow the easy identification of the collectin gene cluster and aid in the construction of a physical map over this region.
Collapse
Affiliation(s)
- P R Lawson
- MRC Immunochemistry Unit, Department of Biochemistry, Oxford University, Oxford, United Kingdom
| | | | | | | |
Collapse
|
19
|
Weitzmann MN, Woodford KJ, Usdin K. The mouse Ms6-hm hypervariable microsatellite forms a hairpin and two unusual tetraplexes. J Biol Chem 1998; 273:30742-9. [PMID: 9804850 DOI: 10.1074/jbc.273.46.30742] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The mouse Ms6-hm microsatellite consists of a tandem array of the pentamer d(CAGGG)n. This microsatellite is extremely hypervariable, showing a germ line mutation rate of 2.5%/gamete. The mechanism responsible for this instability is not known. The ability to form intrastrand structures is a conserved feature of many hypervariable sequences, and it has been suggested that the formation of such structures might account for instability by affecting DNA replication, repair, or recombination. Here we show that this microsatellite is able to form intrastrand structures as well. Under physiological conditions, the Ms6-hm microsatellite forms a hairpin as well as two different unusual intrastrand tetraplexes. The hairpin forms in the absence of monovalent cation and contains G.A, G.C, and G.G base pairs in a 1:1:1 ratio. In the presence of K+, a tetraplex is formed in which the adenines are unpaired and extrahelical, and the cytosines are involved in C.C pairs. In Na+, a tetraplex forms that contains C.C+ pairs, with the adenines being intrahelical and hydrogen-bonded to guanines. Tetraplex formation in the presence of Na+ requires both cytosines and adenines and might reflect the altered internal dimensions of this tetraplex, perhaps resulting from the ability of the C.C+ pairs to become intercalated in this sequence context. Our demonstration of the stabilization of tetraplexes by hydrogen bonding between adenines and guanines expands the hydrogen-bonding possibilities for tetraplexes and suggests that the category of sequences with tetraplex-forming potential may be larger than previously appreciated.
Collapse
Affiliation(s)
- M N Weitzmann
- Section on Genomic Structure and Function, Laboratory of Molecular and Cellular Biology, NIDDK, National Institutes of Health, Bethesda, Maryland 20892-0830, USA
| | | | | |
Collapse
|
20
|
Proceedings of the 4th International DNA Fingerprinting Conference. Melbourne, Australia, December 2-7, 1996. Electrophoresis 1997; 18:1501-705. [PMID: 9378112 DOI: 10.1002/elps.1150180903] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Minisatellites provide not only the basis for DNA fingerprinting and DNA profiling but also extremely informative systems for analysing processes of tandem repeat turnover in the human genome. Minisatellite instability appears to involve distinct mutation processes in somatic and germline cells; in the germline, mutation is frequently dominated by inter-allelic conversion-like events most likely occurring at meiosis and apparently regulated by cis-acting mutation initiator elements. Attempts to define these initiators in transgenic mice have so far been thwarted by what appears to be a major human/mouse barrier to the inter-species transfer of repeat instability. Minisatellites not only show high frequency spontaneous mutation in the germline, but also appear to be very sensitive to mutation induction by ionizing radiation, both in experimentally irradiated mice and in human populations exposed following the Chernobyl disaster; the mechanisms of mutation induction by radiation remain enigmatic.
Collapse
|
21
|
Yuan B, Hu LH, Lentsch EM, Shum-Siu A, Hendler FJ. Consistent allelic loss on mouse chromosome 7 distal to tyrosinase in 4-nitroquinoline-1-oxide-induced oral cavity tumors with loss of heterozygosity at Ha-ras-1. Mol Carcinog 1997; 19:8-16. [PMID: 9180923 DOI: 10.1002/(sici)1098-2744(199705)19:1<8::aid-mc2>3.0.co;2-d] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
We have previously shown that all CBA/J mice exposed to 4-nitroquinoline-1-oxide (4NQO) eventually develop oral cavity squamous cell carcinomas, and two-thirds of these tumors have Ha-ras-1 (Hras1) point mutations at codon 12. Half of the tumors with Hras1 mutations have loss of heterozygosity (LOH) at Hras1. In the study reported here, seven tumors with LOH at Hras1, six heterozygous for Hras1, and six without Hras1 mutations were analyzed to define the extent of LOH on chromosome (Chr) 7. Microsatellite polymorphisms present in CBA/J mice were used as informative allelic markers. Tumors with LOH at Hras1 showed consistent allelic loss at the distal portion of Chr 7. The boundary of allelic loss lay between the tyrosinase and hemoglobin beta chain loci, which are 6 cM apart. None of the tumors that remained heterozygous for Hras1 or had no Hras1 mutations had evidence of chromosomal loss involving Chr 7. Because LOH was only detected in advanced lesions long after exposure to 4NQO had ceased, we presume that the chromosomal alterations by which LOH occurred were independent of the carcinogen exposure. The development of LOH in only half of the tumors with Hras1 point mutations suggests that LOH was not caused by the initial Hras1 point mutation but was a highly selected event during tumorigenesis.
Collapse
Affiliation(s)
- B Yuan
- Department of Biochemistry, University of Louisville, KY, USA
| | | | | | | | | |
Collapse
|
22
|
Weitzmann MN, Woodford KJ, Usdin K. DNA secondary structures and the evolution of hypervariable tandem arrays. J Biol Chem 1997; 272:9517-23. [PMID: 9083093 DOI: 10.1074/jbc.272.14.9517] [Citation(s) in RCA: 61] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
Tandem repeats are ubiquitous in nature and constitute a major source of genetic variability in populations. This variability is associated with a number of genetic disorders in humans including triplet expansion diseases such as Fragile X syndrome and Huntington's disease. The mechanism responsible for the variability/instability of these tandem arrays remains contentious. We show here that formation of secondary structures, in particular intrastrand tetraplexes, is an intrinsic property of some of the more unstable arrays. Tetraplexes block DNA polymerase progression and may promote instability of tandem arrays by increasing the likelihood of reiterative strand slippage. In the course of doing this work we have shown that some of these tetraplexes involve unusual base interactions. These interactions not only generate tetraplexes with novel properties but also lead us to conclude that the number of sequences that can form stable tetraplexes might be much larger than previously thought.
Collapse
Affiliation(s)
- M N Weitzmann
- Section on Genomic Structure and Function, Laboratory of Molecular and Cellular Biology, NIDDK, National Institutes of Health, Bethesda, Maryland 20892-0830, USA
| | | | | |
Collapse
|
23
|
Monckton DG, Coolbaugh MI, Ashizawa KT, Siciliano MJ, Caskey CT. Hypermutable myotonic dystrophy CTG repeats in transgenic mice. Nat Genet 1997; 15:193-6. [PMID: 9020848 DOI: 10.1038/ng0297-193] [Citation(s) in RCA: 91] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Myotonic dystrophy (DM) is one of a growing number of inherited human disorders associated with the expansion of triplet repeat DNA sequences. Expanded alleles are highly unstable in both the germline and soma, accounting in large part for the unusual genetics of this disorder, its phenotypic variability and probably, the progressive nature of the symptoms. However, the molecular mechanisms and the genetic factors modulating repeat stability in DM and the other human disorders associated with expanded repeats are not well understood. To provide a model system in which the turnover of triplet repeats could be studied throughout mammalian development, we have generated five transgenic mouse lines incorporating expanded CTG/CAG arrays derived from the human DM locus. Transgene analysis has revealed germline hypermutability, including expansions, deletions and parent-of-origin effects, somatic and early embryonic instability and segregation distortion. Mutational differences between lines and sexes demonstrate that stability, as in humans, is modulated by as yet unidentified cis and trans acting genetic elements.
Collapse
Affiliation(s)
- D G Monckton
- Division of Molecular Genetics, Anderson College, University of Glasgow, Scotland, UK.
| | | | | | | | | |
Collapse
|
24
|
|
25
|
von Sternberg R. The role of constrained self-organization in genome structural evolution. Acta Biotheor 1996; 44:95-118. [PMID: 9028019 DOI: 10.1007/bf00048418] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
A hypothesis of genome structural evolution is explored. Rapid and cohesive alterations in genome organization are viewed as resulting from the dynamic and constrained interactions of chromosomal subsystem components. A combination of macromolecular boundary conditions and DNA element involvement in far-from-equilibrium reactions is proposed to increase the complexity of genomic subsystems via the channelling of genome turnover; interactions between subsystems create higher-order subsystems expanding the phase space for further genetic evolution. The operation of generic constraints on structuration in genome evolution is suggested by i) universal, homoplasic features of chromosome organization and ii) the metastable nature of genome structures where lower-level flux is constrained by higher-order structures. Phenomena such as 'genomic shock', bursts of transposable element activity, concerted evolution, etc., are hypothesized to result from constrained systemic responses to endogenous/exogenous, micro/macro perturbations. The constraints operating on genome turnover are expected to increase with chromosomal structural complexity, the number of interacting subsystems, and the degree to which interactions between genomic components are tightly ordered.
Collapse
Affiliation(s)
- R von Sternberg
- Center for Intelligent Systems, T.J. Watson School, State University of New York at Binghamton 13902, USA
| |
Collapse
|
26
|
Magoulas C, Fried M. The Surf-6 gene of the mouse surfeit locus encodes a novel nucleolar protein. DNA Cell Biol 1996; 15:305-16. [PMID: 8639267 DOI: 10.1089/dna.1996.15.305] [Citation(s) in RCA: 23] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
The Surfeit locus contains the tightest cluster of mammalian genes so far described. The five Surfeit genes (Surf-1 to -5) that have been previously isolated and characterized do not share any DNA or amino acid sequence homology. These Surfeit genes appear to be housekeeping genes, with the Surf-3 gene encoding the 1.7a ribosomal protein and the Surf-4 gene encoding an integral membrane protein most likely associated with the endoplasmic reticulum. In this work, we have isolated the Surf-6 gene, a sixth member of the Surfeit locus. The Surf-6 gene contains four exons spanning a genomic region of 14 kb and specifies a mRNA of 2,571 bases. Surf-6 has features common to housekeeping genes because its transcript is present in every tissue tested, its 5' end is associated with a CpG-rich island, and its promoter does not contain a canonical TATA box. The Surf-6 long open reading frame encodes a novel highly basic polypeptide of 355 amino acids (28% Arg and Lys). By immunofluorescence and immunoblot analyses, the Surf-6 protein has been found to be located in the nucleolus and by immunocytochemical microscopy to be localized predominantly in the nucleolar granular component, a structure that is involved in ribosome maturation. These results indicate that the novel Surf-6 gene is involved in a nucleolar function.
Collapse
Affiliation(s)
- C Magoulas
- Eukaryotic Gene Organisation and Expression Laboratory, Imperial Cancer Research Fund, Lincoln's Inn Fields, London, UK
| | | |
Collapse
|
27
|
Gao GP, Herrera RJ. Enrichment of middle repetitive element Bm-1 transcripts in translationally active RNA fractions of the silkmoth, Bombyx mori. Genetica 1996; 97:173-82. [PMID: 8901137 DOI: 10.1007/bf00054624] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
The Bm-1 repetitive element family represents a group of transcribed repetitive sequences in the genome of the silkmoth Bombyx mori. In the Bm-5 and BmN permanent cell lines studied here, alpha-amanitin inhibition and nuclear 'run-on' experiments demonstrated that approximately 80% of the Bm-1 transcripts are produced by RNA polymerase II. Bm-1 transcripts are dramatically enriched in poly A+ and polysomal RNA fractions compared to total RNA in these two cell lines. In the Bm-5 cell line, from total to poly A+ and polysomal RNA fractions, Bm-1 transcripts are enriched approximately 4 and 2 times, respectively, while in the BmN cell line these same fractions are enriched about 2 and 19 times compared to total RNA. This suggests that the Bm-1 transcripts may be involved in post-transcriptional processes or control of translation. Our data also revealed less size heterogeneity of Bm-1 transcripts in polysomal as compared to nuclear fractions. In the Bm-5 and BmN cell lines, the size of most transcripts containing Bm-1 sequences increases from approximately 1700 nt in the nucleus to 3000 nt in the polysomal fraction, both fractions with RNA much larger than the Bm-1 consensus sequence (250 bp). This raises the possibility that some Bm-1 elements are transcribed as part of larger transcripts containing mRNA by way of 'read-through', and may be involved in post-transcriptional regulation of gene expression as cis and/or trans acting elements.
Collapse
Affiliation(s)
- G P Gao
- Department of Biological Sciences, Florida International University, Miami 33199, USA
| | | |
Collapse
|
28
|
Abstract
We analyze the within- and between-population dynamics of the distribution of the number of repeats at multiple microsatellite DNA loci subject to stepwise mutation. Analytical expressions for moments up to the fourth order within a locus and the variance of between-locus variance at mutation-drift equilibrium have been obtained. These statistics may be used to test the appropriateness of the one-step mutation model and to detect between-locus variation in the mutation rate. Published data are compatible with the one-step mutation model, although they do not reject the two-step model. Using both multinomial sampling and diffusion approximations for the analysis of the genetic distance introduced by Goldstein et al. [Goldstein, D. B., Linares, A. R., Cavalli-Sforza, L. L. & Feldman, M. W. (1995) Proc. Natl. Acad. Sci. USA 92, 6723-6727], we show that this distance follows a chi 2 distribution with degrees of freedom equal to the number of loci when there is no variation in mutation rates among the loci. In the presence of such variation, the variance of the distance is obtained. We conclude that the number of microsatellite loci required for the construction of phylogenetic trees with reliable branch lengths may be several hundred. Also, mutations that change repeat scores by several units, even though extremely rare, may dramatically influence estimates of population parameters.
Collapse
Affiliation(s)
- L A Zhivotovsky
- Vavilov Institute of General Genetics, Russian Academy of Sciences, Moscow, Russia
| | | |
Collapse
|
29
|
Jeffreys AJ, Allen MJ, Armour JA, Collick A, Dubrova Y, Fretwell N, Guram T, Jobling M, May CA, Neil DL. Mutation processes at human minisatellites. Electrophoresis 1995; 16:1577-85. [PMID: 8582338 DOI: 10.1002/elps.11501601261] [Citation(s) in RCA: 42] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Minisatellites provide one of the most experimentally tractable systems for studying tandem repeat instability in man. Analysis of mutation processes has been greatly aided by the development of single molecule methods for recovering de novo mutants, and of techniques for exploring allele structure in detail. Application of these approaches to man has shown that minisatellites do not primarily mutate by processes such as replication slippage and unequal crossover intrinsic to the tandem repeat array. Instead, germline repeat instability is largely regulated by cis-acting elements near the array and involves unexpectedly complex processes of gene conversion, of potential relevance to the biology of meiosis. These processes can be explored both in humans and, in principle, in transgenic mouse models of human repeat instability.
Collapse
Affiliation(s)
- A J Jeffreys
- Department of Genetics, University of Leicester, UK
| | | | | | | | | | | | | | | | | | | |
Collapse
|
30
|
Abstract
Seven inherited human disorders are now associated with the intragenic expansion of triplet repeat DNA sequences. These repeats demonstrate extreme instability in both germline and somatic tissue, accounting for the unusual genetic inheritance patterns and symptom variability associated with these diseases.
Collapse
Affiliation(s)
- D G Monckton
- Department of Molecular and Human Genetics, Howard Hughes Medical Institute, Baylor College of Medicine, Houston, Tex 77030
| | | |
Collapse
|
31
|
Sadamoto S, Suzuki S, Kamiya K, Kominami R, Dohi K, Niwa O. Radiation induction of germline mutation at a hypervariable mouse minisatellite locus. Int J Radiat Biol 1994; 65:549-57. [PMID: 7910194 DOI: 10.1080/09553009414550641] [Citation(s) in RCA: 85] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Paternal 60Co gamma-irradiation was tested for the induction of germline mutation at the mouse hypervariable minisatellite locus, Ms6hm. Male C3H/HeN mice were exposed to 3 Gy 60Co gamma-ray and mated with C57BL/6N females. Matings were made at 1-7, 15-21 and 71-77 days post-treatment to test spermatozoa, spermatids and spermatogonia stages. Reciprocal crosses were also made with irradiated C57BL/6N males. Southern analysis was carried out on DNA from parents and F1 mice. The paternal mutation frequencies per gamete of the Ms6hm locus were 8.3, 13, 28 and 15% for the C3H/HeN control, exposed spermatozoa, spermatids and spermatogonia stages, respectively. The paternal mutation frequencies per gamete were 7.7% for the C57BL/6N control and 13% for the C57BL/6N exposed spermatozoa stage. The increase in the paternal germline mutation frequency was statistically significant for C3H/HeN spermatids irradiation (p < 0.005). The induced mutation frequencies were of the order of 10(-1), and was too high to be accounted for by the direct action of radiation on the locus. These results suggest the presence of a previously unexpected mechanism of radiation induction of germline mutation. In addition, we demonstrate that the hypervariable minisatellite locus can serve as a sensitive monitor for genetic damages to germline cells.
Collapse
Affiliation(s)
- S Sadamoto
- Department of Pathology, Hiroshima University, Japan
| | | | | | | | | | | |
Collapse
|
32
|
Hancock JM. Evolution of sequence repetition and gene duplications in the TATA-binding protein TBP (TFIID). Nucleic Acids Res 1993; 21:2823-30. [PMID: 8332491 PMCID: PMC309661 DOI: 10.1093/nar/21.12.2823] [Citation(s) in RCA: 27] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
Analysis of TBP gene sequences from a variety of species for clustering of short sequence motifs and for over- and underrepresentation of short sequence motifs suggests involvement of slippage in the recent evolution of the TBP N-terminal domains in metazoans, Acanthamoeba and wheat. AGC, GCA and CAG are overrepresented in TBP genes of other species, suggesting that opa arrays were amplified from motifs overrepresented in ancestral species. The phylogenetic distribution of recently slippage-derived sequences in TBP is similar to that observed in the large subunit ribosomal RNAs, suggesting a propensity for certain evolutionary lineages to incorporate slippage-generated motifs into protein-coding as well as ribosomal RNA genes. Because length increase appears to have taken place independently in lineages leading to vertebrates, insects and nematodes, TBP N-terminal domains in these lineages are not homologous. All gene duplications in the TBP gene family appear to have been recent events despite strong protein sequence similarity between TRF and P. falciparum TBP. The enlargement of the TBP N-terminal domain may have coincided with acquisition of new functions and may have accompanied molecular coevolution with domains of other proteins, resulting in the acquisition of new or more complex mechanisms of transcription regulation.
Collapse
Affiliation(s)
- J M Hancock
- Molecular Evolution and Systematics Group and Bioinformatics Facility, Research School of Biological Sciences, Australian National University, Canberra, ACT
| |
Collapse
|
33
|
Brereton HM, Firgaira FA, Turner DR. Origins of polymorphism at a polypurine hypervariable locus. Nucleic Acids Res 1993; 21:2563-9. [PMID: 8332453 PMCID: PMC309582 DOI: 10.1093/nar/21.11.2563] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
We present characterisation of a hypervariable locus, D8S210, mapped to the telomeric region of the short arm of chromosome 8. The locus is highly polymorphic with alleles varying in size from 1.8 kb to 24 kb. Sequence data from 7 alleles shows that the variable region is entirely polypurine on one strand with a tetranucleotide repeating unit GGAA at the margins and diverged versions of this motif internally. The margins are conserved between alleles; polymorphism occurring in the internal regions of the repeat. Alleles are inherited in a Mendelian manner and one new mutation has been observed in analysis of 51 meioses. Use of single copy flanking sequences to elaborate the polymorphism revealed loss of single copy DNA in 3 unrelated families and in 2 other unrelated individuals. Restriction mapping shows that this loss is similar for different sized alleles in all three families suggesting that it was an early event that may have involved a flanking Alu sequence. We present evidence that the polypurine region can adopt triplex conformations in vitro. Such structures may facilitate loss or gain of unique sequences in the genome, contribute to mutation at conformation transition points and drive the hypervariability (> 99% heterozygosity) of this locus.
Collapse
Affiliation(s)
- H M Brereton
- Haematology Unit, School of Medicine, Flinders University, Bedford Park, South Australia
| | | | | |
Collapse
|
34
|
|
35
|
Silver A, Cox R. Telomere-like DNA polymorphisms associated with genetic predisposition to acute myeloid leukemia in irradiated CBA mice. Proc Natl Acad Sci U S A 1993; 90:1407-10. [PMID: 8434000 PMCID: PMC45882 DOI: 10.1073/pnas.90.4.1407] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
There is evidence that interstitial telomere (TTAGGG)n-like sequences at chromosome 2 fragile sites play an important role in the somatic events that characterize the earliest phases of radiation-induced acute myeloid leukemia in the CBA/H mouse. Here we show that the highly inbred CBA/H colony unexpectedly contains four genotypic variants for telomere-like sequence arrays and that almost all induced myeloid leukemias derive from one of the variant subpopulations that constitutes approximately 20% of the colony. Preliminary evidence on the irregular inheritance patterns for these variant sequences is discussed together with the proposal that one form of these telomere sequence arrays either represents or is closely linked to a locus that influences chromosome 2 breakage patterns in hemopoietic cells following irradiation and, through this, susceptibility to induced myeloid leukemia.
Collapse
Affiliation(s)
- A Silver
- Biomedical Effects Department, National Radiological Protection Board, Didcot, Oxon, United Kingdom
| | | |
Collapse
|
36
|
Affiliation(s)
- A J Jeffreys
- Department of Genetics, University of Leicester, England
| | | |
Collapse
|
37
|
von Sternberg RM, Novick GE, Gao GP, Herrera RJ. Genome canalization: the coevolution of transposable and interspersed repetitive elements with single copy DNA. Genetica 1992; 86:215-46. [PMID: 1334910 DOI: 10.1007/bf00133722] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Transposable and interspersed repetitive elements (TIREs) are ubiquitous features of both prokaryotic and eukaryotic genomes. However, controversy has arisen as to whether these sequences represent useless 'selfish' DNA elements, with no cellular function, as opposed to useful genetic units. In this review, we selected two insect species, the Dipteran Drosophila and the Lepidopteran Bombyx mori (the silkmoth), in an attempt to resolve this debate. These two species were selected on the basis of the special interest that our laboratory has had over the years in Bombyx with its well known molecular and developmental biology, and the wealth of genetic data that exist for Drosophila. In addition, these two species represent contrasting repetitive element types and patterns of distribution. On one hand, Bombyx exhibits the short interspersion pattern in which Alu-like TIREs predominate while Drosophila possesses the long interspersion pattern in which retroviral-like TIREs are prevalent. In Bombyx, the main TIRE family is Bm-1 while the Drosophila group contains predominantly copia-like elements, non-LTR retroposons, bacterial-type retroposons and fold-back transposable elements sequences. Our analysis of the information revealed highly non-random patterns of both TIRE biology and evolution, more indicative of these sequences acting as genomic symbionts under cellular regulation rather than useless or selfish junk DNA. In addition, we extended our analysis of potential TIRE functionality to what is known from other eukaryotic systems. From this study, it became apparent that these DNA elements may have originated as innocuous or selfish sequences and then adopted functions. The mechanism for this conversion from non-functionality to specific roles is a process of coevolution between the repetitive element and other cellular DNA often times in close physical proximity. The resulting interdependence between repetitive elements and other cellular sequences restrict the number of evolutionarily successful mutational changes for a given function or cistron. This mutual limitation is what we call genome canalization. Well documented examples are discussed to support this hypothesis and a mechanistic model is presented for how such genomic canalization can occur. Also proposed are empirical studies which would support or invalidate aspects of this hypothesis.
Collapse
Affiliation(s)
- R M von Sternberg
- Department of Biological Sciences, Florida International University, Miami 33199
| | | | | | | |
Collapse
|