1
|
Smith LA, Fox NJ, Marion G, Booth NJ, Morris AMM, Athanasiadou S, Hutchings MR. Animal Behaviour Packs a Punch: From Parasitism to Production, Pollution and Prevention in Grazing Livestock. Animals (Basel) 2024; 14:1876. [PMID: 38997988 PMCID: PMC11240309 DOI: 10.3390/ani14131876] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Revised: 06/06/2024] [Accepted: 06/20/2024] [Indexed: 07/14/2024] Open
Abstract
Behaviour is often the fundamental driver of disease transmission, where behaviours of individuals can be seen to scale up to epidemiological patterns seen at the population level. Here we focus on animal behaviour, and its role in parasite transmission to track its knock-on consequences for parasitism, production and pollution. Livestock face a nutrition versus parasitism trade-off in grazing environments where faeces creates both a nutritional benefit, fertilizing the surrounding sward, but also a parasite risk from infective nematode larvae contaminating the sward. The grazing decisions of ruminants depend on the perceived costs and benefits of the trade-off, which depend on the variations in both environmental (e.g., amounts of faeces) and animal factors (e.g., physiological state). Such grazing decisions determine the intake of both nutrients and parasites, affecting livestock growth rates and production efficiency. This impacts on the greenhouse gas costs of ruminant livestock production via two main mechanisms: (1) slower growth results in longer durations on-farm and (2) parasitised animals produce more methane per unit food intake. However, the sensitivity of behaviour to host parasite state offers opportunities for early detection of parasitism and control. Remote monitoring technology such as accelerometers can detect parasite-induced sickness behaviours soon after exposure, before impacts on growth, and thus may be used for targeting individuals for early treatment. We conclude that livestock host x parasite interactions are at the centre of the global challenges of food security and climate change, and that understanding livestock behaviour can contribute to solving both.
Collapse
Affiliation(s)
- Lesley A Smith
- Animal and Veterinary Sciences, Scotland's Rural College (SRUC), West Mains Road, Edinburgh EH9 3JG, UK
| | - Naomi J Fox
- Animal and Veterinary Sciences, Scotland's Rural College (SRUC), West Mains Road, Edinburgh EH9 3JG, UK
| | - Glenn Marion
- Biomathematics and Statistics Scotland (BioSS), Kings Buildings, Edinburgh EH9 3FD, UK
| | - Naomi J Booth
- Animal and Veterinary Sciences, Scotland's Rural College (SRUC), West Mains Road, Edinburgh EH9 3JG, UK
| | - Alex M M Morris
- Animal and Veterinary Sciences, Scotland's Rural College (SRUC), West Mains Road, Edinburgh EH9 3JG, UK
| | - Spiridoula Athanasiadou
- Animal and Veterinary Sciences, Scotland's Rural College (SRUC), West Mains Road, Edinburgh EH9 3JG, UK
| | - Michael R Hutchings
- Animal and Veterinary Sciences, Scotland's Rural College (SRUC), West Mains Road, Edinburgh EH9 3JG, UK
| |
Collapse
|
2
|
Lennon RJ, Ronanki S, Hegemann A. Immune challenge reduces daily activity period in free-living birds for three weeks. Proc Biol Sci 2023; 290:20230794. [PMID: 37583320 PMCID: PMC10427819 DOI: 10.1098/rspb.2023.0794] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Accepted: 07/21/2023] [Indexed: 08/17/2023] Open
Abstract
Non-lethal infections are common in free-living animals and the associated sickness behaviours can impact crucial life-history trade-offs. However, little is known about the duration and extent of such sickness behaviours in free-living animals, and consequently how they affect life-history decisions. Here, free-living Eurasian blackbirds, Turdus merula, were immune-challenged with lipopolysaccharide (LPS) to mimic a bacterial infection and their behaviour was monitored for up to 48 days using accelerometers. As expected, immune-challenged birds were less active than controls within the first 24 h. Unexpectedly, this reduced activity remained detectable for 20 days, before both groups returned to similar activity levels. Furthermore, activity was positively correlated with a pre-experimental index of complement activity, but only in immune-challenged birds, suggesting that sickness behaviours are modulated by constitutive immune function. Differences in daily activity levels stemmed from immune-challenged birds resting earlier at dusk than control birds, while activity levels between groups were similar during core daytime hours. Overall, activity was reduced by 19% in immune-challenged birds and they were on average almost 1 h less active per day for 20 days. This unexpected longevity in sickness behaviour may have severe implications during energy-intense annual-cycle stages (e.g. breeding, migration, winter). Thus, our data help to understand the consequences of non-lethal infections on free-living animals.
Collapse
Affiliation(s)
- Rosie J. Lennon
- Department of Biology, Lund University, Ecology Building, 223 62 Lund, Sweden
| | - Shivani Ronanki
- Department of Biology, Lund University, Ecology Building, 223 62 Lund, Sweden
| | - Arne Hegemann
- Department of Biology, Lund University, Ecology Building, 223 62 Lund, Sweden
| |
Collapse
|
3
|
Watson H, Nilsson JÅ, Nilsson JF. Thermoregulatory costs of the innate immune response are modulated by winter food availability in a small passerine. J Anim Ecol 2023; 92:1065-1074. [PMID: 37032462 DOI: 10.1111/1365-2656.13914] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Accepted: 02/28/2023] [Indexed: 04/11/2023]
Abstract
In winter, a challenge to the immune system could pose a major energetic trade-off for small endotherms, whereby increasing body temperature (Tb ; i.e. eliciting fever) may be beneficial to fight off invading pathogens yet incur a cost for vital energy-saving mechanisms. Having previously shown that the availability and acquisition of energy, through manipulation of food predictability, influences the depth of rest-phase hypothermia in a wild bird in winter, we expected that the nocturnal thermoregulatory component of the acute-phase immune response would also be modulated by food availability. By manipulating winter food availability in the wild for great tits Parus major, we created an area offering a "predictable" and constant supply of food at feeding stations, while an unmanipulated area was subject to naturally "unpredictable" food. Birds were subject to an immune challenge shortly after dusk, and the thermoregulatory response was quantified via continuous recording of nocturnal Tb , using subcutaneous thermo-sensitive transponders. In response to immune challenge, all birds increased Tb above the level maintained prior to immune challenge (i.e. baseline). However, birds experiencing a naturally unpredictable food supply elevated Tb more than birds subject to predictable food resources, during the period of expected peak response and for the duration of the night. Furthermore, "unpredictable-food" females took longer to return to their baseline Tb . Assuming baseline nocturnal Tb reflects an individual's optimum, based on their available energy budget, the metabolic cost of eliciting an acute-phase response for "unpredictable-food" birds was more than double that of "predictable-food" birds. The absence of differences in absolute Tb during the peak response could support the idea of an optimal Tb for immune system activation. Alternatively, "predictable-food" birds could have acquired tolerance to endotoxin as a result of using feeding stations, thus affording them reduced costs associated with a smaller Tb increase. These findings shed new light on the trade-offs associated with food acquisition, thermoregulation and immune function in small-bodied endotherms. This knowledge is of increasing importance, given the predicted elevated pathogen risks associated with changes in climate and anthropogenic activities.
Collapse
Affiliation(s)
- Hannah Watson
- Evolutionary Ecology, Lund University, Lund, SE-223 62, Sweden
| | - Jan-Åke Nilsson
- Evolutionary Ecology, Lund University, Lund, SE-223 62, Sweden
| | - Johan F Nilsson
- Evolutionary Ecology, Lund University, Lund, SE-223 62, Sweden
| |
Collapse
|
4
|
Morris AM, Innocent GT, Cunningham EJ, Athanasiadou S, Hutchings MR, Smith LA. Early signals of parasitism expressed through behaviour but modulated by social context. Anim Behav 2022. [DOI: 10.1016/j.anbehav.2022.07.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022]
|
5
|
Tripathi MK, Singh R. Photoperiodic regulation of the splenocyte immune responses in the fresh water snake, Natrixpiscator. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2022; 132:104403. [PMID: 35339533 DOI: 10.1016/j.dci.2022.104403] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/19/2022] [Revised: 03/15/2022] [Accepted: 03/21/2022] [Indexed: 06/14/2023]
Abstract
Photoperiod and melatonin are important regulators of immunity. We hypothesized that these two factors play an important role in the regulation of immune responses in the Natrix piscator. Animals were kept in either short or long days and splenocyte immune responses were studied. Respiratory burst activity of splenocytes was assessed through reduction of nitrobluetetrazolium salt while production of nitric oxide was assessed indirectly by nitrite assay. Density gradient centrifugation was used to isolate splenic lymphocytes which were utilized to study proliferation with and without mitogens. Super oxide production by splenocytes was reduced significantly in the cultures obtained from animals kept either in short or long days. Nitrite release was decreased when animals were subjected to long days. The photoperiodic alterations acted differentially on proliferations of the splenic lymphocytes. Spontaneous and mitogen-induced proliferation of splenic lymphocytes were enhanced in cultures obtained from snakes maintained in short days when compared with cultures from snakes obtained either from long day or natural day length conditions. In vitro melatonin significantly enhanced the splenic lymphocyte proliferation of the cultures obtained from animals kept in long days when compared with splenic lymphocyte proliferations of the cultures obtained from long day animals or the animals kept in natural day length conditions. We found evidence which suggest that photoperiod may influence seasonal energy budgets and induce adjustments which optimize energy allocation for costly physiological processes such as immune function. In seasonally breeding animals such as Natrix piscator, the pineal hormone melatonin assists in the suppression of reproduction and elevation of immunity, which are the crucial adaptation for perpetuation of species.
Collapse
Affiliation(s)
- Manish Kumar Tripathi
- Department of Zoology, Udai Pratap Autonomous College, Varanasi, 221 002, Uttar Pradesh, India.
| | - Ramesh Singh
- Department of Zoology, Udai Pratap Autonomous College, Varanasi, 221 002, Uttar Pradesh, India
| |
Collapse
|
6
|
The paraventricular thalamus serves as a nexus in the regulation of stress and immunity. Brain Behav Immun 2021; 95:36-44. [PMID: 33540073 DOI: 10.1016/j.bbi.2021.01.023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/16/2020] [Revised: 01/11/2021] [Accepted: 01/20/2021] [Indexed: 11/23/2022] Open
Abstract
Many temperate zone animals exhibit seasonal rhythms in physiology and behavior, including seasonal cycles of reproduction, energetics, stress responsiveness, and immune function, among many others. These rhythms are driven by seasonal changes in the duration of pineal melatonin secretion. The neural melatonin target tissues that mediate several of these rhythms have been identified, though the target(s) mediating melatonin's regulation of glucocorticoid secretion, immune cell numbers, and bacterial killing capacity remain unspecified. The present results indicate that one melatonin target tissue, the paraventricular nucleus of the thalamus (PVT), is necessary for the expression of these seasonal rhythms. Thus, while radiofrequency ablations of the PVT failed to alter testicular and body mass response to short photoperiod exposure, they did block the effect of short day lengths on cortisol secretion and bacterial killing efficacy. These results are consistent with the independent regulation by separate neural circuits of several physiological traits that vary seasonally in mammals.
Collapse
|
7
|
Lopes PC, French SS, Woodhams DC, Binning SA. Sickness behaviors across vertebrate taxa: proximate and ultimate mechanisms. J Exp Biol 2021; 224:260576. [PMID: 33942101 DOI: 10.1242/jeb.225847] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
There is nothing like a pandemic to get the world thinking about how infectious diseases affect individual behavior. In this respect, sick animals can behave in ways that are dramatically different from healthy animals: altered social interactions and changes to patterns of eating and drinking are all hallmarks of sickness. As a result, behavioral changes associated with inflammatory responses (i.e. sickness behaviors) have important implications for disease spread by affecting contacts with others and with common resources, including water and/or sleeping sites. In this Review, we summarize the behavioral modifications, including changes to thermoregulatory behaviors, known to occur in vertebrates during infection, with an emphasis on non-mammalian taxa, which have historically received less attention. We then outline and discuss our current understanding of the changes in physiology associated with the production of these behaviors and highlight areas where more research is needed, including an exploration of individual and sex differences in the acute phase response and a greater understanding of the ecophysiological implications of sickness behaviors for disease at the population level.
Collapse
Affiliation(s)
- Patricia C Lopes
- Schmid College of Science and Technology, Chapman University, Orange, CA 92866, USA
| | - Susannah S French
- Department of Biology and The Ecology Center, Utah State University, Logan, UT 84322, USA
| | - Douglas C Woodhams
- Department of Biology, University of Massachusetts Boston, Boston, MA 02125, USA
| | - Sandra A Binning
- Département de Sciences Biologiques, Université de Montréal, Montréal, QC, Canada, H3C 3J7
| |
Collapse
|
8
|
Ramírez-Otarola N, Maldonado K, Cavieres G, Bozinovic F, Sabat P. Nutritional ecology and ecological immunology in degus: Does early nutrition affect the postnatal development of the immune function? JOURNAL OF EXPERIMENTAL ZOOLOGY PART 2020; 335:239-249. [PMID: 33184965 DOI: 10.1002/jez.2429] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/18/2020] [Revised: 10/19/2020] [Accepted: 10/29/2020] [Indexed: 11/10/2022]
Abstract
Environmental conditions experienced by developing animals have an impact on the development and maturity of the immune system. Specifically, the diet experienced during early development influences the maintenance and function of the immune system in young and adult animals. It is well known that exposure to low-protein diets during early development are related to an attenuation of immunocompetence in adulthood. While this functional linkage has been widely studied in altricial models' mammals, it has been little explored how the nutritional history modulates the immune function in precocial animals. We evaluated the effect of dietary protein consumed during early development on the immune function and the oxidative costs in the precocial Caviomorph rodent Octodon degus, or degu. We evaluated components of the acute phase response (APR) and oxidative parameters before and after immune challenge. We found that after the immune challenge, the juveniles on the low-protein dietary treatment exhibited an attenuation of body temperature but showed higher levels of lipid peroxidation than juvenile degus on the high-protein diet. We did not find a significant effect of the interaction between diet and immune challenge on body mass, levels of inflammatory proteins, nor in the total antioxidant capacity. Our results suggest that some components of the immune function and the oxidative status in the degu can be modulated by diet during development. However, the modulation would depend on the immune variables analyzed, and the characteristics of the immune system of precocial rodents.
Collapse
Affiliation(s)
- Natalia Ramírez-Otarola
- Escuela de Medicina Veterinaria, Facultad de Ciencias, Universidad Mayor, Huechuraba, Santiago, Chile.,Departamento de Ciencias Ecológicas, Facultad de Ciencias, Universidad de Chile, Santiago, Chile
| | - Karin Maldonado
- Departamento de Ciencias Ecológicas, Facultad de Ciencias, Universidad de Chile, Santiago, Chile.,Departamento de Ciencias, Facultad de Artes Liberales, Universidad Adolfo Ibañez, Santiago, Chile
| | - Grisel Cavieres
- Center of Applied Ecology and Sustainability (CAPES), Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Francisco Bozinovic
- Center of Applied Ecology and Sustainability (CAPES), Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Pablo Sabat
- Departamento de Ciencias Ecológicas, Facultad de Ciencias, Universidad de Chile, Santiago, Chile.,Center of Applied Ecology and Sustainability (CAPES), Pontificia Universidad Católica de Chile, Santiago, Chile
| |
Collapse
|
9
|
Photoperiodic manipulation modulates the innate and cell mediated immune functions in the fresh water snake, Natrix piscator. Sci Rep 2020; 10:14722. [PMID: 32895425 PMCID: PMC7477230 DOI: 10.1038/s41598-020-71777-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2020] [Accepted: 08/21/2020] [Indexed: 11/25/2022] Open
Abstract
Objectives of the current work were to investigate the role of photoperiod and melatonin in the alteration of immune responses in a reptilian species. Animals were kept on a regimen of short or long days. Blood was obtained and leucocytes were isolated to study various innate immune responses. Lymphocytes were separated from blood by density gradient centrifugation and were used to study proliferation. Respiratory burst activity was measured through nitrobluetetrazolium reduction assay while nitric oxide production by leucocytes was assayed by nitrite assay. Lymphocytes were isolated and used to study proliferation with and without B and T cell mitogens. Photoperiodic manipulation acted differentially on leucocyte counts. Nitrite release was increased while superoxide production was decreased in cultures obtained from the snakes kept on the short day regimen. Significant enhancement of mitogen induced lymphocyte proliferation was observed in cultures from the animals kept in either long or short days compared to cultures from the animals kept in natural ambient day length. Use of in vitro melatonin showed that lymphocytes from the animals, kept in long days, were more reactive. Photoperiod induces changes in immune status which may permit adaptive functional responses in order to maintain seasonal energetic budgets of the animals. Physiological responses (like elevated immune status) are energetically expensive, therefore, animals have evolved a strategy to reduce immune functions at times when energy is invested in reproductive activities. Natrix piscator breeds from September to December and elevated pineal hormone in winter suppresses reproduction while immunity is stimulated.
Collapse
|
10
|
Melhado G, Herrera M LG, da Cruz-Neto AP. Bats respond to simulated bacterial infection during the active phase by reducing food intake. JOURNAL OF EXPERIMENTAL ZOOLOGY PART 2020; 333:536-542. [PMID: 32691525 DOI: 10.1002/jez.2399] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/08/2020] [Revised: 05/27/2020] [Accepted: 07/01/2020] [Indexed: 12/12/2022]
Abstract
Sickness triggers a series of behavioral and physiological processes collectively known as acute phase response (APR). Bats are known as reservoirs of a broad variety of pathogens and the physiological changes resulting from APR activation have been tested predominantly during the resting phase (daytime) in several species exposed to lipopolysaccharide (LPS). In contrast, behavioral consequences of sickness for bats and other wild mammals have received less attention. We examined the physiological and behavioral consequences of APR activation in a fruit-eating bat (Carollia perspicillata) challenged with LPS during the active phase (nighttime). We measured changes in food intake, body mass, body temperature, total white blood cell counts, and the neutrophil/lymphocyte ratio (N/L). No fever and leukocytosis were observed in bats injected with LPS, but food intake decreased, bats lost body mass and their N/L ratio increased. The effect of LPS on daily energy balance is remarkable and, along with the increase in N/L ratio, it is assumed to be beneficial to fight disease. On the basis of our findings and those with other bats, it is probable that the physiological and behavioral components of the immune response to LPS follow circadian rhythms, but a formal test of this hypothesis is warranted.
Collapse
Affiliation(s)
- Gabriel Melhado
- Departamento de Biodiversidade, Instituto de Biociências, Universidade Estadual Paulista Júlio de Mesquita Filho, Rio Claro, São Paulo, Brazil
| | - L Gerardo Herrera M
- Estación de Biología Chamela, Instituto de Biología, Universidad Nacional, Autónoma de México, San Patricio, Jalisco, México
| | - Ariovaldo P da Cruz-Neto
- Departamento de Biodiversidade, Instituto de Biociências, Universidade Estadual Paulista Júlio de Mesquita Filho, Rio Claro, São Paulo, Brazil
| |
Collapse
|
11
|
Whiting JR, Mahmud MA, Bradley JE, MacColl ADC. Prior exposure to long-day photoperiods alters immune responses and increases susceptibility to parasitic infection in stickleback. Proc Biol Sci 2020; 287:20201017. [PMID: 32605431 PMCID: PMC7423467 DOI: 10.1098/rspb.2020.1017] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2020] [Accepted: 06/08/2020] [Indexed: 11/15/2022] Open
Abstract
Seasonal disease and parasitic infection are common across organisms, including humans, and there is increasing evidence for intrinsic seasonal variation in immune systems. Changes are orchestrated through organisms' physiological clocks using cues such as day length. Ample research in diverse taxa has demonstrated multiple immune responses are modulated by photoperiod, but to date, there have been few experimental demonstrations that photoperiod cues alter susceptibility to infection. We investigated the interactions among photoperiod history, immunity and susceptibility in laboratory-bred three-spined stickleback (a long-day breeding fish) and its external, directly reproducing monogenean parasite Gyrodactylus gasterostei. We demonstrate that previous exposure to long-day photoperiods (PLD) increases susceptibility to infection relative to previous exposure to short days (PSD), and modifies the response to infection for the mucin gene muc2 and Treg cytokine foxp3a in skin tissues in an intermediate 12 L : 12 D photoperiod experimental trial. Expression of skin muc2 is reduced in PLD fish, and negatively associated with parasite abundance. We also observe inflammatory gene expression variation associated with natural inter-population variation in resistance, but find that photoperiod modulation of susceptibility is consistent across host populations. Thus, photoperiod modulation of the response to infection is important for host susceptibility, highlighting new mechanisms affecting seasonality of host-parasite interactions.
Collapse
Affiliation(s)
- James R. Whiting
- School of Life Sciences, University of Nottingham, University Park, Nottingham NG7 2RD, UK
- Department of Biosciences, University of Exeter, Geoffrey Pope Building, Exeter EX4 4QD, UK
| | - Muayad A. Mahmud
- School of Life Sciences, University of Nottingham, University Park, Nottingham NG7 2RD, UK
- Scientific Research Center, Erbil Polytechnic University, Erbil, Iraq
| | - Janette E. Bradley
- School of Life Sciences, University of Nottingham, University Park, Nottingham NG7 2RD, UK
| | - Andrew D. C. MacColl
- School of Life Sciences, University of Nottingham, University Park, Nottingham NG7 2RD, UK
| |
Collapse
|
12
|
Kelly CD, Mc Cabe Leroux J. No evidence of sickness behavior in immune-challenged field crickets. Ecol Evol 2020; 10:6049-6058. [PMID: 32607212 PMCID: PMC7319135 DOI: 10.1002/ece3.6349] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2020] [Revised: 04/07/2020] [Accepted: 04/17/2020] [Indexed: 01/05/2023] Open
Abstract
Sickness behavior is a taxonomically widespread coordinated set of behavioral changes that increases shelter-seeking while reducing levels of general activity, as well as food (anorexia) and water (adipsia) consumption, when fighting infection by pathogens and disease. The leading hypothesis explaining such sickness-related shifts in behavior is the energy conservation hypothesis. This hypothesis argues that sick (i.e., immune-challenged) animals reduce energetic expenditure in order have more energy to fuel an immune response, which in some vertebrates, also includes producing an energetically expensive physiological fever. We experimentally tested the hypothesis that an immune challenge with lipopolysaccharide (LPS) will cause Gryllus firmus field crickets to reduce their activity, increase shelter use and avoid foods that interfere with an immune response (i.e., fat) while preferring a diet that fuels an immune response (i.e., protein). We found little evidence of sickness behavior in Gryllus firmus as immune-challenged individuals did not reduce their activity or increase their shelter-seeking. Neither did we observe changes in feeding or drinking behavior nor a preference for protein or avoidance of lipids. Males tended to use shelters less than females but no other behaviors differed between the sexes. The lack of sickness behavior in our study might reflect the fact that invertebrates do not possess energetically expensive physiological fever as part of their immune response. Therefore, there is little reason to conserve energy via reduced activity or increased shelter use when immune-challenged.
Collapse
Affiliation(s)
- Clint D. Kelly
- Département des Sciences biologiquesUniversité du Québec à MontréalMontrealQCCanada
| | - Jules Mc Cabe Leroux
- Département des Sciences biologiquesUniversité du Québec à MontréalMontrealQCCanada
| |
Collapse
|
13
|
Onishi KG, Maneval AC, Cable EC, Tuohy MC, Scasny AJ, Sterina E, Love JA, Riggle JP, Malamut LK, Mukerji A, Novo JS, Appah-Sampong A, Gary JB, Prendergast BJ. Circadian and circannual timescales interact to generate seasonal changes in immune function. Brain Behav Immun 2020; 83:33-43. [PMID: 31351184 DOI: 10.1016/j.bbi.2019.07.024] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/03/2019] [Revised: 07/14/2019] [Accepted: 07/23/2019] [Indexed: 12/22/2022] Open
Abstract
Annual changes in day length enhance or suppress diverse aspects of immune function, giving rise to seasonal cycles of illness and mortality. The daily light-dark cycle also entrains circadian rhythms in immunity. Most published reports on immunological seasonality rely on measurements or interventions performed only at one point in the day. Because there can be no perfect matching of circadian phase across photoperiods of different duration, the manner in which these timescales interact to affect immunity is not understood. We examined whether photoperiodic changes in immune function reflect phenotypic changes that persist throughout the daily cycle, or merely reflect photoperiodic shifts in the circadian phase alignment of immunological rhythms. Diurnal rhythms in blood leukocyte trafficking, infection induced sickness responses, and delayed-type hypersensitivity skin inflammatory responses were examined at high-frequency sampling intervals (every 3 h) in Siberian hamsters (Phodopus sungorus) following immunological adaptation to summer or winter photoperiods. Photoperiod profoundly enhanced or suppressed immune function, in a trait-specific manner, and we were unable to identify a phase alignment of diurnal waveforms which eliminated these enhancing and suppressing effects of photoperiod. These results support the hypothesis that seasonal timescales affect immunity via mechanisms independent of circadian entrainment of the immunological circadian waveform.
Collapse
Affiliation(s)
- Kenneth G Onishi
- Department of Psychology and Institute for Mind and Biology, University of Chicago, Chicago, IL 60637, United States.
| | - Andrew C Maneval
- Department of Psychology and Institute for Mind and Biology, University of Chicago, Chicago, IL 60637, United States
| | - Erin C Cable
- Department of Psychology and Institute for Mind and Biology, University of Chicago, Chicago, IL 60637, United States
| | - Mary Claire Tuohy
- Department of Psychology and Institute for Mind and Biology, University of Chicago, Chicago, IL 60637, United States
| | - Andrew J Scasny
- Department of Psychology and Institute for Mind and Biology, University of Chicago, Chicago, IL 60637, United States
| | - Evelina Sterina
- Department of Psychology and Institute for Mind and Biology, University of Chicago, Chicago, IL 60637, United States
| | - Jharnae A Love
- Department of Psychology and Institute for Mind and Biology, University of Chicago, Chicago, IL 60637, United States
| | - Jonathan P Riggle
- Department of Psychology and Institute for Mind and Biology, University of Chicago, Chicago, IL 60637, United States
| | - Leah K Malamut
- Department of Psychology and Institute for Mind and Biology, University of Chicago, Chicago, IL 60637, United States
| | - Aashna Mukerji
- Department of Psychology and Institute for Mind and Biology, University of Chicago, Chicago, IL 60637, United States
| | - Jennifer S Novo
- Department of Psychology and Institute for Mind and Biology, University of Chicago, Chicago, IL 60637, United States
| | - Abena Appah-Sampong
- Department of Psychology and Institute for Mind and Biology, University of Chicago, Chicago, IL 60637, United States
| | - Joseph B Gary
- Department of Psychology and Institute for Mind and Biology, University of Chicago, Chicago, IL 60637, United States
| | - Brian J Prendergast
- Department of Psychology and Institute for Mind and Biology, University of Chicago, Chicago, IL 60637, United States; Committee on Neurobiology, University of Chicago, Chicago, IL 60637, United States; Grossman Institute for Neuroscience, Quantitative Biology and Human Behavior, University of Chicago, Chicago, IL 60637, United States
| |
Collapse
|
14
|
Onishi KG, Prendergast BJ, Stevenson TJ. Trait-specific effects of exogenous triiodothyronine on cytokine and behavioral responses to simulated systemic infection in male Siberian hamsters. Horm Behav 2019; 110:90-97. [PMID: 30826308 DOI: 10.1016/j.yhbeh.2019.02.017] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/13/2018] [Revised: 02/25/2019] [Accepted: 02/26/2019] [Indexed: 11/21/2022]
Abstract
Seasonal changes in day length enhance and suppress immune function in a trait-specific manner. In Siberian hamsters (Phodopus sungorus) winter-like short days (SDs) increase blood leukocyte concentrations and adaptive T cell dependent immune responses, but attenuate innate inflammatory responses to simulated infections. Thyroid hormone (TH) signaling also changes seasonally and has been implicated in modulation of the reproductive axis by day length. Immunologically, TH administration in long days (LD) enhances adaptive immune responses in male Siberian hamsters, mimicking effects of SDs. This experiment tested the hypothesis that T3 is also sufficient to mimic the effects of SD on innate immune responses. Adult male hamsters housed in LDs were pretreated with triiodothyronine (T3; 1 μg, s.c.) or saline (VEH) daily for 6 weeks; additional positive controls were housed in SD and received VEH, after which cytokine, behavioral, and physiological responses to simulated bacterial infection (lipopolysaccharide; LPS) were evaluated. SD pretreatment inhibited proinflammatory cytokine mRNA expression (i.e. interleukin 1β, nuclear factor kappa-light-chain-enhancer of activated B cells). In addition, the magnitude and persistence of anorexic and cachectic responses to LPS were also lower in SD hamsters, and LPS-induced inhibition of nest building behavior was absent in SD. T3 treatments failed to affect behavioral (food intake, nest building) or somatic (body mass) responses to LPS in LD hamsters, but one CNS cytokine response to LPS (e.g., hypothalamic TNFα) was augmented by T3. Together these data implicate thyroid hormone signaling in select aspects of innate immune responses to seasonal changes in day length.
Collapse
Affiliation(s)
- Kenneth G Onishi
- Department of Psychology, Institute for Mind and Biology, University of Chicago, Chicago, IL 60637, USA.
| | - Brian J Prendergast
- Department of Psychology, Institute for Mind and Biology, University of Chicago, Chicago, IL 60637, USA
| | - Tyler J Stevenson
- Inst. Biodiversity, Animal Health & Comparative Medicine, University of Glasgow, Glasgow, UK
| |
Collapse
|
15
|
Cabrera-Martinez LV, Herrera M LG, Cruz-Neto AP. Food restriction, but not seasonality, modulates the acute phase response of a Neotropical bat. Comp Biochem Physiol A Mol Integr Physiol 2018; 229:93-100. [PMID: 30553882 DOI: 10.1016/j.cbpa.2018.12.003] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2018] [Revised: 12/05/2018] [Accepted: 12/06/2018] [Indexed: 12/28/2022]
Abstract
Season and food intake are known to affect immune response of vertebrates yet their effects on metabolic rate have been rarely explored. We tested the effect of season and acute food restriction and their interaction on the energetic cost of immune response activation of a tropical vertebrate, the Seba's short-tailed fruit bat (Carollia perspicillata). We specifically stimulated the acute phase response (APR) with bacterial lipopolysaccharide (LPS) to measure metabolic changes along with changes in body temperature (Tb), body mass (Mb), white blood cell counts and the Neutrophil/Lymphocyte ratio (N/L). We found no effect of season on the different factors associated to the activation of the APR. In contrast to our expectations, unfed bats reached similar Tb increments and RMR peak values and had higher RMR scope values and higher caloric costs than fed bats after LPS injection. However, food deprivation led to delayed metabolic response indicated by longer time required to reach peak RMR values in unfed bats. Both food-deprived and fed bats did not present leukocytosis after APR activation and their WBC counts were similar, but unfed bats had a significant increase of N/L. APR activation represented a small fraction of the bat daily energy requirements which might explain why unfed bats were not limited to mount a metabolic response. Our study adds to recent evidence showing that activating the innate immune system is not an energetically expensive process for plant-eating bats.
Collapse
Affiliation(s)
- Lucía V Cabrera-Martinez
- Pós-graduação no programa de Zoologia, Instituto de Biociências, Universidade Estadual Paulista Julho de Mesquita Filho, Rio Claro, São Paulo, Brazil
| | - L Gerardo Herrera M
- Estación de Biología Chamela, Instituto de Biología, Universidad Nacional Autónoma de México, Apartado Postal 21, San Patricio, Jalisco 48980, Mexico.
| | - Ariovaldo P Cruz-Neto
- Departamento de Zoologia, Instituto de Biociências Universidade Estadual Paulista Julho de Mesquita Filho, Rio Claro, São Paulo, Brazil
| |
Collapse
|
16
|
Long KLP, Bailey AM, Greives TJ, Legan SJ, Demas GE. Endotoxin rapidly desensitizes the gonads to kisspeptin-induced luteinizing hormone release in male Siberian hamsters ( Phodopus sungorus). ACTA ACUST UNITED AC 2018; 221:jeb.185504. [PMID: 30297514 DOI: 10.1242/jeb.185504] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2018] [Accepted: 10/03/2018] [Indexed: 01/01/2023]
Abstract
Activation of the immune system induces rapid reductions in hypothalamic-pituitary-gonadal (HPG) axis activity, which in turn decreases secretion of sex steroids. This response is likely adaptive for survival by temporarily inhibiting reproduction to conserve energy; however, the physiological mechanisms controlling this response remain unclear. The neuropeptide kisspeptin is a candidate to mediate the decrease in sex hormones seen during sickness through its key regulation of the HPG axis. In this study, the effects of acute immune activation on the response to kisspeptin were assessed in male Siberian hamsters (Phodopus sungorus). Specifically, an immune response was induced in animals by a single treatment of lipopolysaccharide (LPS), and reproductive hormone concentrations were determined in response to subsequent injections of exogenous kisspeptin. Saline-treated controls showed a robust increase in circulating testosterone in response to kisspeptin; however, this response was blocked in LPS-treated animals. Circulating luteinizing hormone (LH) levels were elevated in response to kisspeptin in both LPS- and saline-treated groups and, thus, were unaffected by LPS treatment, suggesting gonad-level inhibition of testosterone release despite central HPG activation. In addition, blockade of glucocorticoid receptors by mifepristone did not attenuate the LPS-induced inhibition of testosterone release, suggesting that circulating glucocorticoids do not mediate this phenomenon. Collectively, these findings reveal that acute endotoxin exposure rapidly renders the gonads less sensitive to HPG stimulation, thus effectively inhibiting sex hormone release. More broadly, these results shed light on the effects of immune activation on the HPG axis and help elucidate the mechanisms controlling energy allocation and reproduction.
Collapse
Affiliation(s)
- Kimberly L P Long
- Department of Biology, Indiana University, 1001 E 3rd Street, Bloomington, IN 47405, USA
| | - Allison M Bailey
- Department of Biology, Indiana University, 1001 E 3rd Street, Bloomington, IN 47405, USA
| | - Timothy J Greives
- Biological Sciences, North Dakota State University, 1340 Bolley Drive, 201 Stevens Hall, Fargo, ND 58102, USA
| | - Sandra J Legan
- Department of Physiology, University of Kentucky, MS601 Medical Science Building, Lexington, KY 40536, USA
| | - Gregory E Demas
- Department of Biology, Indiana University, 1001 E 3rd Street, Bloomington, IN 47405, USA
| |
Collapse
|
17
|
Hicks A, Healy E, Sandeman N, Feelisch M, Wilkinson T. A time for everything and everything in its time - exploring the mechanisms underlying seasonality of COPD exacerbations. Int J Chron Obstruct Pulmon Dis 2018; 13:2739-2749. [PMID: 30233164 PMCID: PMC6130531 DOI: 10.2147/copd.s146015] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Across Europe, COPD affects 23 million people leading to annual health care costs of ~€25.1 billion. This burden is particularly severe during winter months in association with the peak incidence of exacerbation events. Seasonal variation in the health status of patients with COPD places additional and often critical pressure on already strained health care resources. COPD exacerbations are characterized by worsening day-to-day symptoms of an individual and often triggered by respiratory infections, but the process by which this occurs in a seasonal fashion is likely to be multifactorial. In this review, we discuss recent population studies that highlight the impact of seasonality in COPD and review the proposed biological mechanisms underlying this. An appraisal of the role of the host susceptibility and response, environmental triggers and the biology of respiratory pathogens is detailed. The impact of each aspect is considered, and an integrated model of the context for the whole individual and society in general is explored.
Collapse
Affiliation(s)
- Alexander Hicks
- Clinical and Experimental Sciences, University of Southampton - Faculty of Medicine, Southampton General Hospital, Southampton, UK, .,Southampton NIHR Respiratory Biomedical Research Centre, Southampton General Hospital, Southampton, UK, .,National Institute for Health Research Collaboration for Leadership in Applied Health Research and Care (NIHR CLAHRC) Wessex, Southampton General Hospital, Southampton, UK,
| | - Eugene Healy
- Clinical and Experimental Sciences, University of Southampton - Faculty of Medicine, Southampton General Hospital, Southampton, UK,
| | - Natasha Sandeman
- Clinical and Experimental Sciences, University of Southampton - Faculty of Medicine, Southampton General Hospital, Southampton, UK,
| | - Martin Feelisch
- Clinical and Experimental Sciences, University of Southampton - Faculty of Medicine, Southampton General Hospital, Southampton, UK, .,Southampton NIHR Respiratory Biomedical Research Centre, Southampton General Hospital, Southampton, UK,
| | - Tom Wilkinson
- Clinical and Experimental Sciences, University of Southampton - Faculty of Medicine, Southampton General Hospital, Southampton, UK, .,Southampton NIHR Respiratory Biomedical Research Centre, Southampton General Hospital, Southampton, UK, .,National Institute for Health Research Collaboration for Leadership in Applied Health Research and Care (NIHR CLAHRC) Wessex, Southampton General Hospital, Southampton, UK, .,Wessex Investigational Sciences Hub, University of Southampton - Faculty of Medicine, Southampton General Hospital, Southampton, UK
| |
Collapse
|
18
|
Sylvia KE, Demas GE. A Return to Wisdom: Using Sickness Behaviors to Integrate Ecological and Translational Research. Integr Comp Biol 2017; 57:1204-1213. [PMID: 28992281 PMCID: PMC5886345 DOI: 10.1093/icb/icx051] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Sickness is typically characterized by fever, anorexia, cachexia, and reductions in social, pleasurable, and sexual behaviors. These responses can be displayed at varying intensities both within and among individuals, and the adaptive nature of sickness responses can be demonstrated by the context-dependent nature of their expression. The study of sickness has become an important area of investigation for researchers in a wide range of areas, including psychoneuroimmunology (PNI) and ecoimmunology (EI). The general goal of PNI is to identify key interactions among the nervous, endocrine and immune systems and behavior, and how disruptions in these processes might contribute to disease states. EI, in turn, has been established more recently within the perspectives of ecology and evolutionary biology, and is aimed more at understanding natural variation in immune function and sickness responses within a broadly integrative, organismal, and evolutionary context. The goal of this review is to examine the literature on sickness from both basic and biomedical perspectives within PNI and EI and to demonstrate how the integrative study of sickness behavior can serve as an integrating agent to connect ecological and translational approaches to the study of disease. By focusing on a set of specific exemplars, including the energetics of sickness, social context, and environmental influences on sickness, we hope to accomplish the larger goal of developing a common synthetic framework to understand sickness from multiple levels of analysis and varying perspectives across the fields of PNI and EI. By applying this integrative approach to sickness, we will be able to develop a more comprehensive view of sickness as a suite of adaptive responses rather than the simply deleterious consequences of illness.
Collapse
Affiliation(s)
- Kristyn E Sylvia
- Department of Biology, Center for the Integrative Study of Animal Behavior, and Program in Neuroscience Indiana University, Bloomington, IN 47405, USA
| | - Gregory E Demas
- Department of Biology, Center for the Integrative Study of Animal Behavior, and Program in Neuroscience Indiana University, Bloomington, IN 47405, USA
| |
Collapse
|
19
|
Newell D, Lothe LR, Raven TJL. Contextually Aided Recovery (CARe): a scientific theory for innate healing. Chiropr Man Therap 2017; 25:6. [PMID: 28289539 PMCID: PMC5304402 DOI: 10.1186/s12998-017-0137-z] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2016] [Accepted: 02/02/2017] [Indexed: 12/31/2022] Open
Abstract
BACKGROUND The chiropractic profession emerged when scientific explanations for causes of health and disease were still in infancy and the co-existence of notions such as innate healing and vitalism were perhaps admissible within such a historical context. Notwithstanding, within the scientific culture of the 21st Century all healthcare paradigms require evidential support which in regard these early concepts are in large part, absent. Nevertheless, a large body of emerging scientific evidence supports the existence of innate healing phenomena that may explain a plethora of clinical outcomes observed during chiropractic care. However, in contrast to the notion that removing the putative subluxation constitutes the mechanism by which this healing is initiated, the evidentially supported explanation is one that invokes the impact of contextual factors inherent in the skilful care and authority of the healthcare provider. This perspective is presented here as the scientific model of Contextually Aided Recovery (CARe). MAIN BODY This paper contends that;Contextual effects are powerful and desirable and are triggered by contextual factors present in all therapeutic encounters including those encountered in chiropractic practice.These factors can elicit large clinical effects with substantive evidence supporting pain, immune and motor modulation.The compartmentalisation of specific and non-specific effects is a biologically and scientifically false dichotomy, erroneously invoked to de-legitimise treatment approaches that expertly construct contextual healing scenarios.The use of factors to construct contextual healing scenarios that maximise positive (placebo) and minimize negative (nocebo) effects is a skilful clinical art within the multimodal approach that describes modern chiropractic care and should be presented and defended as a legitimate component of orthodox healthcare Clinical improvement during chiropractic care, beyond any biologically specific treatment effects of manipulation and other modalities, may be largely understood considering contextual factors as described by a Contextually Aided Recovery (CARe) model.
Collapse
Affiliation(s)
- Dave Newell
- Anglo European College of Chiropractic, Bournemouth, UK
| | - Lise R Lothe
- Kiropraktorene i Grimstad & Lillesand, Grimstad, Norway
| | | |
Collapse
|
20
|
Carlton ED, Demas GE. Glucose and insulin modulate sickness responses in male Siberian hamsters. Gen Comp Endocrinol 2017; 242:83-91. [PMID: 26542473 PMCID: PMC4853293 DOI: 10.1016/j.ygcen.2015.11.001] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/25/2015] [Revised: 09/20/2015] [Accepted: 11/01/2015] [Indexed: 01/04/2023]
Abstract
Mounting a sickness response is an energetically expensive task and requires precise balancing of energy allocation to ensure pathogen clearance while avoiding compromising energy reserves. Sickness intensity has previously been shown to be modulated by food restriction, body mass, and hormonal signals of energy. In the current study, we tested the hypothesis that sickness intensity is modulated by glucose availability and an endocrine signal of glucose availability, insulin. We utilized male Siberian hamsters (Phodopus sungorus) and predicted that pharmacological induction of glucoprivation with 2-deoxy-d-glucose (2-DG), a non-metabolizable glucose analog that disrupts glycolysis, would attenuate energetically expensive sickness symptoms. Alternatively, we predicted that treatment of animals with insulin would enhance energetically expensive sickness symptoms, as insulin would act as a signal of increased glucose availability. Upon experimental treatment with lipopolysaccharide (LPS), we found that glucose deprivation resulted in increased sickness-induced hypothermia as compared to control- and insulin-treated animals; however, it did not have any effects on sickness-induced anorexia or body mass loss. Insulin treatment resulted in an unexpectedly exaggerated sickness response in animals of lesser body masses; however, in animals of greater body masses, insulin actually attenuated sickness-induced body mass loss and had no effects on hypothermia or anorexia. The effects of insulin on sickness severity may be modulated by sensitivity to sickness-induced hypoglycemia. Collectively, these results demonstrate that both glucose availability and signals of glucose availability can modulate the intensity of energetically expensive sickness symptoms, but their effects differ among different sickness symptoms and are sensitive to energetic context.
Collapse
Affiliation(s)
- Elizabeth D Carlton
- Department of Biology, Program in Neuroscience and Center for the Integrative Study of Animal Behavior, Indiana University, Bloomington, IN 47405, USA.
| | - Gregory E Demas
- Department of Biology, Program in Neuroscience and Center for the Integrative Study of Animal Behavior, Indiana University, Bloomington, IN 47405, USA
| |
Collapse
|
21
|
Abstract
Multidirectional interactions among the immune, endocrine, and nervous systems have been demonstrated in humans and non-human animal models for many decades by the biomedical community, but ecological and evolutionary perspectives are lacking. Neuroendocrine-immune interactions can be conceptualized using a series of feedback loops, which culminate into distinct neuroendocrine-immune phenotypes. Behavior can exert profound influences on these phenotypes, which can in turn reciprocally modulate behavior. For example, the behavioral aspects of reproduction, including courtship, aggression, mate selection and parental behaviors can impinge upon neuroendocrine-immune interactions. One classic example is the immunocompetence handicap hypothesis (ICHH), which proposes that steroid hormones act as mediators of traits important for female choice while suppressing the immune system. Reciprocally, neuroendocrine-immune pathways can promote the development of altered behavioral states, such as sickness behavior. Understanding the energetic signals that mediate neuroendocrine-immune crosstalk is an active area of research. Although the field of psychoneuroimmunology (PNI) has begun to explore this crosstalk from a biomedical standpoint, the neuroendocrine-immune-behavior nexus has been relatively underappreciated in comparative species. The field of ecoimmunology, while traditionally emphasizing the study of non-model systems from an ecological evolutionary perspective, often under natural conditions, has focused less on the physiological mechanisms underlying behavioral responses. This review summarizes neuroendocrine-immune interactions using a comparative framework to understand the ecological and evolutionary forces that shape these complex physiological interactions.
Collapse
Affiliation(s)
- Noah T Ashley
- Department of Biology, Western Kentucky University, Bowling Green, KY 42101, USA.
| | - Gregory E Demas
- Department of Biology, Center for the Integrative Study of Animal Behavior - Program in Neuroscience, Indiana University, Bloomington, IN 47405, USA
| |
Collapse
|
22
|
Prendergast BJ, Cable EJ, Stevenson TJ, Onishi KG, Zucker I, Kay LM. Circadian Disruption Alters the Effects of Lipopolysaccharide Treatment on Circadian and Ultradian Locomotor Activity and Body Temperature Rhythms of Female Siberian Hamsters. J Biol Rhythms 2016; 30:543-56. [PMID: 26566981 DOI: 10.1177/0748730415609450] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
The effect of circadian rhythm (CR) disruption on immune function depends on the method by which CRs are disrupted. Behavioral and thermoregulatory responses induced by lipopolysaccharide (LPS) treatment were assessed in female Siberian hamsters in which circadian locomotor activity (LMA) rhythms were eliminated by exposure to a disruptive phase-shifting protocol (DPS) that sustains arrhythmicity even when hamsters are housed in a light-dark cycle. This noninvasive treatment avoids genome manipulations and neurological damage associated with other models of CR disruption. Circadian rhythmic (RHYTH) and arrhythmic (ARR) hamsters housed in a 16L:8D photocycle were injected with bacterial LPS near the onset of the light (zeitgeber time 1; ZT1) or dark (ZT16) phase. LPS injections at ZT16 and ZT1 elicited febrile responses in both RHYTH and ARR hamsters, but the effect was attenuated in the arrhythmic females. In ZT16, LPS inhibited LMA in the dark phase immediately after injection but not on subsequent nights in both chronotypes; in contrast, LPS at ZT1 elicited more enduring (~4 day) locomotor hypoactivity in ARR than in RHYTH hamsters. Power and period of dark-phase ultradian rhythms (URs) in LMA and Tb were markedly altered by LPS treatment, as was the power in the circadian waveform. Disrupted circadian rhythms in this model system attenuated responses to LPS in a trait- and ZT-specific manner; changes in UR period and power are novel components of the acute-phase response to infection that may affect energy conservation.
Collapse
Affiliation(s)
- Brian J Prendergast
- Department of Psychology, University of Chicago, Chicago, Illinois Committee on Neurobiology, University of Chicago, Chicago, Illinois
| | - Erin J Cable
- Department of Psychology, University of Chicago, Chicago, Illinois
| | | | - Kenneth G Onishi
- Department of Psychology, University of Chicago, Chicago, Illinois
| | - Irving Zucker
- Department of Psychology, University of California, Berkeley, California Department of Integrative Biology, University of California, Berkeley, California
| | - Leslie M Kay
- Department of Psychology, University of Chicago, Chicago, Illinois Committee on Neurobiology, University of Chicago, Chicago, Illinois
| |
Collapse
|
23
|
Hopkins SJ, Loudon ASI. Remember the Null Hypothesis. J Biol Rhythms 2016. [DOI: 10.1177/074873002237135] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Affiliation(s)
- Stephen J. Hopkins
- North Western Injury Research Collaboration, Clinical Sciences Building, Hope Hospital, Salford M6 8HD, UK
| | - Andrew S. I. Loudon
- School of Biological Sciences, Stopford Building, University of Manchester, Oxford Road, Manchester M13 9PT, UK
| |
Collapse
|
24
|
Nelson RJ, Demas GE. Seasonal Patterns of Stress, Disease, and Sickness Responses. CURRENT DIRECTIONS IN PSYCHOLOGICAL SCIENCE 2016. [DOI: 10.1111/j.0963-7214.2004.00307.x] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
The combined challenge of low food availability and low temperatures can make winter difficult for survival, and nearly impossible for breeding. Traditionally, studies of seasonality have focused on reproductive adaptations and largely ignored adaptations associated with survival. We propose shifting the focus from reproduction to immune function, a proxy for survival, and hypothesize that evolved physiological and behavioral mechanisms enable individuals to anticipate recurrent seasonal stressors and enhance immune function in advance of their occurrence. These seasonal adaptations, which have an important influence on seasonal patterns of survival, are reviewed here. We then discuss studies suggesting that photoperiod (day length) and photoperiod-dependent melatonin secretion influence immune function. Our working hypothesis is that short day lengths reroute energy from reproduction and growth to bolster immune function during winter. The net effect of these photoperiod-mediated adjustments is enhanced immune function and increased survival.
Collapse
Affiliation(s)
- Randy J. Nelson
- Departments of Psychology and Neuroscience, Ohio State University, Columbus
| | | |
Collapse
|
25
|
Aubrecht TG, Weil ZM, Abi Salloum B, Ariza ME, Williams M, Reader B, Glaser R, Sheridan J, Nelson RJ. Chronic Physical Stress Does Not Interact with Epstein-Barr Virus (EBV)-Encoded Dutpase to Alter the Sickness Response. ACTA ACUST UNITED AC 2015; 5:513-523. [PMID: 27175311 PMCID: PMC4862656 DOI: 10.4236/jbbs.2015.511049] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Most adult humans have been infected with Epstein-Barr virus (EBV), which is thought to contribute to the development of chronic fatigue syndrome. Stress is known to influence the immune system and can exacerbate the sickness response. Although a role for psychological stress in the sickness response, particularly in combination with EBV-encoded deoxyuridine triphosphate nucleotidohydrolase (dUTPase) has been established, and the role of physical stressors in these interactions remains unspecified. In this study, we seek to determine the interaction of chronic physical (swim) stress and EBV-encoded dUTPase injection. We hypothesize that a chronic physical stressor will exacerbate the sickness response following EBV-encoded dUTPase injection. To test this hypothesis mice receive daily injections of EBV-encoded dUTPase or vehicle and are subjected to 15 min of swim stress each day for 14 days or left unmanipulated. On the final evening of injections mice undergo behavioral testing. EBV-encoded dUTPase injection alone produces some sickness behaviors. The physical swimming stress does not alter the sickness response.
Collapse
Affiliation(s)
- Taryn G Aubrecht
- Departments of Neuroscience, The Ohio State University, Columbus, OH, USA
| | - Zachary M Weil
- Departments of Neuroscience, The Ohio State University, Columbus, OH, USA
| | - Bachir Abi Salloum
- Departments of Neuroscience, The Ohio State University, Columbus, OH, USA
| | - Maria Eugenia Ariza
- Molecular Virology, Immunology & Medical Genetics, The Ohio State University, Columbus, OH, USA
| | - Marshall Williams
- Molecular Virology, Immunology & Medical Genetics, The Ohio State University, Columbus, OH, USA
| | - Brenda Reader
- Institute of Behavioral Medicine Research, Wexner Medical Center, Comprehensive Cancer Center, The Ohio State University, Columbus, OH, USA
| | - Ronald Glaser
- Molecular Virology, Immunology & Medical Genetics, The Ohio State University, Columbus, OH, USA; Institute of Behavioral Medicine Research, Wexner Medical Center, Comprehensive Cancer Center, The Ohio State University, Columbus, OH, USA
| | - John Sheridan
- Institute of Behavioral Medicine Research, Wexner Medical Center, Comprehensive Cancer Center, The Ohio State University, Columbus, OH, USA; Division of Biosciences, College of Dentistry, The Ohio State University, Columbus, OH, USA
| | - Randy J Nelson
- Departments of Neuroscience, The Ohio State University, Columbus, OH, USA
| |
Collapse
|
26
|
Carlton ED, Demas GE. Body mass affects seasonal variation in sickness intensity in a seasonally breeding rodent. ACTA ACUST UNITED AC 2015; 218:1667-76. [PMID: 25852068 DOI: 10.1242/jeb.120576] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2015] [Accepted: 04/01/2015] [Indexed: 01/20/2023]
Abstract
Species that display seasonal variation in sickness intensity show the most intense response in the season during which they have the highest body mass, suggesting that sickness intensity may be limited by an animal's energy stores. Siberian hamsters (Phodopus sungorus) display lower body masses and less intense sickness when housed in short, winter-like days as opposed to long, summer-like days. To determine whether reduced sickness intensity displayed by short-day hamsters is a product of seasonal changes in body mass, we food restricted long-day hamsters so that they exhibited body mass loss that mimicked the natural photoperiod-induced loss of body mass in short-day hamsters. We then experimentally induced sickness with lipopolysaccharide (LPS) and compared sickness responses among long-day food-restricted and long- and short-day ad libitum fed groups, predicting that long-day food-restricted hamsters would show sickness responses comparable to those of short-day ad libitum fed hamsters and attenuated in comparison to long-day ad libitum fed hamsters. We found that long-day food-restricted hamsters showed attenuated LPS-induced anorexia, loss of body mass and hypothermia compared with long-day ad libitum fed animals; however, anorexia remained elevated in long-day food-restricted animals compared with short-day ad libitum fed animals. Additionally, LPS-induced anhedonia and decreases in nest building were not influenced by body mass. Results of hormone assays suggest that cortisol levels could play a role in the attenuation of sickness in long-day food-restricted hamsters, indicating that future research should target the roles of glucocorticoids and natural variation in energy stores in seasonal sickness variation.
Collapse
Affiliation(s)
- Elizabeth D Carlton
- Department of Biology, Program in Neuroscience and Center for the Integrative Study of Animal Behavior, Indiana University, Bloomington, IN 47405, USA
| | - Gregory E Demas
- Department of Biology, Program in Neuroscience and Center for the Integrative Study of Animal Behavior, Indiana University, Bloomington, IN 47405, USA
| |
Collapse
|
27
|
Weil ZM, Borniger JC, Cisse YM, Abi Salloum BA, Nelson RJ. Neuroendocrine control of photoperiodic changes in immune function. Front Neuroendocrinol 2015; 37:108-18. [PMID: 25456047 PMCID: PMC4402123 DOI: 10.1016/j.yfrne.2014.10.001] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/26/2014] [Revised: 10/07/2014] [Accepted: 10/09/2014] [Indexed: 12/29/2022]
Abstract
Seasonal variation in immune function putatively maximizes survival and reproductive success. Day length (photoperiod) is the most potent signal for time of year. Animals typically organize breeding, growth, and behavior to adapt to spatial and temporal niches. Outside the tropics individuals monitor photoperiod to support adaptations favoring survival and reproductive success. Changes in day length allow anticipation of seasonal changes in temperature and food availability that are critical for reproductive success. Immune function is typically bolstered during winter, whereas reproduction and growth are favored during summer. We provide an overview of how photoperiod influences neuronal function and melatonin secretion, how melatonin acts directly and indirectly to govern seasonal changes in immune function, and the manner by which other neuroendocrine effectors such as glucocorticoids, prolactin, thyroid, and sex steroid hormones modulate seasonal variations in immune function. Potential future research avenues include commensal gut microbiota and light pollution influences on photoperiodic responses.
Collapse
Affiliation(s)
- Zachary M Weil
- Department of Neuroscience, Ohio State University Wexner Medical Center, Columbus, OH 43210, USA.
| | - Jeremy C Borniger
- Department of Neuroscience, Ohio State University Wexner Medical Center, Columbus, OH 43210, USA
| | - Yasmine M Cisse
- Department of Neuroscience, Ohio State University Wexner Medical Center, Columbus, OH 43210, USA
| | - Bachir A Abi Salloum
- Department of Neuroscience, Ohio State University Wexner Medical Center, Columbus, OH 43210, USA
| | - Randy J Nelson
- Department of Neuroscience, Ohio State University Wexner Medical Center, Columbus, OH 43210, USA
| |
Collapse
|
28
|
Stevenson TJ, Prendergast BJ. Photoperiodic time measurement and seasonal immunological plasticity. Front Neuroendocrinol 2015; 37:76-88. [PMID: 25456046 PMCID: PMC4405432 DOI: 10.1016/j.yfrne.2014.10.002] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/08/2014] [Revised: 09/04/2014] [Accepted: 10/09/2014] [Indexed: 12/16/2022]
Abstract
Seasonal variations in immunity are common in nature, and changes in day length are sufficient to trigger enhancement and suppression of immune function in many vertebrates. Drawing primarily on data from Siberian hamsters, this review describes formal and physiological aspects of the neuroendocrine regulation of seasonal changes in mammalian immunity. Photoperiod regulates immunity in a trait-specific manner, and seasonal changes in gonadal hormone secretion and thyroid hormone signaling all participate in seasonal immunomodulation. Photoperiod-driven changes in the hamster reproductive and immune systems are associated with changes in iodothyronine deiodinase-mediated thyroid hormone signaling, but photoperiod exerts opposite effects on select aspects of the epigenetic regulation of reproductive neuroendocrine and lymphoid tissues. Photoperiodic changes in immunocompetence may explain a proportion of the annual variance in disease incidence and severity in nature, and provide a useful framework to help understand brain-immune interactions.
Collapse
Affiliation(s)
- Tyler J Stevenson
- Institute of Biological and Environmental Sciences, University of Aberdeen, Aberdeen AB24 2TZ, UK.
| | - Brian J Prendergast
- Department of Psychology and Institute for Mind and Biology, University of Chicago, Chicago, IL 60637, USA
| |
Collapse
|
29
|
Paul A, Dangi S, Gupta M, Singh J, Thakur N, Naskar S, Nanda P, Mohanty N, Das A, Bandopadhayay S, Das B, Sarkar M. Expression of TLR genes in Black Bengal goat (Capra hircus) during different seasons. Small Rumin Res 2015. [DOI: 10.1016/j.smallrumres.2015.01.011] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
30
|
Abstract
Disease is a ubiquitous and powerful evolutionary force. Hosts have evolved behavioural and physiological responses to disease that are associated with increased survival. Behavioural modifications, known as 'sickness behaviours', frequently involve symptoms such as lethargy, somnolence and anorexia. Current research has demonstrated that the social environment is a potent modulator of these behaviours: when conflicting social opportunities arise, animals can decrease or entirely forgo experiencing sickness symptoms. Here, I review how different social contexts, such as the presence of mates, caring for offspring, competing for territories or maintaining social status, affect the expression of sickness behaviours. Exploiting the circumstances that promote this behavioural plasticity will provide new insights into the evolutionary ecology of social behaviours. A deeper understanding of when and how this modulation takes place may lead to better tools to treat symptoms of infection and be relevant for the development of more efficient disease control programmes.
Collapse
Affiliation(s)
- Patricia C Lopes
- Institute of Evolutionary Biology and Environmental Studies, University of Zurich, 8057 Zurich, Switzerland
| |
Collapse
|
31
|
Demas GE, Carlton ED. Ecoimmunology for psychoneuroimmunologists: Considering context in neuroendocrine-immune-behavior interactions. Brain Behav Immun 2015; 44:9-16. [PMID: 25218837 PMCID: PMC4275338 DOI: 10.1016/j.bbi.2014.09.002] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/28/2014] [Revised: 08/26/2014] [Accepted: 09/01/2014] [Indexed: 02/06/2023] Open
Abstract
The study of immunity has become an important area of investigation for researchers in a wide range of areas outside the traditional discipline of immunology. For the last several decades, psychoneuroimmunology (PNI) has strived to identify key interactions among the nervous, endocrine and immune systems and behavior. More recently, the field of ecological immunology (ecoimmunology) has been established within the perspectives of ecology and evolutionary biology, sharing with PNI an appreciation of the environmental influences on immune function. The primary goal of ecoimmunology is to understand immune function within a broadly integrative, organismal context, typically from an ultimate, evolutionary perspective. To accomplish this ecoimmunology, like PNI, has become a broadly integrative field of investigation, combining diverse approaches from evolution and ecology to endocrinology and neurobiology. The disciplines of PNI and ecoimmunology, with their unique yet complementary perspectives and methodologies, have much to offer one another. Researchers in both fields, however, remain largely unaware of each other's findings despite attempts at integration. The goal of this review is to share with psychoneuroimmunologists and other mechanistically-oriented researchers some of the core concepts and principles, as well as relevant recent findings, within ecoimmunology with the hope that this information will prove relevant to their own research programs. More broadly, our goal is to attempt to integrate both the proximate and ultimate perspectives offered by PNI and ecoimmunology respectively into a common theoretical framework for understanding neuro-endocrine-immune interactions and behavior in a larger ecological, evolutionary context.
Collapse
Affiliation(s)
- Gregory E Demas
- Department of Biology, Program in Neuroscience and Center for the Integrative Study of Animal Behavior, Indiana University, Bloomington, IN 47405, USA.
| | - Elizabeth D Carlton
- Department of Biology, Program in Neuroscience and Center for the Integrative Study of Animal Behavior, Indiana University, Bloomington, IN 47405, USA
| |
Collapse
|
32
|
Nascimento AF, Alves GJ, Massoco CO, Teodorov E, Felicio LF, Bernardi MM. Lipopolysaccharide-induced sickness behavior in lactating rats decreases ultrasonic vocalizations and exacerbates immune system activity in male offspring. Neuroimmunomodulation 2015; 22:213-21. [PMID: 25139475 DOI: 10.1159/000363350] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/02/2014] [Accepted: 05/01/2014] [Indexed: 11/19/2022] Open
Abstract
OBJECTIVE The present study analyzed the effects of lipopolysaccharide (LPS) on maternal behavior during lactation and possible correlations with changes in emotional and immune responses in offspring. METHODS Lactating rats received 100 μg/kg LPS, and the control group received saline solution on lactation day (LD) 3. Maternal general activity and maternal behavior were observed on LD5 (i.e. the day that the peak of fever occurred). In male pups, hematological parameters and ultrasonic vocalizations (USVs) were assessed on LD5. At weaning, an additional dose of LPS (50 µg/kg, i.p.) was administered in male pups, and open-field behavior, oxidative burst and phagocytosis were evaluated. RESULTS A reduction in the time in which dams retrieved the pups was observed, whereas no effects on maternal aggressive behavior were found. On LD5, a reduction of the frequency of USVs was observed in pups, but no signs of inflammation were found. At weaning, an increase in immune system activity was observed, but no differences in open-field behavior were found. CONCLUSION These results indicate that inflammation in lactating mothers disrupted mother/pup interactions and may have produced short- and long-term effects on pup behavior as well as biological pathways that modulate inflammatory responses to bacterial endotoxin challenge in pups.
Collapse
Affiliation(s)
- Amanda F Nascimento
- Department of Pathology, School of Veterinary Medicine, University of São Paulo, São Paulo, Brazil
| | | | | | | | | | | |
Collapse
|
33
|
Carlton ED, Demas GE. Leptin mediates seasonal variation in some but not all symptoms of sickness in Siberian hamsters. Horm Behav 2014; 66:802-11. [PMID: 25461974 PMCID: PMC4262702 DOI: 10.1016/j.yhbeh.2014.11.003] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/02/2014] [Revised: 11/05/2014] [Accepted: 11/08/2014] [Indexed: 12/29/2022]
Abstract
Many seasonally breeding species, including Siberian hamsters (Phodopus sungorus), exhibit seasonal variation in sickness responses. One hypothesis regarding the mechanism of this variation is that sickness intensity tracks an animal's energetic state, such that sickness is attenuated in the season that an animal has the lowest fat stores. Energetic state may be signaled via leptin, an adipose hormone that provides a signal of fat stores. Siberian hamsters respond to extended housing in short, winter-like days by reducing fat stores and leptin levels, relative to those housed in long, summer-like days. Sickness responses are also attenuated in short-day hamsters as compared to long-day hamsters. We hypothesized that leptin provides a physiological signal by which seasonally breeding animals modulate sickness responses, such that animals with higher leptin levels show increased sickness intensity. To test this, we provided short-day hamsters with a long-day-like leptin signal and assessed their responses to lipopolysaccharide (LPS), a sickness-inducing antigen. We compared these responses to short-day vehicle-, long-day vehicle-, and long-day leptin-treated hamsters. Unexpectedly, LPS induced a hypothermic response (rather than fever) in all groups. Short-day vehicle-treated hamsters exhibited the greatest LPS-induced hypothermia, and leptin treatment attenuated this response, making hypothermia more long-day-like. Contrary to our hypothesis, short-day leptin-treated hamsters showed the least pronounced LPS-induced anorexia among all groups. These results suggest that leptin may mediate some but not all aspects of seasonal sickness variation in this species. Future studies should be targeted at determining roles of other energetic hormones in regulating seasonal sickness response variation.
Collapse
Affiliation(s)
- Elizabeth D Carlton
- Department of Biology, Program in Neuroscience and Center for the Integrative Study of Animal Behavior, Indiana University, Bloomington, IN 47405, USA.
| | - Gregory E Demas
- Department of Biology, Program in Neuroscience and Center for the Integrative Study of Animal Behavior, Indiana University, Bloomington, IN 47405, USA
| |
Collapse
|
34
|
Mavroudis PD, Corbett SA, Calvano SE, Androulakis IP. Mathematical modeling of light-mediated HPA axis activity and downstream implications on the entrainment of peripheral clock genes. Physiol Genomics 2014; 46:766-78. [PMID: 25073602 DOI: 10.1152/physiolgenomics.00026.2014] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
In this work we propose a semimechanistic model that describes the photic signal transduction to the hypothalamic-pituitary-adrenal (HPA) axis that ultimately regulates the synchronization of peripheral clock genes (PCGs). Our HPA axis model predicts that photic stimulation induces a type-1 phase response curve to cortisol's profile with increased cortisol sensitivity to light exposure in its rising phase, as well as the shortening of cortisol's period as constant light increases (Aschoff's first rule). Furthermore, our model provides insight into cortisol's phase and amplitude dependence on photoperiods and reveals that cortisol maintains highest amplitude variability when it is entrained by a balanced schedule of light and dark periods. Importantly, by incorporating the links between HPA axis and PCGs we were able to investigate how cortisol secretion impacts the entrainment of a population of peripheral cells and show that disrupted light schedules, leading to blunted cortisol secretion, fail to synchronize a population of PCGs which further signifies the loss of circadian rhythmicity in the periphery of the body.
Collapse
Affiliation(s)
| | - Siobhan A Corbett
- Department of Surgery, Rutgers-Robert Wood Johnson Medical School, New Brunswick, New Jersey; and
| | - Steven E Calvano
- Department of Surgery, Rutgers-Robert Wood Johnson Medical School, New Brunswick, New Jersey; and
| | - Ioannis P Androulakis
- Chemical & Biochemical Engineering Department, Rutgers University, Piscataway, New Jersey; Department of Surgery, Rutgers-Robert Wood Johnson Medical School, New Brunswick, New Jersey; and Biomedical Engineering Department, Rutgers University, Piscataway, New Jersey
| |
Collapse
|
35
|
Ikeno T, Weil ZM, Nelson RJ. Dim light at night disrupts the short-day response in Siberian hamsters. Gen Comp Endocrinol 2014; 197:56-64. [PMID: 24362257 DOI: 10.1016/j.ygcen.2013.12.005] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/06/2013] [Revised: 12/03/2013] [Accepted: 12/09/2013] [Indexed: 01/20/2023]
Abstract
Photoperiodic regulation of physiology, morphology, and behavior is crucial for many animals to survive seasonally variable conditions unfavorable for reproduction and survival. The photoperiodic response in mammals is mediated by nocturnal secretion of melatonin under the control of a circadian clock. However, artificial light at night caused by recent urbanization may disrupt the circadian clock, as well as the photoperiodic response by blunting melatonin secretion. Here we examined the effect of dim light at night (dLAN) (5lux of light during the dark phase) on locomotor activity rhythms and short-day regulation of reproduction, body mass, pelage properties, and immune responses of male Siberian hamsters. Short-day animals reduced gonadal and body mass, decreased spermatid nuclei and sperm numbers, molted to a whiter pelage, and increased pelage density compared to long-day animals. However, animals that experienced short days with dLAN did not show these short-day responses. Moreover, short-day specific immune responses were altered in dLAN conditions. The nocturnal activity pattern was blunted in dLAN hamsters, consistent with the observation that dLAN changed expression of the circadian clock gene, Period1. In addition, we demonstrated that expression levels of genes implicated in the photoperiodic response, Mel-1a melatonin receptor, Eyes absent 3, thyroid stimulating hormone receptor, gonadotropin-releasing hormone, and gonadotropin-inhibitory hormone, were higher in dLAN animals than those in short-day animals. These results suggest that dLAN disturbs the circadian clock function and affects the molecular mechanisms of the photoperiodic response.
Collapse
Affiliation(s)
- Tomoko Ikeno
- Department of Neuroscience, The Ohio State University Wexner Medical Center, Columbus, OH 43210, USA.
| | - Zachary M Weil
- Department of Neuroscience, The Ohio State University Wexner Medical Center, Columbus, OH 43210, USA.
| | - Randy J Nelson
- Department of Neuroscience, The Ohio State University Wexner Medical Center, Columbus, OH 43210, USA.
| |
Collapse
|
36
|
Maternal immune activation affects litter success, size and neuroendocrine responses related to behavior in adult offspring. Physiol Behav 2013; 119:175-84. [DOI: 10.1016/j.physbeh.2013.06.018] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2012] [Revised: 05/02/2013] [Accepted: 06/20/2013] [Indexed: 11/24/2022]
|
37
|
Ashley NT, Walton JC, Haim A, Zhang N, Prince LA, Fruchey AM, Lieberman RA, Weil ZM, Magalang UJ, Nelson RJ. Sleep deprivation attenuates endotoxin-induced cytokine gene expression independent of day length and circulating cortisol in male Siberian hamsters (Phodopus sungorus). ACTA ACUST UNITED AC 2013; 216:2581-6. [PMID: 23531821 DOI: 10.1242/jeb.083832] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Sleep is restorative, whereas reduced sleep leads to negative health outcomes, such as increased susceptibility to disease. Sleep deprivation tends to attenuate inflammatory responses triggered by infection or exposure to endotoxin, such as bacterial lipopolysaccharide (LPS). Previous studies have demonstrated that Siberian hamsters (Phodopus sungorus), photoperiodic rodents, attenuate LPS-induced fever, sickness behavior and upstream pro-inflammatory gene expression when adapted to short day lengths. Here, we tested whether manipulation of photoperiod alters the suppressive effects of sleep deprivation upon cytokine gene expression after LPS challenge. Male Siberian hamsters were adapted to long (16 h:8 h light:dark) or short (8 h:16 h light:dark) photoperiods for >10 weeks, and were deprived of sleep for 24 h using the multiple platform method or remained in their home cage. Hamsters received an intraperitoneal injection of LPS or saline (control) 18 h after starting the protocol, and were killed 6 h later. LPS increased liver and hypothalamic interleukin-1 (IL-1) and tumor necrosis factor-alpha (TNF) gene expression compared with vehicle. Among LPS-challenged hamsters, sleep deprivation reduced IL-1 mRNA levels in liver and hypothalamus, but not TNF. IL-1 attenuation was independent of circulating baseline cortisol, which did not increase after sleep deprivation. Conversely, photoperiod altered baseline cortisol, but not pro-inflammatory gene expression in sleep-deprived hamsters. These results suggest that neither photoperiod nor glucocorticoids influence the suppressive effect of sleep deprivation upon LPS-induced inflammation.
Collapse
Affiliation(s)
- Noah T Ashley
- Department of Neuroscience and Institute of Behavioral Medicine Research, Wexner Medical Center, The Ohio State University, Columbus, OH 43210 USA.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
38
|
Uzenbaeva LB, Vinogradova IA, Kizhina AG, Prokopenko OA, Malkiel AI, Goranskii AI, Lapinski S, Ilyukha VA. Influence of melatonin on neutrophil-to-lymphocyte ratio in mammalian blood depending on age of the animal. ADVANCES IN GERONTOLOGY 2013. [DOI: 10.1134/s2079057013010141] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
39
|
Ashley NT, Weil ZM, Nelson RJ. Inflammation: Mechanisms, Costs, and Natural Variation. ANNUAL REVIEW OF ECOLOGY EVOLUTION AND SYSTEMATICS 2012. [DOI: 10.1146/annurev-ecolsys-040212-092530] [Citation(s) in RCA: 220] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Noah T. Ashley
- Department of Biology, Western Kentucky University, Bowling Green, Kentucky 42101;
| | - Zachary M. Weil
- Department of Neuroscience, Wexner College of Medicine, Ohio State University, Columbus, Ohio 43210; ,
| | - Randy J. Nelson
- Department of Neuroscience, Wexner College of Medicine, Ohio State University, Columbus, Ohio 43210; ,
| |
Collapse
|
40
|
Humphrey N, Skoyles J. The evolutionary psychology of healing: A human success story. Curr Biol 2012; 22:R695-8. [DOI: 10.1016/j.cub.2012.06.018] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
41
|
McFarlane D, Wolf RF, McDaniel KA, White GL. The effect of season on inflammatory response in captive baboons. J Med Primatol 2012; 41:341-8. [PMID: 22905903 DOI: 10.1111/j.1600-0684.2012.00560.x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/10/2012] [Indexed: 12/27/2022]
Abstract
INTRODUCTION Highly seasonal animals demonstrate predictable changes in immune function that coincide with changes in photoperiod. Little is known about the effect of season on immune response in baboons. The objective of this study was to determine the effect of season on inflammatory response in baboons. MATERIALS AND METHODS Peripheral blood mononuclear cell cytokine response following immune stimulation and serum markers of inflammation were assessed during each season in two groups of young male baboons: one housed under natural light and one in a controlled environment of 12 hours light:12 hours dark. RESULTS A seasonal immune rhythm was evident in both groups, with a greater TNF-α and IL-6 response to stimulation and serum CRP concentration in June and September compared with December. CONCLUSIONS Season is an important experimental confounder, and therefore, time of year should be controlled when designing studies and analyzing data from immune studies in baboons.
Collapse
Affiliation(s)
- Dianne McFarlane
- Department of Physiological Sciences, Center of Veterinary Health Sciences, Oklahoma State University, Stillwater, OK, USA.
| | | | | | | |
Collapse
|
42
|
Carlton ED, Demas GE, French SS. Leptin, a neuroendocrine mediator of immune responses, inflammation, and sickness behaviors. Horm Behav 2012; 62:272-9. [PMID: 22561456 DOI: 10.1016/j.yhbeh.2012.04.010] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/28/2011] [Revised: 04/05/2012] [Accepted: 04/18/2012] [Indexed: 01/27/2023]
Abstract
Effective immune responses are coordinated by interactions among the nervous, endocrine, and immune systems. Mounting immune, inflammatory, and sickness responses requires substantial energetic investments, and as such, an organism may need to balance energy allocation to these processes with the energetic demands of other competing physiological systems. The metabolic hormone leptin appears to be mediating trade-offs between the immune system and other physiological systems through its actions on immune cells and the brain. Here we review the evidence in both mammalian and non-mammalian vertebrates that suggests leptin is involved in regulating immune responses, inflammation, and sickness behaviors. Leptin has also been implicated in the regulation of seasonal immune responses, including sickness; however, the precise physiological mechanisms remain unclear. Thus, we discuss recent data in support of leptin as a mediator of seasonal sickness responses and provide a theoretical model that outlines how seasonal cues, leptin, and proinflammatory cytokines may interact to coordinate seasonal immune and sickness responses.
Collapse
Affiliation(s)
- Elizabeth D Carlton
- Department of Biology, Program in Neuroscience and Center for the Integrative Study of Animal Behavior, Indiana University, Bloomington, IN 47405, USA.
| | | | | |
Collapse
|
43
|
Ashley NT, Zhang N, Weil ZM, Magalang UJ, Nelson RJ. Photoperiod Alters Duration and Intensity of Non–Rapid Eye Movement Sleep Following Immune Challenge in Siberian Hamsters (Phodopus sungorus). Chronobiol Int 2012; 29:683-92. [DOI: 10.3109/07420528.2012.682682] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
44
|
Fonken LK, Bedrosian TA, Michaels HD, Weil ZM, Nelson RJ. Short photoperiods attenuate central responses to an inflammogen. Brain Behav Immun 2012; 26:617-22. [PMID: 22326518 DOI: 10.1016/j.bbi.2012.01.017] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/28/2011] [Revised: 01/24/2012] [Accepted: 01/25/2012] [Indexed: 10/14/2022] Open
Abstract
In most parts of the world, environmental conditions vary in a predictable seasonal manner. Thus, seasonal variation in reproductive timing and immune function has emerged in some species to cope with disparate seasonal demands. During the long days of spring and summer when food availability is high and thermoregulatory demands low, Siberian hamsters invest in reproduction, whereas during the harsh short days of winter hamsters divert energy away from reproductive activities and modify immune capabilities. Many seasonal adaptations can be recapitulated in a laboratory setting by adjusting day length (photoperiod). Early-life photoperiods are important sources of seasonal information and can establish an individual's developmental trajectory. Siberian hamsters housed under short days (SD; 8 h light/day) recover more rapidly than long-day (LD; 16 h light/day) hamsters from immune activation with lipopolysaccharide (LPS). SD hamsters attenuate fever response, reduce cytokine production, and abrogate behavioral responses following LPS injection. The mechanism by which SD Siberian hamsters attenuate febrile response remains unspecified. It is possible that periphery-to-brain communication of inflammatory signals is altered by exposure to photoperiod. Rather than testing photoperiod effects on each of the multiple routes by which immunological cues are communicated to the CNS, we administered LPS intracerebroventricularly (i.c.v.) following adolescent exposure to either 6 weeks of SD or LD. Injection of LPS i.c.v. led to a similar immune reaction in SD hamsters as previously reported with intraperitoneal injection. Short days attenuated the response to LPS with diminished fever spike and duration, as well as decreased locomotor inactivity. Furthermore, only LD hamsters demonstrated anhedonic-like behavior following LPS injection as evaluated by decreased preference for a milk solution. These results suggest that photoperiodic differences in response to infection are due in part to changes in central immune activation.
Collapse
Affiliation(s)
- Laura K Fonken
- Department of Neuroscience and Institute for Behavioral Medicine Research, The Ohio State University Medical Center, Columbus, OH 43210, USA.
| | | | | | | | | |
Collapse
|
45
|
Prendergast BJ. Can photoperiod predict mortality in the 1918-1920 influenza pandemic? J Biol Rhythms 2011; 26:345-52. [PMID: 21775293 DOI: 10.1177/0748730411409708] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Amplitude of the seasonal change in day length increases with distance from the equator, and changes in day length markedly alter immune function in diverse nonhuman animal models of infection. Historical records of mortality data, ambient temperature, population density, geography, and economic indicators from 42 countries during 1918-1920 were analyzed to determine relative contributions toward human mortality during the "Spanish" influenza pandemic of 1918-1920. The data identify a strong negative relation between distance from the equator and mortality during the 1918-1920 influenza pandemic, which, in a multiple regression model, manifested independent of major economic, demographic, and temperature variables. Enhanced survival was evident in populations that experienced a winter nadir day length ≤10 h light/day, relative to those that experienced lower amplitude changes in photoperiod. Numerous reports indicate that exposure to short day lengths, typical of those occurring outside the tropics during winter, yields robust and enduring reductions in the magnitude of cytokine, febrile, and behavioral responses to infection. The present results are preliminary but prompt the conjecture that, if similar mechanisms are operant in humans, then they would be predicted to mitigate symptoms of infection in proportion to an individual's distance from the equator. Although limitations and uncertainties accompany regression-based analyses of historical epidemiological data, latitude, per se, may be an underrecognized factor in mortality during the 1918-1920 influenza pandemic. The author proposes that some proportion of the global variance in morbidity and mortality from infectious diseases may be explained by effects of day length on the innate immune response to infection.
Collapse
Affiliation(s)
- Brian J Prendergast
- Department of Psychology, Institute for Mind and Biology, University of Chicago, Chicago, IL 60637, USA.
| |
Collapse
|
46
|
Fenn AM, Fonken LK, Nelson RJ. Sustained melatonin treatment blocks body mass, pelage, reproductive, and fever responses to short day lengths in female Siberian hamsters. J Pineal Res 2011; 51:180-6. [PMID: 21486368 DOI: 10.1111/j.1600-079x.2011.00874.x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Winter imposes physiological challenges on individuals including increased thermoregulatory demands, risk of infection, and decreased food availability. To survive these challenges, animals living outside the tropics must appropriately distribute their energetic costs across the year, including reproduction and immune function. Individuals of many species use the annual cycle of changing day lengths (photoperiod), which is encoded by the nightly duration of melatonin secretion, to adjust physiology. Siberian hamsters exposed to short days (SD) (long nights/prolonged endogenous melatonin secretion) enhance some aspects of immune function, but curtail other energetically expensive immune functions including the febrile response. The purpose of this study was twofold. First, we determined whether sustained melatonin treatment would inhibit the development of the SD phenotype in female hamsters as it does in males. Second, we examined whether the SD attenuation of fever would be blocked by continuous exposure to exogenous melatonin. Hamsters were implanted with melatonin or empty capsules, housed in either long days (LD) or SD for 8-9 weeks, and then challenged with lipopolysaccharide; body temperature and locomotor activity were recorded. Unlike hamsters with empty capsules, hamsters with melatonin implants did not respond to SD and maintained a LD phenotype including summer-like spleen, uterine and body masses, and pelage characteristics. Further, sustained melatonin treatment blocked the SD attenuation of febrile responses and prolonged the behavioral components of the sickness response. These results suggest that the daily fluctuations in endogenous melatonin may be masked by continuous exposure to exogenous melatonin, thus inhibiting functional photoperiodic responses to SD.
Collapse
Affiliation(s)
- Ashley M Fenn
- Department of Neuroscience, The Ohio State University, Columbus, OH 43210, USA.
| | | | | |
Collapse
|
47
|
Walton JC, Weil ZM, Nelson RJ. Influence of photoperiod on hormones, behavior, and immune function. Front Neuroendocrinol 2011; 32:303-19. [PMID: 21156187 PMCID: PMC3139743 DOI: 10.1016/j.yfrne.2010.12.003] [Citation(s) in RCA: 135] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/18/2010] [Revised: 11/30/2010] [Accepted: 12/03/2010] [Indexed: 01/26/2023]
Abstract
Photoperiodism is the ability of plants and animals to measure environmental day length to ascertain time of year. Central to the evolution of photoperiodism in animals is the adaptive distribution of energetically challenging activities across the year to optimize reproductive fitness while balancing the energetic tradeoffs necessary for seasonally-appropriate survival strategies. The ability to accurately predict future events requires endogenous mechanisms to permit physiological anticipation of annual conditions. Day length provides a virtually noise free environmental signal to monitor and accurately predict time of the year. In mammals, melatonin provides the hormonal signal transducing day length. Duration of pineal melatonin is inversely related to day length and its secretion drives enduring changes in many physiological systems, including the HPA, HPG, and brain-gut axes, the autonomic nervous system, and the immune system. Thus, melatonin is the fulcrum mediating redistribution of energetic investment among physiological processes to maximize fitness and survival.
Collapse
Affiliation(s)
- James C Walton
- Department of Neuroscience, The Ohio State University Medical Center, Columbus, OH 43210, USA.
| | | | | |
Collapse
|
48
|
Palacios MG, Winkler DW, Klasing KC, Hasselquist D, Vleck CM. Consequences of immune system aging in nature: a study of immunosenescence costs in free-living Tree Swallows. Ecology 2011; 92:952-66. [PMID: 21661557 DOI: 10.1890/10-0662.1] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Immunosenescence, the aging of the immune system, is well documented in humans and laboratory models and is known to increase infection risk, morbidity, and mortality among the old. Immunosenescence patterns have recently been unveiled in various free-living populations, but their consequences in the wild have not been explored. We investigated the consequences of immunosenescence in free-living Tree Swallows Tachycineta bicolor through a field experiment simulating a bacterial infection (challenge with lipopolysaccharide, LPS) in females of different ages during the nestling rearing period. We assessed behavioral and physiological responses of females, as well as growth and quality of their offspring, to determine the costs associated with the simulated infection. Results of the experiment differed between the two years of study. In the first year, old females challenged with LPS lost more body mass and reduced their nest visitation rates more, and their offspring tended to grow slower compared to similarly challenged younger females. In contrast, in the second year, old females did not appear to suffer larger costs than younger ones. Interestingly, immunosenescence was only detected during the first year of the study, suggesting that it is the dysregulated immune function characteristic of immunosenescent individuals rather than age per se that can lead to higher costs of immune defense in old individuals. These results provide the first evidence of costs of immunosenescence in free-living animals and support the hypothesis that old, immunosenescent individuals pay higher costs than younger ones when faced with a challenge to their immune system. Our results also suggest that these costs are mediated by an exaggerated sickness behavior, as seen in laboratory models, and can be modulated by ecological factors such as weather conditions and food availability.
Collapse
Affiliation(s)
- Maria G Palacios
- Department of Ecology, Evolution, and Organismal Biology, Iowa State University, Ames, Iowa 50011, USA.
| | | | | | | | | |
Collapse
|
49
|
Viljoen H, Bennett NC, Lutermann H. Life‐history traits, but not season, affect the febrile response to a lipopolysaccharide challenge in highveld mole‐rats. J Zool (1987) 2011. [DOI: 10.1111/j.1469-7998.2011.00833.x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- H. Viljoen
- Department of Zoology and Entomology, Mammal Research Institute, University of Pretoria, Hatfield, South Africa
| | - N. C. Bennett
- Department of Zoology and Entomology, Mammal Research Institute, University of Pretoria, Hatfield, South Africa
| | - H. Lutermann
- Department of Zoology and Entomology, Mammal Research Institute, University of Pretoria, Hatfield, South Africa
| |
Collapse
|
50
|
Bedrosian TA, Fonken LK, Walton JC, Nelson RJ. Chronic exposure to dim light at night suppresses immune responses in Siberian hamsters. Biol Lett 2011; 7:468-71. [PMID: 21270021 PMCID: PMC3097873 DOI: 10.1098/rsbl.2010.1108] [Citation(s) in RCA: 127] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2010] [Accepted: 01/04/2011] [Indexed: 11/12/2022] Open
Abstract
Species have been adapted to specific niches optimizing survival and reproduction; however, urbanization by humans has dramatically altered natural habitats. Artificial light at night (LAN), termed 'light pollution', is an often overlooked, yet increasing disruptor of habitats, which perturbs physiological processes that rely on precise light information. For example, LAN alters the timing of reproduction and activity in some species, which decreases the odds of successful breeding and increases the threat of predation for these individuals, leading to reduced fitness. LAN also suppresses immune function, an important proxy for survival. To investigate the impact of LAN in a species naive to light pollution in its native habitat, immune function was examined in Siberian hamsters derived from wild-caught stock. After four weeks exposure to dim LAN, immune responses to three different challenges were assessed: (i) delayed-type hypersensitivity (DTH), (ii) lipopolysaccharide-induced fever, and (iii) bactericide activity of blood. LAN suppressed DTH response and reduced bactericide activity of blood after lipopolysaccharide treatment, in addition to altering daily patterns of locomotor activity, suggesting that human encroachment on habitats via night-time lighting may inadvertently compromise immune function and ultimately fitness.
Collapse
Affiliation(s)
- Tracy A Bedrosian
- Department of Neuroscience, The Ohio State University Medical Center, Columbus, OH 43210, USA.
| | | | | | | |
Collapse
|