1
|
Xu Z, Ding Z, Shi L, Xie Y, Zhang Y, Wang Z, Liu Q. Coevolution between marine Aeromonas and phages reveals temporal trade-off patterns of phage resistance and host population fitness. THE ISME JOURNAL 2023; 17:2200-2209. [PMID: 37814126 PMCID: PMC10689771 DOI: 10.1038/s41396-023-01529-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Revised: 09/22/2023] [Accepted: 09/28/2023] [Indexed: 10/11/2023]
Abstract
Coevolution of bacteria and phages is an important host and parasite dynamic in marine ecosystems, contributing to the understanding of bacterial community diversity. On the time scale, questions remain concerning what is the difference between phage resistance patterns in marine bacteria and how advantageous mutations gradually accumulate during coevolution. In this study, marine Aeromonas was co-cultured with its phage for 180 days and their genetic and phenotypic dynamics were measured every 30 days. We identified 11 phage resistance genes and classified them into three categories: lipopolysaccharide (LPS), outer membrane protein (OMP), and two-component system (TCS). LPS shortening and OMP mutations are two distinct modes of complete phage resistance, while TCS mutants mediate incomplete resistance by repressing the transcription of phage genes. The co-mutation of LPS and OMP was a major mode for bacterial resistance at a low cost. The mutations led to significant reductions in the growth and virulence of bacterial populations during the first 60 days of coevolution, with subsequent leveling off. Our findings reveal the marine bacterial community dynamics and evolutionary trade-offs of phage resistance during coevolution, thus granting further understanding of the interaction of marine microbes.
Collapse
Affiliation(s)
- Zhenhe Xu
- State Key Laboratory of Bioreactor Engineering, Shanghai Frontiers Science Center of Optogenetic Techniques for Cell Metabolism, East China University of Science and Technology, Shanghai, 200237, China
| | - Zihan Ding
- State Key Laboratory of Bioreactor Engineering, Shanghai Frontiers Science Center of Optogenetic Techniques for Cell Metabolism, East China University of Science and Technology, Shanghai, 200237, China
| | - Lijia Shi
- State Key Laboratory of Bioreactor Engineering, Shanghai Frontiers Science Center of Optogenetic Techniques for Cell Metabolism, East China University of Science and Technology, Shanghai, 200237, China
| | - Yuzhen Xie
- State Key Laboratory of Bioreactor Engineering, Shanghai Frontiers Science Center of Optogenetic Techniques for Cell Metabolism, East China University of Science and Technology, Shanghai, 200237, China
| | - Yuanxing Zhang
- Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), 519000, Zhuhai, China
- Shanghai Engineering Research Center of Maricultured Animal Vaccines, Shanghai, 200237, China
| | - Zhuang Wang
- State Key Laboratory of Bioreactor Engineering, Shanghai Frontiers Science Center of Optogenetic Techniques for Cell Metabolism, East China University of Science and Technology, Shanghai, 200237, China.
- Shanghai Engineering Research Center of Maricultured Animal Vaccines, Shanghai, 200237, China.
| | - Qin Liu
- State Key Laboratory of Bioreactor Engineering, Shanghai Frontiers Science Center of Optogenetic Techniques for Cell Metabolism, East China University of Science and Technology, Shanghai, 200237, China.
- Shanghai Engineering Research Center of Maricultured Animal Vaccines, Shanghai, 200237, China.
| |
Collapse
|
2
|
Attrill EL, Łapińska U, Westra ER, Harding SV, Pagliara S. Slow growing bacteria survive bacteriophage in isolation. ISME COMMUNICATIONS 2023; 3:95. [PMID: 37684358 PMCID: PMC10491631 DOI: 10.1038/s43705-023-00299-5] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Revised: 08/09/2023] [Accepted: 08/14/2023] [Indexed: 09/10/2023]
Abstract
The interactions between bacteria and bacteriophage have important roles in the global ecosystem; in turn changes in environmental parameters affect the interactions between bacteria and phage. However, there is a lack of knowledge on whether clonal bacterial populations harbour different phenotypes that respond to phage in distinct ways and whether the abundance of such phenotypes within bacterial populations is affected by variations in environmental parameters. Here we study the impact of variations in nutrient availability, bacterial growth rate and phage abundance on the interactions between the phage T4 and individual Escherichia coli cells confined in spatial refuges. Surprisingly, we found that fast growing bacteria survive together with all of their clonal kin cells, whereas slow growing bacteria survive in isolation. We also discovered that the number of bacteria that survive in isolation decreases at increasing phage doses possibly due to lysis inhibition in the presence of secondary adsorptions. We further show that these changes in the phenotypic composition of the E. coli population have important consequences on the bacterial and phage population dynamics and should therefore be considered when investigating bacteria-phage interactions in ecological, health or food production settings in structured environments.
Collapse
Affiliation(s)
- Erin L Attrill
- Living Systems Institute and Biosciences, University of Exeter, Exeter, UK
| | - Urszula Łapińska
- Living Systems Institute and Biosciences, University of Exeter, Exeter, UK
| | - Edze R Westra
- Environment and Sustainability Institute and Biosciences, University of Exeter, Penryn, UK
| | - Sarah V Harding
- Defence Science and Technology Laboratory, Porton Down, Salisbury, UK
- Department of Respiratory Sciences, University of Leicester, Leicester, UK
| | - Stefano Pagliara
- Living Systems Institute and Biosciences, University of Exeter, Exeter, UK.
| |
Collapse
|
3
|
Venkataram S, Kryazhimskiy S. Evolutionary repeatability of emergent properties of ecological communities. Philos Trans R Soc Lond B Biol Sci 2023; 378:20220047. [PMID: 37004728 PMCID: PMC10067272 DOI: 10.1098/rstb.2022.0047] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Accepted: 12/07/2022] [Indexed: 04/04/2023] Open
Abstract
Most species belong to ecological communities where their interactions give rise to emergent community-level properties, such as diversity and productivity. Understanding and predicting how these properties change over time has been a major goal in ecology, with important practical implications for sustainability and human health. Less attention has been paid to the fact that community-level properties can also change because member species evolve. Yet, our ability to predict long-term eco-evolutionary dynamics hinges on how repeatably community-level properties change as a result of species evolution. Here, we review studies of evolution of both natural and experimental communities and make the case that community-level properties at least sometimes evolve repeatably. We discuss challenges faced in investigations of evolutionary repeatability. In particular, only a handful of studies enable us to quantify repeatability. We argue that quantifying repeatability at the community level is critical for approaching what we see as three major open questions in the field: (i) Is the observed degree of repeatability surprising? (ii) How is evolutionary repeatability at the community level related to repeatability at the level of traits of member species? (iii) What factors affect repeatability? We outline some theoretical and empirical approaches to addressing these questions. Advances in these directions will not only enrich our basic understanding of evolution and ecology but will also help us predict eco-evolutionary dynamics. This article is part of the theme issue 'Interdisciplinary approaches to predicting evolutionary biology'.
Collapse
Affiliation(s)
- Sandeep Venkataram
- Department of Ecology, Behavior and Evolution, UC San Diego, La Jolla, CA 92093, USA
| | - Sergey Kryazhimskiy
- Department of Ecology, Behavior and Evolution, UC San Diego, La Jolla, CA 92093, USA
| |
Collapse
|
4
|
MacPherson B, Scott R, Gras R. Using individual-based modelling to investigate a pluralistic explanation for the prevalence of sexual reproduction in animal species. Ecol Modell 2023. [DOI: 10.1016/j.ecolmodel.2022.110191] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
5
|
Castledine M, Sierocinski P, Inglis M, Kay S, Hayward A, Buckling A, Padfield D. Greater Phage Genotypic Diversity Constrains Arms-Race Coevolution. Front Cell Infect Microbiol 2022; 12:834406. [PMID: 35310856 PMCID: PMC8931298 DOI: 10.3389/fcimb.2022.834406] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Accepted: 02/03/2022] [Indexed: 12/11/2022] Open
Abstract
Antagonistic coevolution between hosts and parasites, the reciprocal evolution of host resistance and parasite infectivity, has important implications in ecology and evolution. The dynamics of coevolution—notably whether host or parasite has an evolutionary advantage—is greatly affected by the relative amount of genetic variation in host resistance and parasite infectivity traits. While studies have manipulated genetic diversity during coevolution, such as by increasing mutation rates, it is unclear how starting genetic diversity affects host–parasite coevolution. Here, we (co)evolved the bacterium Pseudomonas fluorescens SBW25 and two bacteriophage genotypes of its lytic phage SBW25ɸ2 in isolation (one phage genotype) and together (two phage genotypes). Bacterial populations rapidly evolved phage resistance, and phage reciprocally increased their infectivity in response. When phage populations were evolved with bacteria in isolation, bacterial resistance and phage infectivity increased through time, indicative of arms-race coevolution. In contrast, when both phage genotypes were together, bacteria did not increase their resistance in response to increasing phage infectivity. This was likely due to bacteria being unable to evolve resistance to both phage via the same mutations. These results suggest that increasing initial parasite genotypic diversity can give parasites an evolutionary advantage that arrests long-term coevolution. This study has important implications for the applied use of phage in phage therapy and in understanding host–parasite dynamics in broader ecological and evolutionary theory.
Collapse
|
6
|
Castledine M, Padfield D, Sierocinski P, Soria Pascual J, Hughes A, Mäkinen L, Friman VP, Pirnay JP, Merabishvili M, de Vos D, Buckling A. Parallel evolution of Pseudomonas aeruginosa phage resistance and virulence loss in response to phage treatment in vivo and in vitro. eLife 2022; 11:73679. [PMID: 35188102 PMCID: PMC8912922 DOI: 10.7554/elife.73679] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Accepted: 02/20/2022] [Indexed: 12/02/2022] Open
Abstract
With rising antibiotic resistance, there has been increasing interest in treating pathogenic bacteria with bacteriophages (phage therapy). One limitation of phage therapy is the ease at which bacteria can evolve resistance. Negative effects of resistance may be mitigated when resistance results in reduced bacterial growth and virulence, or when phage coevolves to overcome resistance. Resistance evolution and its consequences are contingent on the bacteria-phage combination and their environmental context, making therapeutic outcomes hard to predict. One solution might be to conduct ‘in vitro evolutionary simulations’ using bacteria-phage combinations from the therapeutic context. Overall, our aim was to investigate parallels between in vitro experiments and in vivo dynamics in a human participant. Evolutionary dynamics were similar, with high levels of resistance evolving quickly with limited evidence of phage evolution. Resistant bacteria—evolved in vitro and in vivo—had lower virulence. In vivo, this was linked to lower growth rates of resistant isolates, whereas in vitro phage resistant isolates evolved greater biofilm production. Population sequencing suggests resistance resulted from selection on de novo mutations rather than sorting of existing variants. These results highlight the speed at which phage resistance can evolve in vivo, and how in vitro experiments may give useful insights for clinical evolutionary outcomes.
Collapse
Affiliation(s)
- Meaghan Castledine
- College of Life and Environmental Sciences, University of Exeter, Penryn, United Kingdom
| | - Daniel Padfield
- College of Life and Environmental Sciences, University of Exeter, Penryn, United Kingdom
| | - Pawel Sierocinski
- College of Life and Environmental Sciences, University of Exeter, Penryn, United Kingdom
| | - Jesica Soria Pascual
- College of Life and Environmental Sciences, University of Exeter, Penryn, United Kingdom
| | - Adam Hughes
- College of Life and Environmental Sciences, University of Exeter, Penryn, United Kingdom
| | - Lotta Mäkinen
- College of Life and Environmental Sciences, University of Exeter, Penryn, United Kingdom
| | | | - Jean-Paul Pirnay
- Laboratory for Molecular and Cellular Technology, Queen Astrid Military Hospital, Brussels, Belgium
| | - Maya Merabishvili
- Laboratory for Molecular and Cellular Technology, Queen Astrid Military Hospital, Brussels, Belgium
| | - Daniel de Vos
- Laboratory for Molecular and Cellular Technology, Queen Astrid Military Hospital, Brussels, Belgium
| | - Angus Buckling
- College of Life and Environmental Sciences, University of Exeter, Penryn, United Kingdom
| |
Collapse
|
7
|
Attrill EL, Claydon R, Łapińska U, Recker M, Meaden S, Brown AT, Westra ER, Harding SV, Pagliara S. Individual bacteria in structured environments rely on phenotypic resistance to phage. PLoS Biol 2021; 19:e3001406. [PMID: 34637438 PMCID: PMC8509860 DOI: 10.1371/journal.pbio.3001406] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2021] [Accepted: 09/02/2021] [Indexed: 12/12/2022] Open
Abstract
Bacteriophages represent an avenue to overcome the current antibiotic resistance crisis, but evolution of genetic resistance to phages remains a concern. In vitro, bacteria evolve genetic resistance, preventing phage adsorption or degrading phage DNA. In natural environments, evolved resistance is lower possibly because the spatial heterogeneity within biofilms, microcolonies, or wall populations favours phenotypic survival to lytic phages. However, it is also possible that the persistence of genetically sensitive bacteria is due to less efficient phage amplification in natural environments, the existence of refuges where bacteria can hide, and a reduced spread of resistant genotypes. Here, we monitor the interactions between individual planktonic bacteria in isolation in ephemeral refuges and bacteriophage by tracking the survival of individual cells. We find that in these transient spatial refuges, phenotypic resistance due to reduced expression of the phage receptor is a key determinant of bacterial survival. This survival strategy is in contrast with the emergence of genetic resistance in the absence of ephemeral refuges in well-mixed environments. Predictions generated via a mathematical modelling framework to track bacterial response to phages reveal that the presence of spatial refuges leads to fundamentally different population dynamics that should be considered in order to predict and manipulate the evolutionary and ecological dynamics of bacteria–phage interactions in naturally structured environments. Bacteriophages represent a promising avenue to overcome the current antibiotic resistance crisis, but evolution of phage resistance remains a concern. This study shows that in the presence of spatial refuges, genetic resistance to phage is less of a problem than commonly assumed, but the persistence of genetically susceptible bacteria suggests that eradicating bacterial pathogens from structured environments may require combined phage-antibiotic therapies.
Collapse
Affiliation(s)
- Erin L. Attrill
- Living Systems Institute and Biosciences, University of Exeter, Exeter, United Kingdom
| | - Rory Claydon
- SUPA, School of Physics and Astronomy, The University of Edinburgh, United Kingdom
| | - Urszula Łapińska
- Living Systems Institute and Biosciences, University of Exeter, Exeter, United Kingdom
| | - Mario Recker
- Centre for Ecology and Conservation, University of Exeter, Penryn, United Kingdom
| | - Sean Meaden
- Environment and Sustainability Institute and Biosciences, University of Exeter, Penryn, United Kingdom
- Department of Microbiology and Immunology, University of Otago, Dunedin, New Zealand
| | - Aidan T. Brown
- SUPA, School of Physics and Astronomy, The University of Edinburgh, United Kingdom
| | - Edze R. Westra
- Environment and Sustainability Institute and Biosciences, University of Exeter, Penryn, United Kingdom
| | - Sarah V. Harding
- Defence Science and Technology Laboratory, Porton Down, Salisbury, United Kingdom
| | - Stefano Pagliara
- Living Systems Institute and Biosciences, University of Exeter, Exeter, United Kingdom
- * E-mail:
| |
Collapse
|
8
|
Jariah ROA, Hakim MS. Interaction of phages, bacteria, and the human immune system: Evolutionary changes in phage therapy. Rev Med Virol 2019; 29:e2055. [PMID: 31145517 DOI: 10.1002/rmv.2055] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2019] [Revised: 05/01/2019] [Accepted: 05/02/2019] [Indexed: 12/26/2022]
Abstract
Phages and bacteria are known to undergo dynamic and co-evolutionary arms race interactions in order to survive. Recent advances from in vitro and in vivo studies have improved our understanding of the complex interactions between phages, bacteria, and the human immune system. This insight is essential for the development of phage therapy to battle the growing problems of antibiotic resistance. It is also pivotal to prevent the development of phage-resistance during the implementation of phage therapy in the clinic. In this review, we discuss recent progress of the interactions between phages, bacteria, and the human immune system and its clinical application for phage therapy. Proper phage therapy design will ideally produce large burst sizes, short latent periods, broad host ranges, and a low tendency to select resistance.
Collapse
Affiliation(s)
- Rizka O A Jariah
- Department of Health Science, Faculty of Vocational Studies, Universitas Airlangga, Surabaya, Indonesia
| | - Mohamad S Hakim
- Department of Microbiology, Faculty of Medicine, Public Health and Nursing, Universitas Gadjah Mada, Yogyakarta, Indonesia
| |
Collapse
|
9
|
Moulton‐Brown CE, Friman V. Rapid evolution of generalized resistance mechanisms can constrain the efficacy of phage-antibiotic treatments. Evol Appl 2018; 11:1630-1641. [PMID: 30344632 PMCID: PMC6183449 DOI: 10.1111/eva.12653] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2017] [Revised: 05/17/2018] [Accepted: 05/23/2018] [Indexed: 12/12/2022] Open
Abstract
Antimicrobial resistance has been estimated to be responsible for over 700,000 deaths per year; therefore, new antimicrobial therapies are urgently needed. One way to increase the efficiency of antibiotics is to use them in combination with bacteria-specific parasitic viruses, phages, which have been shown to exert additive or synergistic effects in controlling bacteria. However, it is still unclear to what extent these combinatory effects are limited by rapid evolution of resistance, especially when the pathogen grows as biofilm on surfaces typical for many persistent and chronic infections. To study this, we used a microcosm system, where genetically isogenic populations of Pseudomonas aeruginosa PAO1 bacterial pathogen were exposed to a phage 14/1, gentamycin or a combination of them both in a spatially structured environment. We found that even though antibiotic and phage-antibiotic treatments were equally effective at controlling bacteria in the beginning of the experiment, combination treatment rapidly lost its efficacy in both planktonic and biofilm populations. In a mechanistic manner, this was due to rapid resistance evolution: While both antibiotic and phage selected for increased resistance on their own, phage selection correlated positively with increase in antibiotic resistance, while biofilm growth, which provided generalized resistance mechanism, was favoured most in the combination treatment. Only relatively small cost of resistance and weak evidence for coevolutionary dynamics were observed. Together, these results suggest that spatial heterogeneity can promote rapid evolution of generalized resistance mechanisms without corresponding increase in phage infectivity, which could potentially limit the effectiveness of phage-antibiotic treatments in the evolutionary timescale.
Collapse
|
10
|
Oechslin F. Resistance Development to Bacteriophages Occurring during Bacteriophage Therapy. Viruses 2018; 10:E351. [PMID: 29966329 PMCID: PMC6070868 DOI: 10.3390/v10070351] [Citation(s) in RCA: 292] [Impact Index Per Article: 41.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2018] [Revised: 06/27/2018] [Accepted: 06/28/2018] [Indexed: 12/29/2022] Open
Abstract
Bacteriophage (phage) therapy, i.e., the use of viruses that infect bacteria as antimicrobial agents, is a promising alternative to conventional antibiotics. Indeed, resistance to antibiotics has become a major public health problem after decades of extensive usage. However, one of the main questions regarding phage therapy is the possible rapid emergence of phage-resistant bacterial variants, which could impede favourable treatment outcomes. Experimental data has shown that phage-resistant variants occurred in up to 80% of studies targeting the intestinal milieu and 50% of studies using sepsis models. Phage-resistant variants have also been observed in human studies, as described in three out of four clinical trials that recorded the emergence of phage resistance. On the other hand, recent animal studies suggest that bacterial mutations that confer phage-resistance may result in fitness costs in the resistant bacterium, which, in turn, could benefit the host. Thus, phage resistance should not be underestimated and efforts should be made to develop methodologies for monitoring and preventing it. Moreover, understanding and taking advantage of the resistance-induced fitness costs in bacterial pathogens is a potentially promising avenue.
Collapse
Affiliation(s)
- Frank Oechslin
- Department of Fundamental Microbiology (DMF), University of Lausanne, CH-1015 Lausanne, Switzerland.
| |
Collapse
|
11
|
Betts A, Gray C, Zelek M, MacLean RC, King KC. High parasite diversity accelerates host adaptation and diversification. Science 2018; 360:907-911. [PMID: 29798882 PMCID: PMC7612933 DOI: 10.1126/science.aam9974] [Citation(s) in RCA: 91] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2017] [Revised: 02/18/2018] [Accepted: 04/16/2018] [Indexed: 09/23/2023]
Abstract
Host-parasite species pairs are known to coevolve, but how multiple parasites coevolve with their host is unclear. By using experimental coevolution of a host bacterium and its viral parasites, we revealed that diverse parasite communities accelerated host evolution and altered coevolutionary dynamics to enhance host resistance and decrease parasite infectivity. Increases in parasite diversity drove shifts in the mode of selection from fluctuating (Red Queen) dynamics to predominately directional (arms race) dynamics. Arms race dynamics were characterized by selective sweeps of generalist resistance mutations in the genes for the host bacterium's cell surface lipopolysaccharide (a bacteriophage receptor), which caused faster molecular evolution within host populations and greater genetic divergence among populations. These results indicate that exposure to multiple parasites influences the rate and type of host-parasite coevolution.
Collapse
Affiliation(s)
- A Betts
- Department of Zoology, University of Oxford, South Parks Road, Oxford OX1 3PS, UK.
| | - C Gray
- Department of Life Sciences, Imperial College London, Silwood Park Campus, Ascot SL5 7PY, UK
| | - M Zelek
- Department of Zoology, University of Oxford, South Parks Road, Oxford OX1 3PS, UK
| | - R C MacLean
- Department of Zoology, University of Oxford, South Parks Road, Oxford OX1 3PS, UK
| | - K C King
- Department of Zoology, University of Oxford, South Parks Road, Oxford OX1 3PS, UK.
| |
Collapse
|
12
|
Muraille E. Diversity Generator Mechanisms Are Essential Components of Biological Systems: The Two Queen Hypothesis. Front Microbiol 2018; 9:223. [PMID: 29487592 PMCID: PMC5816788 DOI: 10.3389/fmicb.2018.00223] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2017] [Accepted: 01/30/2018] [Indexed: 01/02/2023] Open
Abstract
Diversity is widely known to fuel adaptation and evolutionary processes and increase robustness at the population, species and ecosystem levels. The Neo-Darwinian paradigm proposes that the diversity of biological entities is the consequence of genetic changes arising spontaneously and randomly, without regard for their usefulness. However, a growing body of evidence demonstrates that the evolutionary process has shaped mechanisms, such as horizontal gene transfer mechanisms, meiosis and the adaptive immune system, which has resulted in the regulated generation of diversity among populations. Though their origins are unrelated, these diversity generator (DG) mechanisms share common functional properties. They (i) contribute to the great unpredictability of the composition and/or behavior of biological systems, (ii) favor robustness and collectivism among populations and (iii) operate mainly by manipulating the systems that control the interaction of living beings with their environment. The definition proposed here for DGs is based on these properties and can be used to identify them according to function. Interestingly, prokaryotic DGs appear to be mainly reactive, as they generate diversity in response to environmental stress. They are involved in the widely described Red Queen/arms race/Cairnsian dynamic. The emergence of multicellular organisms harboring K selection traits (longer reproductive life cycle and smaller population size) has led to the acquisition of a new class of DGs that act anticipatively to stress pressures and generate a distinct dynamic called the “White Queen” here. The existence of DGs leads to the view of evolution as a more “intelligent” and Lamarckian-like process. Their repeated selection during evolution could be a neglected example of convergent evolution and suggests that some parts of the evolutionary process are tightly constrained by ecological factors, such as the population size, the generation time and the intensity of selective pressure. The ubiquity of DGs also suggests that regulated auto-generation of diversity is a fundamental property of life.
Collapse
Affiliation(s)
- Eric Muraille
- Laboratoire de Parasitologie, Faculté de Médecine, Université Libre de Bruxelles, Brussels, Belgium
| |
Collapse
|
13
|
Cairns J, Becks L, Jalasvuori M, Hiltunen T. Sublethal streptomycin concentrations and lytic bacteriophage together promote resistance evolution. Philos Trans R Soc Lond B Biol Sci 2017; 372:rstb.2016.0040. [PMID: 27920385 DOI: 10.1098/rstb.2016.0040] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/12/2016] [Indexed: 12/19/2022] Open
Abstract
Sub-minimum inhibiting concentrations (sub-MICs) of antibiotics frequently occur in natural environments owing to wide-spread antibiotic leakage by human action. Even though the concentrations are very low, these sub-MICs have recently been shown to alter bacterial populations by selecting for antibiotic resistance and increasing the rate of adaptive evolution. However, studies are lacking on how these effects reverberate into key ecological interactions, such as bacteria-phage interactions. Previously, co-selection of bacteria by phages and antibiotic concentrations exceeding MICs has been hypothesized to decrease the rate of resistance evolution because of fitness costs associated with resistance mutations. By contrast, here we show that sub-MICs of the antibiotic streptomycin (Sm) increased the rate of phage resistance evolution, as well as causing extinction of the phage. Notably, Sm and the phage in combination also enhanced the evolution of Sm resistance compared with Sm alone. These observations demonstrate the potential of sub-MICs of antibiotics to impact key ecological interactions in microbial communities with evolutionary outcomes that can radically differ from those associated with high concentrations. Our findings also contribute to the understanding of ecological and evolutionary factors essential for the management of the antibiotic resistance problem.This article is part of the themed issue 'Human influences on evolution, and the ecological and societal consequences'.
Collapse
Affiliation(s)
- Johannes Cairns
- Department of Food and Environmental Sciences/Microbiology and Biotechnology, University of Helsinki, PO Box 65, 00014 Helsinki, Finland
| | - Lutz Becks
- Department of Evolutionary Ecology/Community Dynamics Group, Max Planck Institute for Evolutionary Biology, August Thienemann Street 2, Plön 24306, Germany
| | - Matti Jalasvuori
- Department of Biological and Environmental Science/Centre of Excellence in Biological Interactions, University of Jyväskylä, PO Box 35, 40014 Jyväskylä, Finland
| | - Teppo Hiltunen
- Department of Food and Environmental Sciences/Microbiology and Biotechnology, University of Helsinki, PO Box 65, 00014 Helsinki, Finland
| |
Collapse
|
14
|
Evans AL, Blackburn JWD, Taruc K, Kipp A, Dirk BS, Hunt NR, Barr SD, Dikeakos JD, Heit B. Antagonistic Coevolution of MER Tyrosine Kinase Expression and Function. Mol Biol Evol 2017; 34:1613-1628. [PMID: 28369510 DOI: 10.1093/molbev/msx102] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
TYRO3, AXL, and MERTK (TAM) receptors are a family of receptor tyrosine kinases that maintain homeostasis through the clearance of apoptotic cells, and when defective, contribute to chronic inflammatory and autoimmune diseases such as atherosclerosis, multiple sclerosis, systemic lupus erythematosus, rheumatoid arthritis, and Crohn's disease. In addition, certain enveloped viruses utilize TAM receptors for immune evasion and entry into host cells, with several viruses preferentially hijacking MERTK for these purposes. Despite the biological importance of TAM receptors, little is understood of their recent evolution and its impact on their function. Using evolutionary analysis of primate TAM receptor sequences, we identified strong, recent positive selection in MERTK's signal peptide and transmembrane domain that was absent from TYRO3 and AXL. Reconstruction of hominid and primate ancestral MERTK sequences revealed three nonsynonymous single nucleotide polymorphisms in the human MERTK signal peptide, with a G14C mutation resulting in a predicted non-B DNA cruciform motif, producing a significant decrease in MERTK expression with no significant effect on MERTK trafficking or half-life. Reconstruction of MERTK's transmembrane domain identified three amino acid substitutions and four amino acid insertions in humans, which led to significantly higher levels of self-clustering through the creation of a new interaction motif. This clustering counteracted the effect of the signal peptide mutations through enhancing MERTK avidity, whereas the lower MERTK expression led to reduced binding of Ebola virus-like particles. The decreased MERTK expression counterbalanced by increased avidity is consistent with antagonistic coevolution to evade viral hijacking of MERTK.
Collapse
Affiliation(s)
- Amanda L Evans
- Department of Microbiology and Immunology and the Centre for Human Immunology, The University of Western Ontario, London, Canada
| | - Jack W D Blackburn
- Department of Microbiology and Immunology and the Centre for Human Immunology, The University of Western Ontario, London, Canada
| | - Kyle Taruc
- Department of Microbiology and Immunology and the Centre for Human Immunology, The University of Western Ontario, London, Canada
| | - Angela Kipp
- Department of Microbiology and Immunology and the Centre for Human Immunology, The University of Western Ontario, London, Canada
| | - Brennan S Dirk
- Department of Microbiology and Immunology and the Centre for Human Immunology, The University of Western Ontario, London, Canada
| | - Nina R Hunt
- Department of Microbiology and Immunology and the Centre for Human Immunology, The University of Western Ontario, London, Canada
| | - Stephen D Barr
- Department of Microbiology and Immunology and the Centre for Human Immunology, The University of Western Ontario, London, Canada
| | - Jimmy D Dikeakos
- Department of Microbiology and Immunology and the Centre for Human Immunology, The University of Western Ontario, London, Canada
| | - Bryan Heit
- Department of Microbiology and Immunology and the Centre for Human Immunology, The University of Western Ontario, London, Canada
| |
Collapse
|
15
|
Why Sex? A Pluralist Approach Revisited. Trends Ecol Evol 2017; 32:589-600. [DOI: 10.1016/j.tree.2017.05.004] [Citation(s) in RCA: 50] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2017] [Revised: 05/11/2017] [Accepted: 05/12/2017] [Indexed: 01/08/2023]
|
16
|
Nadeem A, Wahl LM. Prophage as a genetic reservoir: Promoting diversity and driving innovation in the host community. Evolution 2017; 71:2080-2089. [PMID: 28590013 DOI: 10.1111/evo.13287] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2016] [Accepted: 05/07/2017] [Indexed: 12/16/2022]
Abstract
Sequencing of bacterial genomes has revealed an abundance of prophage sequences in many bacterial species. Since these sequences are accessible, through recombination, to infecting phages, bacteria carry an arsenal of genetic material that can be used by these viruses. We develop a mathematical model to isolate the effects of this phenomenon on the coevolution of temperate phage and bacteria. The model predicts that prophage sequences may play a key role in maintaining the phage population in situations that would otherwise favor host cell resistance. In addition, prophage recombination facilitates the existence of multiple phage types, thus promoting diverse co-existence in the phage-host ecosystem. Finally, because the host carries an archive of previous phage strategies, prophage recombination can drive waves of innovation in the host cell population.
Collapse
Affiliation(s)
- A Nadeem
- Department of Applied Mathematics, The University of Western Ontario, London, Ontario, N6A 5B7, Canada
| | - Lindi M Wahl
- Department of Applied Mathematics, The University of Western Ontario, London, Ontario, N6A 5B7, Canada
| |
Collapse
|
17
|
Harrison E, Hall JPJ, Paterson S, Spiers AJ, Brockhurst MA. Conflicting selection alters the trajectory of molecular evolution in a tripartite bacteria-plasmid-phage interaction. Mol Ecol 2017; 26:2757-2764. [PMID: 28247474 PMCID: PMC5655702 DOI: 10.1111/mec.14080] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2016] [Revised: 02/08/2017] [Accepted: 02/08/2017] [Indexed: 01/21/2023]
Abstract
Bacteria engage in a complex network of ecological interactions, which includes mobile genetic elements (MGEs) such as phages and plasmids. These elements play a key role in microbial communities as vectors of horizontal gene transfer but can also be important sources of selection for their bacterial hosts. In natural communities, bacteria are likely to encounter multiple MGEs simultaneously and conflicting selection among MGEs could alter the bacterial evolutionary response to each MGE. Here, we test the effect of interactions with multiple MGEs on bacterial molecular evolution in the tripartite interaction between the bacterium, Pseudomonas fluorescens, the lytic bacteriophage, SBW25φ2, and conjugative plasmid, pQBR103, using genome sequencing of experimentally evolved bacteria. We show that individually, both plasmids and phages impose selection leading to bacterial evolutionary responses that are distinct from bacterial populations evolving without MGEs, but that together, plasmids and phages impose conflicting selection on bacteria, constraining the evolutionary responses observed in pairwise interactions. Our findings highlight the likely difficulties of predicting evolutionary responses to multiple selective pressures from the observed evolutionary responses to each selective pressure alone. Understanding evolution in complex microbial communities comprising many species and MGEs will require that we go beyond studies of pairwise interactions.
Collapse
Affiliation(s)
- Ellie Harrison
- Department of Animal and Plant SciencesUniversity of SheffieldSheffieldS10 2TNUK
| | - James P. J. Hall
- Department of Animal and Plant SciencesUniversity of SheffieldSheffieldS10 2TNUK
| | - Steve Paterson
- Institute of Integrative BiologyUniversity of LiverpoolLiverpoolL69 7ZBUK
| | | | | |
Collapse
|
18
|
Zhang QG, Buckling A. Migration highways and migration barriers created by host-parasite interactions. Ecol Lett 2016; 19:1479-1485. [PMID: 27873470 DOI: 10.1111/ele.12700] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2016] [Accepted: 10/11/2016] [Indexed: 11/28/2022]
Abstract
Co-evolving parasites may play a key role in host migration and population structure. Using co-evolving bacteria and viruses, we test general hypotheses as to how co-evolving parasites affect the success of passive host migration between habitats that can support different intensities of host-parasite interactions. First, we show that parasites aid migration from areas of intense to weak co-evolutionary interactions and impede migration in the opposite direction, as a result of intraspecific apparent competition mediated via parasites. Second, when habitats show qualitative difference such that some environments support parasite persistence while others do not, different population regulation forces (either parasitism or competitive exclusion) will reduce the success of migration in both directions. Our study shows that co-evolution with parasites can predictably homogenises or isolates host populations, depending on heterogeneity of abiotic conditions, with the second scenario constituting a novel type of 'isolation by adaptation'.
Collapse
Affiliation(s)
- Quan-Guo Zhang
- State Key Laboratory of Earth Surface Processes and Resource Ecology and MOE Key Laboratory for Biodiversity Science and Ecological Engineering, Beijing Normal University, Beijing, 100875, China
| | - Angus Buckling
- ESI & CEC, Biosciences, University of Exeter, Penryn, Cornwall, TR10 9EZ, UK
| |
Collapse
|
19
|
No effect of natural transformation on the evolution of resistance to bacteriophages in the Acinetobacter baylyi model system. Sci Rep 2016; 6:37144. [PMID: 27869203 PMCID: PMC5116665 DOI: 10.1038/srep37144] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2016] [Accepted: 10/25/2016] [Indexed: 11/09/2022] Open
Abstract
The adaptive benefits of natural transformation, the active uptake of free DNA molecules from the environment followed by incorporation of this DNA into the genome, may be the improved response to selection resulting from increased genetic variation. Drawing analogies with sexual reproduction, transformation may be particularly beneficial when selection rapidly fluctuates during coevolution with virulent parasites ('the Red Queen Hypothesis'). Here we test this hypothesis by experimentally evolving the naturally transformable and recombinogenic species Acinetobacter baylyi with a cocktail of lytic phages. No increased levels of resistance to phage were found in the wild type compared to a recombination deficient ΔdprA strain after five days of evolution. When exposed to A. baylyi DNA and phage, naturally transformable cells show greater levels of phage resistance. However, increased resistance arose regardless of whether they were exposed to DNA from phage-sensitive or -resistant A. baylyi, suggesting resistance was not the result of transformation, but was related to other benefits of competence. Subsequent evolution in the absence of phages did not show that recombination could alleviate the cost of resistance. Within this study system we found no support for transformation-mediated recombination being an advantage to bacteria exposed to parasitic phages.
Collapse
|
20
|
Abstract
The classical, ecological, paradox of enrichment describes a phenomenon that resource enrichment destabilizes predator-prey systems by exacerbating population oscillations. Here we suggest a new, evolutionary, paradox of enrichment. Resource enrichment can lead to more asymmetrical predator-prey coevolution (i.e., extremely high levels of prey defenses against predators) that decreases predator abundances and increases predator extinction risk. A major reason for this is that high resource availability can reduce fitness costs associated with prey defenses. In our experiments with a bacterium and its lytic phage, nutrient-balanced resource enrichment led to patterns in population demography and coevolutionary dynamics consistent with this coevolution-based paradox of enrichment; in particular, phage population extinction events were observed under nutrient-rich, not nutrient-poor, conditions. Consistent with ecological studies, carbon-biased resource enrichment (with carbon availability disproportionately increased relative to other nutrients) did not destabilize dynamics, and the asymmetry of coevolution was not altered in this context. Our work highlights the importance of integrating ecological and evolutionary thinking for studies of the consequences of nutrient pollution and other types of environmental changes.
Collapse
|
21
|
Strauß JF, Crain P, Schulenburg H, Telschow A. Experimental evolution in silico: a custom-designed mathematical model for virulence evolution of Bacillus thuringiensis. ZOOLOGY 2016; 119:359-65. [PMID: 27113405 DOI: 10.1016/j.zool.2016.03.005] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2015] [Revised: 02/20/2016] [Accepted: 03/17/2016] [Indexed: 01/24/2023]
Abstract
Most mathematical models on the evolution of virulence are based on epidemiological models that assume parasite transmission follows the mass action principle. In experimental evolution, however, mass action is often violated due to controlled infection protocols. This "theory-experiment mismatch" raises the question whether there is a need for new mathematical models to accommodate the particular characteristics of experimental evolution. Here, we explore the experimental evolution model system of Bacillus thuringiensis as a parasite and Caenorhabditis elegans as a host. Recent experimental studies with strict control of parasite transmission revealed that one-sided adaptation of B. thuringiensis with non-evolving hosts selects for intermediate or no virulence, sometimes coupled with parasite extinction. In contrast, host-parasite coevolution selects for high virulence and for hosts with strong resistance against B. thuringiensis. In order to explain the empirical results, we propose a new mathematical model that mimics the basic experimental set-up. The key assumptions are: (i) controlled parasite transmission (no mass action), (ii) discrete host generations, and (iii) context-dependent cost of toxin production. Our model analysis revealed the same basic trends as found in the experiments. Especially, we could show that resistant hosts select for highly virulent bacterial strains. Moreover, we found (i) that the evolved level of virulence is independent of the initial level of virulence, and (ii) that the average amount of bacteria ingested significantly affects the evolution of virulence with fewer bacteria ingested selecting for highly virulent strains. These predictions can be tested in future experiments. This study highlights the usefulness of custom-designed mathematical models in the analysis and interpretation of empirical results from experimental evolution.
Collapse
Affiliation(s)
- Jakob Friedrich Strauß
- Institute of Evolution and Biodiversity, Westfälische Wilhelms-Universität, Hüfferstraße 1, D-48149 Münster, Germany
| | - Philip Crain
- Institute of Evolution and Biodiversity, Westfälische Wilhelms-Universität, Hüfferstraße 1, D-48149 Münster, Germany; DuPont Pioneer, 200 Powder Mill Rd, Wilmington, DE 19803, USA
| | - Hinrich Schulenburg
- Department of Evolutionary Ecology and Genetics, Christian-Albrechts-Universität zu Kiel, Am Botanischen Garten 1-9, D-24118 Kiel, Germany
| | - Arndt Telschow
- Institute of Evolution and Biodiversity, Westfälische Wilhelms-Universität, Hüfferstraße 1, D-48149 Münster, Germany.
| |
Collapse
|
22
|
Koskella B, Parr N. The evolution of bacterial resistance against bacteriophages in the horse chestnut phyllosphere is general across both space and time. Philos Trans R Soc Lond B Biol Sci 2016; 370:rstb.2014.0297. [PMID: 26150663 PMCID: PMC4528495 DOI: 10.1098/rstb.2014.0297] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Insight to the spatial and temporal scales of coevolution is key to predicting the outcome of host-parasite interactions and spread of disease. For bacteria infecting long-lived hosts, selection to overcome host defences is just one factor shaping the course of evolution; populations will also be competing with other microbial species and will themselves be facing infection by bacteriophage viruses. Here, we examine the temporal and spatial patterns of bacterial adaptation against natural phage populations from within leaves of horse chestnut trees. Using a time-shift experiment with both sympatric and allopatric phages from either contemporary or earlier points in the season, we demonstrate that bacterial resistance is higher against phages from the past, regardless of spatial sympatry or how much earlier in the season phages were collected. Similarly, we show that future bacterial hosts are more resistant to both sympatric and allopatric phages than contemporary bacterial hosts. Together, our results suggest the evolution of relatively general bacterial resistance against phages in nature and are contrasting to previously observed patterns of phage adaptation to bacteria from the same tree hosts over the same time frame, indicating a potential asymmetry in coevolutionary dynamics.
Collapse
Affiliation(s)
- Britt Koskella
- Department of Biosciences, University of Exeter, Penryn Campus, Cornwall, UK
| | - Nicole Parr
- Department of Biosciences, University of Exeter, Penryn Campus, Cornwall, UK
| |
Collapse
|
23
|
Harrison E, Truman J, Wright R, Spiers AJ, Paterson S, Brockhurst MA. Plasmid carriage can limit bacteria-phage coevolution. Biol Lett 2016; 11:rsbl.2015.0361. [PMID: 26268992 PMCID: PMC4571675 DOI: 10.1098/rsbl.2015.0361] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
Coevolution with bacteriophages is a major selective force shaping bacterial populations and communities. A variety of both environmental and genetic factors has been shown to influence the mode and tempo of bacteria–phage coevolution. Here, we test the effects that carriage of a large conjugative plasmid, pQBR103, had on antagonistic coevolution between the bacterium Pseudomonas fluorescens and its phage, SBW25ϕ2. Plasmid carriage limited bacteria–phage coevolution; bacteria evolved lower phage-resistance and phages evolved lower infectivity in plasmid-carrying compared with plasmid-free populations. These differences were not explained by effects of plasmid carriage on the costs of phage resistance mutations. Surprisingly, in the presence of phages, plasmid carriage resulted in the evolution of high frequencies of mucoid bacterial colonies. Mucoidy can provide weak partial resistance against SBW25ϕ2, which may have limited selection for qualitative resistance mutations in our experiments. Taken together, our results suggest that plasmids can have evolutionary consequences for bacteria that go beyond the direct phenotypic effects of their accessory gene cargo.
Collapse
Affiliation(s)
- Ellie Harrison
- Department of Biology, University of York, York YO10 5DD, UK
| | - Julie Truman
- Institute of Integrative Biology, University of Liverpool, Liverpool L69 7ZB, UK
| | - Rosanna Wright
- Department of Biology, University of York, York YO10 5DD, UK
| | | | - Steve Paterson
- Institute of Integrative Biology, University of Liverpool, Liverpool L69 7ZB, UK
| | | |
Collapse
|
24
|
Hesse E, Buckling A. Host population bottlenecks drive parasite extinction during antagonistic coevolution. Evolution 2016; 70:235-40. [PMID: 26661325 PMCID: PMC4736460 DOI: 10.1111/evo.12837] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2015] [Revised: 11/24/2015] [Accepted: 12/02/2015] [Indexed: 11/26/2022]
Abstract
Host-parasite interactions are often characterized by large fluctuations in host population size, and we investigated how such host bottlenecks affected coevolution between a bacterium and a virus. Previous theory suggests that host bottlenecks should provide parasites with an evolutionary advantage, but instead we found that phages were rapidly driven to extinction when coevolving with hosts exposed to large genetic bottlenecks. This was caused by the stochastic loss of sensitive bacteria, which are required for phage persistence and infectivity evolution. Our findings emphasize the importance of feedbacks between ecological and coevolutionary dynamics, and how this feedback can qualitatively alter coevolutionary dynamics.
Collapse
Affiliation(s)
- Elze Hesse
- ESI, Biosciences, University of Exeter, Penryn Campus, Penryn, TR10 9FE, United Kingdom.
| | - Angus Buckling
- ESI, Biosciences, University of Exeter, Penryn Campus, Penryn, TR10 9FE, United Kingdom
| |
Collapse
|
25
|
Incomplete LPS Core-Specific Felix01-Like Virus vB_EcoM_VpaE1. Viruses 2015; 7:6163-81. [PMID: 26633460 PMCID: PMC4690856 DOI: 10.3390/v7122932] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2015] [Revised: 11/10/2015] [Accepted: 11/18/2015] [Indexed: 12/21/2022] Open
Abstract
Bacteriophages represent a valuable source for studying the mechanisms underlying virus-host interactions. A better understanding of the host-specificity of viruses at the molecular level can promote various phage applications, including bacterial diagnostics, antimicrobial therapeutics, and improve methods in molecular biology. In this study, we describe the isolation and characterization of a novel coliphage, vB_EcoM_VpaE1, which has different host specificity than its relatives. Morphology studies, coupled with the results of genomic and proteomic analyses, indicate that vB_EcoM_VpaE1 belongs to the newly proposed genus Felix01likevirus in the family Myoviridae. The genus Felix01likevirus comprises a group of highly similar phages that infect O-antigen-expressing Salmonella and Escherichia coli (E. coli) strains. Phage vB_EcoM_VpaE1 differs from the rest of Felix01-like viruses, since it infects O-antigen-deficient E. coli strains with an incomplete core lipopolysaccharide (LPS). We show that vB_EcoM_VpaE1 can infect mutants of E. coli that contain various truncations in their LPS, and can even recognize LPS that is truncated down to the inner-core oligosaccharide, showing potential for the control of rough E. coli strains, which usually emerge as resistant mutants upon infection by O-Ag-specific phages. Furthermore, VpaE1 can replicate in a wide temperature range from 9 to 49 °C, suggesting that this virus is well adapted to harsh environmental conditions. Since the structural proteins of such phages tend to be rather robust, the receptor-recognizing proteins of VpaE1 are an attractive tool for application in glycan analysis, bacterial diagnostics and antimicrobial therapeutics.
Collapse
|
26
|
Chen H, Chen G. Variation of resistance and infectivity between Pseudomonas fluorescens SBW25 and bacteriophage Φ2 and its therapeutic implications. Virol Sin 2015; 30:59-62. [PMID: 25595213 DOI: 10.1007/s12250-014-3490-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Affiliation(s)
- Hanchen Chen
- College of Biological and Pharmaceutical Sciences, China Three Gorges University, Yichang, 443002, China
| | | |
Collapse
|
27
|
Tazzyman SJ, Hall AR. Lytic phages obscure the cost of antibiotic resistance in Escherichia coli. ISME JOURNAL 2015; 9:809-20. [PMID: 25268496 DOI: 10.1038/ismej.2014.176] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/06/2014] [Revised: 08/21/2014] [Accepted: 08/25/2014] [Indexed: 01/07/2023]
Abstract
The long-term persistence of antibiotic-resistant bacteria depends on their fitness relative to other genotypes in the absence of drugs. Outside the laboratory, viruses that parasitize bacteria (phages) are ubiquitous, but costs of antibiotic resistance are typically studied in phage-free experimental conditions. We used a mathematical model and experiments with Escherichia coli to show that lytic phages strongly affect the incidence of antibiotic resistance in drug-free conditions. Under phage parasitism, the likelihood that antibiotic-resistant genetic backgrounds spread depends on their initial frequency, mutation rate and intrinsic growth rate relative to drug-susceptible genotypes, because these parameters determine relative rates of phage-resistance evolution on different genetic backgrounds. Moreover, the average cost of antibiotic resistance in terms of intrinsic growth in the antibiotic-free experimental environment was small relative to the benefits of an increased mutation rate in the presence of phages. This is consistent with our theoretical work indicating that, under phage selection, typical costs of antibiotic resistance can be outweighed by realistic increases in mutability if drug resistance and hypermutability are genetically linked, as is frequently observed in clinical isolates. This suggests the long-term distribution of antibiotic resistance depends on the relative rates at which different lineages adapt to other types of selection, which in the case of phage parasitism is probably extremely common, as well as costs of resistance inferred by classical in vitro methods.
Collapse
Affiliation(s)
| | - Alex R Hall
- Institute of Integrative Biology, ETH Zürich, Zürich, Switzerland
| |
Collapse
|
28
|
Scanlan PD, Hall AR, Blackshields G, Friman VP, Davis MR, Goldberg JB, Buckling A. Coevolution with bacteriophages drives genome-wide host evolution and constrains the acquisition of abiotic-beneficial mutations. Mol Biol Evol 2015; 32:1425-35. [PMID: 25681383 DOI: 10.1093/molbev/msv032] [Citation(s) in RCA: 80] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
Studies of antagonistic coevolution between hosts and parasites typically focus on resistance and infectivity traits. However, coevolution could also have genome-wide effects on the hosts due to pleiotropy, epistasis, or selection for evolvability. Here, we investigate these effects in the bacterium Pseudomonas fluorescens SBW25 during approximately 400 generations of evolution in the presence or absence of bacteriophage (coevolution or evolution treatments, respectively). Coevolution resulted in variable phage resistance, lower competitive fitness in the absence of phages, and greater genome-wide divergence both from the ancestor and between replicates, in part due to the evolution of increased mutation rates. Hosts from coevolution and evolution treatments had different suites of mutations. A high proportion of mutations observed in coevolved hosts were associated with a known phage target binding site, the lipopolysaccharide (LPS), and correlated with altered LPS length and phage resistance. Mutations in evolved bacteria were correlated with higher fitness in the absence of phages. However, the benefits of these growth-promoting mutations were completely lost when these bacteria were subsequently coevolved with phages, indicating that they were not beneficial in the presence of resistance mutations (consistent with negative epistasis). Our results show that in addition to affecting genome-wide evolution in loci not obviously linked to parasite resistance, coevolution can also constrain the acquisition of mutations beneficial for growth in the abiotic environment.
Collapse
Affiliation(s)
| | - Alex R Hall
- Department of Zoology, University of Oxford, Oxford, United Kingdom
| | - Gordon Blackshields
- Central Pathology Laboratory, Department of Histopathology and Morbid Anatomy, School of Medicine, Trinity College, Dublin, Ireland
| | - Ville-P Friman
- Department of Zoology, University of Oxford, Oxford, United Kingdom
| | - Michael R Davis
- Department of Microbiology, Immunology and Cancer Biology, University of Virginia Health System, Charlottesville, VA
| | - Joanna B Goldberg
- Department of Microbiology, Immunology and Cancer Biology, University of Virginia Health System, Charlottesville, VA
| | - Angus Buckling
- Department of Zoology, University of Oxford, Oxford, United Kingdom
| |
Collapse
|
29
|
The effect of parasites on sex differences in selection. Heredity (Edinb) 2015; 114:367-72. [PMID: 25649503 DOI: 10.1038/hdy.2014.110] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2014] [Revised: 10/26/2014] [Accepted: 10/27/2014] [Indexed: 11/08/2022] Open
Abstract
The life history strategies of males and females are often divergent, creating the potential for sex differences in selection. Deleterious mutations may be subject to stronger selection in males, owing to sexual selection, which can improve the mean fitness of females and reduce mutation load in sexual populations. However, sex differences in selection might also maintain sexually antagonistic genetic variation, creating a sexual conflict load. The overall impact of separate sexes on fitness is unclear, but the net effect is likely to be positive when there is a large sex difference in selection against deleterious mutations. Parasites can also have sex-specific effects on fitness, and there is evidence that parasites can intensify the fitness consequences of deleterious mutations. Using lines that accumulated mutations for over 60 generations, we studied the effect of the pathogenic bacterium Pseudomonas aeruginosa on sex differences in selection in the fruit fly Drosophila melanogaster. Pseudomonas infection increased the sex difference in selection, but may also have weakened the intersexual correlation for fitness. Our results suggest that parasites may increase the benefits of sexual selection.
Collapse
|
30
|
Alfaro-Núñez A, Frost Bertelsen M, Bojesen AM, Rasmussen I, Zepeda-Mendoza L, Tange Olsen M, Gilbert MTP. Global distribution of Chelonid fibropapilloma-associated herpesvirus among clinically healthy sea turtles. BMC Evol Biol 2014; 14:206. [PMID: 25342462 PMCID: PMC4219010 DOI: 10.1186/s12862-014-0206-z] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2014] [Accepted: 09/21/2014] [Indexed: 01/09/2023] Open
Abstract
Background Fibropapillomatosis (FP) is a neoplastic disease characterized by cutaneous tumours that has been documented to infect all sea turtle species. Chelonid fibropapilloma-associated herpesvirus (CFPHV) is believed to be the aetiological agent of FP, based principally on consistent PCR-based detection of herpesvirus DNA sequences from FP tumours. We used a recently described PCR-based assay that targets 3 conserved CFPHV genes, to survey 208 green turtles (Chelonia mydas). This included both FP tumour exhibiting and clinically healthy individuals. An additional 129 globally distributed clinically healthy individual sea turtles; representing four other species were also screened. Results CFPHV DNA sequences were obtained from 37/37 (100%) FP exhibiting green turtles, and 45/300 (15%) clinically healthy animals spanning all five species. Although the frequency of infected individuals per turtle population varied considerably, most global populations contained at least one CFPHV positive individual, with the exception of various turtle species from the Arabian Gulf, Northern Indian Ocean and Puerto Rico. Haplotype analysis of the different gene markers clustered the CFPHV DNA sequences for two of the markers (UL18 and UL22) in turtles from Turks and Caicos separate to all others, regardless of host species or geographic origin. Conclusion Presence of CFPHV DNA within globally distributed samples for all five species of sea turtle was confirmed. While 100% of the FP exhibiting green turtles yielded CFPHV sequences, surprisingly, so did 15% of the clinically healthy turtles. We hypothesize that turtle populations with zero (0%) CFPHV frequency may be attributed to possible environmental differences, diet and/or genetic resistance in these individuals. Our results provide first data on the prevalence of CFPHV among seemingly healthy turtles; a factor that may not be directly correlated to the disease incidence, but may suggest of a long-term co-evolutionary latent infection interaction between CFPHV and its turtle-host across species. Finally, computational analysis of amino acid variants within the Turks and Caicos samples suggest potential functional importance in a substitution for marker UL18 that encodes the major capsid protein gene, which potentially could explain differences in pathogenicity. Nevertheless, such a theory remains to be validated by further research. Electronic supplementary material The online version of this article (doi:10.1186/s12862-014-0206-z) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Alonzo Alfaro-Núñez
- Centre for GeoGenetics, Section for Evolutionary Genomics, Natural History Museum of Denmark, Øster Voldgade 5-7, 1350, Copenhagen K, Denmark.
| | | | - Anders Miki Bojesen
- Department of Veterinary Disease Biology, Veterinary Clinical Microbiology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark.
| | - Isabel Rasmussen
- Centre for GeoGenetics, Section for Evolutionary Genomics, Natural History Museum of Denmark, Øster Voldgade 5-7, 1350, Copenhagen K, Denmark.
| | - Lisandra Zepeda-Mendoza
- Centre for GeoGenetics, Section for Evolutionary Genomics, Natural History Museum of Denmark, Øster Voldgade 5-7, 1350, Copenhagen K, Denmark.
| | - Morten Tange Olsen
- Centre for GeoGenetics, Section for Evolutionary Genomics, Natural History Museum of Denmark, Øster Voldgade 5-7, 1350, Copenhagen K, Denmark.
| | - Marcus Thomas Pius Gilbert
- Centre for GeoGenetics, Section for Evolutionary Genomics, Natural History Museum of Denmark, Øster Voldgade 5-7, 1350, Copenhagen K, Denmark. .,Trace and Environmental DNA Laboratory, School of Environment and Agriculture, Curtin University, Perth, Western Australia, 6845, Australia.
| |
Collapse
|
31
|
Koskella B, Brockhurst MA. Bacteria-phage coevolution as a driver of ecological and evolutionary processes in microbial communities. FEMS Microbiol Rev 2014; 38:916-31. [PMID: 24617569 PMCID: PMC4257071 DOI: 10.1111/1574-6976.12072] [Citation(s) in RCA: 501] [Impact Index Per Article: 45.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2013] [Revised: 02/25/2014] [Accepted: 02/26/2014] [Indexed: 02/06/2023] Open
Abstract
Bacteria-phage coevolution, the reciprocal evolution between bacterial hosts and the phages that infect them, is an important driver of ecological and evolutionary processes in microbial communities. There is growing evidence from both laboratory and natural populations that coevolution can maintain phenotypic and genetic diversity, increase the rate of bacterial and phage evolution and divergence, affect community structure, and shape the evolution of ecologically relevant bacterial traits. Although the study of bacteria-phage coevolution is still in its infancy, with open questions regarding the specificity of the interaction, the gene networks of coevolving partners, and the relative importance of the coevolving interaction in complex communities and environments, there have recently been major advancements in the field. In this review, we sum up our current understanding of bacteria-phage coevolution both in the laboratory and in nature, discuss recent findings on both the coevolutionary process itself and the impact of coevolution on bacterial phenotype, diversity and interactions with other species (particularly their eukaryotic hosts), and outline future directions for the field.
Collapse
|
32
|
Evolutionary causes and consequences of diversified CRISPR immune profiles in natural populations. Biochem Soc Trans 2014; 41:1431-6. [PMID: 24256233 DOI: 10.1042/bst20130243] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Host-pathogen co-evolution is a significant force which shapes the ecology and evolution of all types of organisms, and such interactions are driven by resistance and immunity mechanisms of the host. Diversity of resistance and immunity can affect the co-evolutionary trajectory of both host and pathogen. The microbial CRISPR (clustered regularly interspaced short palindromic repeats)-Cas (CRISPR-associated) system is one host immunity mechanism which offers a tractable model for examining the dynamics of diversity in an immune system. In the present article, we review CRISPR variation observed in a variety of natural populations, examine the forces which can push CRISPRs towards high or low diversity, and investigate the consequences of various levels of diversity on microbial populations.
Collapse
|
33
|
Betts A, Kaltz O, Hochberg ME. Contrasted coevolutionary dynamics between a bacterial pathogen and its bacteriophages. Proc Natl Acad Sci U S A 2014; 111:11109-14. [PMID: 25024215 PMCID: PMC4121802 DOI: 10.1073/pnas.1406763111] [Citation(s) in RCA: 78] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
Many antagonistic interactions between hosts and their parasites result in coevolution. Although coevolution can drive diversity and specificity within species, it is not known whether coevolutionary dynamics differ among functionally similar species. We present evidence of coevolution within simple communities of Pseudomonas aeruginosa PAO1 and a panel of bacteriophages. Pathogen identity affected coevolutionary dynamics. For five of six phages tested, time-shift assays revealed temporal peaks in bacterial resistance and phage infectivity, consistent with frequency-dependent selection (Red Queen dynamics). Two of the six phages also imposed additional directional selection, resulting in strongly increased resistance ranges over the entire length of the experiment (ca. 60 generations). Cross-resistance to these two phages was very high, independent of the coevolutionary history of the bacteria. We suggest that coevolutionary dynamics are associated with the nature of the receptor used by the phage for infection. Our results shed light on the coevolutionary process in simple communities and have practical application in the control of bacterial pathogens through the evolutionary training of phages, increasing their virulence and efficacy as therapeutics or disinfectants.
Collapse
Affiliation(s)
- Alex Betts
- Institut des Sciences de l'Evolution, Université Montpellier II, Unité Mixte de Recherche 5554, 34095 Montpellier Cedex 05, France;Department of Zoology, University of Oxford, Oxford OX1 3PS, United Kingdom
| | - Oliver Kaltz
- Institut des Sciences de l'Evolution, Université Montpellier II, Unité Mixte de Recherche 5554, 34095 Montpellier Cedex 05, France
| | - Michael E Hochberg
- Institut des Sciences de l'Evolution, Université Montpellier II, Unité Mixte de Recherche 5554, 34095 Montpellier Cedex 05, France;Santa Fe Institute, Santa Fe, NM 87501; andWissenschaftskolleg zu Berlin, 14193 Berlin, Germany
| |
Collapse
|
34
|
Childs LM, England WE, Young MJ, Weitz JS, Whitaker RJ. CRISPR-induced distributed immunity in microbial populations. PLoS One 2014; 9:e101710. [PMID: 25000306 PMCID: PMC4084950 DOI: 10.1371/journal.pone.0101710] [Citation(s) in RCA: 62] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2014] [Accepted: 06/11/2014] [Indexed: 01/08/2023] Open
Abstract
In bacteria and archaea, viruses are the primary infectious agents, acting as virulent, often deadly pathogens. A form of adaptive immune defense known as CRISPR-Cas enables microbial cells to acquire immunity to viral pathogens by recognizing specific sequences encoded in viral genomes. The unique biology of this system results in evolutionary dynamics of host and viral diversity that cannot be fully explained by the traditional models used to describe microbe-virus coevolutionary dynamics. Here, we show how the CRISPR-mediated adaptive immune response of hosts to invading viruses facilitates the emergence of an evolutionary mode we call distributed immunity - the coexistence of multiple, equally-fit immune alleles among individuals in a microbial population. We use an eco-evolutionary modeling framework to quantify distributed immunity and demonstrate how it emerges and fluctuates in multi-strain communities of hosts and viruses as a consequence of CRISPR-induced coevolution under conditions of low viral mutation and high relative numbers of viral protospacers. We demonstrate that distributed immunity promotes sustained diversity and stability in host communities and decreased viral population density that can lead to viral extinction. We analyze sequence diversity of experimentally coevolving populations of Streptococcus thermophilus and their viruses where CRISPR-Cas is active, and find the rapid emergence of distributed immunity in the host population, demonstrating the importance of this emergent phenomenon in evolving microbial communities.
Collapse
Affiliation(s)
- Lauren M. Childs
- Center for Communicable Disease Dynamics, Department of Epidemiology, Harvard School of Public Health, Boston, Massachusetts, United States of America
| | - Whitney E. England
- Department of Microbiology, University of Illinois at Urbana-Champaign, Urbana, Illinois, United States of America
| | - Mark J. Young
- Thermal Biology Institute and Department of Plant Sciences and Plant Pathology, Montana State University, Montana, United States of America
| | - Joshua S. Weitz
- School of Biology and School of Physics, Georgia Institute of Technology, Atlanta, Georgia, United States of America
- * E-mail: (JSW); (RJW)
| | - Rachel J. Whitaker
- Department of Microbiology and Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois, United States of America
- * E-mail: (JSW); (RJW)
| |
Collapse
|
35
|
Phages can constrain protist predation-driven attenuation of Pseudomonas aeruginosa virulence in multienemy communities. ISME JOURNAL 2014; 8:1820-30. [PMID: 24671085 DOI: 10.1038/ismej.2014.40] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/27/2013] [Revised: 02/18/2014] [Accepted: 02/23/2014] [Indexed: 11/08/2022]
Abstract
The coincidental theory of virulence predicts that bacterial pathogenicity could be a by-product of selection by natural enemies in environmental reservoirs. However, current results are ambiguous and the simultaneous impact of multiple ubiquitous enemies, protists and phages on virulence evolution has not been investigated previously. Here we tested experimentally how Tetrahymena thermophila protist predation and PNM phage parasitism (bacteria-specific virus) alone and together affect the evolution of Pseudomonas aeruginosa PAO1 virulence, measured in wax moth larvae. Protist predation selected for small colony types, both in the absence and presence of phage, which showed decreased edibility to protists, reduced growth in the absence of enemies and attenuated virulence. Although phage selection alone did not affect the bacterial phenotype, it weakened protist-driven antipredatory defence (biofilm formation), its associated pleiotropic growth cost and the correlated reduction in virulence. These results suggest that protist selection can be a strong coincidental driver of attenuated bacterial virulence, and that phages can constrain this effect owing to effects on population dynamics and conflicting selection pressures. Attempting to define causal links such as these might help us to predict the cold and hot spots of coincidental virulence evolution on the basis of microbial community composition of environmental reservoirs.
Collapse
|
36
|
Ashby B, Gupta S, Buckling A. Spatial structure mitigates fitness costs in host-parasite coevolution. Am Nat 2014; 183:E64-74. [PMID: 24561607 DOI: 10.1086/674826] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
The extent of population mixing is known to influence the coevolutionary outcomes of many host and parasite traits, including the evolution of generalism (the ability to resist or infect a broad range of genotypes). While the segregation of populations into interconnected demes has been shown to influence the evolution of generalism, the role of local interactions between individuals is unclear. Here, we combine an individual-based model of microbial communities with a well-established framework of genetic specificity that matches empirical observations of bacterium-phage interactions. We find the evolution of generalism in well-mixed populations to be highly sensitive to the severity of associated fitness costs, but the constraining effect of costs on the evolution of generalism is lessened in spatially structured populations. The contrasting outcomes between the two environments can be explained by different scales of competition (i.e., global vs. local). These findings suggest that local interactions may have important effects on the evolution of generalism in host-parasite interactions, particularly in the presence of high fitness costs.
Collapse
Affiliation(s)
- Ben Ashby
- Department of Zoology, University of Oxford, South Parks Road, Oxford OX1 3PS, United Kingdom
| | | | | |
Collapse
|
37
|
Zhang QG. Exposure to phages has little impact on the evolution of bacterial antibiotic resistance on drug concentration gradients. Evol Appl 2014; 7:394-402. [PMID: 24665341 PMCID: PMC3962299 DOI: 10.1111/eva.12136] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2013] [Accepted: 10/31/2013] [Indexed: 01/05/2023] Open
Abstract
The use of phages for treating bacterial pathogens has recently been advocated as an alternative to antibiotic therapy. Here, we test a hypothesis that bacteria treated with phages may show more limited evolution of antibiotic resistance as the fitness costs of resistance to phages may add to those of antibiotic resistance, further reducing the growth performance of antibiotic-resistant bacteria. We did this by studying the evolution of phage-exposed and phage-free Pseudomonas fluorescens cultures on concentration gradients of single drugs, including cefotaxime, chloramphenicol, and kanamycin. During drug treatment, the level of bacterial antibiotic resistance increased through time and was not affected by the phage treatment. Exposure to phages did not cause slower growth in antibiotic-resistant bacteria, although it did so in antibiotic-susceptible bacteria. We observed significant reversion of antibiotic resistance after drug use being terminated, and the rate of reversion was not affected by the phage treatment. The results suggest that the fitness costs caused by resistance to phages are unlikely to be an important constraint on the evolution of bacterial antibiotic resistance in heterogeneous drug environments. Further studies are needed for the interaction of fitness costs of antibiotic resistance with other factors.
Collapse
Affiliation(s)
- Quan-Guo Zhang
- State Key Laboratory of Earth Surface Processes and Resource Ecology and MOE Key Laboratory for Biodiversity Science and Ecological Engineering, Beijing Normal University Beijing, China
| |
Collapse
|
38
|
Martiny JBH, Riemann L, Marston MF, Middelboe M. Antagonistic coevolution of marine planktonic viruses and their hosts. ANNUAL REVIEW OF MARINE SCIENCE 2014; 6:393-414. [PMID: 23987913 DOI: 10.1146/annurev-marine-010213-135108] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Abstract
The potential for antagonistic coevolution between marine viruses and their (primarily bacterial) hosts is well documented, but our understanding of the consequences of this rapid evolution is in its infancy. Acquisition of resistance against co-occurring viruses and the subsequent evolution of virus host range in response have implications for bacterial mortality rates as well as for community composition and diversity. Drawing on examples from a range of environments, we consider the potential dynamics, underlying genetic mechanisms and fitness costs, and ecological impacts of virus-host coevolution in marine waters. Given that much of our knowledge is derived from laboratory experiments, we also discuss potential challenges and approaches in scaling up to diverse, complex networks of virus-host interactions. Finally, we note that a variety of novel approaches for characterizing virus-host interactions offer new hope for a mechanistic understanding of antagonistic coevolution in marine plankton.
Collapse
Affiliation(s)
- Jennifer B H Martiny
- Department of Ecology and Evolutionary Biology, University of California, Irvine, California 92697;
| | | | | | | |
Collapse
|
39
|
Barbosa C, Venail P, Holguin AV, Vives MJ. Co-evolutionary dynamics of the bacteria Vibrio sp. CV1 and phages V1G, V1P1, and V1P2: implications for phage therapy. MICROBIAL ECOLOGY 2013; 66:897-905. [PMID: 24013213 DOI: 10.1007/s00248-013-0284-2] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2012] [Accepted: 08/28/2013] [Indexed: 06/02/2023]
Abstract
Bacterial infections are the second largest cause of mortality in shrimp hatcheries. Among them, bacteria from the genus Vibrio constitute a major threat. As the use of antibiotics may be ineffective and banned from the food sector, alternatives are required. Historically, phage therapy, which is the use of bacteriophages, is thought to be a promising option to fight against bacterial infections. However, as for antibiotics, resistance can be rapidly developed. Since the emergence of resistance is highly undesirable, a formal characterization of the dynamics of its acquisition is mandatory. Here, we explored the co-evolutionary dynamics of resistance between the bacteria Vibrio sp. CV1 and the phages V1G, V1P1, and V1P2. Single-phage treatments as well as a cocktail composed of the three phages were considered. We found that in the presence of a single phage, bacteria rapidly evolved resistance, and the phages decreased their infectivity, suggesting that monotherapy may be an inefficient treatment to fight against Vibrio infections in shrimp hatcheries. On the contrary, the use of a phage cocktail considerably delayed the evolution of resistance and sustained phage infectivity for periods in which shrimp larvae are most susceptible to bacterial infections, suggesting the simultaneous use of multiple phages as a serious strategy for the control of vibriosis. These findings are very promising in terms of their consequences to different industrial and medical scenarios where bacterial infections are present.
Collapse
Affiliation(s)
- Camilo Barbosa
- Department of Biological Sciences, Faculty of Sciences, Universidad de los Andes, Bogotá, Colombia
| | | | | | | |
Collapse
|
40
|
Betts A, Vasse M, Kaltz O, Hochberg ME. Back to the future: evolving bacteriophages to increase their effectiveness against the pathogen Pseudomonas aeruginosa PAO1. Evol Appl 2013; 6:1054-63. [PMID: 24187587 PMCID: PMC3804238 DOI: 10.1111/eva.12085] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2012] [Accepted: 05/30/2013] [Indexed: 12/26/2022] Open
Abstract
Antibiotic resistance is becoming increasingly problematic for the treatment of infectious disease in both humans and livestock. The bacterium Pseudomonas aeruginosa is often found to be resistant to multiple antibiotics and causes high patient mortality in hospitals. Bacteriophages represent a potential option to combat pathogenic bacteria through their application in phage therapy. Here, we capitalize on previous studies showing how evolution may increase phage infection capacity relative to ancestral genotypes. We passaged four different phage isolates (podoviridae, myoviridae) through six serial transfers on the ancestral strain of Pseudomonas aeruginosa PAO1. We first demonstrate that repeated serial passage on ancestral bacteria increases infection capacity of bacteriophage on ancestral hosts and on those evolved for one transfer. This result is confirmed when examining the ability of evolved phage to reduce ancestral host population sizes. Second, through interaction with a single bacteriophage for 24 h, P. aeruginosa can evolve resistance to the ancestor of that bacteriophage; this also provides these evolved bacteria with cross-resistance to the other three bacteriophages. We discuss how the evolutionary training of phages could be employed as effective means of combatting bacterial infections or disinfecting surfaces in hospital settings, with reduced risk of bacterial resistance compared with conventional methods.
Collapse
Affiliation(s)
- Alex Betts
- Institut des Sciences de l'Evolution, UMR 5554, Université Montpellier 2 Montpellier CEDEX 05, France
| | | | | | | |
Collapse
|
41
|
Affiliation(s)
- Eric Muraille
- Laboratoire de Parasitologie, Faculté de Médecine, Université Libre de Bruxelles, Bruxelles, Belgium.
| |
Collapse
|
42
|
Brockhurst MA, Koskella B. Experimental coevolution of species interactions. Trends Ecol Evol 2013; 28:367-75. [PMID: 23523051 DOI: 10.1016/j.tree.2013.02.009] [Citation(s) in RCA: 141] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2012] [Revised: 02/20/2013] [Accepted: 02/21/2013] [Indexed: 11/29/2022]
Abstract
Coevolution, the process of reciprocal adaptation and counter-adaptation between ecologically interacting species, affects most organisms and is considered a key force structuring biological diversity. Our understanding of the pattern and process of coevolution, particularly of antagonistic species interactions, has been hugely advanced in recent years by an upsurge in experimental studies that directly observe coevolution in the laboratory. These experiments pose new questions by revealing novel facets of the coevolutionary process not captured by current theory, while also providing the first empirical tests of longstanding coevolutionary ideas, including the influential Red Queen hypothesis. In this article, we highlight emerging directions for this field, including experimental coevolution of mutualistic interactions and understanding how pairwise coevolutionary processes scale up within species-rich communities.
Collapse
|
43
|
Dennehy JJ. What Can Phages Tell Us about Host-Pathogen Coevolution? INTERNATIONAL JOURNAL OF EVOLUTIONARY BIOLOGY 2012; 2012:396165. [PMID: 23213618 PMCID: PMC3506893 DOI: 10.1155/2012/396165] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/07/2012] [Accepted: 10/13/2012] [Indexed: 01/16/2023]
Abstract
The outcomes of host-parasite interactions depend on the coevolutionary forces acting upon them, but because every host-parasite relation is enmeshed in a web of biotic and abiotic interactions across a heterogeneous landscape, host-parasite coevolution has proven difficult to study. Simple laboratory phage-bacteria microcosms can ameliorate this difficulty by allowing controlled, well-replicated experiments with a limited number of interactors. Genetic, population, and life history data obtained from these studies permit a closer examination of the fundamental correlates of host-parasite coevolution. In this paper, I describe the results of phage-bacteria coevolutionary studies and their implications for the study of host-parasite coevolution. Recent experimental studies have confirmed phage-host coevolutionary dynamics in the laboratory and have shown that coevolution can increase parasite virulence, specialization, adaptation, and diversity. Genetically, coevolution frequently proceeds in a manner best described by the Gene for Gene model, typified by arms race dynamics, but certain contexts can result in Red Queen dynamics according to the Matching Alleles model. Although some features appear to apply only to phage-bacteria systems, other results are broadly generalizable and apply to all instances of antagonistic coevolution. With laboratory host-parasite coevolutionary studies, we can better understand the perplexing array of interactions that characterize organismal diversity in the wild.
Collapse
Affiliation(s)
- John J. Dennehy
- Biology Department, Queens College, 65-30 Kissena Boulevard, Flushing, NY 11367, USA
- The Graduate Center, The City University of New York, 365 Fifth Avenue, New York, NY 10016, USA
| |
Collapse
|
44
|
Zhang QG, Buckling A. Phages limit the evolution of bacterial antibiotic resistance in experimental microcosms. Evol Appl 2012; 5:575-82. [PMID: 23028398 PMCID: PMC3461140 DOI: 10.1111/j.1752-4571.2011.00236.x] [Citation(s) in RCA: 71] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2011] [Accepted: 12/13/2011] [Indexed: 01/21/2023] Open
Abstract
The evolution of multi-antibiotic resistance in bacterial pathogens, often resulting from de novo mutations, is creating a public health crisis. Phages show promise for combating antibiotic-resistant bacteria, the efficacy of which, however, may also be limited by resistance evolution. Here, we suggest that phages may be used as supplements to antibiotics in treating initially sensitive bacteria to prevent resistance evolution, as phages are unaffected by most antibiotics and there should be little cross-resistance to antibiotics and phages. In vitro experiments using the bacterium Pseudomonas fluorescens, a lytic phage, and the antibiotic kanamycin supported this prediction: an antibiotic–phage combination dramatically decreased the chance of bacterial population survival that indicates resistance evolution, compared with antibiotic treatment alone, whereas the phage alone did not affect bacterial survival. This effect of the combined treatment in preventing resistance evolution was robust to immigration of bacteria from an untreated environment, but not to immigration from environment where the bacteria had coevolved with the phage. By contrast, an isogenic hypermutable strain constructed from the wild-type P. fluorescens evolved resistance to all treatments regardless of immigration, but typically suffered very large fitness costs. These results suggest that an antibiotic–phage combination may show promise as an antimicrobial strategy.
Collapse
Affiliation(s)
- Quan-Guo Zhang
- State Key Laboratory of Earth Surface Processes and Resource Ecology and MOE Key Laboratory for Biodiversity Science and Ecological Engineering, Beijing Normal University Beijing, China
| | | |
Collapse
|
45
|
Buckling A, Brockhurst M. Bacteria-virus coevolution. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2012; 751:347-70. [PMID: 22821466 DOI: 10.1007/978-1-4614-3567-9_16] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Phages, viruses of bacteria, are ubiquitous. Many phages require host cell death to successfully complete their life cycle, resulting in reciprocal evolution of bacterial resistance and phage infectivity (antagonistic coevolution). Such coevolution can have profound consequences at all levels of biological organisation. Here, we review genetic and ecological factors that contribute to determining coevolutionary dynamics between bacteria and phages. We also consider some of the consequences of bacteria-phage coevolution, such as determining rates of molecular evolution and structuring communities, and how these in turn feedback into driving coevolutionary dynamics.
Collapse
|
46
|
Poisot T, Bell T, Martinez E, Gougat-Barbera C, Hochberg ME. Terminal investment induced by a bacteriophage in a rhizosphere bacterium. F1000Res 2012; 1:21. [PMID: 27512559 PMCID: PMC4964844 DOI: 10.12688/f1000research.1-21.v2] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 05/15/2013] [Indexed: 11/24/2022] Open
Abstract
Despite knowledge about microbial responses to abiotic stress, few studies have investigated stress responses to antagonistic species, such as competitors, predators and pathogens. While it is often assumed that interacting populations of bacteria and phage will coevolve resistance and exploitation strategies, an alternative is that individual bacteria tolerate or evade phage predation through inducible responses to phage presence. Using the microbial model
Pseudomonas fluorescens SBW25 and its lytic DNA phage SBW25Φ2, we demonstrate the existence of an inducible response in the form of a transient increase in population growth rate, and found that the response was induced by phage binding. This response was accompanied by a decrease in bacterial cell size, which we propose to be an associated cost. We discuss these results in the context of bacterial ecology and phage-bacteria co-evolution.
Collapse
Affiliation(s)
- Timothée Poisot
- Université Montpellier II, Institut des Sciences de l'Evolution, Montpellier, France; Département de Biologie, Chimie et Géographie, Université du Québec à Rimouski, Rimouski, QC, G5L 3A1, Canada; Québec Centre for Biodiversity Sciences, Stewart Biological Sciences Building, Montréal, QC, H3A 1B1, Canada
| | - Thomas Bell
- Department of Life Sciences, Imperial College London, Silwood Park Campus, Ascot, Berkshire, SL5 7PY, UK
| | - Esteban Martinez
- Université Montpellier II, Institut des Sciences de l'Evolution, Montpellier, France
| | - Claire Gougat-Barbera
- Université Montpellier II, Institut des Sciences de l'Evolution, Montpellier, France
| | - Michael E Hochberg
- Université Montpellier II, Institut des Sciences de l'Evolution, Montpellier, France; Santa Fe Institute, Santa Fe, NM, 87501, USA
| |
Collapse
|
47
|
Lopez Pascua L, Gandon S, Buckling A. Abiotic heterogeneity drives parasite local adaptation in coevolving bacteria and phages. J Evol Biol 2011; 25:187-95. [PMID: 22092706 DOI: 10.1111/j.1420-9101.2011.02416.x] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Spatial abiotic heterogeneity can result in divergent selection, hence might increase the magnitude of host-parasite local adaptation (the mean difference in fitness of sympatric vs. allopatric host-parasite combinations). We explicitly tested this hypothesis by measuring local adaptation in experimentally coevolved populations of bacteria and viruses evolved in the same or different nutrient media. Consistent with previous work, we found that mean levels of evolved phage infectivity and bacteria resistance varied with nutrient concentration, with maximal levels at nutrient concentrations that supported the greatest densities of bacteria. Despite this variation in evolved mean infectivity and resistance between treatments, we found that parasite local adaptation was greatly increased when measured between populations evolved in different, compared with the same, media. This pattern is likely to have resulted from different media imposing divergent selection on bacterial hosts, and phages in turn adapting to their local hosts. These results demonstrate that the abiotic environment can play a strong and predictable role in driving patterns of local adaptation.
Collapse
|
48
|
Defense islands in bacterial and archaeal genomes and prediction of novel defense systems. J Bacteriol 2011; 193:6039-56. [PMID: 21908672 DOI: 10.1128/jb.05535-11] [Citation(s) in RCA: 295] [Impact Index Per Article: 21.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
The arms race between cellular life forms and viruses is a major driving force of evolution. A substantial fraction of bacterial and archaeal genomes is dedicated to antivirus defense. We analyzed the distribution of defense genes and typical mobilome components (such as viral and transposon genes) in bacterial and archaeal genomes and demonstrated statistically significant clustering of antivirus defense systems and mobile genes and elements in genomic islands. The defense islands are enriched in putative operons and contain numerous overrepresented gene families. A detailed sequence analysis of the proteins encoded by genes in these families shows that many of them are diverged variants of known defense system components, whereas others show features, such as characteristic operonic organization, that are suggestive of novel defense systems. Thus, genomic islands provide abundant material for the experimental study of bacterial and archaeal antivirus defense. Except for the CRISPR-Cas systems, different classes of defense systems, in particular toxin-antitoxin and restriction-modification systems, show nonrandom clustering in defense islands. It remains unclear to what extent these associations reflect functional cooperation between different defense systems and to what extent the islands are genomic "sinks" that accumulate diverse nonessential genes, particularly those acquired via horizontal gene transfer. The characteristics of defense islands resemble those of mobilome islands. Defense and mobilome genes are nonrandomly associated in islands, suggesting nonadaptive evolution of the islands via a preferential attachment-like mechanism underpinned by the addictive properties of defense systems such as toxins-antitoxins and an important role of horizontal mobility in the evolution of these islands.
Collapse
|
49
|
Duncan AB, Fellous S, Kaltz O. REVERSE EVOLUTION: SELECTION AGAINST COSTLY RESISTANCE IN DISEASE-FREE MICROCOSM POPULATIONS OF PARAMECIUM CAUDATUM. Evolution 2011; 65:3462-74. [DOI: 10.1111/j.1558-5646.2011.01388.x] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
50
|
Abstract
Bacteria, the most abundant organisms on the planet, are outnumbered by a factor of 10 to 1 by phages that infect them. Faced with the rapid evolution and turnover of phage particles, bacteria have evolved various mechanisms to evade phage infection and killing, leading to an evolutionary arms race. The extensive co-evolution of both phage and host has resulted in considerable diversity on the part of both bacterial and phage defensive and offensive strategies. Here, we discuss the unique and common features of phage resistance mechanisms and their role in global biodiversity. The commonalities between defense mechanisms suggest avenues for the discovery of novel forms of these mechanisms based on their evolutionary traits.
Collapse
Affiliation(s)
- Adi Stern
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot, Israel
| | | |
Collapse
|