1
|
Cuff JP, Labonte D, Windsor FM. Understanding Trophic Interactions in a Warming World by Bridging Foraging Ecology and Biomechanics with Network Science. Integr Comp Biol 2024; 64:306-321. [PMID: 38872009 PMCID: PMC11406160 DOI: 10.1093/icb/icae070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Revised: 06/04/2024] [Accepted: 06/08/2024] [Indexed: 06/15/2024] Open
Abstract
Climate change will disrupt biological processes at every scale. Ecosystem functions and services vital to ecological resilience are set to shift, with consequences for how we manage land, natural resources, and food systems. Increasing temperatures cause morphological shifts, with concomitant implications for biomechanical performance metrics crucial to trophic interactions. Biomechanical performance, such as maximum bite force or running speed, determines the breadth of resources accessible to consumers, the outcome of interspecific interactions, and thus the structure of ecological networks. Climate change-induced impacts to ecosystem services and resilience are therefore on the horizon, mediated by disruptions of biomechanical performance and, consequently, trophic interactions across whole ecosystems. Here, we argue that there is an urgent need to investigate the complex interactions between climate change, biomechanical traits, and foraging ecology to help predict changes to ecological networks and ecosystem functioning. We discuss how these seemingly disparate disciplines can be connected through network science. Using an ant-plant network as an example, we illustrate how different data types could be integrated to investigate the interaction between warming, bite force, and trophic interactions, and discuss what such an integration will achieve. It is our hope that this integrative framework will help to identify a viable means to elucidate previously intractable impacts of climate change, with effective predictive potential to guide management and mitigation.
Collapse
Affiliation(s)
- Jordan P Cuff
- School of Natural and Environmental Sciences, Newcastle University, Newcastle-upon-Tyne, NE1 7RU, UK
| | - David Labonte
- Department of Bioengineering, Imperial College London, London, SW7 2AZ, UK
| | | |
Collapse
|
2
|
Barclay KM, Amos P, Leighton LR, Schneider CL, Baum JK. Predation scars provide a new method to distinguish native and invasive crab predation on mollusc prey. Ecol Evol 2024; 14:e70338. [PMID: 39318527 PMCID: PMC11419948 DOI: 10.1002/ece3.70338] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2024] [Revised: 08/27/2024] [Accepted: 09/03/2024] [Indexed: 09/26/2024] Open
Abstract
Crab species are increasingly important socioeconomic resources that are threatened by human exploitation, climate change, and invasive species, such as European green crabs (Carcinus maenas). However, the continued health of their populations is often uncertain given the limited long-term population data, necessitating alternate approaches to ensure their continued viability. Furthermore, C. maenas are one of the most highly invasive and destructive marine species globally, posing a threat to local ecosystems and species, including socioeconomically important crabs and their mollusc prey. Improved understanding of C. maenas invasions and their impacts on local crab and mollusc resources is therefore vitally important. Here, we present a new method for identifying species-level presence and relative abundances of important crab species, including invasive C. maenas, from the scars they leave on their prey. We conducted controlled manipulative feeding experiments in which individuals of Dungeness crabs (Metacarcinus magister), red rock crabs (Cancer productus), and C. maenas, were allowed to attack snails (Tegula funebralis) and produce sublethal shell damage. Resulting shell damage was photographed and landmarked for geometric morphometric analyses to determine any differences in the shape of shell damage between crab species. There were statistically significant differences between the shape of shell damage created by all three crab species (p < .0001). Shell damage formed a gradient from narrow/deep (C. productus) to shallow/wide (C. maenas) with M. magister as an intermediate form. Our method provides a novel, cost-effective tool for long-term species-specific reconstructions of crab populations and assessing the broader ecological impacts of C. maenas invasions that can inform management and mitigation for these three important crab species.
Collapse
Affiliation(s)
- Kristina M Barclay
- Department of Biology University of Victoria Victoria British Columbia Canada
- Department of Anthropology University of Victoria Victoria British Columbia Canada
| | - Paige Amos
- Department of Biology University of Victoria Victoria British Columbia Canada
| | - Lindsey R Leighton
- Department of Earth and Atmospheric Sciences University of Alberta Edmonton Alberta Canada
| | - Chris L Schneider
- Department of Earth and Atmospheric Sciences University of Alberta Edmonton Alberta Canada
| | - Julia K Baum
- Department of Biology University of Victoria Victoria British Columbia Canada
| |
Collapse
|
3
|
Dhawale N, Labonte D, Holt NC. The effect of muscle ultrastructure on the force, displacement and work capacity of skeletal muscle. J R Soc Interface 2024; 21:20230658. [PMID: 38774960 DOI: 10.1098/rsif.2023.0658] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Accepted: 03/28/2024] [Indexed: 07/31/2024] Open
Abstract
Skeletal muscle powers animal movement through interactions between the contractile proteins, actin and myosin. Structural variation contributes greatly to the variation in mechanical performance observed across muscles. In vertebrates, gross structural variation occurs in the form of changes in the muscle cross-sectional area : fibre length ratio. This results in a trade-off between force and displacement capacity, leaving work capacity unaltered. Consequently, the maximum work per unit volume-the work density-is considered constant. Invertebrate muscle also varies in muscle ultrastructure, i.e. actin and myosin filament lengths. Increasing actin and myosin filament lengths increases force capacity, but the effect on muscle fibre displacement, and thus work, capacity is unclear. We use a sliding-filament muscle model to predict the effect of actin and myosin filament lengths on these mechanical parameters for both idealized sarcomeres with fixed actin : myosin length ratios, and for real sarcomeres with known filament lengths. Increasing actin and myosin filament lengths increases stress without reducing strain capacity. A muscle with longer actin and myosin filaments can generate larger force over the same displacement and has a higher work density, so seemingly bypassing an established trade-off. However, real sarcomeres deviate from the idealized length ratio suggesting unidentified constraints or selective pressures.
Collapse
Affiliation(s)
- Nihav Dhawale
- Department of Evolution, Ecology and Organismal Biology, UC Riverside , Riverside, CA, USA
| | - David Labonte
- Department of Bioengineering, Imperial College London , London, UK
| | - Natalie C Holt
- Department of Evolution, Ecology and Organismal Biology, UC Riverside , Riverside, CA, USA
| |
Collapse
|
4
|
Inoue T, Hara Y, Nakazato K. Mechanical Resistance of the Largest Denticle on the Movable Claw of the Mud Crab. Biomimetics (Basel) 2023; 8:602. [PMID: 38132541 PMCID: PMC10742142 DOI: 10.3390/biomimetics8080602] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Revised: 11/30/2023] [Accepted: 12/11/2023] [Indexed: 12/23/2023] Open
Abstract
Decapod crustaceans have tooth-like white denticles that are present only on the pinching side of the claws. In the mud crab, Scylla serrata, a huge denticle exists on the movable finger of the dominant claw. This is mainly used to crush the shells of the crab's staple food. The local mechanical properties, hardness (HIT) and elastic modulus (Er), of the peak and valley areas of the largest denticle were examined via a nanoindentation test. The microstructure and elemental composition were characterized using a scanning electron microscope and energy-dispersive X-ray spectroscopy. The striation patterns originating from a twisted plywood structure parallel to the surface were visible over the entire denticle. Most of the largest denticle was occupied by a hard area without phosphorus, and there was a soft layer corresponding to the endocuticle with phosphorus in the innermost part. The HIT of the denticle valley was about 40% lower than that of the denticle peak, and the thickness of the soft endocuticle of the denticle valley was five times thicker than that of the denticle peak. The HIT-Er map showed that the abrasion resistance of the denticle surface was vastly superior and was in the top class among organisms. The claw denticles were designed with the necessary characteristics in the necessary places, as related to the ecology of the mud crab.
Collapse
Affiliation(s)
- Tadanobu Inoue
- National Institute for Materials Science, 1-2-1, Sengen, Tsukuba 305-0047, Japan; (Y.H.); (K.N.)
| | | | | |
Collapse
|
5
|
Medler S. Graham Hoyle (1923-1985): exploring the depths of muscle diversity. ADVANCES IN PHYSIOLOGY EDUCATION 2023; 47:893-903. [PMID: 37823190 DOI: 10.1152/advan.00098.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Revised: 08/25/2023] [Accepted: 09/28/2023] [Indexed: 10/13/2023]
Abstract
Graham Hoyle was an important neuroscientist, muscle biologist, and zoologist throughout much of the second half of the twentieth century. A native of England, Hoyle studied under Bernard Katz in London before earning his D.Sc. in neurophysiology from the University of Glasgow. He immigrated to the United States in the mid-1950s and worked with C.A.G. Wiersma at Caltech, with whom he shared a love for crustacean neuromuscular physiology. Hoyle accepted a position at the University of Oregon in 1961 and remained there as a professor until his death in 1985 at the age of 61. Hoyle was active scientifically at a time when the basics of muscle biology were still being discovered. He made many important contributions to the field of neuromuscular physiology, particularly in the realm of comparative physiology. Hoyle was passionate about the importance of a comparative approach in physiology and emphasized that "as a comparative physiologist, I value knowledge of the diverse forms not only for its own sake, but also because it embodies the general truth." Perhaps Hoyle's most lasting legacy is embodied in the many students and postdocs who trained with him early in their careers. Many of these young scientists went on to build prominent careers and trained numerous students of their own. In addition to offering an overview of Hoyle's career, this article revisits some of Hoyle's central contributions to muscle biology and assesses them in light of our current understanding of muscle structure and function.NEW & NOTEWORTHY Graham Hoyle was an important neuroscientist, muscle biologist, and zoologist throughout much of the second half of the twentieth century. He was trained by Bernard Katz at University College London and later worked with C.A.G. Wiersma at Caltech. As a professor at the University of Oregon, Hoyle helped found the Institute of Neuroscience and trained many prominent scientists in the fields of neuromuscular biology and neuroethology.
Collapse
Affiliation(s)
- Scott Medler
- Dennis R. DePerro School of Health Professions, St. Bonaventure University, St. Bonaventure, New York, United States
| |
Collapse
|
6
|
Doherty CTM, Laidre ME. Doors to the Homes: Signal Potential of Red Coloration of Claws in Social Hermit Crabs. Integr Org Biol 2023; 5:obad018. [PMID: 37323238 PMCID: PMC10263385 DOI: 10.1093/iob/obad018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2022] [Accepted: 05/09/2023] [Indexed: 06/17/2023] Open
Abstract
Red coloration on a signaler's body may be an informative signal in many animals. For species that inhabit architecture (e.g., burrows, nests, or other structures), certain parts of the body are more exposed than others, potentially serving as superior platforms for signaling via coloration. Yet whether animals differentially advertise red coloration on body parts that are more versus less exposed from their architecture remains to be tested. Here, we systematically quantified red coloration in social hermit crabs (Coenobita compressus). These crabs inhabit architecturally remodeled shells and have claws that visibly block the shell entrance, like doors to their homes. We hypothesized that red coloration of claws may be a signal of resource-holding potential (RHP). Consistent with this RHP signaling hypothesis, we found that within the same individuals' bodies, exposed claws showed significantly greater red coloration than unexposed carapaces. Furthermore, larger body size predicted greater red coloration of claws. Competing hypotheses (e.g., interspecific signaling, camouflage, and UV protection), while not explicitly tested, nevertheless appear unlikely based on natural history. Red claw coloration may therefore function as a signal to conspecifics, and experiments are now needed to test recipient responses. Broadly, relative to surrounding architecture, exposed body surfaces offer rich potential as signaling platforms for coloration.
Collapse
Affiliation(s)
- C T M Doherty
- Department of Biological Sciences, Graduate Program in Ecology, Evolution, Environment, and Society, Dartmouth College, Hanover, NH 03755, USA
- School of Health Sciences, Ulster University, Belfast BT15 1ED, UK
| | - M E Laidre
- Department of Biological Sciences, Graduate Program in Ecology, Evolution, Environment, and Society, Dartmouth College, Hanover, NH 03755, USA
| |
Collapse
|
7
|
Avidan C, Day SW, Holzman R. A power amplification dyad in seahorses. Proc Biol Sci 2023; 290:20230520. [PMID: 37040808 PMCID: PMC10089724 DOI: 10.1098/rspb.2023.0520] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/13/2023] Open
Abstract
Throughout evolution, organisms repeatedly developed elastic elements to power explosive body motions, overcoming ubiquitous limits on the power capacity of fast-contracting muscles. Seahorses evolved such a latch-mediated spring-actuated (LaMSA) mechanism; however, it is unclear how this mechanism powers the two complementary functions necessary for feeding: rapidly swinging the head towards the prey, and sucking water into the mouth to entrain it. Here, we combine flow visualization and hydrodynamic modelling to estimate the net power required for accelerating the suction feeding flows in 13 fish species. We show that the mass-specific power of suction feeding in seahorses is approximately three times higher than the maximum recorded from any vertebrate muscle, resulting in suction flows that are approximately eight times faster than similar-sized fishes. Using material testing, we reveal that the rapid contraction of the sternohyoideus tendons can release approximately 72% of the power needed to accelerate the water into the mouth. We conclude that the LaMSA system in seahorses is powered by two elastic elements, the sternohyoideus and epaxial tendons. These elements jointly actuate the coordinated acceleration of the head and the fluid in front of the mouth. These findings extend the known function, capacity and design of LaMSA systems.
Collapse
Affiliation(s)
- Corrine Avidan
- Department of Ecology, Evolution and Organismal Biology, Brown University, Providence, RI 02912, USA
- School of Zoology, Faculty of Life Sciences, Tel Aviv University, Tel Aviv 69978, Israel
- The Inter-University Institute for Marine Sciences, POB 469, Eilat 88103, Israel
| | - Steven W Day
- Rochester Institute of Technology, Rochester, NY 14623, USA
| | - Roi Holzman
- School of Zoology, Faculty of Life Sciences, Tel Aviv University, Tel Aviv 69978, Israel
- The Inter-University Institute for Marine Sciences, POB 469, Eilat 88103, Israel
| |
Collapse
|
8
|
Püffel F, Johnston R, Labonte D. A biomechanical model for the relation between bite force and mandibular opening angle in arthropods. ROYAL SOCIETY OPEN SCIENCE 2023; 10:221066. [PMID: 36816849 PMCID: PMC9929505 DOI: 10.1098/rsos.221066] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Accepted: 01/18/2023] [Indexed: 06/18/2023]
Abstract
Bite forces play a key role in animal ecology: they affect mating behaviour, fighting success, and the ability to feed. Although feeding habits of arthropods have a significant ecological and economical impact, we lack fundamental knowledge on how the morphology and physiology of their bite apparatus controls bite performance, and its variation with mandible gape. To address this gap, we derived a biomechanical model that characterizes the relationship between bite force and mandibular opening angle from first principles. We validate this model by comparing its geometric predictions with morphological measurements on the muscoloskeletal bite apparatus of Atta cephalotes leaf-cutter ants, using computed tomography (CT) scans obtained at different mandible opening angles. We then demonstrate its deductive and inductive utility with three examplary use cases: Firstly, we extract the physiological properties of the leaf-cutter ant mandible closer muscle from in vivo bite force measurements. Secondly, we show that leaf-cutter ants are specialized to generate extraordinarily large bite forces, equivalent to about 2600 times their body weight. Thirdly, we discuss the relative importance of morphology and physiology in determining the magnitude and variation of bite force. We hope that a more detailed quantitative understanding of the link between morphology, physiology, and bite performance will facilitate future comparative studies on the insect bite apparatus, and help to advance our knowledge of the behaviour, ecology and evolution of arthropods.
Collapse
Affiliation(s)
- Frederik Püffel
- Department of Bioengineering, Imperial College London, London SW7 2AZ, UK
| | - Richard Johnston
- School of Engineering, Materials Research Centre, Swansea University, Swansea SA2 8PP, UK
| | - David Labonte
- Department of Bioengineering, Imperial College London, London SW7 2AZ, UK
| |
Collapse
|
9
|
Jurestovsky DJ, Tingle JL, Astley HC. Corn Snakes Show Consistent Sarcomere Length Ranges Across Muscle Groups and Ontogeny. Integr Org Biol 2022; 4:obac040. [PMID: 36158732 PMCID: PMC9492312 DOI: 10.1093/iob/obac040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2022] [Revised: 07/08/2022] [Indexed: 11/22/2022] Open
Abstract
The force-generating capacity of muscle depends upon many factors including the actin-myosin filament overlap due to the relative length of the sarcomere. Consequently, the force output of a muscle may vary throughout its range of motion, and the body posture allowing maximum force generation may differ even in otherwise similar species. We hypothesized that corn snakes would show an ontogenetic shift in sarcomere length range from being centered on the plateau of the length-tension curve in small individuals to being on the descending limb in adults. Sarcomere lengths across the plateau would be advantageous for locomotion, while the descending limb would be advantageous for constriction due to the increase in force as the coil tightens around the prey. To test this hypothesis, we collected sarcomere lengths from freshly euthanized corn snakes, preserving segments in straight and maximally curved postures, and quantifying sarcomere length via light microscopy. We dissected 7 muscles (spinalis, semispinalis, multifidus, longissimus dorsi, iliocostalis (dorsal and ventral), and levator costae) in an ontogenetic series of corn snakes (mass = 80–335 g) at multiple regions along the body (anterior, middle, and posterior). Our data shows all of the muscles analyzed are on the descending limb of the length-tension curve at rest across all masses, regions, and muscles analyzed, with muscles shortening onto or past the plateau when flexed. While these results are consistent with being advantageous for constriction at all sizes, there could also be unknown benefits of this sarcomere arrangement for locomotion or striking.
Collapse
Affiliation(s)
- Derek J Jurestovsky
- Biomechanics Laboratory, Department of Kinesiology, Pennsylvania State University, University Park , PA 16802 , USA
- Department of Biology, University of Akron , 302 E. Buchtel Avenue, Akron, OH 44325 , USA
| | - Jessica L Tingle
- Department of Biology, University of Akron , 302 E. Buchtel Avenue, Akron, OH 44325 , USA
| | - Henry C Astley
- Department of Biology, University of Akron , 302 E. Buchtel Avenue, Akron, OH 44325 , USA
| |
Collapse
|
10
|
Rühr PT, Blanke A. forceX
and
forceR
: a mobile setup and R package to measure and analyse a wide range of animal closing forces. Methods Ecol Evol 2022. [DOI: 10.1111/2041-210x.13909] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Peter T. Rühr
- Institute of Evolutionary Biology and Animal Ecology University of Bonn, An der Immenburg 1 Bonn Germany
| | - Alexander Blanke
- Institute of Evolutionary Biology and Animal Ecology University of Bonn, An der Immenburg 1 Bonn Germany
| |
Collapse
|
11
|
Crane RL, Denny MW. Bivalves maintain repair when faced with chronically repeated mechanical stress. J Exp Biol 2022; 225:275548. [PMID: 35638557 DOI: 10.1242/jeb.243813] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Accepted: 04/29/2022] [Indexed: 11/20/2022]
Abstract
Even though mollusks' capacity to repair shell damage is usually studied in response to a single event, their shells have to defend them against predatory and environmental threats throughout their potentially multi-decadal life. We measured whether and how mollusks respond to chronic mechanical stress. Once a week for 7 months, we compressed whole live California mussels (Mytilus californianus) for 15 cycles at ∼55% of their predicted one-time breaking force, a treatment known to cause fatigue damage in shells. We found mussels repaired their shells. Shells of experimentally stressed mussels were just as strong at the end of the experiment as those of control mussels that had not been experimentally loaded, and they were more heavily patched internally. Additionally, stressed shells differed in morphology; they were heavier and thicker at the end of the experiment than control shells but they had increased less in width, resulting in a flatter, less domed shape. Finally, the chronic mechanical stress and repair came at a cost, with stressed mussels having higher mortality and less soft tissue than the control group. Although associated with significant cost, mussels' ability to maintain repair in response to ongoing mechanical stress may be vital to their survival in harsh and predator-filled environments.
Collapse
Affiliation(s)
- R L Crane
- Department of Biology, Stanford University, Stanford, CA 94305, USA
| | - M W Denny
- Department of Biology, Stanford University, Stanford, CA 94305, USA
| |
Collapse
|
12
|
Biomechanics influence sexual dimorphism in the giant mesquite bug, Thasus neocalifornicus. ZOOLOGY 2022; 150:125988. [PMID: 34973543 DOI: 10.1016/j.zool.2021.125988] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2020] [Revised: 12/15/2021] [Accepted: 12/20/2021] [Indexed: 11/20/2022]
Abstract
In many species, males possess specialized weaponry that confers benefits during male-male combat. Because male weapons are often disproportionately larger versions of preexisting body parts, females often possess reduced versions of male weaponry. Most research focuses exclusively on sexual dimorphism in the size of male and female weapons, even though other aspects such as weapon performance can also explain the evolution of weapon sexual dimorphism. In the giant mesquite bug, Thasus neocalifornicus, males wield exaggerated hindlegs that aid in locomotion and are used as weapons to generate forceful squeezes during combat. However, female T. neocalifornicus hindlegs are relatively inconspicuous and only used for locomotion. To understand the intricacies of weapon sexual dimorphism in T. neocalifornicus hindlegs, we measured the allometry of their hindlegs morphology, biomechanics, and performance. Males and females had relatively similar sized legs when concerning only linear measurements: hindleg length did not differ between the sexes (both for intercept and slope), but males do have relatively wider hindlegs (greater intercepts). Regarding performance, however, males were relatively and proportionally stronger than females. Furthermore, the output lever of male hindlegs scales hypoallometrically and the tibial spine maintains its position as the hindlegs grows, both of which maintain the hindlegs' biomechanical efficiency as they increase in size. Overall, our finding demonstrates that selection on the performance and biomechanics of sexually selected weapons can influence the expression of sexual dimorphism, by exaggerating some aspects of the weapons morphology-but constraining others.
Collapse
|
13
|
Crane RL, Diaz Reyes JL, Denny MW. Bivalves rapidly repair shells damaged by fatigue and bolster strength. J Exp Biol 2021; 224:272465. [PMID: 34648024 PMCID: PMC8541735 DOI: 10.1242/jeb.242681] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Accepted: 09/05/2021] [Indexed: 12/03/2022]
Abstract
Hard external armors have to defend against a lifetime of threats yet are traditionally understood by their ability to withstand a single attack. Survival of bivalve mollusks thus can depend on the ability to repair shell damage between encounters. We studied the capacity for repair in the intertidal mussel Mytilus californianus by compressing live mussels for 15 cycles at ∼79% of their predicted strength (critically fracturing 46% of shells), then allowing the survivors 0, 1, 2 or 4 weeks to repair. Immediately after fatigue loading, mussel shells were 20% weaker than control shells that had not experienced repetitive loading. However, mussels restored full shell strength within 1 week, and after 4 weeks shells that had experienced greater fatiguing forces were stronger than those repetitively loaded at lower forces. Microscopy supported the hypothesis that crack propagation is a mechanism of fatigue-caused weakening. However, the mechanism of repair was only partially explained, as epifluorescence microscopy of calcein staining for shell deposition showed that only half of the mussels that experienced repetitive loading had initiated direct repair via shell growth around fractures. Our findings document repair weeks to months faster than demonstrated in other mollusks. This rapid repair may be important for the mussels’ success contending with predatory and environmental threats in the harsh environment of wave-swept rocky coasts, allowing them to address non-critical but weakening damage and to initiate plastic changes to shell strength. We highlight the significant insight gained by studying biological armors not as static structures but, instead, as dynamic systems that accumulate, repair and respond to damage. Highlighted Article: Mussels repair shell damage caused by fatigue within one week and further strengthen shells within one month. Bivalve shells are a dynamic armor, responsive to accumulating weakening damage.
Collapse
Affiliation(s)
- R L Crane
- Department of Biology, Stanford University, Stanford, CA 94305, USA
| | - J L Diaz Reyes
- Department of Biology, Stanford University, Stanford, CA 94305, USA
| | - M W Denny
- Department of Biology, Stanford University, Stanford, CA 94305, USA
| |
Collapse
|
14
|
Bergman EA, Green EL, Matthews PGD. The cibarial pump of the xylem-feeding froghopper Philaenus spumarius produces negative pressures exceeding 1 MPa. Proc Biol Sci 2021; 288:20210731. [PMID: 34256004 PMCID: PMC8277466 DOI: 10.1098/rspb.2021.0731] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2021] [Accepted: 06/18/2021] [Indexed: 11/12/2022] Open
Abstract
The xylem sap of vascular plants is an unlikely source of nutrition, being both nutrient poor and held under tensions (negative pressures) that can exceed 1 MPa. But some insects feed on xylem sap exclusively, extracting copious quantities using a muscular cibarial pump. However, neither the strength of the insect's suction, nor the direct energetic cost of xylem ingestion, have ever been quantified. Philaenus spumarius froghoppers were used to address these gaps in our knowledge. Micro-CT scans of its cibarium and measurements of cibarial muscle sarcomere length revealed that P. spumarius can generate a maximum tension of 1.3 ± 0.2 MPa within its cibarium. The energetic cost of xylem extraction was quantified using respirometry to measure the metabolic rate (MR) of P. spumarius while they fed on hydroponically grown legumes, while xylem sap excretion rate and cibarial pumping frequency were simultaneously recorded. Increasing the plants' xylem tensions up to 1.1 MPa by exposing their roots to polyethylene glycol did not reduce the insects' rate of xylem excretion, but significantly increased both MR and pumping frequency. We conclude that P. spumarius can gain energy feeding on xylem sap containing previously reported energy densities and at xylem tensions up to their maximum suction capacity.
Collapse
Affiliation(s)
- Elisabeth A. Bergman
- Department of Zoology, University of British Columbia, Vancouver, BC V6T 1Z4, Canada
| | - Emma L. Green
- Department of Zoology, University of British Columbia, Vancouver, BC V6T 1Z4, Canada
| | - Philip G. D. Matthews
- Department of Zoology, University of British Columbia, Vancouver, BC V6T 1Z4, Canada
| |
Collapse
|
15
|
Krings W, Neumann C, Neiber MT, Kovalev A, Gorb SN. Radular force performance of stylommatophoran gastropods (Mollusca) with distinct body masses. Sci Rep 2021; 11:10560. [PMID: 34006949 PMCID: PMC8131350 DOI: 10.1038/s41598-021-89892-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2021] [Accepted: 05/04/2021] [Indexed: 01/06/2023] Open
Abstract
The forces exerted by the animal's food processing structures can be important parameters when studying trophic specializations to specific food spectra. Even though molluscs represent the second largest animal phylum, exhibiting an incredible biodiversity accompanied by the establishment of distinct ecological niches including the foraging on a variety of ingesta types, only few studies focused on the biomechanical performance of their feeding organs. To lay a keystone for future research in this direction, we investigated the in vivo forces exerted by the molluscan food gathering and processing structure, the radula, for five stylommatophoran species (Gastropoda). The chosen species and individuals have a similar radular morphology and motion, but as they represent different body mass classes, we were enabled to relate the forces to body mass. Radular forces were measured along two axes using force transducers which allowed us to correlate forces with the distinct phases of radular motion. A radular force quotient, AFQ = mean Absolute Force/bodymass0.67, of 4.3 could be determined which can be used further for the prediction of forces generated in Gastropoda. Additionally, some specimens were dissected and the radular musculature mass as well as the radular mass and dimensions were documented. Our results depict the positive correlation between body mass, radular musculature mass, and exerted force. Additionally, it was clearly observed that the radular motion phases, exerting the highest forces during feeding, changed with regard to the ingesta size: all smaller gastropods rather approached the food by a horizontal, sawing-like radular motion leading to the consumption of rather small food particles, whereas larger gastropods rather pulled the ingesta in vertical direction by radula and jaw resulting in the tearing of larger pieces.
Collapse
Affiliation(s)
- Wencke Krings
- Department of Mammalogy and Palaeoanthropology, Center of Natural History (CeNak), Universität Hamburg, Martin-Luther-King-Platz 3, 20146, Hamburg, Germany. .,Department of Functional Morphology and Biomechanics, Zoological Institute, Christian-Albrechts-Universität zu Kiel, Am Botanischen Garten 9, 24118, Kiel, Germany.
| | - Charlotte Neumann
- Department of Mammalogy and Palaeoanthropology, Center of Natural History (CeNak), Universität Hamburg, Martin-Luther-King-Platz 3, 20146, Hamburg, Germany
| | - Marco T Neiber
- Department of Animal Diversity, Center of Natural History (CeNak), Universität Hamburg, Martin-Luther-King-Platz 3, 20146, Hamburg, Germany
| | - Alexander Kovalev
- Department of Functional Morphology and Biomechanics, Zoological Institute, Christian-Albrechts-Universität zu Kiel, Am Botanischen Garten 9, 24118, Kiel, Germany
| | - Stanislav N Gorb
- Department of Functional Morphology and Biomechanics, Zoological Institute, Christian-Albrechts-Universität zu Kiel, Am Botanischen Garten 9, 24118, Kiel, Germany
| |
Collapse
|
16
|
Bowman CE. Feeding design in free-living mesostigmatid chelicerae (Acari: Anactinotrichida). EXPERIMENTAL & APPLIED ACAROLOGY 2021; 84:1-119. [PMID: 33929649 PMCID: PMC8085810 DOI: 10.1007/s10493-021-00612-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/04/2020] [Accepted: 03/25/2021] [Indexed: 06/12/2023]
Abstract
A model based upon mechanics is used in a re-analysis of historical acarine morphological work augmented by an extra seven zoophagous mesostigmatid species. This review shows that predatory mesostigmatids do have cheliceral designs with clear rational purposes. Almost invariably within an overall body size class, the switch in predatory style from a worm-like prey feeding ('crushing/mashing' kill) functional group to a micro-arthropod feeding ('active prey cutting/slicing/slashing' kill) functional group is matched by: an increased cheliceral reach, a bigger chelal gape, a larger morphologically estimated chelal crunch force, and a drop in the adductive lever arm velocity ratio of the chela. Small size matters. Several uropodines (Eviphis ostrinus, the omnivore Trachytes aegrota, Urodiaspis tecta and, Uropoda orbicularis) have more elongate chelicerae (greater reach) than their chelal gape would suggest, even allowing for allometry across mesostigmatids. They may be: plesiosaur-like high-speed strikers of prey, scavenging carrion feeders (like long-necked vultures), probing/burrowing crevice feeders of cryptic nematodes, or small morsel/fragmentary food feeders. Some uropodoids have chelicerae and chelae which probably work like a construction-site mechanical excavator-digger with its small bucket. Possible hoeing/bulldozing, spore-cracking and tiny sabre-tooth cat-like striking actions are discussed for others. Subtle changes lead small mesostigmatids to be predator-scavengers (mesocarnivores) or to be predator-fungivores (hypocarnivores). Some uropodines (e.g., the worm-like prey feeder Alliphis siculus and, Uropoda orbicularis) show chelae similar in design to astigmatids and cryptostigmatids indicating possible facultative saprophagy. Scale matters-obligate predatory designs (hypercarnivory) start for mesostigmatids with chelal gape > 150 μm and cheliceral reach > 350 μm (i.e., about 500-650 μm in body size). Commonality of trophic design in these larger species with solifugids is indicated. Veigaia species with low chelal velocity ratio and other morphological strengthening specialisms, appear specially adapted in a concerted way for predating active soft and fast moving springtails (Collembola). Veigaia cerva shows a markedly bigger chelal gape than its cheliceral reach would proportionately infer suggesting it is a crocodile-like sit-and-wait or ambush predator par excellence. A small chelal gape, low cheliceral reach, moderate velocity ratio variant of the worm-like feeding habit design is supported for phytoseiid pollenophagy. Evidence for a resource partitioning model in the evolution of gnathosomal development is found. A comparison to crustacean claws and vertebrate mandibles is made. Alliphis siculus and Rhodacarus strenzkei are surprisingly powerful mega-cephalics for their small size. Parasitids show a canid-like trophic design. The chelicera of the nematophagous Alliphis halleri shows felid-like features. Glyphtholaspis confusa has hyaena-like cheliceral dentition. The latter species has a markedly smaller chelal gape than its cheliceral reach would suggest proportionately, which together with a high chelal velocity ratio and a high estimated chelal crunch force matches a power specialism of feeding on immobile tough fly eggs/pupae by crushing (durophagy). A consideration of gnathosomal orientation is made. Predatory specialisms appear to often match genera especially in larger mesostigmatids, which may scale quite differently. Comparison to holothyrids and opilioacarids indicates that the cheliceral chelae of the former are cutting-style and those of the latter are crushing-style. A simple validated easy-to-use '2:1 on' predictive algorithm of feeding habit type is included based on a strength-speed tradeoff in chelal velocity ratio for ecologists to test in the field.
Collapse
Affiliation(s)
- Clive E Bowman
- Mathematical Institute, University of Oxford, Oxford, OX2 6GG, UK.
| |
Collapse
|
17
|
A comparison of the predatory impacts of an invasive and native crab species using a functional response approach. Biol Invasions 2021. [DOI: 10.1007/s10530-021-02508-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
18
|
Rosen MN, Baran KA, Sison JN, Steffel BV, Long WC, Foy RJ, Smith KE, Aronson RB, Dickinson GH. Mechanical Resistance in Decapod Claw Denticles: Contribution of Structure and Composition. Acta Biomater 2020; 110:196-207. [PMID: 32438112 DOI: 10.1016/j.actbio.2020.04.037] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2020] [Revised: 04/16/2020] [Accepted: 04/21/2020] [Indexed: 11/19/2022]
Abstract
The decapod crustacean exoskeleton is a multi-layered structure composed of chitin-protein fibers embedded with calcium salts. Decapod claws display tooth-like denticles, which come into direct contact with predators and prey. They are subjected to more regular and intense mechanical stress than other parts of the exoskeleton and therefore must be especially resistant to wear and abrasion. Here, we characterized denticle properties in five decapod species. Dactyls from three brachyuran crabs (Cancer borealis, Callinectes sapidus, and Chionoecetes opilio) and two anomuran crabs (Paralomis birsteini and Paralithodes camtschaticus) were sectioned normal to the contact surface of the denticle, revealing the interior of the denticle and the bulk endocuticle in which it is embedded. Microhardness, micro- and ultrastructure, and elemental composition were assessed along a transect running the width of the cuticle using microindentation hardness testing, optical and scanning electron microscopy (SEM), and energy dispersive X-ray spectroscopy (EDS), respectively. In all species tested, hardness was dramatically higher-up to ten times-in the denticle than in the bulk endocuticle. Likewise, in all species there was an increase in packing density of mineralized chitin-protein fibers, a decrease in width of the pore canals that run through the cuticle, and a decrease in phosphorous content from endocuticle to denticle. The changes in hardness across the cuticle, and the relationship between hardness, calcium, and magnesium content, however, varied among species. Although mechanical resistance of the denticles was exceptionally high in all species, the basis for resistance appears to differ among species. STATEMENT OF SIGNIFICANCE: Understanding the diverse mechanisms by which animals attain exceptionally high mechanical resistance may enable development of novel, biologically inspired materials. Decapod crustacean claws, and particularly the tooth-like denticles that these claws display, are of interest in this regard, as they must be especially resistant to wear. We assessed mechanical, elemental, and structural properties of the claw cuticle in five decapod species. Without exception, microhardness was dramatically higher in the denticle than in the bulk endocuticle. Multivariant statistical analyses, however, showed that the relationships among microhardness, elemental content, and structural variables differed among species. Such patterns likely result from strong evolutionary pressure on feeding and defensive structures and a trade-off between mechanical properties and energetic cost of exoskeleton formation.
Collapse
Affiliation(s)
- Miranda N Rosen
- Department of Biology, The College of New Jersey, Ewing, NJ, 08628, USA
| | - Kerstin A Baran
- Department of Biology, The College of New Jersey, Ewing, NJ, 08628, USA
| | - Justin N Sison
- Department of Biology, The College of New Jersey, Ewing, NJ, 08628, USA
| | - Brittan V Steffel
- Department of Ocean Engineering and Marine Sciences, Florida Institute of Technology, Melbourne, FL, 32901, USA
| | - W Christopher Long
- NOAA, National Marine Fisheries Service, Alaska Fisheries Science Center, Resource Assessment and Conservation Engineering Division, Kodiak Laboratory, 301 Research Ct., Kodiak, AK, 99615, USA
| | - Robert J Foy
- NOAA, National Marine Fisheries Service, Alaska Fisheries Science Center, Resource Assessment and Conservation Engineering Division, Kodiak Laboratory, 301 Research Ct., Kodiak, AK, 99615, USA
| | - Kathryn E Smith
- The Marine Biological Association, The Laboratory, Citadel Hill, Plymouth, PL1 2PB, UK
| | - Richard B Aronson
- Department of Ocean Engineering and Marine Sciences, Florida Institute of Technology, Melbourne, FL, 32901, USA
| | - Gary H Dickinson
- Department of Biology, The College of New Jersey, Ewing, NJ, 08628, USA.
| |
Collapse
|
19
|
Crane RL, Denny MW. Mechanical fatigue fractures bivalve shells. ACTA ACUST UNITED AC 2020; 223:223/10/jeb220277. [PMID: 32461264 DOI: 10.1242/jeb.220277] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2019] [Accepted: 04/09/2020] [Indexed: 12/12/2022]
Abstract
Mollusk shells protect against diverse environmental and predatory physical threats, from one-time impacts to chronic, low-magnitude stresses. The effectiveness of shells as armor is often quantified with a test of shell strength: increasing force is applied until catastrophic fracture. This test does not capture the potential role of fatigue, a process by which chronic or repeated, low-magnitude forces weaken and break a structure. We quantified the strength and fatigue resistance of California mussel (Mytilus californianus) shells. Shells were fatigue tested until catastrophic failure by either loading a valve repeatedly to a set force (cyclic) or loading a valve under constant force (static). Valves fatigued under both cyclic and static loading, i.e. subcritical forces broke valves when applied repeatedly or for long durations. Stronger and more fatigue-resistant valves tended to be more massive, relatively wider and the right-hand valve. Furthermore, after accounting for the valves' predicted strength, fatigue resistance curves for cyclic and static loading did not differ, suggesting that fatigue fracture of mussels is more dependent on force duration than number of cycles. Contextualizing fatigue resistance with the forces mussels typically experience clarifies the range of threats for which fatigue becomes relevant. Some predators could rely on fatigue, and episodic events like large wave impacts or failed predation attempts could weaken shells across long time scales. Quantifying shell fatigue resistance when considering the ecology of shelled organisms or the evolution of shell form offers a perspective that accounts for the accumulating damage of a lifetime of threats, large and small.
Collapse
Affiliation(s)
- R L Crane
- Hopkins Marine Station of Stanford University, Pacific Grove, CA 93950, USA
| | - M W Denny
- Hopkins Marine Station of Stanford University, Pacific Grove, CA 93950, USA
| |
Collapse
|
20
|
Patek SN. The Power of Mantis Shrimp Strikes: Interdisciplinary Impacts of an Extreme Cascade of Energy Release. Integr Comp Biol 2020; 59:1573-1585. [PMID: 31304967 DOI: 10.1093/icb/icz127] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
In the course of a single raptorial strike by a mantis shrimp (Stomatopoda), the stages of energy release span six to seven orders of magnitude of duration. To achieve their mechanical feats of striking at the outer limits of speeds, accelerations, and impacts among organisms, they use a mechanism that exemplifies a cascade of energy release-beginning with a slow and forceful, spring-loading muscle contraction that lasts for hundreds of milliseconds and ending with implosions of cavitation bubbles that occur in nanoseconds. Mantis shrimp use an elastic mechanism built of exoskeleton and controlled with a latching mechanism. Inspired by both their mechanical capabilities and evolutionary diversity, research on mantis shrimp strikes has provided interdisciplinary and fundamental insights to the fields of elastic mechanisms, fluid dynamics, evolutionary dynamics, contest dynamics, the physics of fast, small systems, and the rapidly-expanding field of bioinspired materials science. Even with these myriad connections, numerous discoveries await, especially in the arena of energy flow through materials actuating and controlling fast, impact fracture resistant systems.
Collapse
Affiliation(s)
- S N Patek
- Biology Department, Duke University, Durham, NC, USA
| |
Collapse
|
21
|
Masunari N, Sekiné K, Kang BJ, Takada Y, Hatakeyama M, Saigusa M. Ontogeny of Cheliped Laterality and Mechanisms of Reversal of Handedness in the Durophagous Gazami Crab, Portunus trituberculatus. THE BIOLOGICAL BULLETIN 2020; 238:25-40. [PMID: 32163729 DOI: 10.1086/707648] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
The paired claws in Gazami crabs, Portunus trituberculatus, are bilaterally asymmetrical, and asymmetry is remarkable on the distal two segments of the first pereiopod, that is, the dactylus and propodus. Shells are exclusively cracked by use of the right chela, representing handedness. In Gazami crabs, handedness is reversed after autotomy of the right chela. Our study focused on the ontogeny of handedness and the mechanism of handedness reversal. Morphologically, asymmetry was first detected in megalopa larvae where the right propodus was significantly larger than the left, as was the canine at the base of the right dactylus. Presumably, the rate of chelagenesis differed between the left and right chelae. With these morphological features, the right chela functioned as a crusher. The crusher exerted a closing force two to three times that of the cutter. With loss of the right crusher, the left chela was bigger than the regenerated right chela and was converted to the crusher. In contrast, the performance of the regenerated right chela deteriorated compared to that of the original right crusher, and exertion of full closing force was inhibited by the more active left chela. Furthermore, crabs with two crusher chelae did not clearly show handedness. A decrease in size and performance of the regenerated right chela can be explained by a default program hypothesis. In conclusion, a difference in the chelagenesis rate results in bilateral asymmetry of the two chelipeds, and then handedness is generated by neural regulation in the thoracic ganglion innervating these claws. Since handedness is reversed after autotomy, the thoracic ganglion would not be lateralized in Gazami crabs. A default program hypothesis is proposed to explain the ontogeny of bilateral chela asymmetry and handedness reversal.
Collapse
|
22
|
Schmelzle S, Blüthgen N. Under pressure: force resistance measurements in box mites (Actinotrichida, Oribatida). Front Zool 2019; 16:24. [PMID: 31312228 PMCID: PMC6611053 DOI: 10.1186/s12983-019-0325-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2019] [Accepted: 06/12/2019] [Indexed: 11/10/2022] Open
Abstract
Background Mechanical defenses are very common and diverse in prey species, for example in oribatid mites. Here, the probably most complex form of morphological defense is known as ptychoidy, that enables the animals to completely retract the appendages into a secondary cavity and encapsulate themselves. The two groups of ptychoid mites constituting the Ptyctima, i.e. Euphthiracaroidea and Phthiracaroidea, have a hardened cuticle and are well protected against similar sized predators. Euphthiracaroidea additionally feature predator-repelling secretions. Since both taxa evolved within the glandulate group of Oribatida, the question remains why Phthiracaroidea lost this additional protection. In earlier predation bioassays, chemically disarmed specimens of Euphthiracaroidea were cracked by the staphylinid beetle Othius punctulatus, whereas equally sized specimens of Phthiracaroidea survived. We thus hypothesized that Phthiracaroidea can withstand significantly more force than Euphthiracaroidea and that the specific body form in each group is key in understanding the loss of chemical defense in Phthiracaroidea. To measure force resistance, we adapted the principle of machines applying compressive forces for very small animals and tested the two ptyctimous taxa as well as the soft-bodied mite Archegozetes longisetosus. Results Some Phthiracaroidea individuals sustained about 560,000 times their body weight. Their mean resistance was about three times higher, and their mean breaking point in relation to body weight nearly two times higher than Euphthiracaroidea individuals. The breaking point increased with body weight and differed significantly between the two taxa. Across taxa, the absolute force resistance increased sublinearly (with a 0.781 power term) with the animal's body weight. Force resistance of A. longisetosus was inferior in all tests (about half that of Euphthiracaroidea after accounting for body weight). As an important determinant of mechanical resistance in ptychoid mites, the individuals' cuticle thickness increased sublinearly with body diameter and body mass as well and did not differ significantly between the taxa. Conclusion We showed the feasibility of the force resistance measurement method, and our results were consistent with the hypothesis that Phthiracaroidea compensated its lack of chemical secretions by a heavier mechanical resistance based on a different body form and associated build-up of hemolymph pressure (defensive trade-off).
Collapse
Affiliation(s)
- Sebastian Schmelzle
- Department of Biology, Ecological Networks, Technische Universität Darmstadt, Schnittspahnstr. 3, 64287 Darmstadt, Germany
| | - Nico Blüthgen
- Department of Biology, Ecological Networks, Technische Universität Darmstadt, Schnittspahnstr. 3, 64287 Darmstadt, Germany
| |
Collapse
|
23
|
Gaylord B, Barclay KM, Jellison BM, Jurgens LJ, Ninokawa AT, Rivest EB, Leighton LR. Ocean change within shoreline communities: from biomechanics to behaviour and beyond. CONSERVATION PHYSIOLOGY 2019; 7:coz077. [PMID: 31754431 PMCID: PMC6855281 DOI: 10.1093/conphys/coz077] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/11/2019] [Revised: 07/19/2019] [Accepted: 09/03/2019] [Indexed: 05/11/2023]
Abstract
Humans are changing the physical properties of Earth. In marine systems, elevated carbon dioxide concentrations are driving notable shifts in temperature and seawater chemistry. Here, we consider consequences of such perturbations for organism biomechanics and linkages amongst species within communities. In particular, we examine case examples of altered morphologies and material properties, disrupted consumer-prey behaviours, and the potential for modulated positive (i.e. facilitative) interactions amongst taxa, as incurred through increasing ocean acidity and rising temperatures. We focus on intertidal rocky shores of temperate seas as model systems, acknowledging the longstanding role of these communities in deciphering ecological principles. Our survey illustrates the broad capacity for biomechanical and behavioural shifts in organisms to influence the ecology of a transforming world.
Collapse
Affiliation(s)
- Brian Gaylord
- Bodega Marine Laboratory, University of California at Davis, 2099 Westshore Road, Bodega Bay, CA 94923, USA
- Department of Evolution and Ecology, University of California at Davis, One Shields Avenue, Davis, CA 95616, USA
- Corresponding author:
| | - Kristina M Barclay
- Earth and Atmospheric Sciences Department, 1-26 Earth Sciences Building, University of Alberta, Edmonton, AB T6G 2E3, Canada
| | - Brittany M Jellison
- Biology Department, Bowdoin College, 255 Main Street, Brunswick, ME 04011, USA
| | - Laura J Jurgens
- Marine Biology Department, Texas A&M University at Galveston, 200 Seawolf Parkway, Galveston, TX 77553, USA
| | - Aaron T Ninokawa
- Bodega Marine Laboratory, University of California at Davis, 2099 Westshore Road, Bodega Bay, CA 94923, USA
| | - Emily B Rivest
- Department of Biological Sciences, Virginia Institute of Marine Science, William & Mary, 1370 Greate Road, Gloucester Point, VA 23062, USA
| | - Lindsey R Leighton
- Earth and Atmospheric Sciences Department, 1-26 Earth Sciences Building, University of Alberta, Edmonton, AB T6G 2E3, Canada
| |
Collapse
|
24
|
Donahue SW. Krogh's principle for musculoskeletal physiology and pathology. JOURNAL OF MUSCULOSKELETAL & NEURONAL INTERACTIONS 2018; 18:284-291. [PMID: 30179205 PMCID: PMC6146200] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
August Krogh was a comparative physiologist who used frogs, guinea pigs, cats, dogs, and horses in his research that led to his Nobel Prize on muscle physiology. His idea to choose the most relevant organism to study problems in physiology has become known as Krogh's principle. Indeed, many important discoveries in physiology have been made using naturally occurring animal models. However, the majority of research today utilizes laboratory mouse and rat models to study problems in physiology. This paper discusses how Krogh's principle can be invoked in musculoskeletal research as a complementary approach to using standard laboratory rodent models for solving problems in musculoskeletal physiology. This approach may increase our ability to treat musculoskeletal diseases clinically. For example, it has been noted that progress in osteogenesis imperfecta research has been limited by the absence of a naturally occurring animal model. Several examples of naturally occurring animal models are discussed including osteoarthritis and osteosarcoma in dogs, resistance to disuse induced bone and skeletal muscle loss in mammalian hibernators, and bone phenotypic plasticity in fish lacking osteocytes. Many musculoskeletal diseases (e.g., osteoarthritis) occur naturally in companion animals, which may provide clues on etiology and progression of musculoskeletal diseases and accelerate the development of pharmaceutical therapies for humans.
Collapse
Affiliation(s)
- Seth W. Donahue
- Department of Biomedical Engineering, University of Massachusetts, USA,Corresponding author: Seth W. Donahue, Department of Biomedical Engineering, University of Massachusetts Amherst, Amherst, MA 01003, USA E-mail:
| |
Collapse
|
25
|
Williams CD, Holt NC. Spatial Scale and Structural Heterogeneity in Skeletal Muscle Performance. Integr Comp Biol 2018; 58:163-173. [DOI: 10.1093/icb/icy057] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Affiliation(s)
- C D Williams
- Allen Institute for Cell Science, 615 Westlake Ave N, Seattle, WA 98109, USA
| | - N C Holt
- Department of Biology, Northern Arizona University, S. San Francisco Street, Flagstaff, AZ 86011, USA
| |
Collapse
|
26
|
Malavé BM, Styga JM, Clotfelter ED. Size, shape, and sex-dependent variation in force production by crayfish chelae. J Morphol 2017; 279:312-318. [PMID: 29148084 DOI: 10.1002/jmor.20773] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2017] [Revised: 10/27/2017] [Accepted: 10/28/2017] [Indexed: 11/09/2022]
Abstract
The ability to generate large closing forces is important for many animals. Several studies have demonstrated that bite or pinching force capacity is usually related to the linear dimensions of the closing apparatus. However, relatively few studies have applied geometric morphometrics to examine the effects of size-independent shape on force production, particularly in studies of crustacean pinching force. In this study, we utilized traditional and geometric morphometric techniques to compare the pinching force of Procambarus clarkii crayfish to their chela morphology. We found that males possessed larger chelae and pinched harder than females, but that their chela shape and size were weak predictors of strength. Female pinching force was significantly affected by both chela size and shape, with shape variation along the short axis of the claw contributing most to pinching force. We discuss our results in the context of reliable signaling of strength by males and females, and the different selective forces acting on chela shape in the two sexes.
Collapse
Affiliation(s)
- Brian M Malavé
- Department of Biology, Amherst College, Amherst, Massachusetts
| | - Joseph M Styga
- Department of Biological Sciences, University of Alabama, Tuscaloosa, Alabama
| | | |
Collapse
|
27
|
Kedzierski J, Holihan E, Cabrera R, Weaver I. Re-engineering artificial muscle with microhydraulics. MICROSYSTEMS & NANOENGINEERING 2017; 3:17016. [PMID: 31057863 PMCID: PMC6444977 DOI: 10.1038/micronano.2017.16] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2016] [Revised: 12/08/2016] [Accepted: 12/31/2016] [Indexed: 05/12/2023]
Abstract
We introduce a new type of actuator, the microhydraulic stepping actuator (MSA), which borrows design and operational concepts from biological muscle and stepper motors. MSAs offer a unique combination of power, efficiency, and scalability not easily achievable on the microscale. The actuator works by integrating surface tension forces produced by electrowetting acting on scaled droplets along the length of a thin ribbon. Like muscle, MSAs have liquid and solid functional components and can displace a large fraction of their length. The 100 μm pitch MSA presented here already has an output power density of over 200 W kg-1, rivaling the most powerful biological muscles, due to the scaling of surface tension forces, MSA's power density grows quadratically as its dimensions are reduced.
Collapse
Affiliation(s)
- Jakub Kedzierski
- Massachusetts Institute of Technology Lincoln Laboratory, Lexington, MA 02420, USA
| | - Eric Holihan
- Massachusetts Institute of Technology Lincoln Laboratory, Lexington, MA 02420, USA
| | - Rafmag Cabrera
- Massachusetts Institute of Technology Lincoln Laboratory, Lexington, MA 02420, USA
| | - Isaac Weaver
- Massachusetts Institute of Technology Lincoln Laboratory, Lexington, MA 02420, USA
| |
Collapse
|
28
|
Oka SI, Tomita T, Miyamoto K. A Mighty Claw: Pinching Force of the Coconut Crab, the Largest Terrestrial Crustacean. PLoS One 2016; 11:e0166108. [PMID: 27880779 PMCID: PMC5120803 DOI: 10.1371/journal.pone.0166108] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2016] [Accepted: 10/24/2016] [Indexed: 11/18/2022] Open
Abstract
Crustaceans can exert a greater force using their claws than many animals can with other appendages. Furthermore, in decapods, the chela is a notable organ with multifunctional roles. The coconut crab, Birgus latro, is the largest terrestrial crustacean and has a remarkable ability to lift weights up to approximately 30 kg. However, the pinching force of this crab's chelae has not been previously investigated. In the present study, we measured the pinching force of the chelae in 29 wild coconut crabs (33-2,120 g in body weight). The maximum force ranged from 29.4 to 1,765.2 N, and showed a strong positive correlation with body mass. Based on the correlation between pinching force and body weight, the force potentially exerted by the largest crab (4 kg weight) reported in a previous study would be 3300 N, which greatly exceeds the pinching force of other crustaceans as well as the bite force of most terrestrial predators. The mighty claw is a terrestrial adaptation that is not only a weapon, which can be used to prevent predator attack and inhibit competitors, but is also a tool to hunt other terrestrial organisms with rigid exteriors, aiding in these organisms to be omnivores.
Collapse
Affiliation(s)
- Shin-ichiro Oka
- Okinawa Churashima Foundation, 888 Ishikawa, Motobu, Okinawa 905–0206, Japan
| | - Taketeru Tomita
- Okinawa Churashima Foundation, 888 Ishikawa, Motobu, Okinawa 905–0206, Japan
| | - Kei Miyamoto
- Okinawa Churashima Foundation, 888 Ishikawa, Motobu, Okinawa 905–0206, Japan
| |
Collapse
|
29
|
David S, Funken J, Potthast W, Blanke A. Musculoskeletal modelling under an evolutionary perspective: deciphering the role of single muscle regions in closely related insects. J R Soc Interface 2016; 13:20160675. [PMID: 27707910 PMCID: PMC5095224 DOI: 10.1098/rsif.2016.0675] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2016] [Accepted: 09/07/2016] [Indexed: 11/12/2022] Open
Abstract
Insects show a remarkable diversity of muscle configurations, yet the factors leading to this functional diversity are poorly understood. Here, we use musculoskeletal modelling to understand the spatio-temporal activity of an insect muscle in several dragonfly species and to reveal potential mechanical factors leading to a particular muscle configuration. Bite characteristics potentially show systematic signal, but absolute bite force is not correlated with size. Muscle configuration and inverse dynamics show that the wider relative area of muscle attachment and the higher activity of subapical muscle groups are responsible for this high bite force. This wider attachment area is, however, not an evolutionary trend within dragonflies. Our inverse dynamic data, furthermore, show that maximum bite forces most probably do not reflect maximal muscle force production capability in all studied species. The thin head capsule and the attachment areas of muscles most probably limit the maximum force output of the mandibular muscles.
Collapse
Affiliation(s)
- Sina David
- Institute of Biomechanics and Orthopaedics, German Sport University Cologne, Cologne 50933, Germany
| | - Johannes Funken
- Institute of Biomechanics and Orthopaedics, German Sport University Cologne, Cologne 50933, Germany
| | - Wolfgang Potthast
- Institute of Biomechanics and Orthopaedics, German Sport University Cologne, Cologne 50933, Germany ARCUS Clinics Pforzheim, Rastatter Strasse 17-19, 75179 Pforzheim, Germany
| | - Alexander Blanke
- Medical and Biological Engineering Research Group, School of Engineering, University of Hull, Hull HU6 7RX, UK
| |
Collapse
|
30
|
Rospars JP, Meyer-Vernet N. Force per cross-sectional area from molecules to muscles: a general property of biological motors. ROYAL SOCIETY OPEN SCIENCE 2016; 3:160313. [PMID: 27493785 PMCID: PMC4968477 DOI: 10.1098/rsos.160313] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/07/2016] [Accepted: 06/17/2016] [Indexed: 06/06/2023]
Abstract
We propose to formally extend the notion of specific tension, i.e. force per cross-sectional area-classically used for muscles, to quantify forces in molecular motors exerting various biological functions. In doing so, we review and compare the maximum tensions exerted by about 265 biological motors operated by about 150 species of different taxonomic groups. The motors considered range from single molecules and motile appendages of microorganisms to whole muscles of large animals. We show that specific tensions exerted by molecular and non-molecular motors follow similar statistical distributions, with in particular, similar medians and (logarithmic) means. Over the 10(19) mass (M) range of the cell or body from which the motors are extracted, their specific tensions vary as M(α) with α not significantly different from zero. The typical specific tension found in most motors is about 200 kPa, which generalizes to individual molecular motors and microorganisms a classical property of macroscopic muscles. We propose a basic order-of-magnitude interpretation of this result.
Collapse
Affiliation(s)
- Jean-Pierre Rospars
- Institut National de la Recherche Agronomique (INRA), Unité Mixte de Recherche 1392 Institut d'Ecologie et des Sciences de l'Environnement de Paris, 78000 Versailles, France
| | - Nicole Meyer-Vernet
- LESIA, Observatoire de Paris, CNRS, PSL Research University, UPMC, Sorbonne University, Paris Diderot, Sorbonne Paris Cité, 92195 Cedex Meudon, France
| |
Collapse
|
31
|
Affiliation(s)
- Rodger Kram
- University of Colorado BoulderBrown University
| | | |
Collapse
|
32
|
Weihmann T, Reinhardt L, Weißing K, Siebert T, Wipfler B. Fast and Powerful: Biomechanics and Bite Forces of the Mandibles in the American Cockroach Periplaneta americana. PLoS One 2015; 10:e0141226. [PMID: 26559671 PMCID: PMC4641686 DOI: 10.1371/journal.pone.0141226] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2015] [Accepted: 10/06/2015] [Indexed: 11/19/2022] Open
Abstract
Knowing the functionality and capabilities of masticatory apparatuses is essential for the ecological classification of jawed organisms. Nevertheless insects, especially with their outstanding high species number providing an overwhelming morphological diversity, are notoriously underexplored with respect to maximum bite forces and their dependency on the mandible opening angles. Aiming for a general understanding of insect biting, we examined the generalist feeding cockroach Periplaneta americana, characterized by its primitive chewing mouth parts. We measured active isometric bite forces and passive forces caused by joint resistance over the entire mandibular range with a custom-built 2D force transducer. The opening angle of the mandibles was quantified by using a video system. With respect to the effective mechanical advantage of the mandibles and the cross-section areas, we calculated the forces exerted by the mandible closer muscles and the corresponding muscle stress values. Comparisons with the scarce data available revealed close similarities of the cockroaches' mandible closer stress values (58 N/cm2) to that of smaller specialist carnivorous ground beetles, but strikingly higher values than in larger stag beetles. In contrast to available datasets our results imply the activity of faster and slower muscle fibres, with the latter becoming active only when the animals chew on tough material which requires repetitive, hard biting. Under such circumstances the coactivity of fast and slow fibres provides a force boost which is not available during short-term activities, since long latencies prevent a specific effective employment of the slow fibres in this case.
Collapse
Affiliation(s)
- Tom Weihmann
- Dept. of Zoology, University of Cambridge, Cambridge, United Kingdom
| | - Lars Reinhardt
- Science of Motion, Friedrich Schiller University Jena, Jena, Germany
| | - Kevin Weißing
- Entomology Group, Institut für Spezielle Zoologie und Evolutionsbiologie mit Phyletischem Museum, Friedrich-Schiller-Universität Jena, Jena, Germany
| | - Tobias Siebert
- Institute of Sport and Motion Science, University of Stuttgart, Stuttgart, Germany
| | - Benjamin Wipfler
- Entomology Group, Institut für Spezielle Zoologie und Evolutionsbiologie mit Phyletischem Museum, Friedrich-Schiller-Universität Jena, Jena, Germany
| |
Collapse
|
33
|
Kosloski ME, Allmon WD. Macroecology and evolution of a crab ‘super predator’,Menippe mercenaria(Menippidae), and its gastropod prey. Biol J Linn Soc Lond 2015. [DOI: 10.1111/bij.12622] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Mary E. Kosloski
- Vassar College; 124 Raymond Avenue Poughkeepsie NY 12604 USA
- Department of Earth and Environmental Sciences; The University of Iowa; Trowbridge Hall; Iowa City IA 52242 USA
| | - Warren D. Allmon
- Paleontological Research Institution; 1259 Trumansburg Road Ithaca NY 14850 USA
- Department of Earth and Atmospheric Sciences; Cornell University; Ithaca NY 14853 USA
| |
Collapse
|
34
|
Bywater CL, Seebacher F, Wilson RS. Building a dishonest signal: the functional basis of unreliable signals of strength in males of the two-toned fiddler crab, Uca vomeris. J Exp Biol 2015; 218:3077-82. [DOI: 10.1242/jeb.120857] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2015] [Accepted: 07/28/2015] [Indexed: 11/20/2022]
Abstract
Males of many species use signals during aggressive contests to communicate their fighting capacity. These signals are usually reliable indicators of an individual's underlying quality, however, in several crustacean species, displays of weapons do not always accurately reflect the attribute being advertised. Male fiddler crabs possess one enlarged claw that is used to attract females and to intimidate opponents during territorial contests. After the loss of their major, claw males can regenerate a replacement claw that is similar in size but considerably weaker. As this inferior weapon can still be used to successfully intimidate rivals, it represents one of the clearest cases of unreliable signalling of strength during territorial contests. We investigated the functional mechanisms that govern signal reliability in the two-toned fiddler crab, Uca vomeris. Male U. vomeris exhibit both reliable and unreliable signals of strength via the expression of original and regenerated claw morphs. We examined the morphological, biomechanical and biochemical characteristics of original and regenerated claws to establish the best predictors of variation in claw strength. For a given claw size, regenerated claws have less muscle mass than original claws, and for a given muscle mass regenerated claws were significantly weaker than original claws. The mechanical advantage was also lower in regenerated claws compared with original claws. However, the activity of three catabolic enzymes did not differ between claw types. We concluded that the structural and physiological predictors of force production influence the frequencies of reliable and unreliable signals of strength in U. vomeris. This study furthers our understanding of the proliferation of unreliable signals in natural populations.
Collapse
Affiliation(s)
- Candice L. Bywater
- School of Biological Sciences, The University of Queensland, St Lucia QLD 4072, Australia
| | - Frank Seebacher
- School of Biological Sciences A08, The University of Sydney, NSW 2006, Australia
| | - Robbie S. Wilson
- School of Biological Sciences, The University of Queensland, St Lucia QLD 4072, Australia
| |
Collapse
|
35
|
Longo MV, Díaz AO. Morphology of the claw closer muscle in two estuarine crab species (Crustacea, Varunidae): an ultrastructural study. Zoolog Sci 2013; 30:663-9. [PMID: 23915160 DOI: 10.2108/zsj.30.663] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
We analyzed the ultrastructural features of the claw closer muscles in two estuarine crabs, Cyrtograpsus angulatus and Neohelice granulata, by transmission electron microscopy. Adult male crabs at intermolt stage were collected in the Mar Chiquita Coastal Lagoon (Buenos Aires, Argentina). The muscle fibers of both species showed evident striations, peripheral and intermyofibrillar nuclei, clefts in continuity with T and Z tubules, sarcoplasmic reticulum and T tubules forming dyads and triads usually located between the A and I bands, and mitochondria located mainly beneath the sarcolemma. Glycogen was observed as diffuse, small particles among myofilaments. The claw closer muscle of C. angulatus exhibited two fiber types: one with relatively fast-contracting fibers (shorter sarcomeres, myofilaments with an ordered arrangement, lineal Z discs, a well-developed sarcotubular system) and fatigue-resistant (numerous large mitochondria); and the other type, with slower-contracting fibers (longer sarcomeres, less orderly arranged myofilaments, wavy Z discs, a less developed sarcotubular system) and less resistant to fatigue (lower mitochondrial density). N. granulata showed only the slow, less resistant to fatigue type. The fibers less resistant to fatigue and more slowly contracting would presumably be used primarily for displays and agonistic interactions, whereas fast fibers with abundant mitochondria would be associated with continuous movements during feeding and grooming.
Collapse
Affiliation(s)
- María Victoria Longo
- Institute of Marine and Coastal Research, National University of Mar del Plata, Mar del Plata, Buenos Aires, Argentina
| | | |
Collapse
|
36
|
Wong WL, Gorb SN. Attachment ability of a clamp-bearing fish parasite, Diplozoon paradoxum (Monogenea), on gills of the common bream, Abramis brama. ACTA ACUST UNITED AC 2013; 216:3008-14. [PMID: 23580722 DOI: 10.1242/jeb.076190] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Monogeneans, which are mainly fish ectoparasites, use various types of haptoral (posterior) attachment apparatus to secure their attachment onto their hosts. However, it remains unclear how strongly a monogenean can attach onto its host. In the present study, we aimed for the first time to (1) measure pull-off forces required to detach a pair of clamp-bearing monogeneans, Diplozoon paradoxum, from gills of Abramis brama and (2) determine the contribution of muscles to the clamp movements. A mean force of 6.1±2.7 mN (~246 times the animals' weight) was required to dislodge a paired D. paradoxum vertically from the gills. There were significant differences (P<0.05, Tukey test) between the widths of clamp openings in D. paradoxum treated in three different solutions: the widest clamp openings were observed in the monogeneans treated in 100 mmol l(-1) potassium chloride solution (58.26±13.44 μm), followed by those treated in 20 mmol l(-1) magnesium chloride solution (37.91±7.58 μm), and finally those treated in filtered lake water (20.16±8.63 μm). This suggests that the closing of the clamps is probably not due to the continuous contraction of extrinsic muscles but is caused by the elasticity of the clamp material and that muscle activity is required for clamp opening.
Collapse
Affiliation(s)
- Wey-Lim Wong
- Department of Functional Morphology and Biomechanics, Zoological Institute, Christian-Albrechts-Universität zu Kiel, Kiel, Germany.
| | | |
Collapse
|
37
|
van der Meijden A, Langer F, Boistel R, Vagovic P, Heethoff M. Functional morphology and bite performance of raptorial chelicerae of camel spiders (Solifugae). J Exp Biol 2012; 215:3411-8. [DOI: 10.1242/jeb.072926] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Summary
Solifugae are an understudied group of relatively large arachnids with well over 1.000 species distributed on almost all major continents. These highly active predators utilize their large chelicerae for feeding, defense, burrowing and mating. We investigated the differences in cheliceral morphology and performance of two ecologically divergent species from North-Africa; the cursorial Galeodes sp. and the burrowing Rhagodes melanus. Morphological data show differences in aspect ratio between the two species. Bite force measurements show Rhagodes (n=11) to be a much stronger biter than Galeodes (n=8), both in absolute maximum force (Rhagodes 5,63 N, Galeodes 2,12 N) and relative to cheliceral size. Synchrotron-μ-tomographies of one specimen for each species reveal large differences in physiological cross sectional area (PCSA) and estimated muscle stress, resulting in a much higher muscle stress in Rhagodes. The latter species also showed a longer muscle fiber length. Muscle volume and PCSA were found to differ between the two chelicerae in the two scanned specimens. Whereas Rhagodes reflects this morphological asymmetry in having a higher bite force in the right chelicera, Galeodes shows no such bias.
Collapse
|
38
|
Longo MV, Díaz AO. The claw closer muscle of two estuarine crab species,Cyrtograpsus angulatusandNeohelice granulata(Grapsoidea, Varunidae): histochemical fibre type composition. ACTA ZOOL-STOCKHOLM 2011. [DOI: 10.1111/j.1463-6395.2011.00548.x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
39
|
Song J, Ortiz C, Boyce MC. Threat-protection mechanics of an armored fish. J Mech Behav Biomed Mater 2011; 4:699-712. [DOI: 10.1016/j.jmbbm.2010.11.011] [Citation(s) in RCA: 75] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2010] [Revised: 11/22/2010] [Accepted: 11/23/2010] [Indexed: 11/29/2022]
|
40
|
Longo MV, Goldemberg AL, Díaz AO. The claw closer muscle of Neohelice granulata (Grapsoidea, Varunidae): a morphological and histochemical study. ACTA ZOOL-STOCKHOLM 2010. [DOI: 10.1111/j.1463-6395.2010.00484.x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
41
|
Zack TI, Claverie T, Patek SN. Elastic energy storage in the mantis shrimp's fast predatory strike. J Exp Biol 2009; 212:4002-9. [DOI: 10.1242/jeb.034801] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
SUMMARY
Storage of elastic energy is key to increasing the power output of many biological systems. Mantis shrimp (Stomatopoda) must store considerable elastic energy prior to their rapid raptorial strikes; however, little is known about the dynamics and location of elastic energy storage structures in this system. We used computed tomography (CT) to visualize the mineralization patterns in Gonodactylaceus falcatus and high speed videography of Odontodactylus scyllarus to observe the dynamics of spring loading. Using a materials testing apparatus, we measured the force and work required to contract the elastic structures in G. falcatus. There was a positive linear correlation between contraction force and contraction distance; alternative model tests further supported the use of a linear model. Therefore, we modeled the system as a Hookean spring. The force required to fully compress the spring was positively correlated with body mass and appendage size, but the spring constant did not scale with body size, suggesting a possible role of muscle constraints in the scaling of this system. One hypothesized elastic storage structure, the saddle, only contributed approximately 11% of the total measured force, thus suggesting that primary site of elastic energy storage is in the mineralized ventral bars found in the merus segment of the raptorial appendages. Furthermore, the intact system exhibited 81% resilience and severing the saddle resulted in a non-significant reduction to 77% resilience. The remarkable shapes and mineralization patterns that characterize the mantis shrimp's raptorial appendage further reveal a highly integrated mechanical power amplification system based on exoskeletal elastic energy storage.
Collapse
Affiliation(s)
- T. I. Zack
- Department of Integrative Biology, University of California, Berkeley, CA 94720-3140, USA
| | - T. Claverie
- Department of Integrative Biology, University of California, Berkeley, CA 94720-3140, USA
| | - S. N. Patek
- Department of Integrative Biology, University of California, Berkeley, CA 94720-3140, USA
| |
Collapse
|
42
|
Perry MJ, Tait J, Hu J, White SC, Medler S. Skeletal muscle fiber types in the ghost crab, Ocypode quadrata: implications for running performance. ACTA ACUST UNITED AC 2009; 212:673-83. [PMID: 19218519 DOI: 10.1242/jeb.023481] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Ghost crabs possess rapid running capabilities, which make them good candidates for comparing invertebrate exercise physiology with that of more extensively studied vertebrates. While a number of studies have examined various aspects of running physiology and biomechanics in terrestrial crabs, none to date have defined the basic skeletal muscle fiber types that power locomotion. In the current study, we investigated skeletal muscle fiber types comprising the extensor and flexor carpopodite muscles in relation to running performance in the ghost crab. We used kinematic analyses to determine stride frequency and muscle shortening velocity and found that both parameters are similar to those of comparably sized mammals but slower than those observed in running lizards. Using several complementary methods, we found that the muscles are divided into two primary fiber types: those of the proximal and distal regions possess long sarcomeres (6.2+/-2.3 microm) observed in crustacean slow fibers and have characteristics of aerobic fibers whereas those of the muscle mid-region have short sarcomeres (3.5+/-0.4 microm) characteristic of fast fibers and appear to be glycolytic. Each fiber type is characterized by several different myofibrillar protein isoforms including multiple isoforms of myosin heavy chain (MHC), troponin I (TnI), troponin T (TnT) and a crustacean fast muscle protein, P75. Three different isoforms of MHC are differentially expressed in the muscles, with fibers of the mid-region always co-expressing two isoforms at a 1:1 ratio within single fibers. Based on our analyses, we propose that these muscles are functionally divided into a two-geared system, with the aerobic fibers used for slow sustained activities and the glycolytic mid-region fibers being reserved for explosive sprints. Finally, we identified subtle differences in myofibrillar isoform expression correlated with crab body size, which changes by several orders of magnitude during an animal's lifetime.
Collapse
Affiliation(s)
- Michael J Perry
- Department of Biological Sciences, University at Buffalo, Buffalo, NY 14260, USA
| | | | | | | | | |
Collapse
|
43
|
ANDERSON ROGERA, MCBRAYER LANCED, HERREL ANTHONY. Bite force in vertebrates: opportunities and caveats for use of a nonpareil whole-animal performance measure. Biol J Linn Soc Lond 2008. [DOI: 10.1111/j.1095-8312.2007.00905.x] [Citation(s) in RCA: 150] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
44
|
Heethoff M, Koerner L. Small but powerful: the oribatid mite Archegozetes longisetosus Aoki (Acari, Oribatida) produces disproportionately high forces. ACTA ACUST UNITED AC 2007; 210:3036-42. [PMID: 17704078 DOI: 10.1242/jeb.008276] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
We investigated the holding and pulling forces generated by claws of the microarthropod Archegozetes longisetosus (Chelicerata, Acari, Oribatida) on three substrates with different roughness (R(a)=0.05 microm, 1 microm, 30 microm). Holding forces were measured perpendicular to the substrate using a strain gage force transducer; pulling forces were measured parallel to the substrate using an analytical scale. We found a significant positive correlation of surface roughness and the forces generated. Mites produced holding forces on horizontal rough surfaces (R(a)=30 microm) of up to 1180 times their weight; on vertical rough surfaces (R(a)=30 microm) they can pull with 530 times their weight, effectively involving only two pairs of legs. The relative forces are five times higher than theoretically expected for organisms of this size (<1 mm, 100 microg) and higher than any relative forces reported for insect claws. Muscles involved in claw action produced stresses up to 1170 kN m(-2), a value that is only excelled by decapod crustacean claw closer muscles. Ours is the first study of performance by chelicerate apoteles and claws and also the first to measure forces generated by any microarthropod.
Collapse
Affiliation(s)
- Michael Heethoff
- University of Tübingen, Zoological Institute, Department of Evolutionary Biology of Invertebrates, Auf der Morgenstelle 28E, 72076 Tübingen, Germany.
| | | |
Collapse
|
45
|
Taylor GM. THE EVOLUTION OF ARMAMENT STRENGTH: EVIDENCE FOR A CONSTRAINT ON THE BITING PERFORMANCE OF CLAWS OF DUROPHAGOUS DECAPODS. Evolution 2007. [DOI: 10.1111/j.0014-3820.2001.tb00788.x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
46
|
Petie R, Muller M. Curvature facilitates prey fixation in predatory insect claws. J Theor Biol 2007; 244:565-75. [PMID: 17056069 DOI: 10.1016/j.jtbi.2006.09.004] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2006] [Revised: 08/16/2006] [Accepted: 09/06/2006] [Indexed: 10/24/2022]
Abstract
Insects show a large variety in prey capture strategies, with a correspondingly large diversity in predatory adaptations. We studied a specific type of predatory claws, these can for example be found in praying mantis species. The claw is closeable over its entire length and the prey is fixed between the femur (upper arm) and the tibia (lower arm) of the insect leg. The morphology of these predatory claws is diverse. Some species have straight claws covered with spines, while other species have smooth, curved claws. We have studied the mechanics of this femur-tibia type of predatory insect claws, by making a physical model, eventually trying to explain why in some insect species the claws are curved instead of straight. The main results are (1) when comparing curved claws to straight claws, curvature leads to a strong reduction of forces driving the prey away from the pivoting point, thereby reducing the need for friction generating structures. (2) In the curved claw model a position exists where the resulting force on the prey is exactly zero. This is because the normal forces on the femur and tibia are opposed, and in line. At this position the prey is perfectly clamped and not driven out of the claw. This feature does not exist in straight claws. (3) In the curved claw, the prey cannot be placed at a position further than a certain maximum distance from the pivoting point. Near this maximum position, the resulting force on the prey reaches high values because moment arms are near zero. (4) Between the zero position and the maximum position the resulting force is directed toward the pivoting point, which stabilizes prey fixation.
Collapse
Affiliation(s)
- Ronald Petie
- Experimental Zoology Group, Wageningen University, Marijkeweg 40, Wageningen 6709 PG, The Netherlands
| | | |
Collapse
|
47
|
Patek SN, Baio JE, Fisher BL, Suarez AV. Multifunctionality and mechanical origins: ballistic jaw propulsion in trap-jaw ants. Proc Natl Acad Sci U S A 2006; 103:12787-92. [PMID: 16924120 PMCID: PMC1568925 DOI: 10.1073/pnas.0604290103] [Citation(s) in RCA: 113] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2006] [Indexed: 11/18/2022] Open
Abstract
Extreme animal movements are usually associated with a single, high-performance behavior. However, the remarkably rapid mandible strikes of the trap-jaw ant, Odontomachus bauri, can yield multiple functional outcomes. Here we investigate the biomechanics of mandible strikes in O. bauri and find that the extreme mandible movements serve two distinct functions: predation and propulsion. During predatory strikes, O. bauri mandibles close at speeds ranging from 35 to 64 m.s-1 within an average duration of 0.13 ms, far surpassing the speeds of other documented ballistic predatory appendages in the animal kingdom. The high speeds of the mandibles assist in capturing prey, while the extreme accelerations result in instantaneous mandible strike forces that can exceed 300 times the ant's body weight. Consequently, an O. bauri mandible strike directed against the substrate produces sufficient propulsive power to launch the ant into the air. Changing head orientation and strike surfaces allow O. bauri to use the trap-jaw mechanism to capture prey, eject intruders, or jump to safety. This use of a single, simple mechanical system to generate a suite of profoundly different behavioral functions offers insights into the morphological origins of novelties in feeding and locomotion.
Collapse
Affiliation(s)
- S. N. Patek
- *Department of Integrative Biology, University of California, Berkeley, CA 94720-3140
| | - J. E. Baio
- *Department of Integrative Biology, University of California, Berkeley, CA 94720-3140
| | - B. L. Fisher
- Entomology, California Academy of Sciences, 875 Howard Street, San Francisco, CA 94103-3009; and
| | - A. V. Suarez
- Departments of Entomology and Animal Biology, University of Illinois at Urbana–Champaign, 505 South Goodwin Avenue, Urbana, IL 61801
| |
Collapse
|
48
|
Savelberg H, Meijer K, Moreno J. Biological Mechanisms as Models for Mimicking. Biomimetics (Basel) 2005. [DOI: 10.1201/9781420037715.ch2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
|
49
|
Patek SN, Caldwell RL. Extreme impact and cavitation forces of a biological hammer: strike forces of the peacock mantis shrimp Odontodactylus scyllarus. J Exp Biol 2005; 208:3655-64. [PMID: 16169943 DOI: 10.1242/jeb.01831] [Citation(s) in RCA: 104] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
SUMMARY
Mantis shrimp are renowned for their unusual method of breaking shells with brief, powerful strikes of their raptorial appendages. Due to the extreme speeds of these strikes underwater, cavitation occurs between their appendages and hard-shelled prey. Here we examine the magnitude and relative contribution of the impact and cavitation forces generated by the peacock mantis shrimp Odontodactylus scyllarus. We present the surprising finding that each strike generates two brief, high-amplitude force peaks, typically 390–480 μs apart. Based on high-speed imaging, force measurements and acoustic analyses, it is evident that the first force peak is caused by the limb's impact and the second force peak is due to the collapse of cavitation bubbles. Peak limb impact forces range from 400 to 1501 N and peak cavitation forces reach 504 N. Despite their small size, O. scyllarus can generate impact forces thousands of times their body weight. Furthermore, on average, cavitation peak forces are 50% of the limb's impact force, although cavitation forces may exceed the limb impact forces by up to 280%. The rapid succession of high peak forces used by mantis shrimp suggests that mantis shrimp use a potent combination of cavitation forces and extraordinarily high impact forces to fracture shells. The stomatopod's hammer is fundamentally different from typical shell-crushing mechanisms such as fish jaws and lobster claws, and may have played an important and as yet unexamined role in the evolution of shell form.
Collapse
Affiliation(s)
- S N Patek
- Department of Integrative Biology, University of California, Berkeley, 94720-3140, USA.
| | | |
Collapse
|
50
|
McGaw IJ. The decapod crustacean circulatory system: a case that is neither open nor closed. MICROSCOPY AND MICROANALYSIS : THE OFFICIAL JOURNAL OF MICROSCOPY SOCIETY OF AMERICA, MICROBEAM ANALYSIS SOCIETY, MICROSCOPICAL SOCIETY OF CANADA 2005; 11:18-36. [PMID: 15683568 DOI: 10.1017/s1431927605050026] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/03/2003] [Indexed: 05/24/2023]
Abstract
Historically, the decapod crustacean circulatory system has been classed as open. However, recent work on the blue crab, Callinectes sapidus, suggests the circulatory system may be more complex than previously described. Corrosion casting techniques were refined and used to map the circulatory system of a variety of crab species (order: Decapoda; family: Cancridae) to determine if the complexity observed in the blue crab was present in other species. Seven arteries arose from the single chambered heart. The anterior aorta, the paired anterolateral arteries, and the paired hepatic arteries exited from the anterior aspect of the heart. The small-diameter posterior aorta exited posteriorly from the heart. Exiting from the ventral surface of the heart, the sternal artery branched to supply the legs and mouthparts of the crab. These arteries were more complex than previously described, with arterioles perfusing all areas of the body. The arterioles split into fine capillary-like vessels. Most of these capillaries were blind ending. However, in several areas (antennal gland, supraesophageal ganglion) complete capillary beds were present. After passing through the capillary-like vessels, blood drained into a series of sinuses. However, rather than being arbitrary spaces as previously described, scanning electron micrographs showed the sinuses to be distinct units. Most of the sinuses formed a series of flattened membrane-bound lacunae. This complexity may qualify the decapod crustacean circulatory system as one that is "partially closed" rather than open.
Collapse
Affiliation(s)
- Iain J McGaw
- Department of Biological Sciences, University of Nevada, Las Vegas, NV 89154, USA.
| |
Collapse
|