1
|
Brejon Lamartinière E, Tremble K, Dentinger BTM, Dasmahapatra KK, Hoffman JI. Runs of homozygosity reveal contrasting histories of inbreeding across global lineages of the edible porcini mushroom, Boletus edulis. Mol Ecol 2024; 33:e17470. [PMID: 39034770 DOI: 10.1111/mec.17470] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Revised: 06/26/2024] [Accepted: 07/03/2024] [Indexed: 07/23/2024]
Abstract
Inbreeding, the mating of individuals that are related through common ancestry, is of central importance in evolutionary and conservation biology due to its impacts on individual fitness and population dynamics. However, while advanced genomic approaches have revolutionised the study of inbreeding in animals, genomic studies of inbreeding are rare in plants and lacking in fungi. We investigated global patterns of inbreeding in the prized edible porcini mushroom Boletus edulis using 225 whole genomes from seven lineages distributed across the northern hemisphere. Genomic inbreeding was quantified using runs of homozygosity (ROHs). We found appreciable variation both among and within lineages, with some individuals having over 20% of their genomes in ROHs. Much of this variation could be explained by a combination of elevation and latitude, and to a lesser extent by predicted habitat suitability during the last glacial maximum. In line with this, the majority of ROHs were short, reflecting ancient common ancestry dating back approximately 200-1700 generations ago, while longer ROHs indicative of recent common ancestry (less than approximately 50 generations ago) were infrequent. Our study reveals the inbreeding legacy of major climatic events in a widely distributed forest mutualist, aligning with prevailing theories and empirical studies of the impacts of historical glaciation events on the dominant forest tree species of the northern hemisphere.
Collapse
Affiliation(s)
- Etienne Brejon Lamartinière
- Department of Evolutionary Population Genetics, Faculty of Biology, Bielefeld University, Bielefeld, Germany
- Department of Animal Behaviour, Faculty of Biology, Bielefeld University, Bielefeld, Germany
| | - Keaton Tremble
- Department of Biology, Duke University, Durham, North Carolina, USA
| | - Bryn T M Dentinger
- School of Biological Sciences, University of Utah, Salt Lake City, Utah, USA
- Natural History Museum of Utah, Salt Lake City, Utah, USA
| | | | - Joseph I Hoffman
- Department of Evolutionary Population Genetics, Faculty of Biology, Bielefeld University, Bielefeld, Germany
- Department of Animal Behaviour, Faculty of Biology, Bielefeld University, Bielefeld, Germany
- Center for Biotechnology (CeBiTec), Faculty of Biology, Bielefeld University, Bielefeld, Germany
- Joint Institute for Individualisation in a Changing Environment (JICE), Bielefeld University and University of Münster, Bielefeld, Münster, Germany
- British Antarctic Survey, Cambridge, UK
| |
Collapse
|
2
|
Cavill EL, Morales HE, Sun X, Westbury MV, van Oosterhout C, Accouche W, Zora A, Schulze MJ, Shah N, Adam P, Brooke MDL, Sweet P, Gopalakrishnan S, Gilbert MTP. When birds of a feather flock together: Severe genomic erosion and the implications for genetic rescue in an endangered island passerine. Evol Appl 2024; 17:e13739. [PMID: 38948538 PMCID: PMC11212007 DOI: 10.1111/eva.13739] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 05/22/2024] [Accepted: 06/04/2024] [Indexed: 07/02/2024] Open
Abstract
The Seychelles magpie-robin's (SMR) five island populations exhibit some of the lowest recorded levels of genetic diversity among endangered birds, and high levels of inbreeding. These populations collapsed during the 20th century, and the species was listed as Critically Endangered in the IUCN Red List in 1994. An assisted translocation-for-recovery program initiated in the 1990s increased the number of mature individuals, resulting in its downlisting to Endangered in 2005. Here, we explore the temporal genomic erosion of the SMR based on a dataset of 201 re-sequenced whole genomes that span the past ~150 years. Our sample set includes individuals that predate the bottleneck by up to 100 years, as well as individuals from contemporary populations established during the species recovery program. Despite the SMR's recent demographic recovery, our data reveal a marked increase in both the genetic load and realized load in the extant populations when compared to the historical samples. Conservation management may have reduced the intensity of selection by increasing juvenile survival and relaxing intraspecific competition between individuals, resulting in the accumulation of loss-of-function mutations (i.e. severely deleterious variants) in the rapidly recovering population. In addition, we found a 3-fold decrease in genetic diversity between temporal samples. While the low genetic diversity in modern populations may limit the species' adaptability to future environmental changes, future conservation efforts (including IUCN assessments) may also need to assess the threats posed by their high genetic load. Our computer simulations highlight the value of translocations for genetic rescue and show how this could halt genomic erosion in threatened species such as the SMR.
Collapse
Affiliation(s)
- Emily L. Cavill
- The Globe Institute, University of CopenhagenCopenhagenDenmark
| | | | - Xin Sun
- The Globe Institute, University of CopenhagenCopenhagenDenmark
| | | | - Cock van Oosterhout
- School of Environmental SciencesUniversity of East Anglia, Norwich Research ParkNorwichUK
| | | | - Anna Zora
- Fregate Island Sanctuary LtdVictoriaSeychelles
| | | | | | | | | | - Paul Sweet
- American Museum of Natural HistoryNew YorkUSA
| | | | - M. Thomas P. Gilbert
- The Globe Institute, University of CopenhagenCopenhagenDenmark
- University Museum, Norwegian University of Science and TechnologyTrondheimNorway
| |
Collapse
|
3
|
Aktürk Ş, Mapelli I, Güler MN, Gürün K, Katırcıoğlu B, Vural KB, Sağlıcan E, Çetin M, Yaka R, Sürer E, Atağ G, Çokoğlu SS, Sevkar A, Altınışık NE, Koptekin D, Somel M. Benchmarking kinship estimation tools for ancient genomes using pedigree simulations. Mol Ecol Resour 2024; 24:e13960. [PMID: 38676702 DOI: 10.1111/1755-0998.13960] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2023] [Revised: 03/19/2024] [Accepted: 03/28/2024] [Indexed: 04/29/2024]
Abstract
There is growing interest in uncovering genetic kinship patterns in past societies using low-coverage palaeogenomes. Here, we benchmark four tools for kinship estimation with such data: lcMLkin, NgsRelate, KIN, and READ, which differ in their input, IBD estimation methods, and statistical approaches. We used pedigree and ancient genome sequence simulations to evaluate these tools when only a limited number (1 to 50 K, with minor allele frequency ≥0.01) of shared SNPs are available. The performance of all four tools was comparable using ≥20 K SNPs. We found that first-degree related pairs can be accurately classified even with 1 K SNPs, with 85% F1 scores using READ and 96% using NgsRelate or lcMLkin. Distinguishing third-degree relatives from unrelated pairs or second-degree relatives was also possible with high accuracy (F1 > 90%) with 5 K SNPs using NgsRelate and lcMLkin, while READ and KIN showed lower success (69 and 79% respectively). Meanwhile, noise in population allele frequencies and inbreeding (first-cousin mating) led to deviations in kinship coefficients, with different sensitivities across tools. We conclude that using multiple tools in parallel might be an effective approach to achieve robust estimates on ultra-low-coverage genomes.
Collapse
Affiliation(s)
- Şevval Aktürk
- Department of Biological Sciences, Middle East Technical University, Ankara, Turkey
| | - Igor Mapelli
- Department of Biological Sciences, Middle East Technical University, Ankara, Turkey
| | - Merve N Güler
- Department of Biological Sciences, Middle East Technical University, Ankara, Turkey
| | - Kanat Gürün
- Department of Biological Sciences, Middle East Technical University, Ankara, Turkey
| | - Büşra Katırcıoğlu
- Department of Biological Sciences, Middle East Technical University, Ankara, Turkey
| | - Kıvılcım Başak Vural
- Department of Biological Sciences, Middle East Technical University, Ankara, Turkey
| | - Ekin Sağlıcan
- Department of Health Informatics, Graduate School of Informatics, Middle East Technical University, Ankara, Turkey
| | - Mehmet Çetin
- Department of Biological Sciences, Middle East Technical University, Ankara, Turkey
| | - Reyhan Yaka
- Department of Biological Sciences, Middle East Technical University, Ankara, Turkey
- Centre for Palaeogenetics, Stockholm, Sweden
- Department of Archaeology and Classical Studies, Stockholm University, Stockholm, Sweden
| | - Elif Sürer
- Department of Modeling and Simulation, Graduate School of Informatics, Middle East Technical University, Ankara, Turkey
| | - Gözde Atağ
- Department of Biological Sciences, Middle East Technical University, Ankara, Turkey
| | - Sevim Seda Çokoğlu
- Department of Biological Sciences, Middle East Technical University, Ankara, Turkey
| | - Arda Sevkar
- Department of Anthropology, Hacettepe University, Ankara, Turkey
| | - N Ezgi Altınışık
- Department of Anthropology, Hacettepe University, Ankara, Turkey
| | - Dilek Koptekin
- Department of Health Informatics, Graduate School of Informatics, Middle East Technical University, Ankara, Turkey
| | - Mehmet Somel
- Department of Biological Sciences, Middle East Technical University, Ankara, Turkey
| |
Collapse
|
4
|
Paijmans AJ, Berthelsen AL, Nagel R, Christaller F, Kröcker N, Forcada J, Hoffman JI. Little evidence of inbreeding depression for birth mass, survival and growth in Antarctic fur seal pups. Sci Rep 2024; 14:12610. [PMID: 38824161 PMCID: PMC11144264 DOI: 10.1038/s41598-024-62290-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Accepted: 05/15/2024] [Indexed: 06/03/2024] Open
Abstract
Inbreeding depression, the loss of offspring fitness due to consanguineous mating, is generally detrimental for individual performance and population viability. We investigated inbreeding effects in a declining population of Antarctic fur seals (Arctocephalus gazella) at Bird Island, South Georgia. Here, localised warming has reduced the availability of the seal's staple diet, Antarctic krill, leading to a temporal increase in the strength of selection against inbred offspring, which are increasingly failing to recruit into the adult breeding population. However, it remains unclear whether selection operates before or after nutritional independence at weaning. We therefore used microsatellite data from 885 pups and their mothers, and SNP array data from 98 mother-offspring pairs, to quantify the effects of individual and maternal inbreeding on three important neonatal fitness traits: birth mass, survival and growth. We did not find any clear or consistent effects of offspring or maternal inbreeding on any of these traits. This suggests that selection filters inbred individuals out of the population as juveniles during the time window between weaning and recruitment. Our study brings into focus a poorly understood life-history stage and emphasises the importance of understanding the ecology and threats facing juvenile pinnipeds.
Collapse
Affiliation(s)
- A J Paijmans
- Department of Evolutionary Population Genetics, Bielefeld University, 33615, Bielefeld, Germany.
- Department of Animal Behaviour, Bielefeld University, 33501, Bielefeld, Germany.
| | - A L Berthelsen
- Department of Evolutionary Population Genetics, Bielefeld University, 33615, Bielefeld, Germany
- Department of Animal Behaviour, Bielefeld University, 33501, Bielefeld, Germany
| | - R Nagel
- Department of Evolutionary Population Genetics, Bielefeld University, 33615, Bielefeld, Germany
- Department of Animal Behaviour, Bielefeld University, 33501, Bielefeld, Germany
- Centre for Biological Diversity, University of St. Andrews, St Andrews, KY16 9TH, UK
| | - F Christaller
- Department of Evolutionary Population Genetics, Bielefeld University, 33615, Bielefeld, Germany
- Department of Animal Behaviour, Bielefeld University, 33501, Bielefeld, Germany
| | - N Kröcker
- Department of Evolutionary Population Genetics, Bielefeld University, 33615, Bielefeld, Germany
- Department of Animal Behaviour, Bielefeld University, 33501, Bielefeld, Germany
| | - J Forcada
- British Antarctic Survey, High Cross, Madingley Road, Cambridge, CB3 OET, UK
| | - J I Hoffman
- Department of Evolutionary Population Genetics, Bielefeld University, 33615, Bielefeld, Germany
- Department of Animal Behaviour, Bielefeld University, 33501, Bielefeld, Germany
- British Antarctic Survey, High Cross, Madingley Road, Cambridge, CB3 OET, UK
- Joint Institute for Individualisation in a Changing Environment (JICE), Bielefeld University and University of Münster, Bielefeld, Germany
- Center for Biotechnology (CeBiTec), Faculty of Biology, Bielefeld University, 33615, Bielefeld, Germany
| |
Collapse
|
5
|
Hewett AM, Johnston SE, Morris A, Morris S, Pemberton JM. Genetic architecture of inbreeding depression may explain its persistence in a population of wild red deer. Mol Ecol 2024; 33:e17335. [PMID: 38549143 DOI: 10.1111/mec.17335] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Revised: 03/01/2024] [Accepted: 03/20/2024] [Indexed: 04/23/2024]
Abstract
Inbreeding depression is of major concern in declining populations, but relatively little is known about its genetic architecture in wild populations, such as the degree to which it is composed of large or small effect loci and their distribution throughout the genome. Here, we combine fitness and genomic data from a wild population of red deer to investigate the genomic distribution of inbreeding effects. Based on the runs of homozygosity (ROH)-based inbreeding coefficient, FROH, we use chromosome-specific inbreeding coefficients (FROHChr) to explore whether the effect of inbreeding varies between chromosomes. Under the assumption that within an individual the probability of being identical-by-descent is equal across all chromosomes, we used a multi-membership model to estimate the deviation of FROHChr from the average inbreeding effect. This novel approach ensures effect sizes are not overestimated whilst maximising the power of our available dataset of >3000 individuals genotyped on >35,000 autosomal SNPs. We find that most chromosomes confer a minor reduction in fitness-related traits, which when these effects are summed, results in the observed inbreeding depression in birth weight, survival and lifetime breeding success. However, no chromosomes had a significant detrimental effect compared to the overall effect of inbreeding, indicating no major effect loci. We conclude that in this population, inbreeding depression is likely the result of multiple mildly or moderately deleterious mutations spread across all chromosomes, which are difficult to detect with statistical confidence. Such mutations will be inefficiently purged, which may explain the persistence of inbreeding depression in this population.
Collapse
Affiliation(s)
- Anna M Hewett
- Institute of Ecology and Evolution, School of Biological Sciences, University of Edinburgh, Edinburgh, UK
- Department of Ecology and Evolution, University of Lausanne (UNIL), Lausanne, Switzerland
| | - Susan E Johnston
- Institute of Ecology and Evolution, School of Biological Sciences, University of Edinburgh, Edinburgh, UK
| | - Alison Morris
- Institute of Ecology and Evolution, School of Biological Sciences, University of Edinburgh, Edinburgh, UK
| | - Sean Morris
- Institute of Ecology and Evolution, School of Biological Sciences, University of Edinburgh, Edinburgh, UK
| | - Josephine M Pemberton
- Institute of Ecology and Evolution, School of Biological Sciences, University of Edinburgh, Edinburgh, UK
| |
Collapse
|
6
|
Perry A, Eddelbuettel D, Rosenthal G, Blackmon H. Polly: An R package for genotyping microsatellites and detecting highly polymorphic DNA markers from short-read data. Mol Ecol Resour 2024; 24:e13933. [PMID: 38299378 PMCID: PMC10994724 DOI: 10.1111/1755-0998.13933] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Revised: 01/10/2024] [Accepted: 01/23/2024] [Indexed: 02/02/2024]
Abstract
Highly polymorphic markers, such as microsatellites, are invaluable for the study of natural populations. However, contemporary methods for genotyping highly polymorphic variants have serious drawbacks that impede their efficiency. We created Polly, an R package with C++ source code that uses Illumina short-read data to genotype microsatellites, detect highly polymorphic variants and identify clusters of highly polymorphic SNPs, indels and microsatellites. We tested Polly on short-read data from Xiphophorus birchmanni (Teleostei: Poeciliidae) and Arabidopsis thaliana, finding it to be efficient and accurate both for microsatellite genotyping and polymorphic marker detection. This program can be applied to any diploid population for which there exists short-read data and at least one scaffolded reference genome.
Collapse
Affiliation(s)
- Annabel Perry
- Harvard University, Department of Human Evolutionary Biology
- Texas A&M University, Department of Biology
| | | | - Gil Rosenthal
- Texas A&M University, Department of Biology
- Università degli Studi di Padova, Dipartimento di Biologia
| | | |
Collapse
|
7
|
Jablonszky M, Canal D, Hegyi G, Herényi M, Laczi M, Markó G, Nagy G, Rosivall B, Szöllősi E, Török J, Garamszegi LZ. The estimation of additive genetic variance of body size in a wild passerine is sensitive to the method used to estimate relatedness among the individuals. Ecol Evol 2024; 14:e10981. [PMID: 38352200 PMCID: PMC10862163 DOI: 10.1002/ece3.10981] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Revised: 01/17/2024] [Accepted: 01/23/2024] [Indexed: 02/16/2024] Open
Abstract
Assessing additive genetic variance is a crucial step in predicting the evolutionary response of a target trait. However, the estimated genetic variance may be sensitive to the methodology used, e.g., the way relatedness is assessed among the individuals, especially in wild populations where social pedigrees can be inaccurate. To investigate this possibility, we investigated the additive genetic variance in tarsus length, a major proxy of skeletal body size in birds. The model species was the collared flycatcher (Ficedula albicollis), a socially monogamous but genetically polygamous migratory passerine. We used two relatedness matrices to estimate the genetic variance: (1) based solely on social links and (2) a genetic similarity matrix based on a large array of single-nucleotide polymorphisms (SNPs). Depending on the relatedness matrix considered, we found moderate to high additive genetic variance and heritability estimates for tarsus length. In particular, the heritability estimates were higher when obtained with the genetic similarity matrix instead of the social pedigree. Our results confirm the potential for this crucial trait to respond to selection and highlight methodological concerns when calculating additive genetic variance and heritability in phenotypic traits. We conclude that using a social pedigree instead of a genetic similarity matrix to estimate relatedness among individuals in a genetically polygamous wild population may significantly deflate the estimates of additive genetic variation.
Collapse
Affiliation(s)
- Mónika Jablonszky
- Evolutionary Ecology Research GroupInstitute of Ecology and Botany, HUN_REN Centre for Ecological ResearchVácrátotHungary
- Behavioural Ecology Group, Department of Systematic Zoology and EcologyELTE Eötvös Loránd UniversityBudapestHungary
| | - David Canal
- Department of Evolutionary EcologyNational Museum of Natural Sciences (MNCN‐CSIC)MadridSpain
| | - Gergely Hegyi
- Behavioural Ecology Group, Department of Systematic Zoology and EcologyELTE Eötvös Loránd UniversityBudapestHungary
| | - Márton Herényi
- Behavioural Ecology Group, Department of Systematic Zoology and EcologyELTE Eötvös Loránd UniversityBudapestHungary
- Department of Zoology and EcologyHungarian University of Agriculture and Life SciencesGodolloHungary
| | - Miklós Laczi
- Behavioural Ecology Group, Department of Systematic Zoology and EcologyELTE Eötvös Loránd UniversityBudapestHungary
- HUN‐REN‐ELTE‐MTM Integrative Ecology Research GroupBudapestHungary
| | - Gábor Markó
- Department of Plant Pathology, Institute of Plant ProtectionHungarian University of Agriculture and Life SciencesBudapestHungary
| | - Gergely Nagy
- Evolutionary Ecology Research GroupInstitute of Ecology and Botany, HUN_REN Centre for Ecological ResearchVácrátotHungary
- Behavioural Ecology Group, Department of Systematic Zoology and EcologyELTE Eötvös Loránd UniversityBudapestHungary
| | - Balázs Rosivall
- Behavioural Ecology Group, Department of Systematic Zoology and EcologyELTE Eötvös Loránd UniversityBudapestHungary
| | - Eszter Szöllősi
- Behavioural Ecology Group, Department of Systematic Zoology and EcologyELTE Eötvös Loránd UniversityBudapestHungary
| | - János Török
- Behavioural Ecology Group, Department of Systematic Zoology and EcologyELTE Eötvös Loránd UniversityBudapestHungary
| | - László Zsolt Garamszegi
- Evolutionary Ecology Research GroupInstitute of Ecology and Botany, HUN_REN Centre for Ecological ResearchVácrátotHungary
| |
Collapse
|
8
|
Freudiger A, Jovanovic VM, Huang Y, Snyder-Mackler N, Conrad DF, Miller B, Montague MJ, Westphal H, Stadler PF, Bley S, Horvath JE, Brent LJN, Platt ML, Ruiz-Lambides A, Tung J, Nowick K, Ringbauer H, Widdig A. Taking identity-by-descent analysis into the wild: Estimating realized relatedness in free-ranging macaques. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.01.09.574911. [PMID: 38260273 PMCID: PMC10802400 DOI: 10.1101/2024.01.09.574911] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/24/2024]
Abstract
Biological relatedness is a key consideration in studies of behavior, population structure, and trait evolution. Except for parent-offspring dyads, pedigrees capture relatedness imperfectly. The number and length of DNA segments that are identical-by-descent (IBD) yield the most precise estimates of relatedness. Here, we leverage novel methods for estimating locus-specific IBD from low coverage whole genome resequencing data to demonstrate the feasibility and value of resolving fine-scaled gradients of relatedness in free-living animals. Using primarily 4-6× coverage data from a rhesus macaque (Macaca mulatta) population with available long-term pedigree data, we show that we can call the number and length of IBD segments across the genome with high accuracy even at 0.5× coverage. The resulting estimates demonstrate substantial variation in genetic relatedness within kin classes, leading to overlapping distributions between kin classes. They identify cryptic genetic relatives that are not represented in the pedigree and reveal elevated recombination rates in females relative to males, which allows us to discriminate maternal and paternal kin using genotype data alone. Our findings represent a breakthrough in the ability to understand the predictors and consequences of genetic relatedness in natural populations, contributing to our understanding of a fundamental component of population structure in the wild.
Collapse
Affiliation(s)
- Annika Freudiger
- Behavioral Ecology Research Group, Faculty of Life Sciences, Institute of Biology, Leipzig University, Leipzig, Germany
- Department of Primate Behavior and Evolution, Max Planck Institute for Evolutionary Anthropology, Leipzig, Germany
| | - Vladimir M Jovanovic
- Human Biology and Primate Evolution, Institut für Zoologie, Freie Universität Berlin, Berlin, Germany
- Bioinformatics Solution Center, Freie Universität Berlin, Berlin, Germany
| | - Yilei Huang
- Department of Archaeogenetics, Max Planck Institute for Evolutionary Anthropology, Leipzig, Germany
- Bioinformatics Group, Institute of Computer Science, and Interdisciplinary Center for Bioinformatics, Leipzig University, Leipzig, Germany
| | - Noah Snyder-Mackler
- Center for Evolution & Medicine, School of Life Sciences, Arizona State University, Tempe, USA
| | - Donald F Conrad
- Division of Genetics, Oregon National Primate Research Center, Portland, Oregon, USA
| | - Brian Miller
- Division of Genetics, Oregon National Primate Research Center, Portland, Oregon, USA
| | - Michael J Montague
- Department of Neuroscience, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Hendrikje Westphal
- Behavioral Ecology Research Group, Faculty of Life Sciences, Institute of Biology, Leipzig University, Leipzig, Germany
- Department of Primate Behavior and Evolution, Max Planck Institute for Evolutionary Anthropology, Leipzig, Germany
- Bioinformatics Group, Institute of Computer Science, and Interdisciplinary Center for Bioinformatics, Leipzig University, Leipzig, Germany
| | - Peter F Stadler
- Bioinformatics Group, Institute of Computer Science, and Interdisciplinary Center for Bioinformatics, Leipzig University, Leipzig, Germany
- Max Planck Institute for Mathematics in the Sciences, Leipzig, Germany
- Institute for Theoretical Chemistry, University of Vienna, Austria
- Facultad de Ciencias, Universidad Nacional de Colombia, Bogotá, Colombia
- Santa Fe Institute, Santa Fe, NM, USA
| | - Stefanie Bley
- Behavioral Ecology Research Group, Faculty of Life Sciences, Institute of Biology, Leipzig University, Leipzig, Germany
- Department of Primate Behavior and Evolution, Max Planck Institute for Evolutionary Anthropology, Leipzig, Germany
| | - Julie E Horvath
- Department of Biological and Biomedical Sciences, North Carolina Central University, North Carolina, Durham, USA
- Research and Collections Section, North Carolina Museum of Natural Sciences, North Carolina, Raleigh, USA
- Department of Biological Sciences, North Carolina State University, North Carolina, Raleigh, USA
- Department of Evolutionary Anthropology, Duke University, North Carolina, Durham, USA
- Renaissance Computing Institute, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Lauren J N Brent
- Centre for Research in Animal Behaviour, University of Exeter, Exeter, UK
| | - Michael L Platt
- Department of Neuroscience, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Marketing Department, the Wharton School of Business, University of Pennsylvania, Philadelphia, PA, USA
- Department of Psychology, School of Arts and Sciences, University of Pennsylvania, Philadelphia, PA, USA
| | - Angelina Ruiz-Lambides
- Cayo Santiago Field Station, Caribbean Primate Research Center, University of Puerto Rico, Punta Santiago, Puerto Rico
| | - Jenny Tung
- Department of Primate Behavior and Evolution, Max Planck Institute for Evolutionary Anthropology, Leipzig, Germany
- Department of Evolutionary Anthropology, Duke University, North Carolina, Durham, USA
- Department of Biology, Duke University, Durham, North Carolina, USA
- Duke University Population Research Institute, Durham, North Carolina, USA
| | - Katja Nowick
- Human Biology and Primate Evolution, Institut für Zoologie, Freie Universität Berlin, Berlin, Germany
- Bioinformatics Solution Center, Freie Universität Berlin, Berlin, Germany
| | - Harald Ringbauer
- Department of Archaeogenetics, Max Planck Institute for Evolutionary Anthropology, Leipzig, Germany
| | - Anja Widdig
- Behavioral Ecology Research Group, Faculty of Life Sciences, Institute of Biology, Leipzig University, Leipzig, Germany
- Department of Primate Behavior and Evolution, Max Planck Institute for Evolutionary Anthropology, Leipzig, Germany
- German Centre for Integrative Biodiversity Research (iDiv), Halle-Jena-Leipzig, Germany
| |
Collapse
|
9
|
Yoon HJ, Lee MY, Jeon HS, An J, Yoon J. Temporal Changes in Demography and Genetic Diversity of Oriental Storks at the Stage of Long-Term Captive Propagation and Reintroduction Initiation. Zoolog Sci 2023; 40:284-291. [PMID: 37522599 DOI: 10.2108/zs220076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Accepted: 03/13/2023] [Indexed: 08/01/2023]
Abstract
Captive propagation and reintroduction are the major steps in the ex-situ conservation of locally extirpated endangered species in a historical region. In a species restoration project conducted in South Korea, we examined temporal changes in demographics and genetic diversity of oriental storks (Ciconia boyciana). Demographic and genetic data from 1996-2018 were analyzed for 80% of all captive and recently reintroduced individuals. Founder establishment and pair formation induced increases in population size and genetic diversity during the early stage of captive propagation. The degree of genetic diversity was found to become saturated and stable with long-term captive propagation. However, this might be a concern for future genetic diversity of both captive and reintroduced populations simultaneously due to the extraction of captive populations at the early stage of reintroduction. Our findings suggest that periodic evaluation of genetic diversity and selection for releasing individuals, using effective genetic markers, would assist in balancing the genetic diversity of the captive and reintroduced oriental storks at the early stage of reintroduction.
Collapse
Affiliation(s)
- Hyun-Ju Yoon
- Eco-institute for Oriental Stork, Korea National University of Education, Cheongju, South Korea
| | - Mu-Yeong Lee
- National Institute of Biological Resources, Incheon, South Korea
- National Forensic Service, Seoul, South Korea
| | - Hye-Sook Jeon
- National Institute of Biological Resources, Incheon, South Korea
| | - Junghwa An
- National Institute of Biological Resources, Incheon, South Korea,
| | - Jongmin Yoon
- Eco-institute for Oriental Stork, Korea National University of Education, Cheongju, South Korea,
- Research Center for Endangered Species, National Institute of Ecology, Yeongyang, South Korea
| |
Collapse
|
10
|
Pérez‐Pereira N, Quesada H, Caballero A. An empirical evaluation of the estimation of inbreeding depression from molecular markers under suboptimal conditions. Evol Appl 2023; 16:1302-1315. [PMID: 37492144 PMCID: PMC10363801 DOI: 10.1111/eva.13568] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Revised: 05/30/2023] [Accepted: 05/30/2023] [Indexed: 07/27/2023] Open
Abstract
Inbreeding depression (ID), the reduction in fitness due to inbreeding, is typically measured by the regression of the phenotypic values of individuals for a particular trait on their corresponding inbreeding coefficients (F). While genealogical records can provide these coefficients, they may be unavailable or incomplete, making molecular markers a useful alternative. The power to detect ID and its accuracy depend on the variation of F values of individuals, the sample sizes available, and the accuracy in the estimation of individual fitness traits and F values. In this study, we used Drosophila melanogaster to evaluate the effectiveness of molecular markers in estimating ID under suboptimal conditions. We generated two sets of 100 pairs of unrelated individuals from a large panmictic population and mated them for two generations to produce non-inbred and unrelated individuals (F = 0) and inbred individuals (full-sib progeny; F = 0.25). Using these expected genealogical F values, we calculated inbreeding depression for two fitness-related traits, pupae productivity and competitive fitness. We then sequenced the males from 17 non-inbred pairs and 17 inbred pairs to obtain their genomic inbreeding coefficients and estimate ID for the two traits. The scenario assumed was rather restrictive in terms of estimation of ID because: (1) the individuals belonged to the same generation of a large panmictic population, leading to low variation in individual F coefficients; (2) the sample sizes were small; and (3) the traits measured depended on both males and females while only males were sequenced. Despite the challenging conditions of our study, we found that molecular markers provided estimates of ID that were comparable to those obtained from simple pedigree estimations with larger sample sizes. The results therefore suggest that genomic measures of inbreeding are useful to provide estimates of inbreeding depression even under very challenging scenarios.
Collapse
Affiliation(s)
- Noelia Pérez‐Pereira
- Centro de Investigación MariñaUniversidade de Vigo, Facultade de BioloxíaVigoSpain
| | - Humberto Quesada
- Centro de Investigación MariñaUniversidade de Vigo, Facultade de BioloxíaVigoSpain
| | - Armando Caballero
- Centro de Investigación MariñaUniversidade de Vigo, Facultade de BioloxíaVigoSpain
| |
Collapse
|
11
|
Pereira AS, De Moor D, Casanova C, Brent LJN. Kinship composition in mammals. ROYAL SOCIETY OPEN SCIENCE 2023; 10:230486. [PMID: 37476521 PMCID: PMC10354477 DOI: 10.1098/rsos.230486] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Accepted: 06/15/2023] [Indexed: 07/22/2023]
Abstract
Understanding the evolution of group-living and cooperation requires information on who animals live and cooperate with. Animals can live with kin, non-kin or both, and kinship structure can influence the benefits and costs of group-living and the evolution of within-group cooperation. One aspect of kinship structure is kinship composition, i.e. a group-level attribute of the presence of kin and/or non-kin dyads in groups. Despite its putative importance, the kinship composition of mammalian groups has yet to be characterized. Here, we use the published literature to build an initial kinship composition dataset in mammals, laying the groundwork for future work in the field. In roughly half of the 18 species in our sample, individuals lived solely with same-sex kin, and, in the other half, individuals lived with related and unrelated individuals of the same sex. These initial results suggest that it is not rare for social mammals to live with unrelated individuals of the same sex, highlighting the importance of considering indirect and direct fitness benefits as co-drivers of the evolution of sociality. We hope that our initial dataset and insights will spur the study of kinship structure and sociality towards new exciting avenues.
Collapse
Affiliation(s)
- André S. Pereira
- Centre for Research in Animal Behavior, University of Exeter, Exeter EX4 4QG, UK
- Research Centre for Anthropology and Health, Department of Life Sciences, University of Coimbra, 3000-456 Coimbra, Portugal
| | - Delphine De Moor
- Centre for Research in Animal Behavior, University of Exeter, Exeter EX4 4QG, UK
| | - Catarina Casanova
- Research Centre for Anthropology and Health, Department of Life Sciences, University of Coimbra, 3000-456 Coimbra, Portugal
- CAPP, ISCSP, University of Lisbon, 1300-663 Lisbon, Portugal
| | - Lauren J. N. Brent
- Centre for Research in Animal Behavior, University of Exeter, Exeter EX4 4QG, UK
| |
Collapse
|
12
|
Martin H, Hebblewhite M, Hubbs A, Corrigan R, Merrill EH. Male elk survival, vulnerability, and antler size in a transboundary and partially migratory population. J Wildl Manage 2023. [DOI: 10.1002/jwmg.22386] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/08/2023]
Affiliation(s)
- Hans Martin
- Wildlife Biology Program, Department of Ecosystem and Conservation Sciences, W.A. Franke College of Forestry and Conservation University of Montana Missoula MT 59812 USA
| | - Mark Hebblewhite
- Wildlife Biology Program, Department of Ecosystem and Conservation Sciences, W.A. Franke College of Forestry and Conservation University of Montana Missoula MT 59812 USA
| | - Anne Hubbs
- Alberta Environment and Parks Box 1720, 4919‐51 Street, Provincial Building Rocky Mountain House AB T4T 1B3 Canada
| | - Rob Corrigan
- Alberta Environment and Parks 9920 108 Street Edmonton AB T5K 2M4 Canada
| | - Evelyn H. Merrill
- Department of Biological Sciences University of Alberta Edmonton AB T1L 16K Canada
| |
Collapse
|
13
|
Small effects of family size on sociality despite strong kin preferences in female bottlenose dolphins. Anim Behav 2023. [DOI: 10.1016/j.anbehav.2022.10.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
14
|
Larroque J, Balkenhol N. A simulation-based evaluation of methods for estimating census population size of terrestrial game species from genetically-identified parent-offspring pairs. PeerJ 2023; 11:e15151. [PMID: 37070094 PMCID: PMC10105560 DOI: 10.7717/peerj.15151] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Accepted: 03/09/2023] [Indexed: 04/19/2023] Open
Abstract
Estimates of wildlife population size are critical for conservation and management, but accurate estimates are difficult to obtain for many species. Several methods have recently been developed that estimate abundance using kinship relationships observed in genetic samples, particularly parent-offspring pairs. While these methods are similar to traditional Capture-Mark-Recapture, they do not need physical recapture, as individuals are considered recaptured if a sample contains one or more close relatives. This makes methods based on genetically-identified parent-offspring pairs particularly interesting for species for which releasing marked animals back into the population is not desirable or not possible (e.g., harvested fish or game species). However, while these methods have successfully been applied in commercially important fish species, in the absence of life-history data, they are making several assumptions unlikely to be met for harvested terrestrial species. They assume that a sample contains only one generation of parents and one generation of juveniles of the year, while more than two generations can coexist in the hunting bags of long-lived species, or that the sampling probability is the same for each individual, an assumption that is violated when fecundity and/or survival depend on sex or other individual traits. In order to assess the usefulness of kin-based methods to estimate population sizes of terrestrial game species, we simulated population pedigrees of two different species with contrasting demographic strategies (wild boar and red deer), applied four different methods and compared the accuracy and precision of their estimates. We also performed a sensitivity analysis, simulating population pedigrees with varying fecundity characteristics and various levels of harvesting to identify optimal conditions of applicability of each method. We showed that all these methods reached the required levels of accuracy and precision to be effective in wildlife management under simulated circumstances (i.e., for species within a given range of fecundity and for a given range of sampling intensity), while being robust to fecundity variation. Despite the potential usefulness of the methods for terrestrial game species, care is needed as several biases linked to hunting practices still need to be investigated (e.g., when hunting bags are biased toward a particular group of individuals).
Collapse
Affiliation(s)
- Jeremy Larroque
- Wildlife Sciences, University of Goettingen, Goettingen, Germany
| | - Niko Balkenhol
- Wildlife Sciences, University of Goettingen, Goettingen, Germany
| |
Collapse
|
15
|
Johnston SE, Chen N, Josephs EB. Taking quantitative genomics into the wild. Proc Biol Sci 2022; 289:20221930. [PMID: 36541172 PMCID: PMC9768650 DOI: 10.1098/rspb.2022.1930] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Accepted: 11/22/2022] [Indexed: 12/24/2022] Open
Abstract
We organized this special issue to highlight new work and review recent advances at the cutting edge of 'wild quantitative genomics'. In this editorial, we will present some history of wild quantitative genetic and genomic studies, before discussing the main themes in the papers published in this special issue and highlighting the future outlook of this dynamic field.
Collapse
Affiliation(s)
- Susan E. Johnston
- Institute of Ecology and Evolution, School of Biological Sciences, University of Edinburgh, Edinburgh, Edinburgh EH9 3FL, UK
| | - Nancy Chen
- Department of Biology, University of Rochester, Rochester, 14627, NY, USA
| | - Emily B. Josephs
- Department of Plant Biology and Ecology, Evolution, and Behavior Program, Michigan State University, East Lansing, 48824, MI, USA
| |
Collapse
|
16
|
Davidović S, Marinković S, Hribšek I, Patenković A, Stamenković-Radak M, Tanasković M. Sex ratio and relatedness in the Griffon vulture ( Gyps fulvus) population of Serbia. PeerJ 2022; 10:e14477. [PMID: 36523455 PMCID: PMC9745909 DOI: 10.7717/peerj.14477] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Accepted: 11/07/2022] [Indexed: 12/12/2022] Open
Abstract
Background Once a widespread species across the region of Southeast Europe, the Griffon vulture is now confined to small and isolated populations across the Balkan Peninsula. The population from Serbia represents its biggest and most viable population that can serve as an important reservoir of genetic diversity from which the birds can be used for the region's reintroduction programmes. The available genetic data for this valuable population are scarce and as a protected species that belongs to the highly endangered vulture group, it needs to be well described so that it can be properly managed and used as a restocking population. Considering the serious recent bottleneck event that the Griffon vulture population from Serbia experienced we estimated the overall relatedness among the birds from this population. Sex ratio, another important parameter that shows the vitality and strength of the population was evaluated as well. Methods During the annual monitoring that was performed in the period from 2013-2021, we collected blood samples from individual birds that were marked in the nests. In total, 169 samples were collected and each was used for molecular sexing while 58 presumably unrelated birds from different nests were used for inbreeding and relatedness analyses. The relatedness was estimated using both biparentally (10 microsatellite loci) and uniparentally (Cytb and D-loop I of mitochondrial DNA) inherited markers. Results The level of inbreeding was relatively high and on average it was 8.3% while the mean number of relatives for each bird was close to three. The sex ratio was close to 1:1 and for the analysed period of 9 years, it didn't demonstrate a statistically significant deviation from the expected ratio of 1:1, suggesting that this is a stable and healthy population. Our data suggest that, even though a relatively high level of inbreeding can be detected among the individual birds, the Griffon vulture population from Serbia can be used as a source population for restocking and reintroduction programmes in the region. These data combined with previously observed genetic differentiation between the populations from the Iberian and Balkan Peninsulas suggest that the introduction of foreign birds should be avoided and that local birds should be used instead.
Collapse
Affiliation(s)
- Slobodan Davidović
- Department of Genetics of Populations and Ecogenotoxicology, Institute for Biological Research “Siniša Stanković”—National Institute of the Republic of Serbia, University of Belgrade, Belgrade, Serbia,Birds of Prey Protection Foundation, Belgrade, Serbia
| | - Saša Marinković
- Birds of Prey Protection Foundation, Belgrade, Serbia,Department of Ecology, Institute for Biological Research “Siniša Stanković”—National Institute of the Republic of Serbia, University of Belgrade, Belgrade, Serbia
| | - Irena Hribšek
- Birds of Prey Protection Foundation, Belgrade, Serbia,Natural History Museum Belgrade, Belgrade, Serbia
| | - Aleksandra Patenković
- Department of Genetics of Populations and Ecogenotoxicology, Institute for Biological Research “Siniša Stanković”—National Institute of the Republic of Serbia, University of Belgrade, Belgrade, Serbia
| | - Marina Stamenković-Radak
- Department of Genetics of Populations and Ecogenotoxicology, Institute for Biological Research “Siniša Stanković”—National Institute of the Republic of Serbia, University of Belgrade, Belgrade, Serbia,Faculty of Biology, University of Belgrade, Belgrade, Serbia
| | - Marija Tanasković
- Department of Genetics of Populations and Ecogenotoxicology, Institute for Biological Research “Siniša Stanković”—National Institute of the Republic of Serbia, University of Belgrade, Belgrade, Serbia
| |
Collapse
|
17
|
Duru S, Altınçekiç ŞÖ, Hanoğlu Oral H. Effectiveness of genetic grouping with different strategies for estimation of genetic parameters in growth traits in Merino lambs. Small Rumin Res 2022. [DOI: 10.1016/j.smallrumres.2022.106835] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
18
|
Hauser S, Galla SJ, Putnam AS, Steeves TE, Latch EK. Comparing genome-based estimates of relatedness for use in pedigree-based conservation management. Mol Ecol Resour 2022; 22:2546-2558. [PMID: 35510790 DOI: 10.1111/1755-0998.13630] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Revised: 02/28/2022] [Accepted: 03/30/2022] [Indexed: 12/01/2022]
Abstract
Researchers have long debated which estimator of relatedness best captures the degree of relationship between two individuals. In the genomics era, this debate continues, with relatedness estimates being sensitive to the methods used to generate markers, marker quality, and levels of diversity in sampled individuals. Here, we compare six commonly used genome-based relatedness estimators (kinship genetic distance (KGD), Wang Maximum Likelihood (TrioML), Queller and Goodnight (Rxy ), Kinship INference for Genome-wide association studies (KING-robust), and Pairwise Relatedness (RAB ), allele-sharing co-ancestry (AS)) across five species bred in captivity-including three birds and two mammals-with varying degrees of reliable pedigree data, using reduced-representation and whole genome resequencing data. Genome-based relatedness estimates varied widely across estimators, sequencing methods, and species, yet the most consistent results for known first order relationships were found using Rxy , RAB , and AS. However, AS was found to be less consistently correlated with known pedigree relatedness than either Rxy or RAB . Our combined results indicate there is not a single genome-based estimator that is ideal across different species and data types. To determine the most appropriate genome-based relatedness estimator for each new dataset, we recommend assessing the relative: (1) correlation of candidate estimators with known relationships in the pedigree and (2) precision of candidate estimators with known first-order relationships. These recommendations are broadly applicable to conservation breeding programs, particularly where genome-based estimates of relatedness can complement and complete poorly pedigreed populations. Given a growing interest in the application of wild pedigrees, our results are also applicable to in-situ wildlife management.
Collapse
Affiliation(s)
- Samantha Hauser
- Department of Biological Sciences, University of Wisconsin, Milwaukee, Wisconsin, USA.,Embark Veterinary, Inc., Boston, Massachusetts, United States of America
| | - Stephanie J Galla
- School of Biological Sciences, University of Canterbury, New Zealand.,Department of Biological Sciences, Boise State University, Boise, Idaho, USA
| | - Andrea S Putnam
- Department of Exhibit-Curators, San Diego Zoo Wildlife Alliance, San Diego, California, USA
| | - Tammy E Steeves
- School of Biological Sciences, University of Canterbury, New Zealand
| | - Emily K Latch
- Department of Biological Sciences, University of Wisconsin, Milwaukee, Wisconsin, USA
| |
Collapse
|
19
|
Reynolds‐Hogland MJ, Ramsey AB, Muench C, Pilgrim KL, Engkjer C, Ramsey PW. Age-specific, population-level pedigree of wild black bears provides insights into reproduction, paternity, and maternal effects on offspring apparent survival. Ecol Evol 2022; 12:e8770. [PMID: 35386864 PMCID: PMC8969918 DOI: 10.1002/ece3.8770] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Revised: 03/04/2022] [Accepted: 03/10/2022] [Indexed: 11/09/2022] Open
Abstract
Wildlife pedigrees provide insights into ecological and evolutionary processes. DNA obtained from noninvasively collected hair is often used to determine individual identities for pedigrees and other genetic analyses. However, detection rates associated with some noninvasive DNA studies can be relatively low, and genetic data do not provide information on individual birth year. Supplementing hair DNA stations with video cameras should increase the individual detection rate, assuming accurate identification of individuals via video data. Video data can also provide birth year information for individuals captured as young of the year, which can enrich population-level pedigrees. We placed video cameras at hair stations and combined genetic and video data to reconstruct an age-specific, population-level pedigree of wild black bears during 2010-2020. Combining individual birth year with mother-offspring relatedness, we also estimated litter size, interlitter interval, primiparity, and fecundity. We used the Cormack-Jolly-Seber model in Program Mark to evaluate the effect of maternal identity on offspring apparent survival. We compared model rankings of apparent survival and parameter estimates based on combined genetic and video data with those based on only genetic data. We observed 42 mother-offspring relationships. Of these, 21 (50%) would not have been detected had we used hair DNA alone. Moreover, video data allowed for the cub and yearling age classes to be determined. Mean annual fecundity was 0.42 (95% CI: 0.27, 0.56). Maternal identity influenced offspring apparent survival, where offspring of one mother experienced significantly lower apparent survival (0.39; SE = 0.15) than that of offspring of four other mothers (0.89-1.00; SE = 0.00-0.06). We video-documented cub abandonment by the mother whose offspring experienced low apparent survival, indicating individual behaviors (e.g., maternal care) may scale up to affect population-level parameters (e.g., cub survival). Our findings provide insights into evolutionary processes and are broadly relevant to wildlife ecology and conservation.
Collapse
Affiliation(s)
| | | | | | - Kristine L. Pilgrim
- USDA National Genomics CenterRocky Mountain Research StationMissoulaMontanaUSA
| | - Cory Engkjer
- USDA National Genomics CenterRocky Mountain Research StationMissoulaMontanaUSA
| | | |
Collapse
|
20
|
Villa SM, Kelly KP, Hollimon MG, Protil KJ, de Roode JC. Lack of inbreeding avoidance during mate selection in migratory monarch butterflies. Behav Processes 2022; 198:104630. [PMID: 35381312 PMCID: PMC10375862 DOI: 10.1016/j.beproc.2022.104630] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Revised: 03/21/2022] [Accepted: 03/28/2022] [Indexed: 11/15/2022]
Abstract
Inbreeding is generally thought to have negative consequences for organismal health. However, despite the potential fitness effects, it remains surprisingly common among wild populations. In many cases, the complex factors that underlie mating dynamics make predicting whether individuals should or do avoid inbreeding quite challenging. One reason inbreeding may persist among species is that the likelihood of encountering relatives can be rare. Thus, even if inbreeding has severe consequences, selection to avoid mating with kin will be weak in species that are highly dispersed. Here we investigated if migratory monarch butterflies (Danaus plexippus), which are famous for their dispersal ability, actively avoid inbreeding. We found that neither female nor male monarchs choose mates based on relatedness. These results support the hypothesis that movement ecology can mask the deleterious effects of inbreeding and relax selection for active inbreeding avoidance behaviors. Overall, our data add to the growing list of studies showing that inbreeding avoidance is not the behavioral "default" for most species. We also highlight the implications that inbreeding may have on the declining populations of this iconic butterfly.
Collapse
|
21
|
Vega‐Trejo R, Boer RA, Fitzpatrick JL, Kotrschal A. Sex‐specific inbreeding depression: A meta‐analysis. Ecol Lett 2022; 25:1009-1026. [PMID: 35064612 PMCID: PMC9304238 DOI: 10.1111/ele.13961] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Revised: 11/22/2021] [Accepted: 12/08/2021] [Indexed: 12/29/2022]
Affiliation(s)
- Regina Vega‐Trejo
- Department of Zoology: Ethology Stockholm University Stockholm Sweden
- Department of Zoology Edward Grey Institute University of Oxford Oxford UK
| | - Raïssa A. Boer
- Department of Zoology: Ethology Stockholm University Stockholm Sweden
| | | | - Alexander Kotrschal
- Department of Zoology: Ethology Stockholm University Stockholm Sweden
- Behavioural Ecology Group Wageningen University & Research Wageningen The Netherlands
| |
Collapse
|
22
|
McLennan EA, Belov K, Hogg CJ, Grueber CE. How much is enough? Sampling intensity influences estimates of reproductive variance in an introduced population. ECOLOGICAL APPLICATIONS : A PUBLICATION OF THE ECOLOGICAL SOCIETY OF AMERICA 2022; 32:e02462. [PMID: 34614257 DOI: 10.1002/eap.2462] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Accepted: 05/14/2021] [Indexed: 06/13/2023]
Abstract
Conservation introductions to islands and fenced enclosures are increasing as in situ mitigations fail to keep pace with population declines. Few studies consider the potential loss of genetic diversity and increased inbreeding if released individuals breed disproportionately. As funding is limited and post-release monitoring expensive for conservation programs, understanding how sampling effort influences estimates of reproductive variance is useful. To investigate this relationship, we used a well-studied population of Tasmanian devils (Sarcophilus harrisii) introduced to Maria Island, Tasmania, Australia. Pedigree reconstruction based on molecular data revealed high variance in number of offspring per breeder and high proportions of unsuccessful individuals. Computational subsampling of 20%, 40%, 60%, and 80% of observed offspring resulted in inaccurate estimates of reproductive variance compared to the pedigree reconstructed with all sampled individuals. With decreased sampling effort, the proportion of inferred unsuccessful individuals was overestimated and the variance in number of offspring per breeder was underestimated. To accurately estimate reproductive variance, we recommend sampling as many individuals as logistically possible during the early stages of population establishment. Further, we recommend careful selection of colonizing individuals as they may be disproportionately represented in subsequent generations. Within the conservation management context, our results highlight important considerations for sample collection and post-release monitoring during population establishment.
Collapse
Affiliation(s)
- Elspeth A McLennan
- School of Life and Environmental Sciences, University of Sydney, Sydney, New South Wales, 2006, Australia
| | - Katherine Belov
- School of Life and Environmental Sciences, University of Sydney, Sydney, New South Wales, 2006, Australia
| | - Carolyn J Hogg
- School of Life and Environmental Sciences, University of Sydney, Sydney, New South Wales, 2006, Australia
| | - Catherine E Grueber
- School of Life and Environmental Sciences, University of Sydney, Sydney, New South Wales, 2006, Australia
- San Diego Zoo Global, PO BOX 120551, San Diego, California, 92112, USA
| |
Collapse
|
23
|
Peyran C, Boissin E, Morage T, Nebot‐Colomer E, Iwankow G, Planes S. Investigating population dynamics from parentage analysis in the highly endangered fan mussel Pinna nobilis. Ecol Evol 2022; 12:e8482. [PMID: 35127019 PMCID: PMC8796933 DOI: 10.1002/ece3.8482] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Revised: 12/02/2021] [Accepted: 12/03/2021] [Indexed: 11/09/2022] Open
Abstract
Understanding dispersal patterns is a major focus for conservation biology as it influences local survival and resilience in case of local disturbance, particularly for sessile species. Dispersal can be assessed through parentage analyses by estimating family structure and self-recruitment. This study documents the family structure of a pelagic spawner, Pinna nobilis, which is facing a major crisis that threatens its survival as most of its populations have been decimated by a parasite, Haplosporidium pinnae. In this context, we focused on a single population (Peyrefite, Banyuls-sur-mer, France) where 640 individuals were sampled in 2011, 2015, and 2018 and genotyped for 22 microsatellite markers. Genetic diversity was high and homogeneous among years, with mean allele numbers ranging between 13.6 and 14.8 and observed heterozygosities (H o) between 0.7121 and 0.7331. Low, but significant, genetic differentiations were found between 2011-2015 and 2015-2018. A parentage analysis described 11 clusters, including one prevailing, and revealed that 46.9% of individuals were involved in half-sib relationships, even between years, suggesting that source populations were recurrent year after year. There were few individuals resampled between years (30 in 2015 and 14 in 2018), indicating a rapid turnover. Considering the large number of half-sib relationships but the low number of relations per individual, we conclude that P. nobilis exhibit homogeneous reproductive success. Self-recruitment was not detected, making this population highly vulnerable as replenishment only relies on connectivity from neighboring populations. In the context of the pandemic caused by H. pinnae, these results will have to be considered when choosing a location to reintroduce individuals in potential future rescue plans.
Collapse
Affiliation(s)
- Claire Peyran
- EPHE – UPVD – CNRSUSR 3278 CRIOBEPSL Research UniversityPerpignanFrance
| | - Emilie Boissin
- EPHE – UPVD – CNRSUSR 3278 CRIOBEPSL Research UniversityPerpignanFrance
- Laboratoire d'Excellence «CORAIL»PerpignanFrance
| | - Titouan Morage
- EPHE – UPVD – CNRSUSR 3278 CRIOBEPSL Research UniversityPerpignanFrance
| | - Elisabet Nebot‐Colomer
- EPHE – UPVD – CNRSUSR 3278 CRIOBEPSL Research UniversityPerpignanFrance
- Instituto Español de Oceanografía (IEO, CSIC), Centro Oceanográfico de BalearesPalma de MallorcaSpain
| | - Guillaume Iwankow
- EPHE – UPVD – CNRSUSR 3278 CRIOBEPSL Research UniversityPerpignanFrance
| | - Serge Planes
- EPHE – UPVD – CNRSUSR 3278 CRIOBEPSL Research UniversityPerpignanFrance
- Laboratoire d'Excellence «CORAIL»PerpignanFrance
| |
Collapse
|
24
|
Houslay TM, Nielsen JF, Clutton-Brock TH. Contributions of genetic and nongenetic sources to variation in cooperative behavior in a cooperative mammal. Evolution 2021; 75:3071-3086. [PMID: 34647327 DOI: 10.1111/evo.14383] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2020] [Revised: 08/17/2021] [Accepted: 09/30/2021] [Indexed: 11/29/2022]
Abstract
The evolution of cooperative behavior is a major area of research among evolutionary biologists and behavioral ecologists, yet there are few estimates of its heritability or its evolutionary potential, and long-term studies of identifiable individuals are required to disentangle genetic and nongenetic components of cooperative behavior. Here, we use long-term data on over 1800 individually recognizable wild meerkats (Suricata suricatta) collected over 30 years and a multigenerational genetic pedigree to partition phenotypic variation in three cooperative behaviors (babysitting, pup feeding, and sentinel behavior) into individual, additive genetic, and other sources, and to assess their repeatability and heritability. In addition to strong effects of sex, age, and dominance status, we found significant repeatability in individual contributions to all three types of cooperative behavior both within and across breeding seasons. Like most other studies of the heritability of social behavior, we found that the heritability of cooperative behavior was low. However, our analysis suggests that a substantial component of the repeatable individual differences in cooperative behavior that we observed was a consequence of additive genetic variation. Our results consequently indicate that cooperative behavior can respond to selection, and suggest scope for further exploration of the genetic basis of social behavior.
Collapse
Affiliation(s)
- Thomas M Houslay
- Department of Zoology, University of Cambridge, Cambridge, CB2 3EJ, United Kingdom.,Kuruman River Reserve, Kalahari Research Centre, Van Zylsrus, 8467, South Africa
| | - Johanna F Nielsen
- Institute of Evolutionary Biology, School of Biological Sciences, University of Edinburgh, Edinburgh, EH9 3JT, United Kingdom
| | - Tim H Clutton-Brock
- Department of Zoology, University of Cambridge, Cambridge, CB2 3EJ, United Kingdom.,Kuruman River Reserve, Kalahari Research Centre, Van Zylsrus, 8467, South Africa.,Mammal Research Institute, Department of Zoology and Entomology, University of Pretoria, Pretoria, 0028, South Africa
| |
Collapse
|
25
|
Evaluation of novel genomic markers for pedigree construction in an isolated population of Weddell Seals (Leptonychotes weddellii) at White Island, Antarctica. CONSERV GENET RESOUR 2021. [DOI: 10.1007/s12686-021-01237-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
26
|
Dyble M, Migliano AB, Page AE, Smith D. Relatedness within and between Agta residential groups. EVOLUTIONARY HUMAN SCIENCES 2021; 3:e49. [PMID: 37588565 PMCID: PMC10427306 DOI: 10.1017/ehs.2021.46] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Theoretical models relating to the evolution of human behaviour usually make assumptions about the kinship structure of social groups. Since humans were hunter-gatherers for most of our evolutionary history, data on the composition of contemporary hunter-gatherer groups has long been used to inform these models. Although several papers have taken a broad view of hunter-gatherer social organisation, it is also useful to explore data from single populations in more depth. Here, we describe patterns of relatedness among the Palanan Agta, hunter-gatherers from the northern Philippines. Across 271 adults, mean relatedness to adults across the population is r = 0.01 and to adult campmates is r = 0.074, estimates that are similar to those seen in other hunter-gatherers. We also report the distribution of kin across camps, relatedness and age differences between spouses, and the degree of shared reproductive interest between camp mates, a measure that incorporates affinal kinship. For both this this measure (s) and standard relatedness (r), we see no major age or sex differences in the relatedness of adults to their campmates, conditions that may reduce the potential for conflicts of interest within social groups.
Collapse
Affiliation(s)
- Mark Dyble
- Department of Anthropology, University College London, London, UK
| | | | - Abigail E. Page
- Department of Population Health, London School of Hygiene and Tropical Medicine, LondonWC1E 7HT, UK
| | - Daniel Smith
- Bristol Medical School (PHS), University of Bristol, Bristol, UK
| |
Collapse
|
27
|
Dickel L, Arcese P, Nietlisbach P, Keller LF, Jensen H, Reid JM. Are immigrants outbred and unrelated? Testing standard assumptions in a wild metapopulation. Mol Ecol 2021; 30:5674-5686. [PMID: 34516687 DOI: 10.1111/mec.16173] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Revised: 08/19/2021] [Accepted: 08/23/2021] [Indexed: 11/30/2022]
Abstract
Immigration into small recipient populations is expected to alleviate inbreeding and increase genetic variation, and hence facilitate population persistence through genetic and/or evolutionary rescue. Such expectations depend on three standard assumptions: that immigrants are outbred, unrelated to existing natives at arrival, and unrelated to each other. These assumptions are rarely explicitly verified, including in key field systems in evolutionary ecology. Yet, they could be violated due to non-random or repeated immigration from adjacent small populations. We combined molecular genetic marker data for 150-160 microsatellite loci with comprehensive pedigree data to test the three assumptions for a song sparrow (Melospiza melodia) population that is a model system for quantifying effects of inbreeding and immigration in the wild. Immigrants were less homozygous than existing natives on average, with mean homozygosity that closely resembled outbred natives. Immigrants can therefore be considered outbred on the focal population scale. Comparisons of homozygosity of real or hypothetical offspring of immigrant-native, native-native and immigrant-immigrant pairings implied that immigrants were typically unrelated to existing natives and to each other. Indeed, immigrants' offspring would be even less homozygous than outbred individuals on the focal population scale. The three standard assumptions of population genetic and evolutionary theory were consequently largely validated. Yet, our analyses revealed some deviations that should be accounted for in future analyses of heterosis and inbreeding depression, implying that the three assumptions should be verified in other systems to probe patterns of non-random or repeated dispersal and facilitate precise and unbiased estimation of key evolutionary parameters.
Collapse
Affiliation(s)
- Lisa Dickel
- Department of Biology, Centre for Biodiversity Dynamics, Norwegian University of Science and Technology, Trondheim, Norway
| | - Peter Arcese
- Department of Forest & Conservation Sciences, University of British Columbia, Vancouver, British Columbia, Canada
| | - Pirmin Nietlisbach
- School of Biological Sciences, Illinois State University, Normal, Illinois, USA
| | - Lukas F Keller
- Department of Evolutionary Biology & Environmental Studies, University of Zurich, Zurich, Switzerland.,Zoological Museum, University of Zurich, Zurich, Switzerland
| | - Henrik Jensen
- Department of Biology, Centre for Biodiversity Dynamics, Norwegian University of Science and Technology, Trondheim, Norway
| | - Jane M Reid
- Department of Biology, Centre for Biodiversity Dynamics, Norwegian University of Science and Technology, Trondheim, Norway.,School of Biological Sciences, University of Aberdeen, Aberdeen, UK
| |
Collapse
|
28
|
Duntsch L, Whibley A, Brekke P, Ewen JG, Santure AW. Genomic data of different resolutions reveal consistent inbreeding estimates but contrasting homozygosity landscapes for the threatened Aotearoa New Zealand hihi. Mol Ecol 2021; 30:6006-6020. [PMID: 34242449 DOI: 10.1111/mec.16068] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Accepted: 07/01/2021] [Indexed: 12/19/2022]
Abstract
Inbreeding can lead to a loss of heterozygosity in a population and when combined with genetic drift may reduce the adaptive potential of a species. However, there is uncertainty about whether resequencing data can provide accurate and consistent inbreeding estimates. Here, we performed an in-depth inbreeding analysis for hihi (Notiomystis cincta), an endemic and nationally vulnerable passerine bird of Aotearoa New Zealand. We first focused on subsampling variants from a reference genome male, and found that low-density data sets tend to miss runs of homozygosity (ROH) in some places and overestimate ROH length in others, resulting in contrasting homozygosity landscapes. Low-coverage resequencing and 50 K SNP array densities can yield comparable inbreeding results to high-coverage resequencing approaches, but the results for all data sets are highly dependent on the software settings employed. Second, we extended our analysis to 10 hihi where low-coverage whole genome resequencing, RAD-seq and SNP array genotypes are available. We inferred ROH and individual inbreeding to evaluate the relative effects of sequencing depth versus SNP density on estimating inbreeding coefficients and found that high rates of missingness downwardly bias both the number and length of ROH. In summary, when using genomic data to evaluate inbreeding, studies must consider that ROH estimates are heavily dependent on analysis parameters, data set density and individual sequencing depth.
Collapse
Affiliation(s)
- Laura Duntsch
- School of Biological Sciences, University of Auckland, Auckland, New Zealand
| | - Annabel Whibley
- School of Biological Sciences, University of Auckland, Auckland, New Zealand
| | - Patricia Brekke
- Institute of Zoology, Zoological Society of London, London, UK
| | - John G Ewen
- Institute of Zoology, Zoological Society of London, London, UK
| | - Anna W Santure
- School of Biological Sciences, University of Auckland, Auckland, New Zealand
| |
Collapse
|
29
|
Jourdan‐Pineau H, Antoine G, Galataud J, Delatte H, Simiand C, Clémencet J. Estimating heritability in honeybees: Comparison of three major methods based on empirical and simulated datasets. Ecol Evol 2021. [DOI: 10.1002/ece3.7389] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
Affiliation(s)
- Hélène Jourdan‐Pineau
- CIRAD UMR PVBMT Saint‐Pierre France
- ASTRE CIRAD, INRAE Univ Montpellier Montpellier France
- CIRAD UMR ASTRE Montpellier France
- UMR PVBMT Université de La Réunion St Denis France
| | - Gaëlle Antoine
- CIRAD UMR PVBMT Saint‐Pierre France
- UMR PVBMT Université de La Réunion St Denis France
| | - Julien Galataud
- CIRAD UMR PVBMT Saint‐Pierre France
- UMR PVBMT Université de La Réunion St Denis France
| | - Hélène Delatte
- CIRAD UMR PVBMT Saint‐Pierre France
- UMR PVBMT Université de La Réunion St Denis France
| | - Christophe Simiand
- CIRAD UMR PVBMT Saint‐Pierre France
- UMR PVBMT Université de La Réunion St Denis France
| | - Johanna Clémencet
- CIRAD UMR PVBMT Saint‐Pierre France
- UMR PVBMT Université de La Réunion St Denis France
| |
Collapse
|
30
|
Hasselgren M, Dussex N, von Seth J, Angerbjörn A, Olsen RA, Dalén L, Norén K. Genomic and fitness consequences of inbreeding in an endangered carnivore. Mol Ecol 2021; 30:2790-2799. [PMID: 33955096 DOI: 10.1111/mec.15943] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2020] [Revised: 03/31/2021] [Accepted: 04/14/2021] [Indexed: 12/28/2022]
Abstract
Reduced fitness through genetic drift and inbreeding is a major threat to small and isolated populations. Although previous studies have generally used genetically verified pedigrees to document effects of inbreeding and gene flow, these often fail to capture the whole inbreeding history of the species. By assembling a draft arctic fox (Vulpes lagopus) genome and resequencing complete genomes of 23 additional foxes born before and after a well-documented immigration event in Scandinavia, we here look into the genomic consequences of inbreeding and genetic rescue. We found a difference in genome-wide diversity, with 18% higher heterozygosity and 81% lower FROH in immigrant F1 compared to native individuals. However, more distant descendants of immigrants (F2, F3) did not show the same pattern. We also found that foxes with lower inbreeding had higher probability to survive their first year of life. Our results demonstrate the important link between genetic variation and fitness as well as the transient nature of genetic rescue. Moreover, our results have implications in conservation biology as they demonstrate that inbreeding depression can effectively be detected in the wild by a genomic approach.
Collapse
Affiliation(s)
| | - Nicolas Dussex
- Department of Zoology, Stockholm University, Stockholm, Sweden.,Department of Bioinformatics and Genetics, Swedish Museum of Natural History, Stockholm, Sweden
| | - Johanna von Seth
- Department of Zoology, Stockholm University, Stockholm, Sweden.,Department of Bioinformatics and Genetics, Swedish Museum of Natural History, Stockholm, Sweden
| | | | - Remi-André Olsen
- Science for Life Laboratory, Department of Biochemistry and Biophysics, Stockholm University, Solna, Sweden
| | - Love Dalén
- Department of Bioinformatics and Genetics, Swedish Museum of Natural History, Stockholm, Sweden
| | - Karin Norén
- Department of Zoology, Stockholm University, Stockholm, Sweden
| |
Collapse
|
31
|
McFarlane S, Manseau M, Wilson PJ. Spatial familial networks to infer demographic structure of wild populations. Ecol Evol 2021; 11:4507-4519. [PMID: 33976826 PMCID: PMC8093719 DOI: 10.1002/ece3.7345] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2020] [Revised: 01/22/2021] [Accepted: 01/26/2021] [Indexed: 11/08/2022] Open
Abstract
In social species, reproductive success and rates of dispersal vary among individuals resulting in spatially structured populations. Network analyses of familial relationships may provide insights on how these parameters influence population-level demographic patterns. These methods, however, have rarely been applied to genetically derived pedigree data from wild populations.Here, we use parent-offspring relationships to construct familial networks from polygamous boreal woodland caribou (Rangifer tarandus caribou) in Saskatchewan, Canada, to inform recovery efforts. We collected samples from 933 individuals at 15 variable microsatellite loci along with caribou-specific primers for sex identification. Using network measures, we assess the contribution of individual caribou to the population with several centrality measures and then determine which measures are best suited to inform on the population demographic structure. We investigate the centrality of individuals from eighteen different local areas, along with the entire population.We found substantial differences in centrality of individuals in different local areas, that in turn contributed differently to the full network, highlighting the importance of analyzing networks at different scales. The full network revealed that boreal caribou in Saskatchewan form a complex, interconnected familial network, as the removal of edges with high betweenness did not result in distinct subgroups. Alpha, betweenness, and eccentricity centrality were the most informative measures to characterize the population demographic structure and for spatially identifying areas of highest fitness levels and family cohesion across the range. We found varied levels of dispersal, fitness, and cohesion in family groups. Synthesis and applications: Our results demonstrate the value of different network measures in assessing genetically derived familial networks. The spatial application of the familial networks identified individuals presenting different fitness levels, short- and long-distance dispersing ability across the range in support of population monitoring and recovery efforts.
Collapse
Affiliation(s)
- Samantha McFarlane
- Environmental and Life Sciences DepartmentTrent UniversityPeterboroughONCanada
- Landscape Science and Technology DivisionEnvironment and Climate Change CanadaOttawaONCanada
| | - Micheline Manseau
- Environmental and Life Sciences DepartmentTrent UniversityPeterboroughONCanada
- Landscape Science and Technology DivisionEnvironment and Climate Change CanadaOttawaONCanada
| | - Paul J. Wilson
- Environmental and Life Sciences DepartmentTrent UniversityPeterboroughONCanada
| |
Collapse
|
32
|
Ahlinder J, Giles BE, García-Gil MR. Life stage-specific inbreeding depression in long-lived Pinaceae species depends on population connectivity. Sci Rep 2021; 11:8834. [PMID: 33893361 PMCID: PMC8065042 DOI: 10.1038/s41598-021-88128-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2020] [Accepted: 04/06/2021] [Indexed: 02/02/2023] Open
Abstract
Inbreeding depression (ID) is a fundamental selective pressure that shapes mating systems and population genetic structures in plants. Although it has been shown that ID varies over the life stages of shorter-lived plants, less is known about how the fitness effects of inbreeding vary across life stages in long-lived species. We conducted a literature survey in the Pinaceae, a tree family known to harbour some of the highest mutational loads ever reported. Using a meta-regression model, we investigated distributions of inbreeding depression over life stages, adjusting for effects of inbreeding levels and the genetic differentiation of populations within species. The final dataset contained 147 estimates of ID across life stages from 41 studies. 44 Fst estimates were collected from 40 peer-reviewed studies for the 18 species to aid genetic differentiation modelling. Partitioning species into fragmented and well-connected groups using Fst resulted in the best way (i.e. trade-off between high goodness-of-fit of the model to the data and reduced model complexity) to incorporate genetic connectivity in the meta-regression analysis. Inclusion of a life stage term and its interaction with the inbreeding coefficient (F) dramatically increased model precision. We observed that the correlation between ID and F was significant at the earliest life stage. Although partitioning of species populations into fragmented and well-connected groups explained little of the between-study heterogeneity, the inclusion of an interaction between life stage and population differentiation revealed that populations with fragmented distributions suffered lower inbreeding depression at early embryonic stages than species with well-connected populations. There was no evidence for increased ID in late life stages in well-connected populations, although ID tended to increase across life stages in the fragmented group. These findings suggest that life stage data should be included in inbreeding depression studies and that inbreeding needs to be managed over life stages in commercial populations of long-lived plants.
Collapse
Affiliation(s)
- Jon Ahlinder
- Division of CBRN Defence and Security, Swedish Defence Research Agency, 901 82, Umeå, Sweden.
| | - Barbara E Giles
- Department of Ecology and Environmental Science, Umeå University, 901 87, Umeå, Sweden
| | - M Rosario García-Gil
- Department of Forest Genetics and Plant Physiology, Swedish University of Agricultural Sciences, 901 87, Umeå, Sweden
| |
Collapse
|
33
|
Martin SA, Lipps GJ, Gibbs HL. Pedigree-based assessment of recent population connectivity in a threatened rattlesnake. Mol Ecol Resour 2021; 21:1820-1832. [PMID: 33738927 DOI: 10.1111/1755-0998.13383] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2020] [Accepted: 02/25/2021] [Indexed: 12/18/2022]
Abstract
Managing endangered species in fragmented landscapes requires estimating dispersal rates between populations over contemporary timescales. Here, we developed a new method for quantifying recent dispersal using genetic pedigree data for close and distant kin. Specifically, we describe an approach that infers missing shared ancestors between pairs of kin in habitat patches across a fragmented landscape. We then applied a stepping-stone model to assign unsampled individuals in the pedigree to probable locations based on minimizing the number of movements required to produce the observed locations in sampled kin pairs. Finally, we used all pairs of reconstructed parent-offspring sets to estimate dispersal rates between habitat patches under a Bayesian model. Our approach measures connectivity over the timescale represented by the small number of generations contained within the pedigree and so is appropriate for estimating the impacts of recent habitat changes due to human activity. We used our method to estimate recent movement between newly discovered populations of threatened Eastern Massasauga rattlesnakes (Sistrurus catenatus) using data from 2996 RAD-based genetic loci. Our pedigree analyses found no evidence for contemporary connectivity between five genetic groups, but, as validation of our approach, showed high dispersal rates between sample sites within a single genetic cluster. We conclude that these five genetic clusters of Eastern Massasauga rattlesnakes have small numbers of resident snakes and are demographically isolated conservation units. More broadly, our methodology can be widely applied to determine contemporary connectivity rates, independent of bias from shared genetic similarity due to ancestry that impacts other approaches.
Collapse
Affiliation(s)
- Scott A Martin
- Department of Evolution, Ecology, and Organismal Biology and Ohio Biodiversity Conservation Partnership, The Ohio State University, Columbus, OH, USA
| | - Gregory J Lipps
- Department of Evolution, Ecology, and Organismal Biology and Ohio Biodiversity Conservation Partnership, The Ohio State University, Columbus, OH, USA
| | - H Lisle Gibbs
- Department of Evolution, Ecology, and Organismal Biology and Ohio Biodiversity Conservation Partnership, The Ohio State University, Columbus, OH, USA
| |
Collapse
|
34
|
Chirgwin E, Connallon T, Monro K. The thermal environment at fertilization mediates adaptive potential in the sea. Evol Lett 2021; 5:154-163. [PMID: 33868711 PMCID: PMC8045945 DOI: 10.1002/evl3.215] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2020] [Revised: 12/04/2020] [Accepted: 01/15/2021] [Indexed: 12/11/2022] Open
Abstract
Additive genetic variation for fitness at vulnerable life stages governs the adaptive potential of populations facing stressful conditions under climate change, and can depend on current conditions as well as those experienced by past stages or generations. For sexual populations, fertilization is the key stage that links one generation to the next, yet the effects of fertilization environment on the adaptive potential at the vulnerable stages that then unfold during development are rarely considered, despite climatic stress posing risks for gamete function and fertility in many taxa and external fertilizers especially. Here, we develop a simple fitness landscape model exploring the effects of environmental stress at fertilization and development on the adaptive potential in early life. We then test our model with a quantitative genetic breeding design exposing family groups of a marine external fertilizer, the tubeworm Galeolaria caespitosa, to a factorial manipulation of current and projected temperatures at fertilization and development. We find that adaptive potential in early life is substantially reduced, to the point of being no longer detectable, by genotype‐specific carryover effects of fertilization under projected warming. We interpret these results in light of our fitness landscape model, and argue that the thermal environment at fertilization deserves more attention than it currently receives when forecasting the adaptive potential of populations confronting climate change.
Collapse
Affiliation(s)
- Evatt Chirgwin
- School of Biological Sciences Monash University Clayton Victoria Australia.,Cesar Australia Parkville Victoria Australia
| | - Tim Connallon
- School of Biological Sciences Monash University Clayton Victoria Australia
| | - Keyne Monro
- School of Biological Sciences Monash University Clayton Victoria Australia
| |
Collapse
|
35
|
Roy D, Lehnert SJ, Venney CJ, Walter R, Heath DD. NGS-μsat: bioinformatics framework supporting high throughput microsatellite genotyping from next generation sequencing platforms. CONSERV GENET RESOUR 2021. [DOI: 10.1007/s12686-020-01186-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
36
|
Levasseur KE, Stapleton SP, Quattro JM. Precise natal homing and an estimate of age at sexual maturity in hawksbill turtles. Anim Conserv 2020. [DOI: 10.1111/acv.12657] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Affiliation(s)
- K. E. Levasseur
- Department of Biological Sciences University of South Carolina Columbia SC USA
- Jumby Bay Hawksbill Project St John’s Antigua and Barbuda
| | - S. P. Stapleton
- Jumby Bay Hawksbill Project St John’s Antigua and Barbuda
- Department of Fisheries, Wildlife and Conservation Biology University of Minnesota St. Paul MN USA
| | - J. M. Quattro
- Department of Biological Sciences University of South Carolina Columbia SC USA
| |
Collapse
|
37
|
Crain J, Larson S, Dorn K, Hagedorn T, DeHaan L, Poland J. Sequenced-based paternity analysis to improve breeding and identify self-incompatibility loci in intermediate wheatgrass (Thinopyrum intermedium). TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2020; 133:3217-3233. [PMID: 32785739 PMCID: PMC7547974 DOI: 10.1007/s00122-020-03666-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/20/2020] [Accepted: 08/03/2020] [Indexed: 05/28/2023]
Abstract
KEY MESSAGE Paternity assignment and genome-wide association analyses for fertility were applied to a Thinopyrum intermedium breeding program. A lack of progeny between combinations of parents was associated with loci near self-incompatibility genes. In outcrossing species such as intermediate wheatgrass (IWG, Thinopyrum intermedium), polycrossing is often used to generate novel recombinants through each cycle of selection, but it cannot track pollen-parent pedigrees and it is unknown how self-incompatibility (SI) genes may limit the number of unique crosses obtained. This study investigated the potential of using next-generation sequencing to assign paternity and identify putative SI loci in IWG. Using a reference population of 380 individuals made from controlled crosses of 64 parents, paternity was assigned with 92% agreement using Cervus software. Using this approach, 80% of 4158 progeny (n = 3342) from a polycross of 89 parents were assigned paternity. Of the 89 pollen parents, 82 (92%) were represented with 1633 unique full-sib families representing 42% of all potential crosses. The number of progeny per successful pollen parent ranged from 1 to 123, with number of inflorescences per pollen parent significantly correlated to the number of progeny (r = 0.54, p < 0.001). Shannon's diversity index, assessing the total number and representation of families, was 7.33 compared to a theoretical maximum of 8.98. To test our hypothesis on the impact of SI genes, a genome-wide association study of the number of progeny observed from the 89 parents identified genetic effects related to non-random mating, including marker loci located near putative SI genes. Paternity testing of polycross progeny can impact future breeding gains by being incorporated in breeding programs to optimize polycross methodology, maintain genetic diversity, and reveal genetic architecture of mating patterns.
Collapse
Affiliation(s)
- Jared Crain
- Department of Plant Pathology, 4024 Throckmorton Plant Sciences Center, Kansas State University, Manhattan, KS, 66506, USA
| | - Steve Larson
- USDA-ARS, Forage and Range Research, Utah State University, Logan, UT, 84322, USA
| | - Kevin Dorn
- Department of Plant Pathology, 4024 Throckmorton Plant Sciences Center, Kansas State University, Manhattan, KS, 66506, USA
- USDA-ARS, Soil Management and Sugarbeet Research, Fort Collins, CO, 80526, USA
| | - Traci Hagedorn
- AAAS Science and Technology Policy Fellow, USDA-APHIS, 4700 River Road, Riverdale, MD, 20737, USA
- Quantitative Scientific Solutions LLC, Arlington, VA, 22203, USA
| | - Lee DeHaan
- The Land Institute, 2440 E. Water Well Rd, Salina, KS, 67401, USA
| | - Jesse Poland
- Department of Plant Pathology, 4024 Throckmorton Plant Sciences Center, Kansas State University, Manhattan, KS, 66506, USA.
- Wheat Genetics Resource Center, Kansas State University, Manhattan, KS, 66506, USA.
| |
Collapse
|
38
|
Valdés-Correcher E, Bourdin A, González-Martínez SC, Moreira X, Galmán A, Castagneyrol B, Hampe A. Leaf chemical defences and insect herbivory in oak: accounting for canopy position unravels marked genetic relatedness effects. ANNALS OF BOTANY 2020; 126:865-872. [PMID: 32463869 PMCID: PMC7539359 DOI: 10.1093/aob/mcaa101] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/09/2019] [Accepted: 05/22/2020] [Indexed: 06/11/2023]
Abstract
BACKGROUND AND AIMS Highly controlled experiments document that plant genetic diversity and relatedness can shape herbivore communities and patterns of herbivory. Evidence from the field is, however, scarce and inconsistent. We assessed whether a genetic signal underlying herbivory can be detected in oak woodlands when accounting for variation at smaller (within-tree) and larger (among-stand) scales. METHODS We tested relationships between tree genetic relatedness, leaf chemical defences and insect herbivory for different canopy layers in 240 trees from 15 pedunculate oak (Quercus robur) forest stands. We partitioned sources of variability in herbivory and defences among stands, individuals and branches. KEY RESULTS Leaf defences, insect herbivory and their relationship differed systematically between the upper and the lower tree canopy. When accounting for this canopy effect, the variation explained by tree genetic relatedness rose from 2.8 to 34.1 % for herbivory and from 7.1 to 13.8 % for leaf defences. The effect was driven by markedly stronger relationships in the upper canopy. CONCLUSIONS Our findings illustrate that considerable effects of the host plant genotype on levels of leaf chemical defences and associated insect herbivory can be detected in natural tree populations when within-individual variation is properly accounted for.
Collapse
Affiliation(s)
| | | | | | - Xoaquín Moreira
- Misión Biológica de Galicia (MBG-CSIC), Pontevedra, Galicia, Spain
| | - Andrea Galmán
- Misión Biológica de Galicia (MBG-CSIC), Pontevedra, Galicia, Spain
| | | | - Arndt Hampe
- INRAE, Univ. Bordeaux, BIOGECO, Cestas, France
| |
Collapse
|
39
|
May SA, McKinney GJ, Hilborn R, Hauser L, Naish KA. Power of a dual-use SNP panel for pedigree reconstruction and population assignment. Ecol Evol 2020; 10:9522-9531. [PMID: 32953080 PMCID: PMC7487233 DOI: 10.1002/ece3.6645] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Accepted: 07/17/2020] [Indexed: 11/28/2022] Open
Abstract
The use of high-throughput, low-density sequencing approaches has dramatically increased in recent years in studies of eco-evolutionary processes in wild populations and domestication in commercial aquaculture. Most of these studies focus on identifying panels of SNP loci for a single downstream application, whereas there have been few studies examining the trade-offs for selecting panels of markers for use in multiple applications. Here, we detail the use of a bioinformatic workflow for the development of a dual-purpose SNP panel for parentage and population assignment, which included identifying putative SNP loci, filtering for the most informative loci for the two tasks, designing effective multiplex PCR primers, optimizing the SNP panel for performance, and performing quality control steps for downstream applications. We applied this workflow to two adjacent Alaskan Sockeye Salmon populations and identified a GTseq panel of 142 SNP loci for parentage and 35 SNP loci for population assignment. Only 50-75 panel loci were necessary for >95% accurate parentage, whereas population assignment success, with all 172 panel loci, ranged from 93.9% to 96.2%. Finally, we discuss the trade-offs and complexities of the decision-making process that drives SNP panel development, optimization, and testing.
Collapse
Affiliation(s)
- Samuel A. May
- School of Aquatic and Fishery SciencesUniversity of WashingtonSeattleWAUSA
| | - Garrett J. McKinney
- NRC Research Associateship ProgramNorthwest Fisheries Science CenterNational Marine Fisheries ServiceNational Oceanic and Atmospheric AdministrationSeattleWAUSA
| | - Ray Hilborn
- School of Aquatic and Fishery SciencesUniversity of WashingtonSeattleWAUSA
| | - Lorenz Hauser
- School of Aquatic and Fishery SciencesUniversity of WashingtonSeattleWAUSA
| | - Kerry A. Naish
- School of Aquatic and Fishery SciencesUniversity of WashingtonSeattleWAUSA
| |
Collapse
|
40
|
Khan A, Patel K, Bhattacharjee S, Sharma S, Chugani AN, Sivaraman K, Hosawad V, Sahu YK, Reddy GV, Ramakrishnan U. Are shed hair genomes the most effective noninvasive resource for estimating relationships in the wild? Ecol Evol 2020; 10:4583-4594. [PMID: 32551045 PMCID: PMC7297754 DOI: 10.1002/ece3.6157] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2019] [Revised: 02/10/2020] [Accepted: 02/17/2020] [Indexed: 01/01/2023] Open
Abstract
Knowledge of relationships in wild populations is critical for better understanding mating systems and inbreeding scenarios to inform conservation strategies for endangered species. To delineate pedigrees in wild populations, study genetic connectivity, study genotype-phenotype associations, trace individuals, or track wildlife trade, many identified individuals need to be genotyped at thousands of loci, mostly from noninvasive samples. This requires us to (a) identify the most common noninvasive sample available from identified individuals, (b) assess the ability to acquire genome-wide data from such samples, and (c) evaluate the quality of such genome-wide data, and its ability to reconstruct relationships between animals within a population.We followed identified individuals from a wild endangered tiger population and found that shed hair samples were the most common compared to scat samples, opportunistically found carcasses, and opportunistic invasive samples. We extracted DNA from these samples, prepared whole genome sequencing libraries, and sequenced genomes from these.Whole genome sequencing methods resulted in between 25%-98% of the genome sequenced for five such samples. Exploratory population genetic analyses revealed that these data were free of holistic biases and could recover expected population structure and relatedness. Mitochondrial genomes recovered matrilineages in accordance with long-term monitoring data. Even with just five samples, we were able to uncover the matrilineage for three individuals with unknown ancestry.In summary, we demonstrated that noninvasive shed hair samples yield adequate quality and quantity of DNA in conjunction with sensitive library preparation methods, and provide reliable data from hundreds of thousands of SNPs across the genome. This makes shed hair an ideal noninvasive resource for studying individual-based genetics of elusive endangered species in the wild.
Collapse
Affiliation(s)
- Anubhab Khan
- National Centre for Biological SciencesTIFRBangaloreIndia
| | | | - Subhadeep Bhattacharjee
- Rajasthan Forest DepartmentJaipurIndia
- Department of GEMESUniversity of JohannesburgJohannesburgSouth Africa
| | | | | | | | | | | | | | | |
Collapse
|
41
|
Kubátová A, Štochlová K, Brandlová K, Jůnková Vymyslická P, Černá Bolfíková B. Comparison of divergent breeding management strategies in two species of semi-captive eland in Senegal. Sci Rep 2020; 10:8841. [PMID: 32483255 PMCID: PMC7264215 DOI: 10.1038/s41598-020-65598-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2019] [Accepted: 05/06/2020] [Indexed: 11/18/2022] Open
Abstract
Breeding management of small populations may have a critical influence on the development of population characteristics in terms of levels of genetic diversity and inbreeding. Two populations of antelope sister species - Critically Endangered Western Derby eland (Tauroragus derbianus derbianus) and non-native Least Concern Cape eland (Taurotragus oryx oryx) bred under different management strategies were studied in Senegal, Western Africa. The aims of the study were to compare the population genetic parameters of the two species and to test for the presence of interspecific hybrids. In total, blood and tissue samples from 76 Western Derby elands and 26 Cape elands were investigated, using 12 microsatellite markers. No hybrid individuals were detected in the sampled animals within the multispecies enclosure in Bandia Reserve, Senegal. The parameters of genetic polymorphism indicated much lower genetic diversity in Western Derby elands compared to Cape elands. On the other hand, the coefficient of inbreeding was low in both species. It is hypothesized that this could be a positive effect of strict population management of Western Derby elands, which, despite the loss of genetic diversity, minimizes inbreeding.
Collapse
Affiliation(s)
- Anna Kubátová
- Department of Animal Science and Food Processing, Faculty of Tropical AgriSciences, Czech University of Life Sciences Prague, Prague, Czech Republic
| | - Kateřina Štochlová
- Department of Animal Science and Food Processing, Faculty of Tropical AgriSciences, Czech University of Life Sciences Prague, Prague, Czech Republic
| | - Karolína Brandlová
- Department of Animal Science and Food Processing, Faculty of Tropical AgriSciences, Czech University of Life Sciences Prague, Prague, Czech Republic
| | - Pavla Jůnková Vymyslická
- Department of Ecology, Faculty of Environmental Sciences, Czech University of Life Sciences Prague, Prague, Czech Republic
| | - Barbora Černá Bolfíková
- Department of Animal Science and Food Processing, Faculty of Tropical AgriSciences, Czech University of Life Sciences Prague, Prague, Czech Republic.
| |
Collapse
|
42
|
Galla SJ, Moraga R, Brown L, Cleland S, Hoeppner MP, Maloney RF, Richardson A, Slater L, Santure AW, Steeves TE. A comparison of pedigree, genetic and genomic estimates of relatedness for informing pairing decisions in two critically endangered birds: Implications for conservation breeding programmes worldwide. Evol Appl 2020; 13:991-1008. [PMID: 32431748 PMCID: PMC7232769 DOI: 10.1111/eva.12916] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2019] [Revised: 12/27/2019] [Accepted: 01/02/2020] [Indexed: 12/18/2022] Open
Abstract
Conservation management strategies for many highly threatened species include conservation breeding to prevent extinction and enhance recovery. Pairing decisions for these conservation breeding programmes can be informed by pedigree data to minimize relatedness between individuals in an effort to avoid inbreeding, maximize diversity and maintain evolutionary potential. However, conservation breeding programmes struggle to use this approach when pedigrees are shallow or incomplete. While genetic data (i.e., microsatellites) can be used to estimate relatedness to inform pairing decisions, emerging evidence indicates this approach may lack precision in genetically depauperate species, and more effective estimates will likely be obtained from genomic data (i.e., thousands of genome-wide single nucleotide polymorphisms, or SNPs). Here, we compare relatedness estimates and subsequent pairing decisions using pedigrees, microsatellites and SNPs from whole-genome resequencing approaches in two critically endangered birds endemic to New Zealand: kakī/black stilt (Himantopus novaezelandiae) and kākāriki karaka/orange-fronted parakeet (Cyanoramphus malherbi). Our findings indicate that SNPs provide more precise estimates of relatedness than microsatellites when assessing empirical parent-offspring and full sibling relationships. Further, our results show that relatedness estimates and subsequent pairing recommendations using PMx are most similar between pedigree- and SNP-based approaches. These combined results indicate that in lieu of robust pedigrees, SNPs are an effective tool for informing pairing decisions, which has important implications for many poorly pedigreed conservation breeding programmes worldwide.
Collapse
Affiliation(s)
- Stephanie J. Galla
- School of Biological SciencesUniversity of CanterburyChristchurchNew Zealand
| | - Roger Moraga
- Tea Break Bioinformatics, LtdPalmerston NorthNew Zealand
| | - Liz Brown
- New Zealand Department of ConservationTwizelNew Zealand
| | | | - Marc P. Hoeppner
- Institute for Clinical Molecular BiologyChristian‐Albrechts‐University KielKielGermany
| | | | - Anne Richardson
- The Isaac Conservation and Wildlife TrustChristchurchNew Zealand
| | - Lyndon Slater
- New Zealand Department of ConservationRangioraNew Zealand
| | - Anna W. Santure
- School of Biological SciencesUniversity of AucklandAucklandNew Zealand
| | - Tammy E. Steeves
- School of Biological SciencesUniversity of CanterburyChristchurchNew Zealand
| |
Collapse
|
43
|
Abstract
Endangered species face a huge array of challenges, including the negative consequences of individuals having to breed with close genetic relatives. But just how costly is inbreeding in small populations? New research from an endangered bird species suggests that considering inbreeding could be crucial for conservation programmes.
Collapse
Affiliation(s)
- Lewis G Spurgin
- School of Biological Sciences, University of East Anglia, NR4 7TJ, UK.
| | - Matthew J G Gage
- School of Biological Sciences, University of East Anglia, NR4 7TJ, UK
| |
Collapse
|
44
|
Alexandre H, Truffaut L, Ducousso A, Louvet JM, Nepveu G, Torres-Ruiz JM, Lagane F, Firmat C, Musch B, Delzon S, Kremer A. In situ estimation of genetic variation of functional and ecological traits in Quercus petraea and Q.robur. TREE GENETICS & GENOMES 2020; 16:32. [PMID: 32256274 PMCID: PMC7136077 DOI: 10.1007/s11295-019-1407-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2019] [Revised: 10/10/2019] [Accepted: 12/08/2019] [Indexed: 05/25/2023]
Abstract
BACKGROUND Predicting the evolutionary potential of natural tree populations requires the estimation of heritability and genetic correlations among traits on which selection acts, as differences in evolutionary success between species may rely on differences for these genetic parameters. In situ estimates are expected to be more accurate than measures done under controlled conditions which do not reflect the natural environmental variance. AIMS The aim of the current study was to estimate three genetic parameters (i.e. heritability, evolvability and genetic correlations) in a natural mixed oak stand composed of Quercus petraea and Quercus robur about 100 years old, for 58 traits of ecological and functional relevance (growth, reproduction, phenology, physiology, resilience, structure, morphology and defence). METHODS First we estimated genetic parameters directly in situ using realized genomic relatedness of adult trees and parentage relationships over two generations to estimate the traits additive variance. Secondly, we benefited from existing ex situ experiments (progeny tests and conservation collection) installed with the same populations, thus allowing comparisons of in situ heritability estimates with more traditional methods. RESULTS Heritability and evolvability estimates obtained with different methods varied substantially and showed large confidence intervals, however we found that in situ were less precise than ex situ estimates, and assessments over two generations (with deeper relatedness) improved estimates of heritability while large sampling sizes are needed for accurate estimations. At the biological level, heritability values varied moderately across different ecological and functional categories of traits, and genetic correlations among traits were conserved over the two species. CONCLUSION We identified limits for using realized genomic relatedness in natural stands to estimate the genetic variance, given the overall low variance of genetic relatedness and the rather low sampling sizes of currently used long term genetic plots in forestry. These limits can be overcome if larger sample sizes are considered, or if the approach is extended over the next generation.
Collapse
Affiliation(s)
| | | | | | | | | | - José M. Torres-Ruiz
- BIOGECO, INRA, Univ. Bordeaux, 33610 Cestas, France
- PIAF, Univ. Clermont-Auvergne, INRA, 63000 Clermont-Ferrand, France
| | | | - Cyril Firmat
- BIOGECO, INRA, Univ. Bordeaux, 33610 Cestas, France
- URP3F, INRA, 86600 Lusignan, France
| | - Brigitte Musch
- BIOFORA, INRA, ONF, CS 40001 Ardon 45075 Orléans Cedex 2, France
| | | | | |
Collapse
|
45
|
Josiane M, Gilbert H, Johann D. Genetic Parameters for Growth and Kid Survival of Indigenous Goat under Smallholding System of Burundi. Animals (Basel) 2020; 10:E135. [PMID: 31952116 PMCID: PMC7023424 DOI: 10.3390/ani10010135] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2019] [Revised: 12/09/2019] [Accepted: 12/12/2019] [Indexed: 11/29/2022] Open
Abstract
The goal of this study was to estimate genetic parameters for the growth, conformation, and survival of goat kids raised in smallholder farming systems in Burundi. To do this, measurements were taken on live weight, thoracic perimeter, length, and height at birth (n = 1538 animals), at 3 months (n = 1270 animals), at 6 months (n = 992 animals), at 9 months (n = 787 animals), and at 12 months (n = 705 animals). Kids were born between 2016 and 2019, from 645 dams and 106 bucks. Three bivariate animal models were used to estimate genetic parameters of body weight and conformation measurements as potential indicators of this weight. According to the measure, heritability was estimated between 15 and 17% and genetic correlations between 65 and 79%. An accelerated failure time animal model was used to estimate the heritability of survival for kids under one year, adjusted for birth weight. Goat survival was significantly prolonged by 0.64 days per kilogram of birth weight. The estimated heritability for this trait was 2%. Overall, these results suggest that a selection program could be implemented to improve animal growth, either directly on weight or indirectly on conformational traits. At the same time, efforts need to be made to improve rearing conditions to increase the survival of kids.
Collapse
Affiliation(s)
- Manirakiza Josiane
- Department of Animal Health and Productions, Faculty of Agronomy and Bioengineering, University of Burundi, Bujumbura B.P. 2940, Burundi;
- Fundamental and Applied Research for Animals and Health, Faculty of Veterinary Medicine, University of Liège, 6 Avenue de Cureghem, 4000 Liège, Belgium;
| | - Hatungumukama Gilbert
- Department of Animal Health and Productions, Faculty of Agronomy and Bioengineering, University of Burundi, Bujumbura B.P. 2940, Burundi;
| | - Detilleux Johann
- Fundamental and Applied Research for Animals and Health, Faculty of Veterinary Medicine, University of Liège, 6 Avenue de Cureghem, 4000 Liège, Belgium;
| |
Collapse
|
46
|
Moss JB, Gerber GP, Welch ME. Heterozygosity-Fitness Correlations Reveal Inbreeding Depression in Neonatal Body Size in a Critically Endangered Rock Iguana. J Hered 2019; 110:818-829. [PMID: 31617903 DOI: 10.1093/jhered/esz060] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2019] [Accepted: 10/09/2019] [Indexed: 01/16/2023] Open
Abstract
Inbreeding depression, though challenging to identify in nature, may play an important role in regulating the dynamics of small and isolated populations. Conversely, greater expression of genetic load can enhance opportunities for natural selection. Conditional expression concentrates these opportunities for selection and may lead to failure of detection. This study investigates the possibility for age-dependent expression of inbreeding depression in a critically endangered population of rock iguanas, Cyclura nubila caymanensis. We employ heterozygote-fitness correlations to examine the contributions of individual genetic factors to body size, a fitness-related trait. Nonsignificant reductions in homozygosity (up to 7%) were detected between neonates and individuals surviving past their first year, which may reflect natural absorption of inbreeding effects by this small, fecund population. The majority of variation in neonate body size was attributed to maternal or environmental effects (i.e., clutch identity and incubation length); however, heterozygosity across 22 microsatellite loci also contributed significantly and positively to model predictions. Conversely, effects of heterozygosity on fitness were not detectable when adults were examined, suggesting that inbreeding depression in body size may be age dependent in this taxon. Overall, these findings emphasize the importance of taking holistic, cross-generational approaches to genetic monitoring of endangered populations.
Collapse
Affiliation(s)
- Jeanette B Moss
- Biological Sciences Department, Mississippi State University, Mississippi State, MS
| | - Glenn P Gerber
- Institute for Conservation Research, San Diego Zoo Global, Escondido, CA
| | - Mark E Welch
- Biological Sciences Department, Mississippi State University, Mississippi State, MS
| |
Collapse
|
47
|
Salles OC, Almany GR, Berumen ML, Jones GP, Saenz‐Agudelo P, Srinivasan M, Thorrold SR, Pujol B, Planes S. Strong habitat and weak genetic effects shape the lifetime reproductive success in a wild clownfish population. Ecol Lett 2019; 23:265-273. [DOI: 10.1111/ele.13428] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2019] [Revised: 10/11/2019] [Accepted: 10/24/2019] [Indexed: 12/19/2022]
Affiliation(s)
- Océane C. Salles
- PSL Université Paris: EPHE‐UPVD‐CNRS USR 3278 CRIOBE Université de Perpignan 52 Avenue Paul Alduy 66860 Perpignan Cedex France
- Laboratoire d’Excellence ‘CORAIL’ 58 avenue Paul Alduy F‐66360 Perpignan France
| | - Glenn R. Almany
- PSL Université Paris: EPHE‐UPVD‐CNRS USR 3278 CRIOBE Université de Perpignan 52 Avenue Paul Alduy 66860 Perpignan Cedex France
- Laboratoire d’Excellence ‘CORAIL’ 58 avenue Paul Alduy F‐66360 Perpignan France
| | - Michael L. Berumen
- Red Sea Research Center Division of Biological and Environmental Sciences and Engineering King Abdullah University of Science and Technology Thuwal 23955 Saudi Arabia
| | - Geoffrey P. Jones
- ARC Centre of Excellence for Coral Reef Studies, and College of Science and Engineering James Cook University Townsville Qld 4811 Australia
| | - Pablo Saenz‐Agudelo
- Instituto de Ciencias Ambientales y Evolutivas Universidad Austral de Chile 5090000 Valvidia Chile
| | - Maya Srinivasan
- ARC Centre of Excellence for Coral Reef Studies, and College of Science and Engineering James Cook University Townsville Qld 4811 Australia
| | - Simon R. Thorrold
- Biology Department Woods Hole Oceanographic Institution Woods Hole MA 02543 USA
| | - Benoit Pujol
- PSL Université Paris: EPHE‐UPVD‐CNRS USR 3278 CRIOBE Université de Perpignan 52 Avenue Paul Alduy 66860 Perpignan Cedex France
- Laboratoire d’Excellence ‘CORAIL’ 58 avenue Paul Alduy F‐66360 Perpignan France
| | - Serge Planes
- PSL Université Paris: EPHE‐UPVD‐CNRS USR 3278 CRIOBE Université de Perpignan 52 Avenue Paul Alduy 66860 Perpignan Cedex France
- Laboratoire d’Excellence ‘CORAIL’ 58 avenue Paul Alduy F‐66360 Perpignan France
| |
Collapse
|
48
|
Bonnet T, Morrissey MB, Morris A, Morris S, Clutton-Brock TH, Pemberton JM, Kruuk LEB. The role of selection and evolution in changing parturition date in a red deer population. PLoS Biol 2019; 17:e3000493. [PMID: 31689300 PMCID: PMC6830748 DOI: 10.1371/journal.pbio.3000493] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2019] [Accepted: 10/02/2019] [Indexed: 11/17/2022] Open
Abstract
Changing environmental conditions cause changes in the distributions of phenotypic traits in natural populations. However, determining the mechanisms responsible for these changes—and, in particular, the relative contributions of phenotypic plasticity versus evolutionary responses—is difficult. To our knowledge, no study has yet reported evidence that evolutionary change underlies the most widely reported phenotypic response to climate change: the advancement of breeding times. In a wild population of red deer, average parturition date has advanced by nearly 2 weeks in 4 decades. Here, we quantify the contribution of plastic, demographic, and genetic components to this change. In particular, we quantify the role of direct phenotypic plasticity in response to increasing temperatures and the role of changes in the population structure. Importantly, we show that adaptive evolution likely played a role in the shift towards earlier parturition dates. The observed rate of evolution was consistent with a response to selection and was less likely to be due to genetic drift. Our study provides a rare example of observed rates of genetic change being consistent with theoretical predictions, although the consistency would not have been detected with a solely phenotypic analysis. It also provides, to our knowledge, the first evidence of both evolution and phenotypic plasticity contributing to advances in phenology in a changing climate. Adaptive genetic evolution and phenotypic plasticity both contribute to a two-week advancement of birth dates earlier in spring in a deer population subject to temperature warming over four decades.
Collapse
Affiliation(s)
- Timothée Bonnet
- Research School of Biology, The Australian National University, Canberra, Australia
| | | | - Alison Morris
- Institute of Evolutionary Biology, School of Biological Sciences, University of Edinburgh, Edinburgh, United Kingdom
| | - Sean Morris
- Institute of Evolutionary Biology, School of Biological Sciences, University of Edinburgh, Edinburgh, United Kingdom
| | | | - Josephine M Pemberton
- Institute of Evolutionary Biology, School of Biological Sciences, University of Edinburgh, Edinburgh, United Kingdom
| | - Loeske E B Kruuk
- Research School of Biology, The Australian National University, Canberra, Australia
| |
Collapse
|
49
|
Fitak RR, Rinkevich SE, Culver M. Genome-Wide Analysis of SNPs Is Consistent with No Domestic Dog Ancestry in the Endangered Mexican Wolf (Canis lupus baileyi). J Hered 2019; 109:372-383. [PMID: 29757430 DOI: 10.1093/jhered/esy009] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2017] [Accepted: 02/28/2018] [Indexed: 11/13/2022] Open
Abstract
The Mexican gray wolf (Canis lupus baileyi) was historically distributed throughout the southwestern United States and northern Mexico. Extensive predator removal campaigns during the early 20th century, however, resulted in its eventual extirpation by the mid 1980s. At this time, the Mexican wolf existed only in 3 separate captive lineages (McBride, Ghost Ranch, and Aragón) descended from 3, 2, and 2 founders, respectively. These lineages were merged in 1995 to increase the available genetic variation, and Mexican wolves were reintroduced into Arizona and New Mexico in 1998. Despite the ongoing management of the Mexican wolf population, it has been suggested that a proportion of the Mexican wolf ancestry may be recently derived from hybridization with domestic dogs. In this study, we genotyped 87 Mexican wolves, including individuals from all 3 captive lineages and cross-lineage wolves, for more than 172000 single nucleotide polymorphisms. We identified levels of genetic variation consistent with the pedigree record and effects of genetic rescue. To identify the potential to detect hybridization with domestic dogs, we compared our Mexican wolf genotypes with those from studies of domestic dogs and other gray wolves. The proportion of Mexican wolf ancestry assigned to domestic dogs was only between 0.06% (SD 0.23%) and 7.8% (SD 1.0%) for global and local ancestry estimates, respectively; and was consistent with simulated levels of incomplete lineage sorting. Overall, our results suggested that Mexican wolves lack biologically significant ancestry with dogs and have useful implications for the conservation and management of this endangered wolf subspecies.
Collapse
Affiliation(s)
| | | | - Melanie Culver
- US Geological Survey Arizona Cooperative Fish and Wildlife Research Unit, School of Natural Resources and the Environment, University of Arizona, Tucson, AZ
| |
Collapse
|
50
|
Hasselgren M, Norén K. Inbreeding in natural mammal populations: historical perspectives and future challenges. Mamm Rev 2019. [DOI: 10.1111/mam.12169] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Affiliation(s)
- Malin Hasselgren
- Department of Zoology Stockholm University 106 91 Stockholm Sweden
| | - Karin Norén
- Department of Zoology Stockholm University 106 91 Stockholm Sweden
| |
Collapse
|