1
|
Ouyang X, Guan Y, Pei J, Ge J, Wang H, Bao L. Seasonal variation in gut microbiota of migratory wild raptors: a case study in white-tailed eagles. Anim Microbiome 2025; 7:37. [PMID: 40247417 PMCID: PMC12007228 DOI: 10.1186/s42523-025-00406-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2024] [Accepted: 04/07/2025] [Indexed: 04/19/2025] Open
Abstract
BACKGROUND Migration poses significant energetic challenges for migratory birds, during which both intrinsic and extrinsic factors affecting the gut microbiota alter substantially. While the temporal dynamics of gut microbiota in wild birds across migration seasons have garnered increasing attention, research on the seasonal variation in wild raptors remains limited despite their distinct gut microbiota structures. Furthermore, raptors, being the highest trophic level in the food chain, have been found to harbor more pathogens and antibiotic resistance genes (ARGs). In this study, we characterized the diversity and composition of the gut microbiota of wild white-tailed eagles at a critical stopover site along the East Asian Flyway (EAF). Fecal samples were collected during both autumn and spring migration seasons and microbial compositions were analyzed using high-throughput sequencing. RESULTS The most prevalent bacterial phylum in the gut microbiome of white-tailed eagles during both migration seasons was Firmicutes. The diversity of the gut microbiota is elevated in the spring migration season and the bacterial community composition significantly differed between two seasons. Individuals in spring migration show elevated levels of Clostridium_sensu_stricto_13 and Brochothrix, most likely related to the consumption of carrion. Conversely, individuals in autumn migration showed a higher prevalence of potential pathogens such as Fusobacterium and Escherichia-Shigella. Furthermore, we found that specific genera were seasonally enriched, probably reflecting distinct environmental exposures along migration routes. CONCLUSIONS This study revealed substantial seasonal variation in the gut microbiota of migratory white-tailed eagles, most likely shaped by dietary shifts, environmental factors, and physiological stress during migration. The higher prevalence of pathogens during autumn migration highlights potential health risks for eagles and their ecosystems, emphasizing the need for targeted conservation strategies at stopover sites. These findings contribute to understanding the dynamic interactions between migration and gut microbiota in wild raptors and provide valuable insights into their ecological and health management. While dietary differences may play a role, further research is needed to directly assess their impact.
Collapse
Affiliation(s)
- Xiaoqi Ouyang
- Ministry of Education Key Laboratory for Biodiversity Science and Ecological Engineering, College of Life Sciences, Beijing Normal University, Beijing, 100875, China
| | - Yu Guan
- Ministry of Education Key Laboratory for Biodiversity Science and Ecological Engineering, College of Life Sciences, Beijing Normal University, Beijing, 100875, China
- National Forestry and Grassland Administration Key Laboratory for Conservation Ecology of Northeast Tiger and Leopard, Beijing, 100875, China
| | - Jianchi Pei
- Ministry of Education Key Laboratory for Biodiversity Science and Ecological Engineering, College of Life Sciences, Beijing Normal University, Beijing, 100875, China
- National Forestry and Grassland Administration Key Laboratory for Conservation Ecology of Northeast Tiger and Leopard, Beijing, 100875, China
| | - Jianping Ge
- Ministry of Education Key Laboratory for Biodiversity Science and Ecological Engineering, College of Life Sciences, Beijing Normal University, Beijing, 100875, China
- National Forestry and Grassland Administration Key Laboratory for Conservation Ecology of Northeast Tiger and Leopard, Beijing, 100875, China
| | - Hongfang Wang
- Ministry of Education Key Laboratory for Biodiversity Science and Ecological Engineering, College of Life Sciences, Beijing Normal University, Beijing, 100875, China.
- National Forestry and Grassland Administration Key Laboratory for Conservation Ecology of Northeast Tiger and Leopard, Beijing, 100875, China.
| | - Lei Bao
- Ministry of Education Key Laboratory for Biodiversity Science and Ecological Engineering, College of Life Sciences, Beijing Normal University, Beijing, 100875, China.
- National Forestry and Grassland Administration Key Laboratory for Conservation Ecology of Northeast Tiger and Leopard, Beijing, 100875, China.
| |
Collapse
|
2
|
Gillingham MAF, Prüter H, Montero BK, Kempenaers B. The costs and benefits of a dynamic host microbiome. Trends Ecol Evol 2025; 40:255-272. [PMID: 39690056 DOI: 10.1016/j.tree.2024.11.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Revised: 10/31/2024] [Accepted: 11/11/2024] [Indexed: 12/19/2024]
Abstract
All species host a rich community of microbes. This microbiome is dynamic, and displays seasonal, daily, and even hourly changes, but also needs to be resilient to fulfill important roles for the host. In evolutionary ecology, the focus of microbiome dynamism has been on how it can facilitate host adaptation to novel environments. However, an hitherto largely overlooked issue is that the host needs to keep its microbiome in check, which is costly and leads to trade-offs with investing in other fitness-related traits. Investigating these trade-offs in natural vertebrate systems by collecting longitudinal data will lead to deeper insight into the evolutionary mechanisms that shape host-microbiome interactions.
Collapse
Affiliation(s)
- Mark A F Gillingham
- Department of Ornithology, Max Planck Institute for Biological Intelligence, Eberhard Gwinner Straße, 82319 Seewiesen, Germany.
| | - Hanna Prüter
- Department of Ornithology, Max Planck Institute for Biological Intelligence, Eberhard Gwinner Straße, 82319 Seewiesen, Germany
| | - B Karina Montero
- Biodiversity Research Institute, Consejo Superior de Investigaciones Científicas (CSIC) and Oviedo University-Principality of Asturias, University of Oviedo, Campus of Mieres, Mieres E-33600, Spain
| | - Bart Kempenaers
- Department of Ornithology, Max Planck Institute for Biological Intelligence, Eberhard Gwinner Straße, 82319 Seewiesen, Germany
| |
Collapse
|
3
|
Wang J, Shao MH, Li J, Liu JQ, Xu XY, Xu MR, Li M, Liu JS. High temperature induces the upward shift of the thermal neutral zone and decreases metabolic capacity in zebra finches. Comp Biochem Physiol A Mol Integr Physiol 2025; 300:111788. [PMID: 39642981 DOI: 10.1016/j.cbpa.2024.111788] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2024] [Revised: 11/27/2024] [Accepted: 12/02/2024] [Indexed: 12/09/2024]
Abstract
The thermal neutral zone (TNZ) represents a fundamental concept in the thermal physiology of homeothermic organisms. TNZ is characterized as a specific range of environmental temperatures within which the metabolic rate remains at its basal level. The ambient temperature is regarded as a critical environmental factor that affects an animal's thermoregulation and propels the development of various morphological, physiological, and behavioral adaptations. In the present investigation, we assessed the influence of environmental temperature on various physiological parameters, including body mass, metabolic rate, thermoneutral zone (TNZ), state 4 respiration (S4R), cytochrome c oxidase (CCO) activity, body fat content, triglyceride content, free fatty acid content, β-hydroxyacyl Co-A dehydrogenase (HOAD) and citrate synthase (CS) activities, AMPK and PGC-1α mRNA levels, and triiodothyronine (T3) and tetraiodothyronine (T4) concentrations in zebra finches acclimated to 25 °C or 38 °C. zebra finches were found to have a TNZ of 32-42 °C when acclimated to 25 °C and a TNZ of 34-42 °C when acclimated to 38 °C. Acclimation to a high temperature led to an increase in the lower critical temperature (LCT), consequently resulting in a narrower TNZ. Zebra finches acclimated to 38 °C for a duration of four weeks exhibited a notable reduction in both body mass and basal metabolic rate as opposed to individuals maintained at 25 °C. Additionally, finches that were acclimatized to 38 °C exhibited a reduction in liver mass and a lower S4R level in both the liver and kidneys. Furthermore, these finches showed decreased CCO activity in the pectoral muscle and liver and lower avian uncoupling protein expression in the pectoral muscle compared with the birds acclimated to 25 °C. The T3 level in the serum was lower in the 38 °C-acclimated finches than the 25 °C-acclimated finches. These findings suggested that the shift in the LCT of TNZ in zebra finches may possibly be associated with their metabolic capacity as well as their T3 levels at a different ambient temperature. The changes in LCT of TNZ could be an important strategy in adapting to variations in ambient temperature in zebra finches.
Collapse
Affiliation(s)
- Jing Wang
- College of Life and Environmental Science, Wenzhou University, Wenzhou 325035, China; Zhejiang Provincial Key Laboratory for Water Environment and Marine Biological Resources Protection, Wenzhou University, Wenzhou, China
| | - Ming-Hui Shao
- College of Life and Environmental Science, Wenzhou University, Wenzhou 325035, China; Zhejiang Provincial Key Laboratory for Water Environment and Marine Biological Resources Protection, Wenzhou University, Wenzhou, China
| | - Juan Li
- College of Life and Environmental Science, Wenzhou University, Wenzhou 325035, China; Zhejiang Provincial Key Laboratory for Water Environment and Marine Biological Resources Protection, Wenzhou University, Wenzhou, China
| | - Jia-Qi Liu
- College of Life and Environmental Science, Wenzhou University, Wenzhou 325035, China; Zhejiang Provincial Key Laboratory for Water Environment and Marine Biological Resources Protection, Wenzhou University, Wenzhou, China
| | - Xin-Yi Xu
- College of Life and Environmental Science, Wenzhou University, Wenzhou 325035, China; Zhejiang Provincial Key Laboratory for Water Environment and Marine Biological Resources Protection, Wenzhou University, Wenzhou, China
| | - Ming-Ru Xu
- College of Life and Environmental Science, Wenzhou University, Wenzhou 325035, China; Zhejiang Provincial Key Laboratory for Water Environment and Marine Biological Resources Protection, Wenzhou University, Wenzhou, China
| | - Ming Li
- College of Life and Environmental Science, Wenzhou University, Wenzhou 325035, China; Zhejiang Provincial Key Laboratory for Water Environment and Marine Biological Resources Protection, Wenzhou University, Wenzhou, China.
| | - Jin-Song Liu
- College of Life and Environmental Science, Wenzhou University, Wenzhou 325035, China; Zhejiang Provincial Key Laboratory for Water Environment and Marine Biological Resources Protection, Wenzhou University, Wenzhou, China.
| |
Collapse
|
4
|
Linek N, Yanco SW, Volkmer T, Zuñiga D, Wikelski M, Partecke J. Migratory lifestyle carries no added overall energy cost in a partial migratory songbird. Nat Ecol Evol 2024; 8:2286-2296. [PMID: 39294404 PMCID: PMC11618079 DOI: 10.1038/s41559-024-02545-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Accepted: 08/22/2024] [Indexed: 09/20/2024]
Abstract
Seasonal bird migration may provide energy benefits associated with moving to areas with less physiologically challenging climates or increased food availability, but migratory movements themselves may carry high costs. However, time-dynamic energy profiles of free-living migrants-especially small-bodied songbirds-are challenging to measure. Here we quantify energy output and thermoregulatory costs in partially migratory common blackbirds using implanted heart rate and temperature loggers paired with automated radio telemetry and energetic modelling. Our results show that blackbirds save considerable energy in preparation for migration by decreasing heart rate and body temperature 28 days before departure, potentially dwarfing the energy costs of migratory flights. Yet, in warmer wintering areas, migrants do not appear to decrease total daily energy expenditure despite a substantially reduced cost of thermoregulation. These findings indicate differential metabolic programmes across different wintering strategies despite equivalent overall energy expenditure, suggesting that the maintenance of migration is associated with differences in energy allocation rather than with total energy expenditure.
Collapse
Affiliation(s)
- Nils Linek
- Max Planck Institute of Animal Behavior, Radolfzell, Germany.
- Department of Biology, University of Konstanz, Konstanz, Germany.
| | - Scott W Yanco
- Center for Biodiversity and Global Change, Yale University, New Haven, CT, USA
- Department of Ecology and Evolutionary Biology, Yale University, New Haven, CT, USA
| | - Tamara Volkmer
- Max Planck Institute of Animal Behavior, Radolfzell, Germany
- Department of Biology, University of Konstanz, Konstanz, Germany
| | - Daniel Zuñiga
- Max Planck Institute of Animal Behavior, Radolfzell, Germany
- Department of Biology, University of Konstanz, Konstanz, Germany
| | - Martin Wikelski
- Max Planck Institute of Animal Behavior, Radolfzell, Germany
- Department of Biology, University of Konstanz, Konstanz, Germany
| | - Jesko Partecke
- Max Planck Institute of Animal Behavior, Radolfzell, Germany
- Department of Biology, University of Konstanz, Konstanz, Germany
| |
Collapse
|
5
|
Kumar A, Bhardwaj N, Rajaura S, Afzal M, Gupta NJ. Inter-organ differences in redox imbalance and apoptosis depict metabolic resilience in migratory redheaded buntings. Sci Rep 2024; 14:20184. [PMID: 39215166 PMCID: PMC11364690 DOI: 10.1038/s41598-024-71332-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Accepted: 08/27/2024] [Indexed: 09/04/2024] Open
Abstract
Migration, a bird's metabolic apex, depends primarily on the liver and muscle for fuel mobilization and endurance flight. In migratory redheaded buntings, adaptive increase in mitochondrial membrane (MM) proton gradient to drive ATP synthesis, measured by MM potential (MMP+) and reactive oxygen species (ROS) response, have been well characterized in the blood but not in the muscle or liver. We assessed MMP+, ROS, and apoptosis in the liver and pectoralis muscle of photosensitive nonmigratory (nMig.) male redheaded buntings photoinduced to migratory (Mig.) states. Relative expression levels of genes associated with energy (ACADM, PEPCK, GOT2, GLUT1, and CS), ROS modulation (SIRT1), mitochondrial free-radical scavengers (SOD1, PRX4, NOS2, GPX1, and GPX4), anti-apoptotic genes (NF-κβ), apoptotic (CASP7), and tissue damage using histology, during migration were assessed. The MMP+ decreased and the ROS concentration increased, due to the metabolic load on liver and pectoralis muscle tissues during Mig. However, percentage of apoptotic cells increased in liver but decreased in muscle, which is of functional significance to migratory passerines. During Mig., in muscle, SIRT1 increased, while an increase in anti-apoptotic NF-κβ aided immune pathway-mediated antioxidant activity and guarded against muscle oxidative damage during migration. Inter-organ differences in metabolism add to our current understanding of metabolic flexibility that supports successful migration in buntings.
Collapse
Affiliation(s)
- Anit Kumar
- Department of Zoology, Chaudhary Charan Singh University, Meerut, 250004, India
| | - Nitin Bhardwaj
- Department of Zoology and Environmental Science, Gurukula Kangri (Deemed to be University), Haridwar, 249404, India
| | - Sumit Rajaura
- Department of Zoology and Environmental Science, Gurukula Kangri (Deemed to be University), Haridwar, 249404, India
| | - Mohd Afzal
- Department of Chemistry, College of Science, King Saud University, 11451, Riyadh, Saudi Arabia
| | - Neelu Jain Gupta
- Department of Zoology, Chaudhary Charan Singh University, Meerut, 250004, India.
| |
Collapse
|
6
|
Włodarczyk R, Drzewińska-Chańko J, Kamiński M, Meissner W, Rapczyński J, Janik-Superson K, Krawczyk D, Strapagiel D, Ożarowska A, Stępniewska K, Minias P. Stopover habitat selection drives variation in the gut microbiome composition and pathogen acquisition by migrating shorebirds. FEMS Microbiol Ecol 2024; 100:fiae040. [PMID: 38515294 PMCID: PMC11008731 DOI: 10.1093/femsec/fiae040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Revised: 02/28/2024] [Accepted: 03/20/2024] [Indexed: 03/23/2024] Open
Abstract
Long-distance host movements play a major regulatory role in shaping microbial communities of their digestive tract. Here, we studied gut microbiota composition during seasonal migration in five shorebird species (Charadrii) that use different migratory (stopover) habitats. Our analyses revealed significant interspecific variation in both composition and diversity of gut microbiome, but the effect of host identity was weak. A strong variation in gut microbiota was observed between coastal and inland (dam reservoir and river valley) stopover habitats within species. Comparisons between host age classes provided support for an increasing alpha diversity of gut microbiota during ontogeny and an age-related remodeling of microbiome composition. There was, however, no correlation between microbiome and diet composition across study species. Finally, we detected high prevalence of avian pathogens, which may cause zoonotic diseases in humans (e.g. Vibrio cholerae) and we identified stopover habitat as one of the major axes of variation in the bacterial pathogen exposure risk in shorebirds. Our study not only sheds new light on ecological processes that shape avian gut microbiota, but also has implications for our better understanding of host-pathogen interface and the role of birds in long-distance transmission of pathogens.
Collapse
Affiliation(s)
- Radosław Włodarczyk
- University of Lodz, Faculty of Biology and Environmental Protection, Department of Biodiversity Studies and Bioeducation,, Banacha 1/3, 90-237 Łódź, Poland
| | - Joanna Drzewińska-Chańko
- University of Lodz, Faculty of Biology and Environmental Protection, Department of Biodiversity Studies and Bioeducation,, Banacha 1/3, 90-237 Łódź, Poland
| | - Maciej Kamiński
- University of Lodz, Faculty of Biology and Environmental Protection, Department of Biodiversity Studies and Bioeducation,, Banacha 1/3, 90-237 Łódź, Poland
| | - Włodzimierz Meissner
- Ornithology Unit, Department of Vertebrate Ecology and Zoology, Faculty of Biology, University of Gdańsk, Wita Stwosza 59, 80-308 Gdańsk, Poland
| | - Jan Rapczyński
- Forestry Student Scientific Association, Ornithological Section, Warsaw University of Life Sciences, Nowoursynowska 166, 02-787 Warszawa, Poland
| | - Katarzyna Janik-Superson
- University of Lodz, Faculty of Biology and Environmental Protection, Biobank Lab, Department of Oncobiology and Epigenetics, Pomorska 139, 90-235 Łódź, Poland
| | - Dawid Krawczyk
- University of Lodz, Faculty of Biology and Environmental Protection, Department of Invertebrate Zoology and Hydrobiology, Banacha 12/16, 90-237 Łódź, Poland
| | - Dominik Strapagiel
- University of Lodz, Faculty of Biology and Environmental Protection, Biobank Lab, Department of Oncobiology and Epigenetics, Pomorska 139, 90-235 Łódź, Poland
| | - Agnieszka Ożarowska
- Ornithology Unit, Department of Vertebrate Ecology and Zoology, Faculty of Biology, University of Gdańsk, Wita Stwosza 59, 80-308 Gdańsk, Poland
| | - Katarzyna Stępniewska
- Ornithology Unit, Department of Vertebrate Ecology and Zoology, Faculty of Biology, University of Gdańsk, Wita Stwosza 59, 80-308 Gdańsk, Poland
| | - Piotr Minias
- University of Lodz, Faculty of Biology and Environmental Protection, Department of Biodiversity Studies and Bioeducation,, Banacha 1/3, 90-237 Łódź, Poland
| |
Collapse
|
7
|
Rogers EJ, Gerson AR. Water restriction increases oxidation of endogenous amino acids in house sparrows (Passer domesticus). J Exp Biol 2024; 227:jeb246483. [PMID: 38380522 PMCID: PMC11093224 DOI: 10.1242/jeb.246483] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Accepted: 02/06/2024] [Indexed: 02/22/2024]
Abstract
Animals can cope with dehydration in a myriad of ways, both behaviorally and physiologically. The oxidation of protein produces more metabolic water per kilojoule than that of fat or carbohydrate, and it is well established that birds increase protein catabolism in response to high rates of water loss. However, the fate of amino acids mobilized in response to water restriction has not been explicitly determined. While protein catabolism releases bound water, we hypothesized that water-restricted birds would also oxidize the resulting amino acids, producing additional water as a product of oxidative phosphorylation. To test this, we fed captive house sparrows (Passer domesticus) 13C-labeled leucine for 9 weeks to label endogenous proteins. We conducted weekly trials during which we measured the physiological response to water restriction as changes in lean mass, fat mass, metabolism and the enrichment of 13C in exhaled CO2 (δ13Cbreath). If water-restricted birds catabolized proteins and oxidized the resulting amino acids, we expected to simultaneously observe greater lean mass loss and elevated δ13Cbreath relative to control birds. We found that water-restricted birds catabolized more lean tissue and also had enriched δ13Cbreath in response to water restriction, supporting our hypothesis. δ13Cbreath, however, varied with metabolic rate and the length of the water restriction period, suggesting that birds may spare protein when water balance can be achieved using other physiological strategies.
Collapse
Affiliation(s)
- Elizabeth J. Rogers
- Organismic and Evolutionary Biology Program, University of Massachusetts Amherst, Amherst, MA 01003, USA
| | - Alexander R. Gerson
- Organismic and Evolutionary Biology Program, University of Massachusetts Amherst, Amherst, MA 01003, USA
- Department of Biology, University of Massachusetts Amherst, Amherst, MA 01003, USA
| |
Collapse
|
8
|
Ramenofsky M, Campion AW, Hwee DT, Wood SK, Krause JS, Németh Z, Pérez JH, Bodine S. Comparison of the Phenotypic Flexibility of Muscle and Body Condition of Migrant and Resident White-Crowned Sparrows. ECOLOGICAL AND EVOLUTIONARY PHYSIOLOGY 2024; 97:11-28. [PMID: 38717370 DOI: 10.1086/729666] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2024]
Abstract
AbstractSeasonally breeding birds express variations of traits (phenotypic flexibility) throughout their life history stages that represent adaptations to environmental conditions. Changes of body condition during migration have been well studied, whereas alterations of skeletal and cardiac muscles, body mass, and fat scores have yet to be characterized throughout the spring or fall migratory stages. Additionally, we examined flexible patterns of muscle, body mass, and fat score in migrant white-crowned sparrows (Zonotrichia leucophrys gambelii) in comparison with those in a resident subspecies (Zonotrichia leucophrys nuttalli) during the stages they share to evaluate the influence of different life histories. Migrants showed hypertrophy of the pectoralis muscle fiber area on the wintering grounds in late prealternate molt, yet increased pectoralis muscle mass was not detected until birds readied for spring departure. While pectoralis profile and fat scores enlarged at predeparture in spring and fall, pectoralis, cardiac, and body masses were greater only in spring stages, suggesting seasonal differences for migratory preparation. Gastrocnemius mass showed little change throughout all stages, whereas gastrocnemius fiber area declined steadily but rebounded in fall on the wintering grounds, where migrants become more sedentary. In general, residents are heavier birds with larger leg structures, while migrants sport longer wings and greater heart mass. Phenotypic flexibility was most prominent among residents with peaks of pectoralis, gastrocnemius, and body masses during the winter stage, when local weather is most severe. Thus, the subspecies express specific patterns of phenotypic flexibility with peaks coinciding with the stages of heightened energy demands: the winter stage for residents and the spring stages for migrants.
Collapse
|
9
|
Trevelline BK, Sprockett D, DeLuca WV, Andreadis CR, Moeller AH, Tonra CM. Convergent remodelling of the gut microbiome is associated with host energetic condition over long-distance migration. Funct Ecol 2023; 37:2840-2854. [PMID: 38249446 PMCID: PMC10795773 DOI: 10.1111/1365-2435.14430] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Accepted: 07/25/2023] [Indexed: 01/23/2024]
Abstract
The gut microbiome can be thought of as a virtual organ given its immense metabolic capacity and profound effects on host physiology. Migratory birds are capable of adaptively modulating many aspects of their physiology to facilitate long-distance movements, raising the hypothesis that their microbiome may undergo a parallel remodeling process that helps to meet the energetic demands of migration.To test this hypothesis, we investigated changes in gut microbiome composition and function over the fall migration of the Blackpoll Warbler (Setophaga striata), which exhibits one of the longest known autumnal migratory routes of any songbird and rapidly undergoes extensive physiological remodeling during migration.Overall, our results showed that the Blackpoll Warbler microbiome differed significantly across phases of fall migration. This pattern was driven by a dramatic increase in the relative abundance of Proteobacteria, and more specifically a single 16S rRNA gene amplicon sequence variant belonging to the family Enterobacteriaceae. Further, Blackpoll Warblers exhibited a progressive reduction in microbiome diversity and within-group variance over migration, indicating convergence of microbiome composition among individuals during long-distance migration. Metagenomic analysis revealed that the gut microbiome of staging individuals was enriched in bacterial pathways involved in vitamin, amino acid, and fatty acid biosynthesis, as well as carbohydrate metabolism, and that these pathways were in turn positively associated with host body mass and subcutaneous fat deposits.Together, these results provide evidence that the gut microbiome of migratory birds may undergo adaptive remodeling to meet the physiological and energetic demands of long-distance migration.
Collapse
Affiliation(s)
- Brian K. Trevelline
- Cornell Lab of Ornithology, Cornell University, Ithaca, NY, USA
- Department of Ecology and Evolutionary Biology, Cornell University, Ithaca, NY, USA
| | - Daniel Sprockett
- Department of Ecology and Evolutionary Biology, Cornell University, Ithaca, NY, USA
| | | | - Catherine R. Andreadis
- Department of Ecology and Evolutionary Biology, Cornell University, Ithaca, NY, USA
- Department of Biological Sciences, University of Notre Dame, South Bend, IN, USA
| | - Andrew H. Moeller
- Department of Ecology and Evolutionary Biology, Cornell University, Ithaca, NY, USA
| | - Christopher M. Tonra
- School of Environment and Natural Resources, The Ohio State University, Columbus, OH, USA
| |
Collapse
|
10
|
Elowe CR, Babbitt C, Gerson AR. White-throated sparrow ( Zonotrichia albicollis) liver and pectoralis flight muscle transcriptomic changes in preparation for migration. Physiol Genomics 2023; 55:544-556. [PMID: 37694280 DOI: 10.1152/physiolgenomics.00018.2023] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Revised: 08/03/2023] [Accepted: 09/07/2023] [Indexed: 09/12/2023] Open
Abstract
Migratory songbirds undertake challenging journeys to reach their breeding grounds each spring. They accomplish these nonstop flapping feats of endurance through a suite of physiological changes, including the development of substantial fat stores and flight muscle hypertrophy and an increased capacity for fat catabolism. In addition, migratory birds may show large reductions in organ masses during flight, including the flight muscle and liver, which they must rapidly rebuild during their migratory stopover before replenishing their fat stores. However, the molecular basis of this capacity for rapid tissue remodeling and energetic output has not been thoroughly investigated. We performed RNA-sequencing analysis of the liver and pectoralis flight muscle of captive white-throated sparrows in experimentally photostimulated migratory and nonmigratory condition to explore the mechanisms of seasonal change to metabolism and tissue mass regulation that may facilitate these migratory journeys. Based on transcriptional changes, we propose that tissue-specific adjustments in preparation for migration may alleviate the damaging effects of long-duration activity, including a potential increase to the inflammatory response in the muscle. Furthermore, we hypothesize that seasonal hypertrophy balances satellite cell recruitment and apoptosis, while little evidence appeared in the transcriptome to support myostatin-, insulin-like growth factor 1-, and mammalian target of rapamycin-mediated pathways for muscle growth. These findings can encourage more targeted molecular studies on the unique integration of pathways that we find in the development of the migratory endurance phenotype in songbirds.NEW & NOTEWORTHY Migratory songbirds undergo significant physiological changes to accomplish their impressive migratory journeys. However, we have a limited understanding of the regulatory mechanisms underlying these changes. Here, we explore the transcriptomic changes to the flight muscle and liver of white-throated sparrows as they develop the migratory condition. We use these patterns to develop hypotheses about metabolic flexibility and tissue restructuring in preparation for migration.
Collapse
Affiliation(s)
- Cory R Elowe
- Department of Biology, University of Massachusetts, Amherst, Massachusetts, United States
- Organismic and Evolutionary Biology Graduate Program, University of Massachusetts, Amherst, Massachusetts, United States
| | - Courtney Babbitt
- Department of Biology, University of Massachusetts, Amherst, Massachusetts, United States
- Organismic and Evolutionary Biology Graduate Program, University of Massachusetts, Amherst, Massachusetts, United States
| | - Alexander R Gerson
- Department of Biology, University of Massachusetts, Amherst, Massachusetts, United States
- Organismic and Evolutionary Biology Graduate Program, University of Massachusetts, Amherst, Massachusetts, United States
| |
Collapse
|
11
|
Groom DJE, Black B, Deakin JE, DeSimone JG, Lauzau MC, Pedro BP, Straight CR, Unger KP, Miller MS, Gerson AR. Flight muscle size reductions and functional changes following long-distance flight under variable humidity conditions in a migratory warbler. Physiol Rep 2023; 11:e15842. [PMID: 37849053 PMCID: PMC10582281 DOI: 10.14814/phy2.15842] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Accepted: 09/30/2023] [Indexed: 10/19/2023] Open
Abstract
Bird flight muscle can lose as much as 20% of its mass during a migratory flight due to protein catabolism, and catabolism can be further exacerbated under dehydrating conditions. However, the functional consequences of exercise and environment induced protein catabolism on muscle has not been examined. We hypothesized that prolonged flight would cause a decline in muscle mass, aerobic capacity, and contractile performance. This decline would be heightened for birds placed under dehydrating environmental conditions, which typically increases lean mass losses. Yellow-rumped warblers (Setophaga coronata) were exposed to dry or humid (12 or 80% relative humidity at 18°C) conditions for up to 6 h while at rest or undergoing flight. The pectoralis muscle was sampled after flight/rest or after 24 h of recovery, and contractile properties and enzymatic capacity for aerobic metabolism was measured. There was no change in lipid catabolism or force generation of the muscle due to flight or humidity, despite reductions in pectoralis dry mass immediately post-flight. However, there was a slowing of myosin-actin crossbridge kinetics under dry compared to humid conditions. Aerobic and contractile function is largely preserved after 6 h of exercise, suggesting that migratory birds preserve energy pathways and function in the muscle.
Collapse
Affiliation(s)
- Derrick J. E. Groom
- Department of BiologyUniversity of Massachusetts AmherstMassachusettsUSA
- Department of BiologySan Francisco State UniversityCaliforniaSan FranciscoUSA
| | - Betsy Black
- Department of BiologyUniversity of Massachusetts AmherstMassachusettsUSA
- Present address:
Center for Ecosystem Science and SocietyNorthern Arizona UniversityArizonaFlagstaffUSA
| | - Jessica E. Deakin
- Centre for Animals on the Move, Department of BiologyWestern UniversityOntarioLondonCanada
| | - Joely G. DeSimone
- Department of BiologyUniversity of Massachusetts AmherstMassachusettsUSA
- Present address:
Appalachian LaboratoryUniversity of Maryland Center for Environmental ScienceMarylandFrostburgUSA
| | - M. Collette Lauzau
- Department of BiologyUniversity of Massachusetts AmherstMassachusettsUSA
- Present address:
The Water SchoolFlorida Gulf Coast UniversityFloridaFort MyersUSA
| | - Bradley P. Pedro
- Department of BiologyUniversity of Massachusetts AmherstMassachusettsUSA
- Present address:
Department of BiologyTufts UniversityMassachusettsMedfordUSA
| | - Chad R. Straight
- Department of KinesiologyUniversity of MassachusettsMassachusettsAmherstUSA
| | - Kimberly P. Unger
- Department of KinesiologyUniversity of MassachusettsMassachusettsAmherstUSA
| | - Mark S. Miller
- Department of KinesiologyUniversity of MassachusettsMassachusettsAmherstUSA
| | | |
Collapse
|
12
|
Peng HB, Ma Z, Rakhimberdiev E, van Gils JA, Battley PF, Rogers DI, Choi CY, Wu W, Feng X, Ma Q, Hua N, Minton C, Hassell CJ, Piersma T. Arriving late and lean at a stopover site is selected against in a declining migratory bird population. J Anim Ecol 2023; 92:2109-2118. [PMID: 37691322 DOI: 10.1111/1365-2656.14001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Accepted: 08/15/2023] [Indexed: 09/12/2023]
Abstract
Loss and/or deterioration of refuelling habitats have caused population declines in many migratory bird species but whether this results from unequal mortality among individuals varying in migration traits remains to be shown. Based on 13 years of body mass and size data of great knots (Calidris tenuirostris) at a stopover site of the Yellow Sea, combined with resightings of individuals marked at this stopover site along the East Asian-Australasian Flyway, we assessed year to year changes in annual apparent survival rates, and how apparent survival differed between migration phenotypes (i.e. migration timing and fuel stores). The measurements occurred over a period of habitat loss and/or deterioration in this flyway. We found that the annual apparent survival rates of great knots rapidly declined from 2006 to 2018, late-arriving individuals with small fuel stores exhibiting the lowest apparent survival rate. There was an advancement in mean arrival date and an increase in the mean fuel load of stopping birds over the study period. Our results suggest that late-arriving individuals with small fuel loads were selected against. Thus, habitat loss and/or deterioration at staging sites may cause changes in the composition of migratory phenotypes at the population-level.
Collapse
Affiliation(s)
- He-Bo Peng
- Shanghai Institute of Infectious Disease and Biosecurity, Ministry of Education Key Laboratory for Biodiversity Science and Ecological Engineering, Coastal Ecosystems Research Station of the Yangtze River Estuary and Institute of Eco-Chongming, Fudan University, Shanghai, China
- Department of Coastal Systems, NIOZ Royal Netherlands Institute for Sea Research, Den Burg, The Netherlands
- Conservation Ecology Group, Groningen Institute for Evolutionary Life Sciences (GELIFES), University of Groningen, Groningen, The Netherlands
- BirdEyes, Centre for Global Ecological Change at the Faculties of Science and Engineering and Campus Fryslân, University of Groningen, Leeuwarden, The Netherlands
- Center for East Asian-Australasian Flyway Studies, School of Ecology and Nature Conservation, Beijing Forestry University, Beijing, China
| | - Zhijun Ma
- Shanghai Institute of Infectious Disease and Biosecurity, Ministry of Education Key Laboratory for Biodiversity Science and Ecological Engineering, Coastal Ecosystems Research Station of the Yangtze River Estuary and Institute of Eco-Chongming, Fudan University, Shanghai, China
| | - Eldar Rakhimberdiev
- Department of Theoretical and Computational Ecology, Institute for Biodiversity and Ecosystem Dynamics, University of Amsterdam, Science Park 904, Amsterdam, 1012 WX, The Netherlands
| | - Jan A van Gils
- Department of Coastal Systems, NIOZ Royal Netherlands Institute for Sea Research, Den Burg, The Netherlands
- Conservation Ecology Group, Groningen Institute for Evolutionary Life Sciences (GELIFES), University of Groningen, Groningen, The Netherlands
| | - Phil F Battley
- Zoology and Ecology Group, School of Natural Sciences, Massey University, Palmerston North, New Zealand
| | - Danny I Rogers
- Department of Energy, Environment and Climate Action, Arthur Rylah Institute for Environmental Research, Heidelberg, 3084, Victoria, Australia
| | - Chi-Yeung Choi
- Division of Natural and Applied Sciences, Duke Kunshan University, Kunshan, China
| | - Wei Wu
- Chongming Dongtan Nature Reserve, Shanghai, China
| | - Xuesong Feng
- Chongming Dongtan Nature Reserve, Shanghai, China
| | - Qiang Ma
- Chongming Dongtan Nature Reserve, Shanghai, China
| | - Ning Hua
- Shanghai Institute of Infectious Disease and Biosecurity, Ministry of Education Key Laboratory for Biodiversity Science and Ecological Engineering, Coastal Ecosystems Research Station of the Yangtze River Estuary and Institute of Eco-Chongming, Fudan University, Shanghai, China
| | - Clive Minton
- Australian Wader Studies Group, Victoria, Beaumaris, Australia
| | | | - Theunis Piersma
- Department of Coastal Systems, NIOZ Royal Netherlands Institute for Sea Research, Den Burg, The Netherlands
- Conservation Ecology Group, Groningen Institute for Evolutionary Life Sciences (GELIFES), University of Groningen, Groningen, The Netherlands
- BirdEyes, Centre for Global Ecological Change at the Faculties of Science and Engineering and Campus Fryslân, University of Groningen, Leeuwarden, The Netherlands
- Center for East Asian-Australasian Flyway Studies, School of Ecology and Nature Conservation, Beijing Forestry University, Beijing, China
| |
Collapse
|
13
|
Hunt ESE, Felice RN, Tobias JA, Goswami A. Ecological and life-history drivers of avian skull evolution. Evolution 2023; 77:1720-1729. [PMID: 37105944 DOI: 10.1093/evolut/qpad079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Revised: 04/04/2023] [Accepted: 04/26/2023] [Indexed: 04/29/2023]
Abstract
One of the most famous examples of adaptive radiation is that of the Galápagos finches, where skull morphology, particularly the beak, varies with feeding ecology. Yet increasingly studies are questioning the strength of this correlation between feeding ecology and morphology in relation to the entire neornithine radiation, suggesting that other factors also significantly affect skull evolution. Here, we broaden this debate to assess the influence of a range of ecological and life-history factors, specifically habitat density, migration, and developmental mode, in shaping avian skull evolution. Using 3D geometric morphometric data to robustly quantify skull shape for 354 extant species spanning avian diversity, we fitted flexible phylogenetic regressions and estimated evolutionary rates for each of these factors across the full data set. The results support a highly significant relationship between skull shape and both habitat density and migration, but not developmental mode. We further found heterogenous rates of evolution between different character states within habitat density, migration, and developmental mode, with rapid skull evolution in species that occupy dense habitats, are migratory, or are precocial. These patterns demonstrate that diverse factors affect the tempo and mode of avian phenotypic evolution and that skull evolution in birds is not simply a reflection of feeding ecology.
Collapse
Affiliation(s)
- Eloise S E Hunt
- Department of Life Sciences and Grantham Institute, Imperial College London, London, United Kingdom
- Department of Life Sciences, The Natural History Museum, London, United Kingdom
| | - Ryan N Felice
- Department of Life Sciences, The Natural History Museum, London, United Kingdom
- Centre for Integrative Anatomy, Department of Cell and Developmental Biology, University College London, London, United Kingdom
| | - Joseph A Tobias
- Department of Life Sciences, Imperial College London, Ascot, United Kingdom
| | - Anjali Goswami
- Department of Life Sciences, The Natural History Museum, London, United Kingdom
- Department of Genetics, Evolution, and Environment, University College London, London, United Kingdom
| |
Collapse
|
14
|
Elowe CR, Groom DJE, Slezacek J, Gerson AR. Long-duration wind tunnel flights reveal exponential declines in protein catabolism over time in short- and long-distance migratory warblers. Proc Natl Acad Sci U S A 2023; 120:e2216016120. [PMID: 37068245 PMCID: PMC10151508 DOI: 10.1073/pnas.2216016120] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Accepted: 03/14/2023] [Indexed: 04/19/2023] Open
Abstract
During migration, long-distance migratory songbirds may fly nonstop for days, whereas shorter-distance migrants complete flights of 6 to 10 h. Fat is the primary fuel source, but protein is also assumed to provide a low, consistent amount of energy for flight. However, little is known about how the use of these fuel sources differs among bird species and in response to flight duration. Current models predict that birds can fly until fat stores are exhausted, with little consideration of protein's limits on flight range or duration. We captured two related migratory species-ultra long-distance blackpoll warblers (Setophaga striata) and short-distance yellow-rumped warblers (Setophaga coronata)-during fall migration and flew them in a wind tunnel to examine differences in energy expenditure, overall fuel use, and fuel mixture. We measured fat and fat-free body mass before and after flight using quantitative magnetic resonance and calculated energy expenditure from body composition changes and doubly labeled water. Three blackpolls flew voluntarily for up to 28 h-the longest wind tunnel flight to date-and ended flights with substantial fat reserves but concave flight muscle, indicating that protein loss, rather than fat, may actually limit flight duration. Interestingly, while blackpolls had significantly lower mass-specific metabolic power in flight than that of yellow-rumped warblers and fuel use was remarkably similar in both species, with consistent fat use but exceptionally high rates of protein loss at the start of flight that declined exponentially over time. This suggests that protein may be a critical, dynamic, and often overlooked fuel for long-distance migratory birds.
Collapse
Affiliation(s)
- Cory R. Elowe
- Department of Biology, University of Massachusetts, Amherst, MA01003-9297
- Organismic and Evolutionary Biology Graduate Program, University of Massachusetts, Amherst, MA01003-9297
| | - Derrick J. E. Groom
- Department of Biology, University of Massachusetts, Amherst, MA01003-9297
- Department of Biology, San Francisco State University, San Francisco, CA94132
| | - Julia Slezacek
- Konrad Lorenz Institute of Ethology, University of Veterinary Medicine, Vienna1160, Austria
| | - Alexander R. Gerson
- Department of Biology, University of Massachusetts, Amherst, MA01003-9297
- Organismic and Evolutionary Biology Graduate Program, University of Massachusetts, Amherst, MA01003-9297
| |
Collapse
|
15
|
Functional and Compositional Changes in the Fecal Microbiome of a Shorebird during Migratory Stopover. mSystems 2023; 8:e0112822. [PMID: 36786579 PMCID: PMC10134852 DOI: 10.1128/msystems.01128-22] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/15/2023] Open
Abstract
Shorebirds migrate long distances twice annually, which requires intense physiological and morphological adaptations, including the ability to rapidly gain weight via fat deposition at stopover locations. The role of the microbiome in weight gain in avian hosts is unresolved, but there is substantial evidence to support the hypothesis that the microbiome is involved with host weight from mammalian microbiome literature. Here, we collected 100 fecal samples of Ruddy Turnstones to investigate microbiome composition and function during stopover weight gain in Delaware Bay, USA. Using 16S rRNA sequencing on 90 of these samples and metatranscriptomic sequencing on 22, we show that taxonomic composition of the microbiome shifts during weight gain, as do functional aspects of the metatranscriptome. We identified 10 genes that are associated with weight class, and polyunsaturated fatty acid biosynthesis in the microbiota is significantly increasing as birds gain weight. Our results support that the microbiome is a dynamic feature of host biology that interacts with both the host and the environment and may be involved in the rapid weight gain of shorebirds. IMPORTANCE Many animals migrate long distances annually, and these journeys require intense physiological and morphological adaptations. One such adaptation in shorebirds is the ability to rapidly gain weight at stopover locations in the middle of their migrations. The role of the microbiome in weight gain in birds is unresolved but is likely to play a role. Here, we collected 100 fecal samples from Ruddy Turnstones to investigate microbiome composition (who is there) and function (what they are doing) during stopover weight gain in Delaware Bay, USA. Using multiple molecular methods, we show that both taxonomic composition and function of the microbiome shifts during weight gain. We identified 10 genes that are associated with weight class, and polyunsaturated fatty acid biosynthesis in the microbiota is significantly increasing as birds gain weight. Our results support that the microbiome is a dynamic feature of host biology that interacts with both the host and the environment and may be involved in the rapid weight gain of shorebirds.
Collapse
|
16
|
La Sorte FA, Lepczyk CA, Aronson MFJ. Light pollution enhances ground-level exposure to airborne toxic chemicals for nocturnally migrating passerines. GLOBAL CHANGE BIOLOGY 2023; 29:57-68. [PMID: 36281768 DOI: 10.1111/gcb.16443] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Revised: 09/14/2022] [Accepted: 09/21/2022] [Indexed: 06/16/2023]
Abstract
Anthropogenic activities generate different forms of environmental pollution, including artificial light at night (ALAN) and airborne toxic chemicals (ATCs). Nocturnally migrating birds are attracted to ALAN during migration and if ALAN occurs in unison with ATC, the chances of ground-level ATC contamination occurring at stopover sites could increase. Here, we document the relationship between ALAN and ATC within the contiguous United States based on 479 toxic chemicals from 15,743 releasing facilities. Using weekly diurnal estimates of relative abundance for 165 nocturnally migrating passerine (NMP) bird species, we assess how the species richness and relative abundance of NMP species are correlated with ALAN and ATC across the annual cycle. The concentration of ATC increased with increasing ALAN levels, except at the highest ALAN levels. The species richness of NMP species was positively correlated with ATC during the non-breeding season and migration, and negatively correlated during the breeding season. The relative abundance of NMP species was negatively correlated with ATC during the breeding and non-breeding seasons and the correlation did not differ from zero during migration. Through the disorienting influence of ALAN, our findings suggest large numbers of NMP species are being exposed to higher ATC concentrations at stopover sites. Outside of migration, large numbers of NMP species that winter along the US Gulf Coast are being exposed for an extended period of time to higher ATC concentrations. Initiatives designed to decrease ALAN during migration have the potential to reduce the acute and chronic effects of ATC contamination, lower the maternal transfer of toxic chemicals to eggs, and decrease the biologically mediated transport of toxic chemicals across regions. However, these initiatives will not benefit species that experience prolonged ATC exposure during the non-breeding season along the US Gulf Coast, a region that could be a significant source of ATC contamination for North American birds.
Collapse
Affiliation(s)
- Frank A La Sorte
- Cornell Lab of Ornithology, Cornell University, Ithaca, New York, USA
| | - Christopher A Lepczyk
- College of Forestry, Wildlife and Environment, Auburn University, Auburn, Alabama, USA
| | - Myla F J Aronson
- Department of Ecology, Evolution and Natural Resources, Rutgers, The State University of New Jersey, New Brunswick, New Jersey, USA
| |
Collapse
|
17
|
Sharma A, Tripathi V, Kumar V. Control and adaptability of seasonal changes in behavior and physiology of latitudinal avian migrants: Insights from laboratory studies in Palearctic-Indian migratory buntings. JOURNAL OF EXPERIMENTAL ZOOLOGY. PART A, ECOLOGICAL AND INTEGRATIVE PHYSIOLOGY 2022; 337:902-918. [PMID: 35677956 DOI: 10.1002/jez.2631] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Revised: 05/21/2022] [Accepted: 05/24/2022] [Indexed: 06/15/2023]
Abstract
Twice-a-year migrations, one in autumn and the other in spring, occur within a discrete time window with striking alterations in the behavior and physiology, as regulated by the interaction of endogenous rhythms with prevailing photoperiod. These seasonal voyages are not isolated events; rather, they are part of an overall annual itinerary and remain closely coupled to the other annual subcycles, called seasonal life history states (LHSs). The success of migration depends on appropriate timing of the initiation and termination of each LHS, for example, reproduction, molt, summer nonmigratory, preautumn migratory (fattening and weight gain), autumn migratory, winter nonmigratory (wnM), prevernal (spring) migratory (fattening and weight gain), and spring migratory LHSs. Migration-linked photoperiod-induced changes include the body fattening and weight gain, nocturnal Zugunruhe (migratory restlessness), elevated triglycerides and free fatty acids, triiodothyronine and corticosterone levels. Hypothalamic expression of the thyroid hormone-responsive dio2 and dio3, light-responsive per2, cry1, and adcyap1 and th (tyrosine hydroxylase, involved in dopamine biosynthesis) genes also show significant changes with transition from wnM to the vernal migratory LHS. Concurrent changes in the expression of genes associated with lipid metabolism and its transport also occur in the liver and flight muscles, respectively. Interestingly, there are clear differences in the behavioral and physiological phenotypes, and associated molecular changes, between the autumn and vernal migrations. In this review, we discuss seasonal changes in the behavior and physiology, and present molecular insights into the development of migratory phenotypes in latitudinal avian migrants, with special reference to Palearctic-Indian migratory buntings.
Collapse
Affiliation(s)
- Aakansha Sharma
- Department of Zoology, IndoUS Center in Chronobiology, University of Delhi, Delhi, India
| | - Vatsala Tripathi
- Department of Zoology, Dyal Singh College, University of Delhi, Delhi, India
| | - Vinod Kumar
- Department of Zoology, IndoUS Center in Chronobiology, University of Delhi, Delhi, India
| |
Collapse
|
18
|
Thie N, Corl A, Turjeman S, Efrat R, Kamath PL, Getz WM, Bowie RCK, Nathan R. Linking migration and microbiota at a major stopover site in a long-distance avian migrant. MOVEMENT ECOLOGY 2022; 10:46. [PMID: 36345043 PMCID: PMC9641824 DOI: 10.1186/s40462-022-00347-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Accepted: 10/19/2022] [Indexed: 06/16/2023]
Abstract
Migration is one of the most physical and energetically demanding periods in an individual bird's life. The composition of the bird's gut or cloacal microbiota can temporarily change during migration, likely due to differences in diets, habitats and other environmental conditions experienced en route. However, how physiological condition, migratory patterns, and other drivers interact to affect microbiota composition of migratory birds is still unclear. We sampled the cloacal bacterial microbiota of a long-distance migrant, the steppe buzzard (Buteo buteo vulpinus), at an important spring stopover bottleneck in Eilat, Israel, after crossing the ca. 1800 km Sahara Desert. We examined whether diversity and composition of the cloacal microbiota varied with body condition, sex, movement patterns (i.e., arrival time and migration distance), and survival. Early arrival to Eilat was associated with better body condition, longer post-Eilat spring migration distance, higher microbial α-diversity, and differences in microbiota composition. Specifically, early arrivals had higher abundance of the phylum Synergistota and five genera, including Jonquetella and Peptococcus, whereas the phylum Proteobacteria and genus Escherichia-Shigella (as well as three other genera) were more abundant in later arrivals. While the differences in α-diversity and Escherichia-Shigella seem to be mainly driven by body condition, other compositional differences associated with arrival date could be indicators of longer migratory journeys (e.g., pre-fueling at wintering grounds or stopover habitats along the way) or migratory performance. No significant differences were found between the microbiota of surviving and non-surviving individuals. Overall, our results indicate that variation in steppe buzzard microbiota is linked to variation in migratory patterns (i.e., capture/arrival date) and body condition, highlighting the importance of sampling the microbiota of GPS-tracked individuals on multiple occasions along their migration routes to gain a more detailed understanding of the links between migration, microbiota, and health in birds.
Collapse
Affiliation(s)
- Nikki Thie
- Movement Ecology Lab, The Hebrew University of Jerusalem, Jerusalem, Israel.
| | - Ammon Corl
- Museum of Vertebrate Zoology, University of California, Berkeley, Berkeley, CA, USA
| | - Sondra Turjeman
- Movement Ecology Lab, The Hebrew University of Jerusalem, Jerusalem, Israel
- Azrieli Faculty of Medicine, Bar-Ilan University, Safed, Israel
| | - Ron Efrat
- Movement Ecology Lab, The Hebrew University of Jerusalem, Jerusalem, Israel
- Mitrani Department of Desert Ecology, Jacob Blaustein Institutes for Desert Research, Ben-Gurion University of the Negev, Midreshet Ben-Gurion, Israel
| | - Pauline L Kamath
- School of Food and Agriculture, University of Maine, Orono, ME, USA
| | - Wayne M Getz
- Department of Environmental Science Policy and Management, University of California, Berkeley, Berkeley, CA, USA
- School of Mathematical Sciences, University of KwaZulu-Natal, Durban, South Africa
| | - Rauri C K Bowie
- Museum of Vertebrate Zoology, University of California, Berkeley, Berkeley, CA, USA
- Department of Integrative Biology, University of California, Berkeley, Berkeley, CA, USA
| | - Ran Nathan
- Movement Ecology Lab, The Hebrew University of Jerusalem, Jerusalem, Israel.
| |
Collapse
|
19
|
Yan R, Lu M, Zhang L, Yao J, Li S, Jiang Y. Effect of sex on the gut microbiota characteristics of passerine migratory birds. Front Microbiol 2022; 13:917373. [PMID: 36118231 PMCID: PMC9478027 DOI: 10.3389/fmicb.2022.917373] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Accepted: 08/05/2022] [Indexed: 11/23/2022] Open
Abstract
The gut microbiota, considered the “invisible organ” in the host animal, has been extensively studied recently. However, knowledge about the gut microbiota characteristics of passerine migratory birds during migration is limited. This study investigated the gut microbiota characteristics of three dominant migratory bird species (namely orange-flanked bluetail Tarsiger cyanurus, yellow-throated bunting Emberiza elegans, and black-faced bunting Emberiza spodocephala) in the same niche during spring migration and whether they were bird sex-specific. The compositions of gut microbiota species in these three migratory bird species and their male and female individuals were found to be similar. The main bacterial phyla were Proteobacteria, Firmicutes, Actinobacteria, and Bacteroidetes, and the main genera were Lactobacillus, Acinetobacter, Rickettsiella, and Mycobacterium; however, their relative abundance was different. Moreover, some potential pathogens and beneficial bacteria were found in all the three bird species. Alpha diversity analysis showed that in T. cyanurus, the richness and diversity of the gut microbiota were higher in male individuals than in female individuals, while the opposite was true for E. elegans and E. spodocephala. The alpha diversity analysis showed significant differences between male and female individuals of E. elegans (p < 0.05). The beta diversity analysis also revealed that the gut microbial community structure differed significantly between the male and female individuals of the three migratory bird species.
Collapse
Affiliation(s)
- Rongfei Yan
- College of Animal Science and Technology, College of Veterinary Medicine, Jilin Agricultural University, Changchun, China
| | - Meixia Lu
- School of Life Sciences, Jilin Agricultural University, Changchun, China
| | - Lishi Zhang
- College of Animal Science and Technology, College of Veterinary Medicine, Jilin Agricultural University, Changchun, China
| | - Jiyuan Yao
- College of Animal Science and Technology, College of Veterinary Medicine, Jilin Agricultural University, Changchun, China
| | - Shi Li
- College of Animal Science and Technology, College of Veterinary Medicine, Jilin Agricultural University, Changchun, China
| | - Yunlei Jiang
- College of Animal Science and Technology, College of Veterinary Medicine, Jilin Agricultural University, Changchun, China
- *Correspondence: Yunlei Jiang,
| |
Collapse
|
20
|
Elowe CR, Gerson AR. Migratory disposition alters lean mass dynamics and protein metabolism in migratory White-throated Sparrows ( Zonotrichia albicollis). Am J Physiol Regul Integr Comp Physiol 2022; 323:R98-R109. [PMID: 35503523 DOI: 10.1152/ajpregu.00295.2021] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Migratory birds seasonally increase fat stores and the capacity to use fat to fuel long-distance migratory flights. However, lean mass loss also occurs during migratory flights and, if adaptive, should exhibit seasonal changes in the capacity for protein metabolism. We conducted a photoperiod manipulation using captive White-throated Sparrows (Zonotrichia albicollis) to investigate seasonal changes in protein metabolism between the non-migratory "winter" condition and after exposure to a long-day "spring" photoperiod to stimulate the migratory condition. After photostimulation, birds in the migratory condition rapidly increased fat mass and activity of fat catabolism enzymes. Meanwhile, total lean mass did not change, but birds increased activity of protein catabolism enzymes and lost more water and lean mass during water-restricted metabolic testing. These data suggest that more protein may be catabolized during migratory seasons, corresponding with more water loss. Counter to predictions, birds in the migratory condition also showed an approximately 30-fold increase in muscle expression of sarcolipin, which binds to sarco/endoplasmic reticulum Ca2+ ATPase (SERCA) and uncouples Ca2+ transport from ATP hydrolysis. Our documented changes to protein catabolism enzymes and whole-animal lean mass dynamics may indicate protein breakdown or increased protein turnover is adaptive during migration in songbirds.
Collapse
Affiliation(s)
- Cory R Elowe
- Department of Biology, University of Massachusetts Amherst, Amherst, MA, United States.,Organismic and Evolutionary Biology Graduate Program, University of Massachusetts Amherst, Amherst, MA, United States
| | - Alexander R Gerson
- Department of Biology, University of Massachusetts Amherst, Amherst, MA, United States.,Organismic and Evolutionary Biology Graduate Program, University of Massachusetts Amherst, Amherst, MA, United States
| |
Collapse
|
21
|
Azar JF, Ferlat C, Landsmann C, Hingrat Y. Timing of Release Influence Breeding Success of Translocated Captive-Bred Migrant Asian Houbara Bustard. FRONTIERS IN CONSERVATION SCIENCE 2022. [DOI: 10.3389/fcosc.2022.815506] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
In conservation translocation, released animals should have comparable fitness to their wild counterparts to effectively contribute to the species demography. Captive-bred animals frequently exhibit lower fitness performances, which can often be attributed to an inadequate release strategy. Untimely release of migrant animals may interfere with key events such as their migration and breeding. In Kazakhstan and Uzbekistan, declining wild populations of Asian houbara (Chlamydotis macqueenii) are reinforced in their breeding grounds with captive-bred individuals. Using data from 6 years of monitoring, we compare eight breeding traits and the productivity of wild and captive-bred females released in two distinct seasons (autumn vs. spring) considering the effects of age and time in the season. Females released in the spring nest prior to their first migration, and females released in the autumn nest following their first migration. Our results highlight that captive-bred and wild females have similar breeding traits and productivity. Breeding probability, laying date, and egg volume varied, depending on the release season and female age. One-year-olds released in autumn have a significantly lower breeding probability compared to wild and spring-released females. However, 1-year-old females released in the spring nest later and lay smaller eggs than wild and autumn-released birds; effects which appear to be carried over with age. Age has a positive effect on breeding probability, egg volume, re-clutching probability and advancement of nesting date. These findings suggest a complex interplay of release timing with migration and breeding, resulting in short- and long-term effects on population demography, emphasizing its importance in conservation translocation.
Collapse
|
22
|
Handby T, Slezacek J, Lupi S, Colhoun K, Harrison XA, Bearhop S. Changes in Behaviour and Proxies of Physiology Suggest Individual Variation in the Building of Migratory Phenotypes in Preparation for Long-Distance Flights. Front Ecol Evol 2022. [DOI: 10.3389/fevo.2022.749534] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Long-distance migration in birds is a complex syndrome that involves high energy costs and, in some species, substantial physiological re-organisation. Such flexible migratory phenotypes are commonly associated with bird species flying non-stop across vast ecological barriers, where there are few opportunities to stop and refuel en route. Prior to making migratory flights, some species have been found to atrophy organs that are not required (e.g., digestive organs) and grow those associated with powering flight (pectora muscles and heart), presumably to optimise costs. However, most studies of this flexibility have required sacrificing study animals and this has limited our capacity to measure individual variation and its potential consequences. Here we investigate the behavioural and, indirectly, physiological adaptation of an arctic breeding long-distance migrant the light-bellied brent goose Branta bernicla hrota, during spring staging in southwest Iceland. We use a sequential sampling approach to record behavioural observations and conduct stable isotope analysis of faecal samples from uniquely marked individuals to assess protein catabolism. Individuals showed a three-phase fuel deposition process, with initial slow intake rates followed by hyperphagia and then a period of inactivity immediately prior to migratory departure (despite multiple days with favourable wind conditions). The C:N ratio and δ15N values in faeces were significantly linked to fat deposition during the latter stages and suggests catabolism (reorganisation of proteins) occurring prior to departure. Our results suggest a strategic delay in migratory departure to enable reorganisation into a flying phenotype and that the extent of this varies among individuals.
Collapse
|
23
|
Guglielmo CG, Morbey YE, Kennedy LV, Deakin JE, Brown JM, Beauchamp AT. A Scaling Approach to Understand the Dynamics of Fat and Lean Mass in Refueling Migrant Songbirds Measured by Quantitative Magnetic Resonance. Front Ecol Evol 2022. [DOI: 10.3389/fevo.2022.787623] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Fat contributes most of the energy for migratory flight of birds, whereas lean body tissues (muscles and organs) contribute amino acids and water to maintain metabolic and osmotic homeostasis. During refueling at stopover sites, both fat and lean mass are recovered, but the dynamics of this recovery are poorly understood. We used non-invasive quantitative magnetic resonance (QMR) analysis to measure fat and lean mass of > 3,500 individuals of 25 songbird species during six spring and three autumn migration seasons between 2009 and 2019 at Long Point, ON, Canada. We used allometric scaling analysis and linear mixed-effects modeling of body composition data at both the population level (single capture) and the individual level (recapture). In the population-level analysis, lean mass scaled hypoallometrically with body mass, such that for every 20% increase in body mass, lean mass was predicted to increase by 12.1% in spring and 12.8% in autumn. Fat scaled hyperallometrically with body mass, such that for every 20% increase in body mass, fat mass was predicted to increase by 144% in spring and 136% in autumn. At the individual level, these allometric relationships were more extreme. As a result of this differential allometry, at low body masses, lean and fat mass contributes nearly equally to changes in mass, but at high body mass fat deposition becomes progressively more dominant. Spring migrants deposited relatively more fat than autumn migrants, and in autumn juvenile birds tended to have greater lean mass than adults. Our findings show that lean mass deposition during refueling by songbirds is substantial, and in line with the losses of protein expected in flight. The process of fat and lean mass deposition is characterized by non-linear dynamics which are influenced by the current body composition, season, and, to a lesser extent, age. The patterns suggest that the need for dietary protein to rebuild lean mass will be greater when body mass is low, during autumn migration, and in juvenile birds.
Collapse
|
24
|
Schmaljohann H, Eikenaar C, Sapir N. Understanding the ecological and evolutionary function of stopover in migrating birds. Biol Rev Camb Philos Soc 2022; 97:1231-1252. [PMID: 35137518 DOI: 10.1111/brv.12839] [Citation(s) in RCA: 43] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Revised: 01/31/2022] [Accepted: 02/01/2022] [Indexed: 12/14/2022]
Abstract
Global movement patterns of migratory birds illustrate their fascinating physical and physiological abilities to cross continents and oceans. During their voyages, most birds land multiple times to make so-called 'stopovers'. Our current knowledge on the functions of stopover is mainly based on the proximate study of departure decisions. However, such studies are insufficient to gauge fully the ecological and evolutionary functions of stopover. If we study how a focal trait, e.g. changes in energy stores, affects the decision to depart from a stopover without considering the trait(s) that actually caused the bird to land, e.g. unfavourable environmental conditions for flight, we misinterpret the function of the stopover. It is thus important to realise and acknowledge that stopovers have many different functions, and that not every migrant has the same (set of) reasons to stop-over. Additionally, we may obtain contradictory results because the significance of different traits to a migrant is context dependent. For instance, late spring migrants may be more prone to risk-taking and depart from a stopover with lower energy stores than early spring migrants. Thus, we neglect that departure decisions are subject to selection to minimise immediate (mortality risk) and/or delayed (low future reproductive output) fitness costs. To alleviate these issues, we first define stopover as an interruption of migratory endurance flight to minimise immediate and/or delayed fitness costs. Second, we review all probable functions of stopover, which include accumulating energy, various forms of physiological recovery and avoiding adverse environmental conditions for flight, and list potential other functions that are less well studied, such as minimising predation, recovery from physical exhaustion and spatiotemporal adjustments to migration. Third, derived from these aspects, we argue for a paradigm shift in stopover ecology research. This includes focusing on why an individual interrupts its migratory flight, which is more likely to identify the individual-specific function(s) of the stopover correctly than departure-decision studies. Moreover, we highlight that the selective forces acting on stopover decisions are context dependent and are expected to differ between, e.g. K-/r-selected species, the sexes and migration strategies. For example, all else being equal, r-selected species (low survival rate, high reproductive rate) should have a stronger urge to continue the migratory endurance flight or resume migration from a stopover because the potential increase in immediate fitness costs suffered from a flight is offset by the expected higher reproductive success in the subsequent breeding season. Finally, we propose to focus less on proximate mechanisms controlling landing and departure decisions, and more on ultimate mechanisms to identify the selective forces shaping stopover decisions. Our ideas are not limited to birds but can be applied to any migratory species. Our revised definition of stopover and the proposed paradigm shift has the potential to stimulate a fruitful discussion towards a better evolutionary ecological understanding of the functions of stopover. Furthermore, identifying the functions of stopover will support targeted measures to conserve and restore the functionality of stopover sites threatened by anthropogenic environmental changes. This is especially important for long-distance migrants, which currently are in alarming decline.
Collapse
Affiliation(s)
- Heiko Schmaljohann
- Institute for Biology and Environmental Sciences (IBU), Carl von Ossietzky University of Oldenburg, Carl-von-Ossietzky-Straße 9-11, Oldenburg, 26129, Germany.,Institute of Avian Research, An der Vogelwarte 21, Wilhelmshaven, 26386, Germany
| | - Cas Eikenaar
- Institute of Avian Research, An der Vogelwarte 21, Wilhelmshaven, 26386, Germany
| | - Nir Sapir
- Department of Evolutionary and Environmental Biology and the Institute of Evolution, University of Haifa, 199 Aba Khoushy Ave, Haifa, 3498838, Israel
| |
Collapse
|
25
|
Frawley AE, DeMoranville KJ, Carbeck KM, Trost L, Bryła A, Działo M, Sadowska ET, Bauchinger U, Pierce BJ, McWilliams SR. Flight training and dietary antioxidants have mixed effects on the oxidative status of multiple tissues in a female migratory songbird. J Exp Biol 2021; 224:272431. [PMID: 34632505 DOI: 10.1242/jeb.243158] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2021] [Accepted: 10/06/2021] [Indexed: 02/05/2023]
Abstract
Birds, like other vertebrates, rely on a robust antioxidant system to protect themselves against oxidative imbalance caused by energy-intensive activities such as flying. Such oxidative challenges may be especially acute for females during spring migration, as they must pay the oxidative costs of flight while preparing for reproduction; however, little previous work has examined how the antioxidant system of female spring migrants responds to dietary antioxidants and the oxidative challenges of regular flying. We fed two diets to female European starlings, one supplemented with a dietary antioxidant and one without, and then flew them daily in a windtunnel for 2 weeks during the autumn and spring migration periods. We measured the activity of enzymatic antioxidants (glutathione peroxidase, superoxide dismutase and catalase), non-enzymatic antioxidant capacity (ORAC) and markers of oxidative damage (protein carbonyls and lipid hydroperoxides) in four tissues: pectoralis, leg muscle, liver and heart. Dietary antioxidants affected enzymatic antioxidant activity and lipid damage in the heart, non-enzymatic antioxidant capacity in the pectoralis, and protein damage in leg muscle. In general, birds not fed the antioxidant supplement appeared to incur increased oxidative damage while upregulating non-enzymatic and enzymatic antioxidant activity, though these effects were strongly tissue specific. We also found trends for diet×training interactions for enzymatic antioxidant activity in the heart and leg muscle. Flight training may condition the antioxidant system of females to dynamically respond to oxidative challenges, and females during spring migration may shift antioxidant allocation to reduce oxidative damage.
Collapse
Affiliation(s)
- Abigail E Frawley
- Department of Natural Resources Science, University of Rhode Island, Kingston, RI 02881, USA
| | - Kristen J DeMoranville
- Department of Natural Resources Science, University of Rhode Island, Kingston, RI 02881, USA
| | - Katherine M Carbeck
- Department of Forest and Conservation Sciences, University of British Columbia, Vancouver, BC, Canada, V6T1Z4
| | - Lisa Trost
- Department for Behavioural Neurobiology, Max Planck Institute for Ornithology, D-82319 Seewiesen, Germany
| | - Amadeusz Bryła
- Institute of Environmental Sciences, Jagiellonian University, 30-387 Kraków, Poland
| | - Maciej Działo
- Institute of Environmental Sciences, Jagiellonian University, 30-387 Kraków, Poland
| | - Edyta T Sadowska
- Institute of Environmental Sciences, Jagiellonian University, 30-387 Kraków, Poland
| | - Ulf Bauchinger
- Institute of Environmental Sciences, Jagiellonian University, 30-387 Kraków, Poland.,Nencki Institute of Experimental Biology PAS, 02-093 Warszawa, Poland
| | - Barbara J Pierce
- Department of Biology, Sacred Heart University, Fairfield, CT 06825, USA
| | - Scott R McWilliams
- Department of Natural Resources Science, University of Rhode Island, Kingston, RI 02881, USA
| |
Collapse
|
26
|
Le Pogam A, O’Connor RS, Love OP, Drolet J, Régimbald L, Roy G, Laplante MP, Berteaux D, Tam A, Vézina F. Snow Buntings Maintain Winter-Level Cold Endurance While Migrating to the High Arctic. Front Ecol Evol 2021. [DOI: 10.3389/fevo.2021.724876] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Arctic breeding songbirds migrate early in the spring and can face winter environments requiring cold endurance throughout their journey. One such species, the snow bunting (Plectrophenax nivalis), is known for its significant thermogenic capacity. Empirical studies suggest that buntings can indeed maintain winter cold acclimatization into the migratory and breeding phenotypes when kept captive on their wintering grounds. This capacity could be advantageous not only for migrating in a cold environment, but also for facing unpredictable Arctic weather on arrival and during preparation for breeding. However, migration also typically leads to declines in the sizes of several body components linked to metabolic performance. As such, buntings could also experience some loss of cold endurance as they migrate. Here, we aimed to determine whether free-living snow buntings maintain a cold acclimatized phenotype during spring migration. Using a multi-year dataset, we compared body composition (body mass, fat stores, and pectoralis muscle thickness), oxygen carrying capacity (hematocrit) and metabolic performance (thermogenic capacity – Msum and maintenance energy expenditure – BMR) of birds captured on their wintering grounds (January–February, Rimouski, QC, 48°N) and during pre-breeding (April–May) in the Arctic (Alert, NU, 82°). Our results show that body mass, fat stores and Msum were similar between the two stages, while hematocrit and pectoralis muscle thickness were lower in pre-breeding birds than in wintering individuals. These results suggest that although tissue degradation during migration may affect flight muscle size, buntings are able to maintain cold endurance (i.e., Msum) up to their Arctic breeding grounds. However, BMR was higher during pre-breeding than during winter, suggesting higher maintenance costs in the Arctic.
Collapse
|
27
|
Piersma T, Gill RE, Ruthrauff DR. Physiomorphic Transformation in Extreme Endurance Migrants: Revisiting the Case of Bar-Tailed Godwits Preparing for Trans-Pacific Flights. Front Ecol Evol 2021. [DOI: 10.3389/fevo.2021.685764] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
In a 1998 paper entitled “Guts don’t fly: small digestive organs in obese bar-tailed godwits,” Piersma and Gill (1998) showed that the digestive organs were tiny and the fat loads huge in individuals suspected of embarking on a non-stop flight from Alaska to New Zealand. It was suggested that prior to migratory departure, these godwits would shrink the digestive organs used during fuel deposition and boost the size and capacity of exercise organs to optimize flight performance. Here we document the verity of the proposed physiomorphic changes by comparing organ sizes and body composition of bar-tailed godwits Limosa lapponica baueri collected in modesty midway during their fueling period (mid-September; fueling, n = 7) with the previously published data for godwits that had just departed on their trans-Pacific flight (October 19; flying, n = 9). Mean total body masses for the two groups were nearly identical, but nearly half of the body mass of fueling godwits consisted of water, while fat constituted over half of total body mass of flying godwits. The two groups also differed in their fat-free mass components. The heart and flight muscles were heavier in fueling godwits, but these body components constituted a relatively greater fraction of the fat-free mass in flying godwits. In contrast, organs related to digestion and homeostasis were heavier in fueling godwits, and most of these organ groups were also relatively larger in fueling godwits compared to flying godwits. These results reflect the functional importance of organ and muscle groups related to energy acquisition in fueling godwits and the consequences of flight-related exertion in flying godwits. The extreme physiomorphic changes apparently occurred over a short time window (≤1 month). We conclude that the inferences made on the basis of the 1998 paper were correct. The cues and stimuli which moderate these changes remain to be studied.
Collapse
|
28
|
Pavlik M, Williams TD, Green DJ. Female Songbirds Can Initiate the Transition from a Migratory to a Reproductive Physiology during Spring Migration. Physiol Biochem Zool 2021; 94:188-198. [PMID: 33852373 DOI: 10.1086/714218] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
AbstractThe high energetic costs of both migration and reproduction and the physiological changes to support these costs suggest that these life-history stages should be compartmentalized with little overlap between stages. In contrast, previous studies have shown that male birds can initiate reproductive development during migration before arrival on the breeding grounds with increases in plasma testosterone levels and testis size. However, sex differences in seasonal gonadal function are now recognized as profound, and few studies to date have shown that females can initiate the costly, but critical, estrogen-dependent final stages of gonadal maturation and changes in liver function (yolk precursor synthesis, vitellogenesis) while on migration. Here, we show that female yellow warblers (Setophaga petechia) arrive on the breeding grounds with elevated plasma triglyceride levels compared with males. Some females had plasma triglyceride levels of 5-7 mmol L-1, suggesting that they arrived in a relatively advanced stage of yolk precursor production. Furthermore, we show that females that arrived with higher plasma triglyceride levels took less time to initiate their first clutch. Adaptive plasticity in the timing of the transition from a migratory to a reproductive physiology might help migrant birds buffer against a mismatch between timing of arrival and conditions on the breeding grounds and allow them to advance timing of breeding to maximize breeding productivity.
Collapse
|
29
|
Hao Y, Zheng S, Wang P, Sun H, Matsiko J, Li W, Li Y, Zhang Q, Jiang G. Ecotoxicology of persistent organic pollutants in birds. ENVIRONMENTAL SCIENCE. PROCESSES & IMPACTS 2021; 23:400-416. [PMID: 33660728 DOI: 10.1039/d0em00451k] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
Considering the explosive growth of the list of persistent organic pollutants (POPs), the scientific community is combatting increasing challenges to protect humans and wildlife from the potentially negative consequences of POPs. Herein, we characterize the main aspects and progress in the ecotoxicology of POPs in avian species since 2000. The majority of previous efforts has revealed the global occurrence of high levels of various POPs in birds. Laboratory research and epidemiological studies imply that POPs exert a broad-spectrum of side-effects on birds by interfering with their endocrine, immune and neural system, reproduction, and development, and growth. However, inconsistent results suggest that the potential effects of POP exposure on the physiological parameters in birds are multifactorial, involving a multitude of biological processes, species-specific differences, gender, age and types of compounds. Great progress has been achieved in identifying the species-specific sensitivity to dioxin-like compounds, which is attributed to different amino acid residues in the ligand-binding domain of the aryl hydrocarbon receptor. Besides the conventional concentration additivity, several studies have suggested that different classes of POPs possibly act synergistically or antagonistically based on their concentration. However, ecotoxicology information is still recorded in a scattered and inadequate manner, including lack of enough avian species, limited number of POPs investigated, and insufficient geographical representation, and thus our understanding of the effects of POPs on birds remains rudimentary, although mechanistic understanding of their mode of action is progressing. Particularly, research on what happens to wild bird populations and their ecosystems under POP stress is still unavailable. Thus, our aim is to predict and trace the effects POPs at different biological organization levels, especially from the molecular, cellular and individual levels to the population, community and ecosystem levels because of the limited and scattered information, as mentioned above.
Collapse
Affiliation(s)
- Yanfen Hao
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China.
| | | | | | | | | | | | | | | | | |
Collapse
|
30
|
Griego M, DeSimone J, Ramirez MG, Gerson AR. Aminopeptidase-N modulation assists lean mass anabolism during refuelling in the white-throated sparrow. Proc Biol Sci 2021; 288:20202348. [PMID: 33468011 DOI: 10.1098/rspb.2020.2348] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Songbirds meet the extreme metabolic demands of migration by burning both stored fat and protein. However, catabolizing these endogenous tissues for energy leads to organ atrophy, and reductions in gastrointestinal tissue can be as great as 50% of the pre-flight mass. Remarkably, during stopover refuelling birds quickly regain digestive mass and performance. Aminopeptidase-N (APN) is a brush-border enzyme responsible for late-stage protein digestion and may critically assist tissue reconstruction during the stopover, thus compensating for reduced gut size. We hypothesized that birds recovering from a fast would differentially upregulate APN activity relative to disaccharidases to rapidly process and assimilate dietary protein into lean mass. We fasted 23 wild-caught migratory white-throated sparrows (Zonotrichia albicollis) for 48 h to mimic mass reductions experienced during migratory flight and measured intestinal APN activity before the fast, immediately after the fast, and during recovery at 24 h and 48 h post-fast. Total fat mass, lean mass and basal metabolic rate were measured daily. We show that fasted birds maintain APN activity through the fast, despite a 30% reduction in intestine mass, but during refuelling, APN activity increases nearly twofold over pre-fasted individuals. This suggests that dynamically regulating APN may be necessary for rapid protein reconstruction during the stopover.
Collapse
Affiliation(s)
- Michael Griego
- Organismic and Evolutionary Biology, University of Massachusetts Amherst, Amherst, MA 01003, USA.,Department of Biology, University of Massachusetts Amherst, Amherst, MA 01003, USA
| | - Joely DeSimone
- Department of Biology, University of Massachusetts Amherst, Amherst, MA 01003, USA
| | - Mariamar Gutierrez Ramirez
- Organismic and Evolutionary Biology, University of Massachusetts Amherst, Amherst, MA 01003, USA.,Department of Biology, University of Massachusetts Amherst, Amherst, MA 01003, USA
| | - Alexander R Gerson
- Organismic and Evolutionary Biology, University of Massachusetts Amherst, Amherst, MA 01003, USA.,Department of Biology, University of Massachusetts Amherst, Amherst, MA 01003, USA
| |
Collapse
|
31
|
Gerson AR, DeSimone JG, Black EC, Dick MF, Groom DJ. Metabolic reduction after long-duration flight is not related to fat-free mass loss or flight duration in a migratory passerine. J Exp Biol 2020; 223:jeb215384. [PMID: 32778563 DOI: 10.1242/jeb.215384] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2019] [Accepted: 07/31/2020] [Indexed: 01/19/2023]
Abstract
Migratory birds catabolize large quantities of protein during long flights, resulting in dramatic reductions in organ and muscle mass. One of the many hypotheses to explain this phenomenon is that decrease in lean mass is associated with reduced resting metabolism, saving energy after flight during refueling. However, the relationship between lean body mass and resting metabolic rate remains unclear. Furthermore, the coupling of lean mass with resting metabolic rate and with peak metabolic rate before and after long-duration flight have not previously been explored. We flew migratory yellow-rumped warblers (Setophaga coronata) in a wind tunnel under one of two humidity regimes to manipulate the rate of lean mass loss in flight, decoupling flight duration from total lean mass loss. Before and after long-duration flights, we measured resting and peak metabolism, and also measured fat mass and lean body mass using quantitative magnetic resonance. Flight duration ranged from 28 min to 600 min, and birds flying under dehydrating conditions lost more fat-free mass than those flying under humid conditions. After flight, there was a 14% reduction in resting metabolism but no change in peak metabolism. Interestingly, the reduction in resting metabolism was unrelated to flight duration or to change in fat-free body mass, indicating that protein metabolism in flight is unlikely to have evolved as an energy-saving measure to aid stopover refueling, but metabolic reduction itself is likely to be beneficial to migratory birds arriving in novel habitats.
Collapse
Affiliation(s)
- Alexander R Gerson
- Department of Biology, University of Massachusetts Amherst, Amherst, MA 01003, USA
| | - Joely G DeSimone
- Department of Biology, University of Massachusetts Amherst, Amherst, MA 01003, USA
| | - Elizabeth C Black
- Department of Biology, University of Massachusetts Amherst, Amherst, MA 01003, USA
| | - Morag F Dick
- Advanced Facility for Avian Research, Department of Biology, University of Western Ontario, London, ON, Canada, N6A 5B7
| | - Derrick J Groom
- Department of Biology, University of Massachusetts Amherst, Amherst, MA 01003, USA
| |
Collapse
|
32
|
DeSimone JG, Ramirez MG, Elowe CR, Griego MS, Breuner CW, Gerson AR. Developing a Stopover-CORT hypothesis: Corticosterone predicts body composition and refueling rate in Gray Catbirds during migratory stopover. Horm Behav 2020; 124:104776. [PMID: 32439349 DOI: 10.1016/j.yhbeh.2020.104776] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/07/2020] [Revised: 05/13/2020] [Accepted: 05/14/2020] [Indexed: 11/21/2022]
Abstract
Migratory flight is energetically challenging, requiring alternating phases of fuel catabolism and fuel accumulation, accompanied by dramatic changes in body composition and behavior. Baseline corticosterone (CORT; the primary glucocorticoid in birds) is thought to underlie transitions between fuel catabolism during flight, fuel deposition during stopover, and the initiation of migratory flight. However, studies of CORT on stopover physiology and behavior remain disparate efforts, lacking the cohesion of a general hypothesis. Here we develop a Stopover-CORT hypothesis formalizing the relationships among CORT, body condition, and refueling rate in migratory birds. First we expect body mass to increase with triglycerides (TRIG) as birds refuel. Second, based on a synthesis of previous literature, we predict a U-shaped CORT curve over the course of stopover, postulating that elevated CORT at arrival is reactive, responding to poor body condition, while CORT elevation before departure is preparative, driving changes in behavior and body condition. We tested these predictions in Gray Catbirds (Dumetella carolinensis) following a trans-Gulf flight during spring migration. We found baseline CORT was negatively correlated with body condition and TRIG, corresponding with our predictions for arriving and refueling-but not departing-birds. It is possible catbirds undergo regional habitat translocations rather than complete the entire stopover phase at our study site. We propose the Stopover-CORT hypothesis as a useful predictive framework for future studies of the mechanistic basis of stopover physiology. By studying the regulation of stopover refueling and departure, we may better understand physiological limitations to overall migration rate and improve assessments of habitat quality for refueling birds.
Collapse
Affiliation(s)
- Joely G DeSimone
- Organismal Biology, Ecology, and Evolution, University of Montana, Missoula, MT 59812, USA.
| | | | - Cory R Elowe
- Organismic and Evolutionary Biology, University of Massachusetts Amherst, Amherst, MA 01003, USA
| | - Michael S Griego
- Organismic and Evolutionary Biology, University of Massachusetts Amherst, Amherst, MA 01003, USA
| | - Creagh W Breuner
- Organismal Biology, Ecology, and Evolution, University of Montana, Missoula, MT 59812, USA
| | - Alexander R Gerson
- Organismic and Evolutionary Biology, University of Massachusetts Amherst, Amherst, MA 01003, USA; Department of Biology, University of Massachusetts Amherst, Amherst, MA 01003, USA
| |
Collapse
|
33
|
|
34
|
Groom DJE, Deakin JE, Lauzau MC, Gerson AR. The role of humidity and metabolic status on lean mass catabolism in migratory Swainson's thrushes (Catharus ustulatus). Proc Biol Sci 2019; 286:20190859. [PMID: 31455196 DOI: 10.1098/rspb.2019.0859] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Migratory birds use protein as a fuel source during flight, but the mechanisms and benefits of protein catabolism during migration are poorly understood. The tissue-specific turnover rate hypothesis proposes that lean mass loss depends solely on the constitutive rate of protein degradation for a given tissue, and is therefore independent of metabolic rate or environmental stimuli. However, it has been demonstrated that environmental stressors such as humidity affect the rate of lean mass catabolism during flight, a finding that seemingly contradicts the tissue-specific turnover rate hypothesis. In order to resolve this, we placed migratory Swainson's thrushes in either high (HEWL) or low (LEWL) evaporative water loss conditions at rest and while undergoing simulated migratory flight at 8 m s-1 in a wind tunnel to test the impact of both environmental stressors and metabolic rate on the rate of protein breakdown. The total quantity and rate of lean mass loss was not different between flight and rest birds, but was affected by humidity condition, with HEWL losing significantly more lean mass. These results show that the rate of protein breakdown in migratory birds is independent of metabolic rate, but it can be augmented in response to environmental stressors.
Collapse
Affiliation(s)
- Derrick J E Groom
- Department of Biology, University of Massachusetts Amherst, Amherst, MA 01003, USA
| | - Jessica E Deakin
- Department of Biology, Western University, London, Ontario, Canada N6A 5B7
| | - M Collette Lauzau
- Department of Biology, University of Massachusetts Amherst, Amherst, MA 01003, USA
| | - Alexander R Gerson
- Department of Biology, University of Massachusetts Amherst, Amherst, MA 01003, USA
| |
Collapse
|
35
|
Chan Y, Tibbitts TL, Lok T, Hassell CJ, Peng H, Ma Z, Zhang Z, Piersma T. Filling knowledge gaps in a threatened shorebird flyway through satellite tracking. J Appl Ecol 2019. [DOI: 10.1111/1365-2664.13474] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Ying‐Chi Chan
- Conservation Ecology Group, Groningen Institute for Evolutionary Life Sciences (GELIFES) University of Groningen Groningen the Netherlands
- Department of Coastal Systems NIOZ Royal Netherlands Institute for Sea Research, Utrecht University Den Burg the Netherlands
| | | | - Tamar Lok
- Department of Coastal Systems NIOZ Royal Netherlands Institute for Sea Research, Utrecht University Den Burg the Netherlands
| | | | - He‐Bo Peng
- Conservation Ecology Group, Groningen Institute for Evolutionary Life Sciences (GELIFES) University of Groningen Groningen the Netherlands
- Department of Coastal Systems NIOZ Royal Netherlands Institute for Sea Research, Utrecht University Den Burg the Netherlands
- Ministry of Education Key Laboratory for Biodiversity Science and Ecological Engineering Coastal Ecosystems Research Station of the Yangtze River Estuary, Fudan University Shanghai China
| | - Zhijun Ma
- Ministry of Education Key Laboratory for Biodiversity Science and Ecological Engineering Coastal Ecosystems Research Station of the Yangtze River Estuary, Fudan University Shanghai China
| | - Zhengwang Zhang
- Ministry of Education Key Laboratory for Biodiversity Science and Ecological Engineering Beijing Normal University Beijing China
| | - Theunis Piersma
- Conservation Ecology Group, Groningen Institute for Evolutionary Life Sciences (GELIFES) University of Groningen Groningen the Netherlands
- Department of Coastal Systems NIOZ Royal Netherlands Institute for Sea Research, Utrecht University Den Burg the Netherlands
- Global Flyway Network Broome WA Australia
| |
Collapse
|
36
|
Zhang S, Ma Z, Choi C, Peng H, Melville DS, Zhao T, Bai Q, Liu W, Chan Y, van Gils JA, Piersma T. Morphological and digestive adjustments buffer performance: How staging shorebirds cope with severe food declines. Ecol Evol 2019; 9:3868-3878. [PMID: 31015972 PMCID: PMC6468082 DOI: 10.1002/ece3.5013] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2018] [Revised: 01/29/2019] [Accepted: 02/04/2019] [Indexed: 01/07/2023] Open
Abstract
Organisms cope with environmental stressors by behavioral, morphological, and physiological adjustments. Documentation of such adjustments in the wild provides information on the response space in nature and the extent to which behavioral and bodily adjustments lead to appropriate performance effects. Here we studied the morphological and digestive adjustments in a staging population of migrating Great Knots Calidris tenuirostris in response to stark declines in food abundance and quality at the Yalu Jiang estuarine wetland (northern Yellow Sea, China). At Yalu Jiang, from 2011 to 2017 the densities of intertidal mollusks, the food of Great Knots, declined 15-fold. The staple prey of Great Knots shifted from the relatively soft-shelled bivalve Potamocorbula laevis in 2011-2012 to harder-shelled mollusks such as the gastropod Umbonium thomasi in 2016-2017. The crushing of the mollusks in the gizzard would require a threefold to 11-fold increase in break force. This was partially resolved by a 15% increase in gizzard mass which would yield a 32% increase in shell processing capacity. The consumption of harder-shelled mollusks was also accompanied by reliance on regurgitates to excrete unbreakable parts of prey, rather than the usual intestinal voidance of shell fragments as feces. Despite the changes in digestive morphology and strategy, there was still an 85% reduction in intake rate in 2016-2017 compared with 2011-2012. With these morphological and digestive adjustments, the Great Knots remaining faithful to the staging site to a certain extent buffered the disadvantageous effects of dramatic food declines. However, compensation was not complete. Locally, birds will have had to extend foraging time and use a greater daily foraging range. This study offers a perspective on how individual animals may mitigate the effects of environmental change by morphological and digestive strategies and the limits to the response space of long-distance migrating shorebirds in the wild.
Collapse
Affiliation(s)
- Shou‐Dong Zhang
- Ministry of Education Key Laboratory for Biodiversity Science and Ecological Engineering, Coastal Ecosystems Research Station of the Yangtze River Estuary, Shanghai Institute of Eco‐Chongming (SIEC)Fudan UniversityShanghaiChina
- Department of Coastal Systems, NIOZ Royal Netherlands Institute for Sea Research and Utrecht UniversityTexelThe Netherlands
- Rudi Drent Chair in Global Flyway Ecology, Conservation Ecology Group, Groningen Institute for Evolutionary Life Sciences (GELIFES)University of GroningenGroningenThe Netherlands
| | - Zhijun Ma
- Ministry of Education Key Laboratory for Biodiversity Science and Ecological Engineering, Coastal Ecosystems Research Station of the Yangtze River Estuary, Shanghai Institute of Eco‐Chongming (SIEC)Fudan UniversityShanghaiChina
| | - Chi‐Yeung Choi
- School of Biological SciencesUniversity of QueenslandBrisbaneQueenslandAustralia
- Centre for Integrative Ecology, School of Life & Environmental SciencesDeakin UniversityGeelongVictoriaAustralia
- School of Environmental Science and EngineeringSouthern University of Science and TechnologyShenzhenChina
| | - He‐Bo Peng
- Department of Coastal Systems, NIOZ Royal Netherlands Institute for Sea Research and Utrecht UniversityTexelThe Netherlands
- Rudi Drent Chair in Global Flyway Ecology, Conservation Ecology Group, Groningen Institute for Evolutionary Life Sciences (GELIFES)University of GroningenGroningenThe Netherlands
| | | | - Tian‐Tian Zhao
- Ministry of Education Key Laboratory for Biodiversity Science and Ecological Engineering, Coastal Ecosystems Research Station of the Yangtze River Estuary, Shanghai Institute of Eco‐Chongming (SIEC)Fudan UniversityShanghaiChina
| | | | - Wen‐Liang Liu
- School of Ecological and Environmental SciencesEast China Normal UniversityShanghaiChina
| | - Ying‐Chi Chan
- Department of Coastal Systems, NIOZ Royal Netherlands Institute for Sea Research and Utrecht UniversityTexelThe Netherlands
- Rudi Drent Chair in Global Flyway Ecology, Conservation Ecology Group, Groningen Institute for Evolutionary Life Sciences (GELIFES)University of GroningenGroningenThe Netherlands
| | - Jan A. van Gils
- Department of Coastal Systems, NIOZ Royal Netherlands Institute for Sea Research and Utrecht UniversityTexelThe Netherlands
| | - Theunis Piersma
- Department of Coastal Systems, NIOZ Royal Netherlands Institute for Sea Research and Utrecht UniversityTexelThe Netherlands
- Rudi Drent Chair in Global Flyway Ecology, Conservation Ecology Group, Groningen Institute for Evolutionary Life Sciences (GELIFES)University of GroningenGroningenThe Netherlands
| |
Collapse
|
37
|
Ewbank AC, Strefezzi RDF, Sacristán C, Kolesnikovas CKM, Martins A, Mayorga LFSP, Vanstreels RET, Catão-Dias JL. Comparative morphometric evaluation of hepatic hemosiderosis in wild Magellanic penguins (Spheniscus magellanicus) infected with different Plasmodium spp. subgenera. ACTA ACUST UNITED AC 2019; 28:68-79. [PMID: 30810664 DOI: 10.1590/s1984-296120180092] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2018] [Accepted: 11/12/2018] [Indexed: 11/22/2022]
Abstract
Avian malaria is one of the most important diseases of captive penguins. We employed morphometric techniques to evaluate hepatic hemosiderosis in rehabilitating wild Magellanic penguins (Spheniscus magellanicus) that were negative (n = 9) or naturally infected by different subgenera of Plasmodium spp. (n = 24), according with: Plasmodium subgenera (Haemamoeba, Huffia, Other lineages, and Unidentified lineages), severity of Plasmodium histopathological lesions, and concurrent diseases, age class (juvenile or adult plumage), sex (male, female or not determined), body score (emaciated, thin, good, excellent, not available), molt, presence or absence of oil contamination upon admission, iron supplementation, and rehabilitation center. The percentage of the area occupied by hemosiderin was called 'Index of Hepatic Hemosiderosis (IHH)'. Plasmodium-positive females presented significantly higher IHH values (17.53 ± 12.95%) than males (7.20 ± 4.25%; p = 0.041). We observed higher levels of congestion (p = 0.0182) and pneumonia (p = 0.0250) severity between Unidentified lineages vs. Huffia. We believe that the hepatic hemosiderosis observed in this study was multifactorial, the result of pathological processes caused by malaria, molting, hemoglobin and myoglobin catabolism during migration, anemia, concomitant diseases, and iron supplementation, all possibly potentiated by decreased liver mass. Further studies are needed to clarify the mechanisms of these hypotheses.
Collapse
Affiliation(s)
- Ana Carolina Ewbank
- Laboratório de Patologia Comparada de Animais Selvagens, Departamento de Patologia, Universidade de São Paulo - USP, São Paulo, SP, Brasil
| | - Ricardo de Francisco Strefezzi
- Laboratório de Oncologia Comparada e Translacional, Faculdade de Zootecnia e Engenharia de Alimentos, Universidade de São Paulo - USP, Pirassununga, SP, Brasil
| | - Carlos Sacristán
- Laboratório de Patologia Comparada de Animais Selvagens, Departamento de Patologia, Universidade de São Paulo - USP, São Paulo, SP, Brasil
| | | | - Aryse Martins
- Centro de Recuperação de Animais Marinhos - CRAM, Museu Oceanográfico Professor Eliézer de Carvalho Rios, Universidade Federal do Rio Grande - FURG, Rio Grande, RS, Brasil
| | | | - Ralph Eric Thijl Vanstreels
- Laboratório de Patologia Comparada de Animais Selvagens, Departamento de Patologia, Universidade de São Paulo - USP, São Paulo, SP, Brasil
| | - José Luiz Catão-Dias
- Laboratório de Patologia Comparada de Animais Selvagens, Departamento de Patologia, Universidade de São Paulo - USP, São Paulo, SP, Brasil
| |
Collapse
|
38
|
Chaves FQ, Neri Júnior NA, Rodrigues RC, Araujo HF, Guerra RR. Morphometry of pectoral muscle fiber and intestinal villi of Calidris pusilla during the wintering period in Brazil. PESQUISA VETERINÁRIA BRASILEIRA 2018. [DOI: 10.1590/1678-5150-pvb-5175] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
ABSTRACT: Migration is an event observed in several animals, such as shorebirds moving between the northern and southern hemispheres, during breeding and wintering intervals. Morphophysiological adaptations are necessary to allow the maintenance of migratory cycles and, therefore, studies with this focus can help clarify biological aspects related to migration. We analyzed the morphology variation in pectoral muscles and intestinal mucosa of Calidris pusilla, during different phases of the wintering period on the coast of Brazil. Fragments of pectoral muscles and duodenal were collected, fixed and processed for histology according to standard procedure, from specimens captured in a locality on the Brazilian coast. Modifications were found in the measured parameters among the three phases of wintering, arrival in Brazil (October, mid-period), January and departure to the Northern Hemisphere - May. The registered structural dynamism characterizes the growth of flight musculature and intestinal changes related to nutrition. Such changes occur temporarily due to the activities of preparation and migration between the northern and southern hemispheres.
Collapse
Affiliation(s)
| | | | - Roberta C. Rodrigues
- Universidade Federal da Paraíba, Brazil; Faculdade Rebouças de Campina Grande, Brazil
| | | | - Ricardo R. Guerra
- Universidade Federal da Paraíba, Brazil; Universidade Federal da Paraíba, Brazil
| |
Collapse
|
39
|
Voelkl B, Fritz J. Relation between travel strategy and social organization of migrating birds with special consideration of formation flight in the northern bald ibis. Philos Trans R Soc Lond B Biol Sci 2018; 372:rstb.2016.0235. [PMID: 28673913 DOI: 10.1098/rstb.2016.0235] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/14/2017] [Indexed: 11/12/2022] Open
Abstract
A considerable proportion of the world's bird species undertake seasonal long-distance migrations. These journeys are energetically demanding. Two major behavioural means to reduce energy expenditure have been suggested: the use of thermal uplifts for a soaring-gliding migration style and travelling in echelon or V-shaped formation. Both strategies have immediate consequences for the social organization of the birds as they either cause large aggregations or require travelling in small and stable groups. Here, we first discuss those consequences, and second present an analysis of formation flight in a flock of northern bald ibis on their first southbound migration. We observe clear correlations between leading and trailing on the dyadic level but only a weak correlation on the individual level during independent flight and no convincing correlation during the human guided part of the migration. This pattern is suggestive of direct reciprocation as a means for establishing cooperation during formation flight. In general, we conclude that behavioural adaptations for dealing with physiological constraints on long-distance migrations either necessitate or ultimately foster formation of social groups with different characteristics. Patterns and social organization of birds travelling in groups have been elusive to study; however, new tracking technology-foremost lightweight GPS units-will provide more insights in the near future.This article is part of the themed issue 'Physiological determinants of social behaviour in animals'.
Collapse
Affiliation(s)
- B Voelkl
- Animal Welfare Division, University of Bern, Bern, Switzerland .,Waldrappteam, LIFE+ Northern Bald Ibis, Mutters, Austria
| | - J Fritz
- Waldrappteam, LIFE+ Northern Bald Ibis, Mutters, Austria
| |
Collapse
|
40
|
Abstract
Migratory birds are physiologically specialized to accumulate massive fat stores (up to 50-60% of body mass), and to transport and oxidize fatty acids at very high rates to sustain flight for many hours or days. Target gene, protein and enzyme analyses and recent -omic studies of bird flight muscles confirm that high capacities for fatty acid uptake, cytosolic transport, and oxidation are consistent features that make fat-fueled migration possible. Augmented circulatory transport by lipoproteins is suggested by field data but has not been experimentally verified. Migratory bats have high aerobic capacity and fatty acid oxidation potential; however, endurance flight fueled by adipose-stored fat has not been demonstrated. Patterns of fattening and expression of muscle fatty acid transporters are inconsistent, and bats may partially fuel migratory flight with ingested nutrients. Changes in energy intake, digestive capacity, liver lipid metabolism and body temperature regulation may contribute to migratory fattening. Although control of appetite is similar in birds and mammals, neuroendocrine mechanisms regulating seasonal changes in fuel store set-points in migrants remain poorly understood. Triacylglycerol of birds and bats contains mostly 16 and 18 carbon fatty acids with variable amounts of 18:2n-6 and 18:3n-3 depending on diet. Unsaturation of fat converges near 70% during migration, and unsaturated fatty acids are preferentially mobilized and oxidized, making them good fuel. Twenty and 22 carbon n-3 and n-6 polyunsaturated fatty acids (PUFA) may affect membrane function and peroxisome proliferator-activated receptor signaling. However, evidence for dietary PUFA as doping agents in migratory birds is equivocal and requires further study.
Collapse
Affiliation(s)
- Christopher G Guglielmo
- Department of Biology, Advanced Facility for Avian Research, University of Western Ontario, London, Ontario, Canada N6A5B7
| |
Collapse
|
41
|
Vincze O, Vágási CI, Pap PL, Palmer C, Møller AP. Wing morphology, flight type and migration distance predict accumulated fuel load in birds. J Exp Biol 2018; 222:jeb.183517. [DOI: 10.1242/jeb.183517] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2018] [Accepted: 11/08/2018] [Indexed: 11/20/2022]
Abstract
Birds often accumulate large fat and protein reserves to fuel long-distance flights. While it is well known that species that fly the longest accumulate the largest amounts of fuel, considerable cross-species variation in fuel load is seen after controlling for overall migration distance. It remains unclear whether this variation can be explained by aerodynamic attributes of different species, despite obvious ecological and conservation implications. Here we collected data on wing morphology, flight type, migration distance and fuel load from 213 European bird species and explored three questions: (1) Does maximum fuel load relate to migration distance across species?; (2) Does wing morphology, as described by wing aspect ratio and wing loading, influence maximum fuel load, and; (3) Does flight type influence maximum fuel load? Our results indicate that maximum fuel load increases with migration across species, but residual variance is high. Our results indicate that maximum fuel load is also correlated with migration distance, but again residual variance is high. The latter variance is explained by aspect ratio and flight type, while wing loading and body mass explain little variance. Birds with slender wings accumulate less fuel than species with low wing aspect ratio when covering a similar migration distance. Continuously flapping species accumulate the largest amounts of fuel, followed by flapping and soaring, flapping and gliding species, while the smallest fuel loads were observed in birds with passerine-type flight. These results highlight complex eco-evolutionary adaptations to migratory behaviour, pointing toward the importance of energy-minimisation.
Collapse
Affiliation(s)
- Orsolya Vincze
- Evolutionary Ecology Group, Hungarian Department of Biology and Ecology, Babeş-Bolyai University, RO-400006 Cluj-Napoca, Romania
- Behavioural Ecology Research Group, Department of Evolutionary Zoology and Human Biology, University of Debrecen, H-4032 Debrecen, Hungary
| | - Csongor I. Vágási
- Evolutionary Ecology Group, Hungarian Department of Biology and Ecology, Babeş-Bolyai University, RO-400006 Cluj-Napoca, Romania
- Behavioural Ecology Research Group, Department of Evolutionary Zoology and Human Biology, University of Debrecen, H-4032 Debrecen, Hungary
| | - Péter László Pap
- Evolutionary Ecology Group, Hungarian Department of Biology and Ecology, Babeş-Bolyai University, RO-400006 Cluj-Napoca, Romania
- Behavioural Ecology Research Group, Department of Evolutionary Zoology and Human Biology, University of Debrecen, H-4032 Debrecen, Hungary
| | - Colin Palmer
- School of Earth Sciences, University of Bristol, Bristol, UK
| | - Anders Pape Møller
- Ecologie Systématique Evolution, Université Paris-Sud, CNRS, AgroParisTech, Université Paris-Saclay, F-91405 Orsay Cedex, France
| |
Collapse
|
42
|
Risely A, Waite DW, Ujvari B, Hoye BJ, Klaassen M. Active migration is associated with specific and consistent changes to gut microbiota in
Calidris
shorebirds. J Anim Ecol 2017; 87:428-437. [DOI: 10.1111/1365-2656.12784] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2017] [Accepted: 10/21/2017] [Indexed: 12/21/2022]
Affiliation(s)
- Alice Risely
- Centre for Integrative Ecology Deakin University Geelong Vic. Australia
| | - David W. Waite
- Australian Centre for Ecogenomics University of Queensland Brisbane Qld Australia
| | - Beata Ujvari
- Centre for Integrative Ecology Deakin University Geelong Vic. Australia
| | - Bethany J. Hoye
- Centre for Integrative Ecology Deakin University Geelong Vic. Australia
- School of Biological Sciences University of Wollongong Wollongong NSW Australia
| | - Marcel Klaassen
- Centre for Integrative Ecology Deakin University Geelong Vic. Australia
| |
Collapse
|
43
|
Åkesson S, Ilieva M, Karagicheva J, Rakhimberdiev E, Tomotani B, Helm B. Timing avian long-distance migration: from internal clock mechanisms to global flights. Philos Trans R Soc Lond B Biol Sci 2017; 372:20160252. [PMID: 28993496 PMCID: PMC5647279 DOI: 10.1098/rstb.2016.0252] [Citation(s) in RCA: 71] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/29/2017] [Indexed: 11/12/2022] Open
Abstract
Migratory birds regularly perform impressive long-distance flights, which are timed relative to the anticipated environmental resources at destination areas that can be several thousand kilometres away. Timely migration requires diverse strategies and adaptations that involve an intricate interplay between internal clock mechanisms and environmental conditions across the annual cycle. Here we review what challenges birds face during long migrations to keep track of time as they exploit geographically distant resources that may vary in availability and predictability, and summarize the clock mechanisms that enable them to succeed. We examine the following challenges: departing in time for spring and autumn migration, in anticipation of future environmental conditions; using clocks on the move, for example for orientation, navigation and stopover; strategies of adhering to, or adjusting, the time programme while fitting their activities into an annual cycle; and keeping pace with a world of rapidly changing environments. We then elaborate these themes by case studies representing long-distance migrating birds with different annual movement patterns and associated adaptations of their circannual programmes. We discuss the current knowledge on how endogenous migration programmes interact with external information across the annual cycle, how components of annual cycle programmes encode topography and range expansions, and how fitness may be affected when mismatches between timing and environmental conditions occur. Lastly, we outline open questions and propose future research directions.This article is part of the themed issue 'Wild clocks: integrating chronobiology and ecology to understand timekeeping in free-living animals'.
Collapse
Affiliation(s)
- Susanne Åkesson
- Centre for Animal Movement Research, Department of Biology, Lund University, 223 62 Lund, Sweden
| | - Mihaela Ilieva
- Centre for Animal Movement Research, Department of Biology, Lund University, 223 62 Lund, Sweden
- Institute of Biodiversity and Ecosystem Research, Bulgarian Academy of Sciences, Sofia 1113, Bulgaria
| | - Julia Karagicheva
- Department of Coastal Systems, NIOZ Royal Netherlands Institute for Sea Research and Utrecht University, 1790 AB Den Burg, Texel, The Netherlands
| | - Eldar Rakhimberdiev
- Department of Coastal Systems, NIOZ Royal Netherlands Institute for Sea Research and Utrecht University, 1790 AB Den Burg, Texel, The Netherlands
- Department of Vertebrate Zoology, Lomonosov Moscow State University, 119991 Moscow, Russia
| | - Barbara Tomotani
- Netherlands Institute of Ecology, 6700 AB Wageningen, The Netherlands
| | - Barbara Helm
- Institute of Biodiversity, Animal Health and Comparative Medicine, University of Glasgow, Glasgow G128QQ, UK
| |
Collapse
|
44
|
Stoddard MC, Yong EH, Akkaynak D, Sheard C, Tobias JA, Mahadevan L. Avian egg shape: Form, function, and evolution. Science 2017. [DOI: 10.1126/science.aaj1945] [Citation(s) in RCA: 119] [Impact Index Per Article: 14.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
|
45
|
McCue MD, Sandoval J, Beltran J, Gerson AR. Dehydration Causes Increased Reliance on Protein Oxidation in Mice: A Test of the Protein-for-Water Hypothesis in a Mammal. Physiol Biochem Zool 2017; 90:359-369. [DOI: 10.1086/690912] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
|
46
|
Schmaljohann H, Eikenaar C. How do energy stores and changes in these affect departure decisions by migratory birds? A critical view on stopover ecology studies and some future perspectives. J Comp Physiol A Neuroethol Sens Neural Behav Physiol 2017; 203:411-429. [PMID: 28332031 DOI: 10.1007/s00359-017-1166-8] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2016] [Revised: 03/08/2017] [Accepted: 03/08/2017] [Indexed: 12/01/2022]
Abstract
In birds, accumulating energy is far slower than spending energy during flight. During migration, birds spend, therefore, most of the time at stopover refueling energy used during the previous flight. This elucidates why current energy stores and actual rate of accumulating energy are likely crucial factors influencing bird's decision when to resume migration in addition to other intrinsic (sex, age) and extrinsic (predation, weather) factors modulating the decision within the innate migration program. After first summarizing how energy stores and stopover durations are generally determined, we critically review that high-energy stores and low rates of accumulating energy were significantly related to high departure probabilities in several bird groups. There are, however, also many studies showing no effect at all. Recent radio-tracking studies highlighted that migrants leave a site either to resume migration or to search for a better stopover location, so-called "landscape movements". Erroneously treating such movements as departures increases the likelihood of type II errors which might mistakenly suggest no effect of either trait on departure. Furthermore, we propose that energy loss during the previous migratory flight in relation to bird's current energy stores and migration strategy significantly affects its urge to refuel and hence its departure decision.
Collapse
Affiliation(s)
- Heiko Schmaljohann
- Institute of Avian Research "Vogelwarte Helgoland", An der Vogelwarte 21, 26386, Wilhelmshaven, Germany.
| | - Cas Eikenaar
- Institute of Avian Research "Vogelwarte Helgoland", An der Vogelwarte 21, 26386, Wilhelmshaven, Germany
| |
Collapse
|
47
|
Is cestode infection intensity associated with decreased body condition in the Eurasian woodcock Scolopax rusticola? J Helminthol 2017; 92:42-48. [PMID: 28124636 DOI: 10.1017/s0022149x17000037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
The Eurasian woodcock Scolopax rusticola is a widespread woodland specialist and a widely harvested quarry species throughout its European wintering areas, including Britain. Woodcock are prone to cestodiasis, but prevalence levels and possible effects on body condition remain under-studied. We studied the prevalence, abundance and intensity of cestodiasis in 161 woodcock harvested in four British regions in December and January during two consecutive winters (2013/14 and 2014/15). Cestodiasis prevalence was 90%, and there was no difference in prevalence between birds harvested in Cornwall, Wessex, East Anglia and Scotland. High prevalence levels were explained by the fact that earthworms (Lumbricidae) are intermediate hosts for some cestode species and also the most important dietary component of woodcock. The distribution of cestodiasis in woodcock was aggregated, such that when using the total length of cestodes per sample to measure abundance, 65% of the birds had less than 80 cm. Cestodiasis abundance varied between sexes across regions but the intensity was not affected by region, sex, age or their interactions. The intensity of cestodiasis was positively correlated with fresh weight and pectoral mass, while no significant correlation was found with the abdominal fat pad. Our results suggest that, despite high prevalence levels and intensity of cestodiasis in woodcock, host body condition is not significantly affected and hence it is unlikely that cestodiasis has a major effect on woodcock population dynamics.
Collapse
|
48
|
Di- and tripeptide transport in vertebrates: the contribution of teleost fish models. J Comp Physiol B 2016; 187:395-462. [PMID: 27803975 DOI: 10.1007/s00360-016-1044-7] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2016] [Revised: 10/12/2016] [Accepted: 10/20/2016] [Indexed: 02/06/2023]
Abstract
Solute Carrier 15 (SLC15) family, alias H+-coupled oligopeptide cotransporter family, is a group of membrane transporters known for their role in the cellular uptake of di- and tripeptides (di/tripeptides) and peptide-like molecules. Of its members, SLC15A1 (PEPT1) chiefly mediates intestinal absorption of luminal di/tripeptides from dietary protein digestion, while SLC15A2 (PEPT2) mainly allows renal tubular reabsorption of di/tripeptides from ultrafiltration, SLC15A3 (PHT2) and SLC15A4 (PHT1) possibly interact with di/tripeptides and histidine in certain immune cells, and SLC15A5 has unknown function. Our understanding of this family in vertebrates has steadily increased, also due to the surge of genomic-to-functional information from 'non-conventional' animal models, livestock, poultry, and aquaculture fish species. Here, we review the literature on the SLC15 transporters in teleost fish with emphasis on SLC15A1 (PEPT1), one of the solute carriers better studied amongst teleost fish because of its relevance in animal nutrition. We report on the operativity of the transporter, the molecular diversity, and multiplicity of structural-functional solutions of the teleost fish orthologs with respect to higher vertebrates, its relevance at the intersection of the alimentary and osmoregulative functions of the gut, its response under various physiological states and dietary solicitations, and its possible involvement in examples of total body plasticity, such as growth and compensatory growth. By a comparative approach, we also review the few studies in teleost fish on SLC15A2 (PEPT2), SLC15A4 (PHT1), and SLC15A3 (PHT2). By representing the contribution of teleost fish to the knowledge of the physiology of di/tripeptide transport and transporters, we aim to fill the gap between higher and lower vertebrates.
Collapse
|
49
|
Abstract
This review attempts to provide insights into factors associated with fatigue in human and nonhuman animals by using the two fundamental approaches of comparative physiology: determining common principles that govern structure and function in animals that are relatively invariant between animals and evaluating animals that have been highly adapted by natural selection to demonstrate extreme performance. In this review, I approach the topic of fatigue by considering factors that are associated with its reciprocal or inverse or duration of sustained performance before fatigue sets in to end the performance. The two general factors that I consider that affect endurance time more than any other are body temperature and body mass. The former affects endurance time because of thermodynamic effects on chemical reaction rates and metabolism; the latter acts through the mechanism of allometry or scaling. The examples of extreme animal performance that I discuss are two examples of bird migration, the diving performance of marine mammals, and the unique relationship that governs energy cost of locomotion in hopping kangaroos.
Collapse
Affiliation(s)
- James H Jones
- Department of Surgical and Radiological Sciences, School of Veterinary Medicine, University of California, Davis, CA
| |
Collapse
|
50
|
Vincze O. Light enough to travel or wise enough to stay? Brain size evolution and migratory behavior in birds. Evolution 2016; 70:2123-33. [DOI: 10.1111/evo.13012] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2016] [Revised: 07/11/2016] [Accepted: 07/14/2016] [Indexed: 11/29/2022]
Affiliation(s)
- Orsolya Vincze
- MTA-DE “Lendület” Behavioural Ecology Research Group, Department of Evolutionary Zoology and Human Biology; University of Debrecen; Debrecen H-4032 Hungary
- Evolutionary Ecology Group, Hungarian Department of Biology and Ecology; Babeş-Bolyai University; Cluj-Napoca 400006 Romania
| |
Collapse
|