1
|
Pérez-Llorca M, Hewett A, de la Peña Pita A, Hailer F, Sánchez Vilas J. Sexual dimorphism at different life stages: early life sexual differences in root growth in Silene latifolia. PLANT BIOLOGY (STUTTGART, GERMANY) 2024. [PMID: 39395160 DOI: 10.1111/plb.13723] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Accepted: 09/05/2024] [Indexed: 10/14/2024]
Abstract
Male and female dioecious plants often show sexual dimorphism, differing in morphological, physiological and life-history traits. Most previous studies have focused on differences between males and females during or after reproduction, paying little attention to the pre-reproductive stages of the individuals. Here we assessed the response of male and female individuals of the dioecious plant Silene latifolia to abiotic stress at different life stages, including pre-reproductive (i.e. seedlings and young plants) and reproductive individuals. We measured growth, resource allocation and discrimination against 13C under nutrient deficiency, water stress, as well as their interaction. We observed sexual dimorphism in root growth, with female seedlings having longer main roots than male plants. Pre-reproductive male and female plants also responded differently, in terms of root allocation, to nutrient and water availability. At reproduction, females grew more roots than males when water was not limiting. These differences could help explain the female-skewed sex ratios found in natural populations of S. latifolia. We found no evidence of sexual dimorphism in aboveground dry mass, although females had longer leaves than males at the seedling stage. We conclude that sexual dimorphism in S. latifolia may occur not as a consequence of reproduction, but well before it.
Collapse
Affiliation(s)
- M Pérez-Llorca
- Department of Biology, Health and the Environment, Faculty of Pharmacy, University of Barcelona, Barcelona, Spain
| | - A Hewett
- Department of Ecology & Evolution, University of Lausanne, Lausanne, Switzerland
- Swiss Institute of BioInformatics, University of Lausanne, Lausanne, Switzerland
| | - A de la Peña Pita
- Organisms and Environment, School of Biosciences, Sir Martin Evans Building, Cardiff University, Cardiff, UK
| | - F Hailer
- Organisms and Environment, School of Biosciences, Sir Martin Evans Building, Cardiff University, Cardiff, UK
| | - J Sánchez Vilas
- Organisms and Environment, School of Biosciences, Sir Martin Evans Building, Cardiff University, Cardiff, UK
- Área de Ecología, Facultad de Biología, Avda. Lope Gómez de Marzoa s/n, Universidade de Santiago de Compostela, Santiago de Compostela, Spain
| |
Collapse
|
2
|
Barreto E, Boehm MMA, Ogutcen E, Abrahamczyk S, Kessler M, Bascompte J, Dellinger AS, Bello C, Dehling DM, Duchenne F, Kaehler M, Lagomarsino LP, Lohmann LG, Maglianesi MA, Morlon H, Muchhala N, Ornelas JF, Perret M, Salinas NR, Smith SD, Vamosi JC, Varassin IG, Graham CH. Macroevolution of the plant-hummingbird pollination system. Biol Rev Camb Philos Soc 2024; 99:1831-1847. [PMID: 38705863 DOI: 10.1111/brv.13094] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Revised: 04/19/2024] [Accepted: 04/26/2024] [Indexed: 05/07/2024]
Abstract
Plant-hummingbird interactions are considered a classic example of coevolution, a process in which mutually dependent species influence each other's evolution. Plants depend on hummingbirds for pollination, whereas hummingbirds rely on nectar for food. As a step towards understanding coevolution, this review focuses on the macroevolutionary consequences of plant-hummingbird interactions, a relatively underexplored area in the current literature. We synthesize prior studies, illustrating the origins and dynamics of hummingbird pollination across different angiosperm clades previously pollinated by insects (mostly bees), bats, and passerine birds. In some cases, the crown age of hummingbirds pre-dates the plants they pollinate. In other cases, plant groups transitioned to hummingbird pollination early in the establishment of this bird group in the Americas, with the build-up of both diversities coinciding temporally, and hence suggesting co-diversification. Determining what triggers shifts to and away from hummingbird pollination remains a major open challenge. The impact of hummingbirds on plant diversification is complex, with many tropical plant lineages experiencing increased diversification after acquiring flowers that attract hummingbirds, and others experiencing no change or even a decrease in diversification rates. This mixed evidence suggests that other extrinsic or intrinsic factors, such as local climate and isolation, are important covariables driving the diversification of plants adapted to hummingbird pollination. To guide future studies, we discuss the mechanisms and contexts under which hummingbirds, as a clade and as individual species (e.g. traits, foraging behaviour, degree of specialization), could influence plant evolution. We conclude by commenting on how macroevolutionary signals of the mutualism could relate to coevolution, highlighting the unbalanced focus on the plant side of the interaction, and advocating for the use of species-level interaction data in macroevolutionary studies.
Collapse
Affiliation(s)
- Elisa Barreto
- Swiss Federal Institute for Forest, Snow and Landscape Research WSL, Zürcherstrasse 111, Birmensdorf, 8903, Switzerland
| | - Mannfred M A Boehm
- Biodiversity Research Centre, University of British Columbia, 2212 Main Mall, Vancouver, BC, Canada
| | - Ezgi Ogutcen
- Department of Environment and Biodiversity, Paris Lodron University of Salzburg, Hellbrunner Straße 34, Salzburg, 5020, Austria
| | - Stefan Abrahamczyk
- Nees Institute for Biodiversity of Plant, University of Bonn, Meckenheimer Allee 170, Bonn, 53115, Germany
- State Museum of Natural History Stuttgart, Botany Department, Rosenstein 1, Stuttgart, 70191, Germany
| | - Michael Kessler
- Systematic and Evolutionary Botany, University of Zurich, Zollikerstrasse 107, Zurich, 8008, Switzerland
| | - Jordi Bascompte
- Department of Evolutionary Biology and Environmental Studies, University of Zurich, Winterthurestrasse 190, Zurich, 8057, Switzerland
| | - Agnes S Dellinger
- Department of Botany and Biodiversity Research, University of Vienna, Rennweg 14, Vienna, 1030, Austria
| | - Carolina Bello
- Department of Environmental Systems Science, Institute of Integrative Biology, ETH Zurich, Universitätstrasse 16, Zurich, 8092, Switzerland
| | - D Matthias Dehling
- Swiss Federal Institute for Forest, Snow and Landscape Research WSL, Zürcherstrasse 111, Birmensdorf, 8903, Switzerland
- Securing Antarctica's Environmental Future, School of Biological Sciences, Monash University, 25 Rainforest Walk, Clayton, 3800, Victoria, Australia
| | - François Duchenne
- Swiss Federal Institute for Forest, Snow and Landscape Research WSL, Zürcherstrasse 111, Birmensdorf, 8903, Switzerland
| | - Miriam Kaehler
- Departamento de Botânica, Universidade Federal do Paraná, Avenida Coronel Francisco H. dos Santos 100, Curitiba, 81531-980, Brazil
| | - Laura P Lagomarsino
- Department of Biological Sciences, Shirley C. Tucker Herbarium, Louisiana State University, Life Science Annex Building A257, Baton Rouge, 70803, LA, USA
| | - Lúcia G Lohmann
- Departamento de Botânica, Instituto de Biociências, Universidade de São Paulo, Rua do Matão 277, Butantã, São Paulo, 05508-090, Brazil
- Department of Integrative Biology, University and Jepson Herbaria, University of California, Berkeley, 1001 Valley Life Sciences Building, Berkeley, 94720-2465, CA, USA
| | - María A Maglianesi
- Escuela de Ciencias Exactas y Naturales, Universidad Estatal a Distancia, San José, 474-2050, Costa Rica
| | - Hélène Morlon
- Institut de Biologie de l'École Normale Supérieure (IBENS), École Normale Supérieure, CNRS, INSERM, Université PSL, UMR 8197, 46 rue d'Ulm, Paris, 75005, France
| | - Nathan Muchhala
- Department of Biology, University of Missouri - St. Louis, St. Louis, 63121, MO, USA
| | - Juan Francisco Ornelas
- Departamento de Biología Evolutiva, Instituto de Ecología, A.C. (INECOL), Xalapa, Veracruz, 91073, Mexico
| | - Mathieu Perret
- Department of Plant Sciences, Conservatoire et Jardin Botaniques de Genève, University of Geneva, Chem. de l'Impératrice 1, 1292 Pregny-Chambésy, Geneva, Switzerland
| | - Nelson R Salinas
- Pfizer Plant Research Laboratory, New York Botanical Garden, 2900 Southern Blvd., Bronx, New York City, 10458, NY, USA
| | - Stacey D Smith
- Department of Ecology and Evolutionary Biology, University of Colorado-Boulder, 1900 Pleasant St, Boulder, 80302, CO, USA
| | - Jana C Vamosi
- Department of Biological Sciences, University of Calgary, 2500 University Drive NW, Calgary, T2N1N4, AB, Canada
| | - Isabela G Varassin
- Swiss Federal Institute for Forest, Snow and Landscape Research WSL, Zürcherstrasse 111, Birmensdorf, 8903, Switzerland
- Departamento de Botânica, Universidade Federal do Paraná, Avenida Coronel Francisco H. dos Santos 100, Curitiba, 81531-980, Brazil
| | - Catherine H Graham
- Swiss Federal Institute for Forest, Snow and Landscape Research WSL, Zürcherstrasse 111, Birmensdorf, 8903, Switzerland
| |
Collapse
|
3
|
Cho MS, Kim SH, Danton P, Kim SC, Stuessy TF, Crawford DJ. Inter-archipelago dispersal, anagenetic evolution, and the origin of a rare, enigmatic plant genus on a remote oceanic archipelago. AMERICAN JOURNAL OF BOTANY 2024:e16403. [PMID: 39262099 DOI: 10.1002/ajb2.16403] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Revised: 06/14/2024] [Accepted: 06/14/2024] [Indexed: 09/13/2024]
Abstract
PREMISE Island plants have long interested biologists because of their distinctive morphological features and their isolation on small land areas in vast oceans. Studies of insular endemics may include identifying their ancestors, tracing their dispersal to islands, and describing their evolution on islands, including characters adaptive to island life. Thamnoseris is a monospecific genus endemic to the Desventuradas Islands, Chile. Its origins and relationships are unresolved, given the challenges of getting to the islands and accessing plants there. METHODS Sequences from ITS of nrDNA and the complete chloroplast genome were employed to resolve phylogenetic relationships of Thamnoseris. RESULTS Phylogenetic analyses of nuclear and chloroplast sequences showed Thamnoseris nested within or sister to Dendroseris, the largest endemic genus in the Juan Fernández Islands. CONCLUSIONS Thamnoseris evolved from a common ancestor of all or most species of Dendroseris prior to the diversification of Dendroseris in the Juan Fernández archipelago. The ancestor of Thamnoseris dispersed to the Desventuradas archipelago, which consists of the islands San Ambrosio and San Félix, within the past 3 Ma (the age of San Ambrosio). This is the only known example of possible plant dispersa\l between the Juan Fernández and Desventuradas Islands. We also mention two less likely biogeographic scenarios for the origin of Thamnoseris, which has features not seen in Dendroseris: small capitula with yellow florets; style branches barely divergent; and basally swollen subtending involucral bracts, all features associated with selfing and reduced dispersal. Goats and rabbits (now removed) reduced T. lacerata, once very abundant on the Desventuradas Islands, to several plants, making it of extreme conservation concern and worthy of further study.
Collapse
Affiliation(s)
- Myong-Suk Cho
- Department of Biological Sciences, Sungkyunkwan University, Suwon, Korea
| | - Seon-Hee Kim
- Department of Botany, Graduate School of Science, Kyoto University, Kyoto, Japan
| | | | - Seung-Chul Kim
- Department of Biological Sciences, Sungkyunkwan University, Suwon, Korea
| | - Tod F Stuessy
- Herbarium and Department of Evolution, Ecology, and Organismal Biology, The Ohio State University, Columbus, 43212, Ohio, USA
- Department of Botany and Biodiversity Research, University of Vienna, Vienna, Austria
| | - Daniel J Crawford
- Department of Ecology and Evolutionary Biology, and the Biodiversity Institute, The University of Kansas, Lawrence, 66045, Kansas, USA
| |
Collapse
|
4
|
Wenzell KE, Zhang JY, Skogen KA, Fant JB. Adaptive generalization in pollination systems: Hawkmoths increase fitness to long-tubed flowers, but secondary pollinators remain important. Ecol Evol 2024; 14:e11443. [PMID: 38783846 PMCID: PMC11112297 DOI: 10.1002/ece3.11443] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Revised: 05/02/2024] [Accepted: 05/03/2024] [Indexed: 05/25/2024] Open
Abstract
Selection on floral traits by animal pollinators is important in the evolution of flowering plants, yet whether floral divergence requires specialized pollination remains uncertain. Longer floral tubes, a trait associated with long-tongued pollinators, can also exclude other pollinators from accessing rewards, a potential mechanism for specialization. Across most of its range, Castilleja sessiliflora displays much longer corollas than most Castilleja species, though tube length varies geographically and correlates partially with hawkmoth visitation. To assess whether long corolla tubes reflect adaptation to hawkmoth pollinators, we performed a day/night pollinator exclusion experiment in nine natural populations that varied in corolla length across the range of C. sessiliflora and short-tubed members of the parapatric C. purpurea complex. We compared the fitness contributions of nocturnal and diurnal visitors, revealing that long-tubed populations visited predominantly by hawkmoths experienced greater fruit set at night, in contrast with short-tubed populations or those visited mainly by diurnal pollinators. Next, leveraging a range-wide multiyear dataset of pollinator visitation to these species, we identify that hawkmoth visitation is associated with increased fitness in long-tubed populations overall, and that long tubes are associated with less diverse visitor assemblages. Thus, long corollas represent an adaptation to hawkmoth pollination at the exclusion of diverse pollinators. Nonetheless, while hawkmoths were scarce in the northern range, secondary diurnal pollinators contributed to fruit set across the range, providing reproductive assurance despite possible trait mismatch. This study illustrates adaptive generalization in pollination systems and that floral divergence may proceed along a continuum of generalized and specialized pollinator interactions.
Collapse
Affiliation(s)
- Katherine E. Wenzell
- Botany DepartmentCalifornia Academy of SciencesSan FranciscoCaliforniaUSA
- Department of EntomologyUniversity of MarylandCollege ParkMarylandUSA
| | - Johnathan Y. Zhang
- Interdisciplinary Programs BioinformaticsBoston UniversityBostonMassachusettsUSA
| | - Krissa A. Skogen
- Department of Biological SciencesClemson UniversityClemsonSouth CarolinaUSA
| | - Jeremie B. Fant
- Program in Plant Biology and ConservationNorthwestern UniversityEvanstonIllinoisUSA
- Negaunee Institute for Plant Conservation Science and ActionChicago Botanic GardenGlencoeIllinoisUSA
| |
Collapse
|
5
|
Simón-Porcar V, Escudero M, Santos-Gally R, Sauquet H, Schönenberger J, Johnson SD, Arroyo J. Convergent evolutionary patterns of heterostyly across angiosperms support the pollination-precision hypothesis. Nat Commun 2024; 15:1237. [PMID: 38336937 PMCID: PMC10858259 DOI: 10.1038/s41467-024-45118-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Accepted: 01/12/2024] [Indexed: 02/12/2024] Open
Abstract
Since the insights by Charles Darwin, heterostyly, a floral polymorphism with morphs bearing stigmas and anthers at reciprocal heights, has become a model system for the study of natural selection. Based on his archetypal heterostylous flower, including regular symmetry, few stamens and a tube, Darwin hypothesised that heterostyly evolved to promote outcrossing through efficient pollen transfer between morphs involving different areas of a pollinator's body, thus proposing his seminal pollination-precision hypothesis. Here we update the number of heterostylous and other style-length polymorphic taxa to 247 genera belonging to 34 families, notably expanding known cases by 20%. Using phylogenetic and comparative analyses across the angiosperms, we show numerous independent origins of style-length polymorphism associated with actinomorphic, tubular flowers with a low number of sex organs, stamens fused to the corolla, and pollination by long-tongued insects. These associations provide support for the Darwinian pollination-precision hypothesis as a basis for convergent evolution of heterostyly across angiosperms.
Collapse
Affiliation(s)
- Violeta Simón-Porcar
- Departamento de Biología Vegetal y Ecología, Facultad de Biología, Universidad de Sevilla, E-41080, Sevilla, Spain.
- School of Life Sciences, University of KwaZulu-Natal, P Bag X01, Scottsville, Pietermaritzburg, 3209, South Africa.
| | - Marcial Escudero
- Departamento de Biología Vegetal y Ecología, Facultad de Biología, Universidad de Sevilla, E-41080, Sevilla, Spain
| | | | - Hervé Sauquet
- National Herbarium of New South Wales, Royal Botanic Gardens and Domain Trust, Sydney, NSW, Australia
| | - Jürg Schönenberger
- Department of Botany and Biodiversity Research, University of Vienna, Rennweg 14, 1030, Vienna, Austria
| | - Steven D Johnson
- School of Life Sciences, University of KwaZulu-Natal, P Bag X01, Scottsville, Pietermaritzburg, 3209, South Africa
| | - Juan Arroyo
- Departamento de Biología Vegetal y Ecología, Facultad de Biología, Universidad de Sevilla, E-41080, Sevilla, Spain.
| |
Collapse
|
6
|
Stephens RE, Gallagher RV, Dun L, Cornwell W, Sauquet H. Insect pollination for most of angiosperm evolutionary history. THE NEW PHYTOLOGIST 2023; 240:880-891. [PMID: 37276503 DOI: 10.1111/nph.18993] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Accepted: 04/30/2023] [Indexed: 06/07/2023]
Abstract
Most contemporary angiosperms (flowering plants) are insect pollinated, but pollination by wind, water or vertebrates occurs in many lineages. Though evidence suggests insect pollination may be ancestral in angiosperms, this is yet to be assessed across the full phylogeny. Here, we reconstruct the ancestral pollination mode of angiosperms and quantify the timing and environmental associations of pollination shifts. We use a robust, dated phylogeny and species-level sampling across all angiosperm families to model the evolution of pollination modes. Data on the pollination system or syndrome of 1160 species were collated from the primary literature. Angiosperms were ancestrally insect pollinated, and insects have pollinated angiosperms for c. 86% of angiosperm evolutionary history. Wind pollination evolved at least 42 times, with few reversals to animal pollination. Transitions between insect and vertebrate pollination were more frequent: vertebrate pollination evolved at least 39 times from an insect-pollinated ancestor with at least 26 reversals. The probability of wind pollination increases with habitat openness (measured by Leaf Area Index) and distance from the equator. Our reconstruction gives a clear overview of pollination macroevolution across angiosperms, highlighting the long history of interactions between insect pollinators and angiosperms still vital to biodiversity today.
Collapse
Affiliation(s)
- Ruby E Stephens
- School of Natural Sciences, Macquarie University, Sydney, NSW, 2109, Australia
- National Herbarium of New South Wales (NSW), Royal Botanic Gardens and Domain Trust, Sydney, NSW, 2000, Australia
| | - Rachael V Gallagher
- School of Natural Sciences, Macquarie University, Sydney, NSW, 2109, Australia
- Hawkesbury Institute for the Environment, Western Sydney University, Richmond, NSW, 2753, Australia
| | - Lily Dun
- National Herbarium of New South Wales (NSW), Royal Botanic Gardens and Domain Trust, Sydney, NSW, 2000, Australia
- Evolution and Ecology Research Centre, University of New South Wales, Sydney, NSW, 2052, Australia
| | - Will Cornwell
- Evolution and Ecology Research Centre, University of New South Wales, Sydney, NSW, 2052, Australia
| | - Hervé Sauquet
- National Herbarium of New South Wales (NSW), Royal Botanic Gardens and Domain Trust, Sydney, NSW, 2000, Australia
- Evolution and Ecology Research Centre, University of New South Wales, Sydney, NSW, 2052, Australia
| |
Collapse
|
7
|
Kriebel R, Rose JP, Bastide P, Jolles D, Reginato M, Sytsma KJ. The evolution of Ericaceae flowers and their pollination syndromes at a global scale. AMERICAN JOURNAL OF BOTANY 2023; 110:e16220. [PMID: 37551426 DOI: 10.1002/ajb2.16220] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 07/10/2023] [Accepted: 07/12/2023] [Indexed: 08/09/2023]
Abstract
PREMISE Floral evolution in large clades is difficult to study not only because of the number of species involved, but also because they often are geographically widespread and include a diversity of outcrossing pollination systems. The cosmopolitan blueberry family (Ericaceae) is one such example, most notably pollinated by bees and multiple clades of nectarivorous birds. METHODS We combined data on floral traits, pollination ecology, and geography with a comprehensive phylogeny to examine the structuring of floral diversity across pollination systems and continents. We focused on ornithophilous systems to test the hypothesis that some Old World Ericaceae were pollinated by now-extinct hummingbirds. RESULTS Despite some support for floral differentiation at a continental scale, we found a large amount of variability within and among landmasses, due to both phylogenetic conservatism and parallel evolution. We found support for floral differentiation in anther and corolla traits across pollination systems, including among different ornithophilous systems. Corolla traits show inconclusive evidence that some Old World Ericaceae were pollinated by hummingbirds, while anther traits show stronger evidence. Some major shifts in floral traits are associated with changes in pollination system, but shifts within bee systems are likely also important. CONCLUSIONS Studying the floral evolution of large, morphologically diverse, and widespread clades is feasible. We demonstrate that continent-specific radiations have led to widespread parallel evolution of floral morphology. We show that traits outside of the perianth may hold important clues to the ecological history of lineages.
Collapse
Affiliation(s)
- Ricardo Kriebel
- Department of Botany, California Academy of Sciences, San Francisco, California, 94118, USA
- Department of Botany, University of Wisconsin-Madison, Madison, Wisconsin, 53706, USA
| | - Jeffrey P Rose
- Department of Botany, University of Wisconsin-Madison, Madison, Wisconsin, 53706, USA
| | - Paul Bastide
- IMAG, Université de Montpellier, CNRS, Montpellier, France
| | - Diana Jolles
- Department of Biological Sciences, Plymouth State University, 17 High Street, Plymouth, New Hampshire, 03264-1594, USA
| | - Marcelo Reginato
- Departamento de Botânica, Universidade Federal do Rio Grande do Sul, Porto Alegre, Rio Grande do Sul, Brazil
| | - Kenneth J Sytsma
- Department of Botany, University of Wisconsin-Madison, Madison, Wisconsin, 53706, USA
| |
Collapse
|
8
|
Cantley JT, Jordon-Thaden IE, Roche MD, Hayes D, Kate S, Martine CT. A Foundational Population Genetics Investigation of the Sexual Systems of Solanum (Solanaceae) in the Australian Monsoon Tropics Suggests Dioecious Taxa May Benefit from Increased Genetic Admixture via Obligate Outcrossing. PLANTS (BASEL, SWITZERLAND) 2023; 12:plants12112200. [PMID: 37299179 DOI: 10.3390/plants12112200] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Revised: 05/21/2023] [Accepted: 05/26/2023] [Indexed: 06/12/2023]
Abstract
Solanum section Leptostemonum is an ideal lineage to test the theoretical framework regarding proposed evolutionary benefits of outcrossing sexual systems in comparison to cosexuality. Theoretically, non-cosexual taxa should support more genetic diversity within populations, experience less inbreeding, and have less genetic structure due to a restricted ability to self-fertilize. However, many confounding factors present challenges for a confident inference that inherent differences in sexual systems influence observed genetic patterns among populations. This study provides a foundational baseline of the population genetics of several species of different sexual systems with the aim of generating hypotheses of any factor-including sexual system-that influences genetic patterns. Importantly, results indicate that dioecious S. asymmetriphyllum maintains less genetic structure and greater admixture among populations than cosexual S. raphiotes at the same three locations where they co-occur. This suggests that when certain conditions are met, the evolution of dioecy may have proceeded as a means to avoid genetic consequences of self-compatibility and may support hypotheses of benefits gained through differential resource allocation partitioned across sexes. Arguably, the most significant finding of this study is that all taxa are strongly inbred, possibly reflective of a shared response to recent climate shifts, such as the increased frequency and intensity of the region's fire regime.
Collapse
Affiliation(s)
- Jason T Cantley
- Department of Biology, San Francisco State University, San Francisco, CA 94132, USA
- Biology Department, Bucknell University, Lewisburg, PA 17837, USA
| | - Ingrid E Jordon-Thaden
- Biology Department, Bucknell University, Lewisburg, PA 17837, USA
- Department of Botany, University of Wisconsin Madison, Madison, WI 53706, USA
| | - Morgan D Roche
- Biology Department, Bucknell University, Lewisburg, PA 17837, USA
- Department of Ecology and Evolutionary Biology, University of Tennessee, Knoxville, TN 37996, USA
| | - Daniel Hayes
- Biology Department, Bucknell University, Lewisburg, PA 17837, USA
| | - Stephanie Kate
- Department of Biology, San Francisco State University, San Francisco, CA 94132, USA
| | | |
Collapse
|
9
|
Helmstetter AJ, Zenil-Ferguson R, Sauquet H, Otto SP, Méndez M, Vallejo-Marin M, Schönenberger J, Burgarella C, Anderson B, de Boer H, Glémin S, Käfer J. Trait-dependent diversification in angiosperms: Patterns, models and data. Ecol Lett 2023; 26:640-657. [PMID: 36829296 DOI: 10.1111/ele.14170] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Revised: 12/19/2022] [Accepted: 12/22/2022] [Indexed: 02/26/2023]
Abstract
Variation in species richness across the tree of life, accompanied by the incredible variety of ecological and morphological characteristics found in nature, has inspired many studies to link traits with species diversification. Angiosperms are a highly diverse group that has fundamentally shaped life on earth since the Cretaceous, and illustrate how species diversification affects ecosystem functioning. Numerous traits and processes have been linked to differences in species richness within this group, but we know little about their relative importance and how they interact. Here, we synthesised data from 152 studies that used state-dependent speciation and extinction (SSE) models on angiosperm clades. Intrinsic traits related to reproduction and morphology were often linked to diversification but a set of universal drivers did not emerge as traits did not have consistent effects across clades. Importantly, SSE model results were correlated to data set properties - trees that were larger, older or less well-sampled tended to yield trait-dependent outcomes. We compared these properties to recommendations for SSE model use and provide a set of best practices to follow when designing studies and reporting results. Finally, we argue that SSE model inferences should be considered in a larger context incorporating species' ecology, demography and genetics.
Collapse
Affiliation(s)
- Andrew J Helmstetter
- Fondation pour la recherche sur la biodiversité-CEntre de Synthèse et d'Analyse sur la Biodiversité, Montpellier, France
| | | | - Hervé Sauquet
- National Herbarium of New South Wales, Royal Botanic Gardens and Domain Trust, Sydney, New South Wales, Australia
- Evolution and Ecology Research Centre, School of Biological, Earth and Environmental Sciences, University of New South Wales, Sydney, Australia
| | - Sarah P Otto
- Department of Zoology, University of British Columbia, Vancouver, British Columbia, Canada
| | - Marcos Méndez
- Area of Biodiversity and Conservation, Universidad Rey Juan Carlos, Móstoles, Madrid, Spain
| | | | - Jürg Schönenberger
- Department of Botany and Biodiversity Research, University of Vienna, Vienna, Austria
| | | | - Bruce Anderson
- Department of Botany and Zoology, University of Stellenbosch, Matieland, South Africa
| | - Hugo de Boer
- Natural History Museum, University of Oslo, Oslo, Norway
| | - Sylvain Glémin
- Department of Ecology and Genetics, Uppsala University, Uppsala, Sweden
- CNRS, Ecosystèmes Biodiversité Evolution (Université de Rennes), Rennes, France
| | - Jos Käfer
- Université de Lyon, Université Lyon 1, CNRS, Laboratoire de Biométrie et Biologie Evolutive UMR 5558, Villeurbanne, France
- DIADE, Université de Montpellier, IRD, CIRAD, Montpellier, France
| |
Collapse
|
10
|
Masuda K, Akagi T. Evolution of sex in crops: recurrent scrap and rebuild. BREEDING SCIENCE 2023; 73:95-107. [PMID: 37404348 PMCID: PMC10316312 DOI: 10.1270/jsbbs.22082] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Accepted: 11/20/2022] [Indexed: 07/06/2023]
Abstract
Sexuality is the main strategy for maintaining genetic diversity within a species. In flowering plants (angiosperms), sexuality is derived from ancestral hermaphroditism and multiple sexualities can be expressed in an individual. The mechanisms conferring chromosomal sex determination in plants (or dioecy) have been studied for over a century by both biologists and agricultural scientists, given the importance of this field for crop cultivation and breeding. Despite extensive research, the sex determining gene(s) in plants had not been identified until recently. In this review, we dissect plant sex evolution and determining systems, with a focus on crop species. We introduced classic studies with theoretical, genetic, and cytogenic approaches, as well as more recent research using advanced molecular and genomic techniques. Plants have undergone very frequent transitions into, and out of, dioecy. Although only a few sex determinants have been identified in plants, an integrative viewpoint on their evolutionary trends suggests that recurrent neofunctionalization events are potentially common, in a "scrap and (re)build" cycle. We also discuss the potential association between crop domestication and transitions in sexual systems. We focus on the contribution of duplication events, which are particularly frequent in plant taxa, as a trigger for the creation of new sexual systems.
Collapse
Affiliation(s)
- Kanae Masuda
- Graduate School of Environmental and Life Science, Okayama University, Okayama 700-8530, Japan
| | - Takashi Akagi
- Graduate School of Environmental and Life Science, Okayama University, Okayama 700-8530, Japan
- JST, PRESTO, Kawaguchi, Saitama 332-0012, Japan
| |
Collapse
|
11
|
Insights into the differentiation and adaptation within Circaeasteraceae from Circaeaster agrestis genome sequencing and resequencing. iScience 2023; 26:106159. [PMID: 36895650 PMCID: PMC9988679 DOI: 10.1016/j.isci.2023.106159] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Revised: 01/26/2023] [Accepted: 02/03/2023] [Indexed: 02/11/2023] Open
Abstract
Circaeaster agrestis and Kingdonia uniflora are sister species that reproduce sexually and mainly asexually respectively, providing a good system for comparative genome evolution between taxa with different reproductive models. Comparative genome analyses revealed the two species have similar genome size, but C. agrestis encodes many more genes. The gene families specific to C. agrestis show significant enrichment of genes associated with defense response, while those gene families specific to K. uniflora are enriched in genes regulating root system development. Collinearity analyses revealed C. agrestis experienced two rounds of whole-genome duplication. Fst outlier test across 25 C. agrestis populations uncovered a close inter-relationship between abiotic stress and genetic variability. Genetic feature comparisons showed K. uniflora presents much higher genome heterozygosity, transposable element load, linkage disequilibrium degree, and πN/πS ratio. This study provides new insights into understanding the genetic differentiation and adaptation within ancient lineages characterized by multiple reproductive models.
Collapse
|
12
|
Mairal M, García-Verdugo C, Le Roux JJ, Chau JH, van Vuuren BJ, Hui C, Münzbergová Z, Chown SL, Shaw JD. Multiple introductions, polyploidy and mixed reproductive strategies are linked to genetic diversity and structure in the most widespread invasive plant across Southern Ocean archipelagos. Mol Ecol 2023; 32:756-771. [PMID: 36478264 DOI: 10.1111/mec.16809] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Revised: 11/30/2022] [Accepted: 12/01/2022] [Indexed: 12/12/2022]
Abstract
Biological invasions in remote areas that experience low human activity provide unique opportunities to elucidate processes responsible for invasion success. Here we study the most widespread invasive plant species across the isolated islands of the Southern Ocean, the annual bluegrass, Poa annua. To analyse geographical variation in genome size, genetic diversity and reproductive strategies, we sampled all major sub-Antarctic archipelagos in this region and generated microsatellite data for 470 individual plants representing 31 populations. We also estimated genome sizes for a subset of individuals using flow cytometry. Occasional events of island colonization are expected to result in high genetic structure among islands, overall low genetic diversity and increased self-fertilization, but we show that this is not the case for P. annua. Microsatellite data indicated low population genetic structure and lack of isolation by distance among the sub-Antarctic archipelagos we sampled, but high population structure within each archipelago. We identified high levels of genetic diversity, low clonality and low selfing rates in sub-Antarctic P. annua populations (contrary to rates typical of continental populations). In turn, estimates of selfing declined in populations as genetic diversity increased. Additionally, we found that most P. annua individuals are probably tetraploid and that only slight variation exists in genome size across the Southern Ocean. Our findings suggest multiple independent introductions of P. annua into the sub-Antarctic, which promoted the establishment of genetically diverse populations. Despite multiple introductions, the adoption of convergent reproductive strategies (outcrossing) happened independently in each major archipelago. The combination of polyploidy and a mixed reproductive strategy probably benefited P. annua in the Southern Ocean by increasing genetic diversity and its ability to cope with the novel environmental conditions.
Collapse
Affiliation(s)
- Mario Mairal
- Departamento de Biodiversidad, Ecología y Evolución, Universidad Complutense de Madrid, Madrid, Spain.,Department of Botany and Zoology, Stellenbosch University, Stellenbosch, South Africa
| | - Carlos García-Verdugo
- Departamento de Botánica, Facultad de Ciencias, Universidad de Granada, Granada, Spain.,Departamento de Biología, Universitat de les Illes Balears - Institut Mediterrani d'Estudis Avançats (CSIC-UIB), Mallorca, Spain
| | - Johannes J Le Roux
- Departamento de Biodiversidad, Ecología y Evolución, Universidad Complutense de Madrid, Madrid, Spain.,School of Natural Sciences, Macquarie University, New South Wales, Sydney, Australia
| | - John H Chau
- Department of Zoology, Centre for Ecological Genomics and Wildlife Conservation, University of Johannesburg, Auckland Park, South Africa
| | - Bettine Jansen van Vuuren
- Department of Zoology, Centre for Ecological Genomics and Wildlife Conservation, University of Johannesburg, Auckland Park, South Africa
| | - Cang Hui
- Department of Mathematical Sciences, Centre for Invasion Biology, Stellenbosch University, Stellenbosch, South Africa.,Biodiversity Informatics Unit, African Institute for Mathematical Sciences, Cape Town, South Africa
| | - Zuzana Münzbergová
- Faculty of Science, Department of Botany, Charles University, Prague, Czech Republic.,Institute of Botany, Czech Academy of Science, Průhonice, Czech Republic
| | - Steven L Chown
- Securing Antarctica's Environmental Future, School of Biological Sciences, Monash University, Melbourne, Victoria, Australia
| | - Justine D Shaw
- Securing Antarctica's Environmental Future, School of Biology and Environmental Sciences, Queensland University of Technology, Brisbane, Queensland, Australia.,Australian Antarctic Division, Tasmania, Kingston, Australia
| |
Collapse
|
13
|
Phenology and Floral Biology of Diospyros sericea A. DC. (Ebenaceae): Inconstant Males May Be behind an Enigma of Dioecy. PLANTS 2022; 11:plants11192535. [PMID: 36235401 PMCID: PMC9572608 DOI: 10.3390/plants11192535] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Revised: 09/19/2022] [Accepted: 09/23/2022] [Indexed: 11/29/2022]
Abstract
Diospyros sericea is a tree/shrub species considered dioecious and broadly distributed in Brazil. Despite its importance for niche composition in a range of ecosystems, there is little knowledge about this species, and so far no study has analyzed its sexual system. We aimed to investigate dioecy expression in D. sericea through sexual dimorphisms in its phenology and floral biology. We analyzed the phenological events over a year and studied floral biology traits (morphology, flower development, floral resource, floral attractants supply, viability of pollen, and stigma receptivity) in both male and female plants. D. sericea presents typical features of dioecious plants like well-established primary and secondary dimorphisms that contribute to its reproductive success. However, we also identified fruit development in what should be structurally male individuals. We suggest that the evolutionary pathway leading to the observed phenomenon may be the existence of subdioecious populations with “inconstant males”. Although our data prevented us from making further assumptions about the origin of this trait, the study contributes to future analyses towards unraveling the enigma of dioecy not only in D. sericea but in other Diospyros species.
Collapse
|
14
|
Silva DM, Luna ALL, Souza CS, Nunes YRF, Fonseca RS, Azevedo IFPD. Sexual and reproductive systems of woody species in
vereda
are distributed according to the life form and habitat occurrence. AUSTRAL ECOL 2022. [DOI: 10.1111/aec.13235] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Affiliation(s)
- Danila Moreira Silva
- Programa de Pós‐Graduação em Botânica Aplicada Universidade Estadual de Montes Claros Avenida Dr. Ruy Braga, S/N – Bairro Vila Mauricéia Montes Claros 39401‐089 Brazil
| | - Andressa Laís Lacerda Luna
- Programa de Pós‐Graduação em Botânica Aplicada Universidade Estadual de Montes Claros Avenida Dr. Ruy Braga, S/N – Bairro Vila Mauricéia Montes Claros 39401‐089 Brazil
| | - Camila Silveira Souza
- Programa de Pós‐Graduação em Botânica Aplicada Universidade Estadual de Montes Claros Avenida Dr. Ruy Braga, S/N – Bairro Vila Mauricéia Montes Claros 39401‐089 Brazil
- Laboratório de Ecologia Vegetal, Departamento de Biologia Geral Universidade Estadual de Montes Claros Montes Claros Brazil
| | - Yule Roberta Ferreira Nunes
- Programa de Pós‐Graduação em Botânica Aplicada Universidade Estadual de Montes Claros Avenida Dr. Ruy Braga, S/N – Bairro Vila Mauricéia Montes Claros 39401‐089 Brazil
- Laboratório de Ecologia Vegetal, Departamento de Biologia Geral Universidade Estadual de Montes Claros Montes Claros Brazil
| | - Rúbia Santos Fonseca
- Instituto de Ciências Agrárias Universidade Federal de Minas Gerais, Bairro Universitário Montes Claros Brazil
| | - Islaine Franciely Pinheiro de Azevedo
- Programa de Pós‐Graduação em Botânica Aplicada Universidade Estadual de Montes Claros Avenida Dr. Ruy Braga, S/N – Bairro Vila Mauricéia Montes Claros 39401‐089 Brazil
- Laboratório de Ecologia Vegetal, Departamento de Biologia Geral Universidade Estadual de Montes Claros Montes Claros Brazil
| |
Collapse
|
15
|
Almeida SC, Neiva J, Sousa F, Martins N, Cox CJ, Melo-Ferreira J, Guiry MD, Serrão EA, Pearson GA. A low-latitude species pump: Peripheral isolation, parapatric speciation and mating-system evolution converge in a marine radiation. Mol Ecol 2022; 31:4797-4817. [PMID: 35869812 DOI: 10.1111/mec.16623] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Revised: 07/06/2022] [Accepted: 07/14/2022] [Indexed: 11/27/2022]
Abstract
Geologically recent radiations can shed light on speciation processes, but incomplete lineage sorting and introgressive gene flow render accurate evolutionary reconstruction and interpretation challenging. Independently evolving metapopulations of low dispersal taxa may provide an additional level of phylogeographic information, given sufficiently broad sampling and genome-wide sequencing. Evolution in the marine brown algal genus Fucus in the south-eastern North Atlantic was shaped by Quaternary climate-driven range shifts. Over this timescale, divergence and speciation occurred against a background of expansion-contraction cycles from multiple refugia, together with mating-system shifts from outcrossing (dioecy) to selfing hermaphroditism. We tested the hypothesis that peripheral isolation of range edge (dioecious) F. vesiculosus led to parapatric speciation and radiation of hermaphrodite lineages. Species tree methods using 876 single-copy nuclear genes and extensive geographic coverage produced conflicting topologies with respect to geographic clades of F. vesiculosus. All methods, however, revealed a new and early diverging hermaphrodite species, Fucus macroguiryi sp. nov. Both the multispecies coalescent and polymorphism-aware models (in contrast to concatenation) support sequential paraphyly in F. vesiculosus resulting from distinct evolutionary processes. Our results support (1) peripheral isolation of the southern F. vesiculosus clade prior to parapatric speciation and radiation of hermaphrodite lineages-a "low-latitude species pump". (2) Directional introgressive gene flow into F. vesiculosus around the present-day secondary contact zone (sympatric-allopatric boundary) between dioecious/hermaphrodite lineages as hermaphrodites expanded northwards, supported by concordance analysis and statistical tests of introgression. (3) Species boundaries in the extensive sympatric range are probably maintained by reproductive system (selfing in hermaphrodites) and reinforcement.
Collapse
Affiliation(s)
- Susana C Almeida
- Centre of Marine Sciences, Universidade do Algarve, Faro, Portugal
| | - João Neiva
- Centre of Marine Sciences, Universidade do Algarve, Faro, Portugal
| | - Filipe Sousa
- Centre of Marine Sciences, Universidade do Algarve, Faro, Portugal
- cE3c - Centre for Ecology, Evolution and Environmental Changes, Faculdade de Ciências, Universidade de Lisboa, Lisboa, Portugal
| | - Neusa Martins
- Centre of Marine Sciences, Universidade do Algarve, Faro, Portugal
| | - Cymon J Cox
- Centre of Marine Sciences, Universidade do Algarve, Faro, Portugal
| | - José Melo-Ferreira
- CIBIO-InBIO, Centro de Investigação em Biodiversidade e Recursos Genéticos, InBIO Laboratório Associado, Universidade do Porto, Campus de Vairão, R. Padre Armando Quintas, Vairão, Portugal
- Departamento de Biologia, Faculdade de Ciências da Universidade do Porto, Rua do Campo Alegre s/n, Porto, Portugal
- BIOPOLIS Program in Genomics, Biodiversity and Land Planning, CIBIO, Campus de Vairão, Vairão, Portugal
| | - Michael D Guiry
- AlgaeBase, Ryan Institute, National University of Ireland, Galway, Ireland
| | - Ester A Serrão
- Centre of Marine Sciences, Universidade do Algarve, Faro, Portugal
| | - Gareth A Pearson
- Centre of Marine Sciences, Universidade do Algarve, Faro, Portugal
| |
Collapse
|
16
|
Deng M, Yao K, Shi C, Shao W, Li Q. Development of Quercus acutissima (Fagaceae) pollen tubes inside pistils during the sexual reproduction process. PLANTA 2022; 256:16. [PMID: 35737139 DOI: 10.1007/s00425-022-03937-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Accepted: 06/03/2022] [Indexed: 06/15/2023]
Abstract
Extensive histology of pistillate flowers revealed two pollen tube arresting sites (the style-joining and micropyle) within the pistil of Quercus acutissima during the postpollination-prezygotic stage, which reflects a unique female and male gametophyte recognition/selection mechanism. Sexual reproduction is among the most delicate and essential stages in plant life cycles and involves a series of precise interactions between pistils and male gametophytes. Quercus is a woody genus that dominates Northern Hemisphere forests and is notorious for interspecific hybridization, but its sexual reproduction is poorly understood, especially its pollen tube (PT) growth dynamics within pistils. This study used microtome techniques and scanning electron microscopy to observe the postpollination-prezygotic process in the biennially fruiting oak Quercus acutissima. Many pollen grains germinated at anthesis instantly, and PTs penetrated stigmatic surfaces and elongated through the stylar transmitting tissue, then arrested at style-joining for about 12-13 months. Few PTs resumed growth along the compitum in the upper ovarian locule wall in the subsequent April, concurrent with the rapid growth of rudimentary ovules. PTs arrived in the micropyle, and upper septum during megaspore mother cell meiosis, then arrested again for 7-10 days waiting for the embryo sac maturation. Fertilization occurred one week later. Our study shows a clear female dominant crosstalk growth pattern between PT and the ovule. The intermittent PT growth might reflect a unique male gametophyte recognition/selection mechanism to avoid self-pollination and enhance PT competition while increasing interspecific hybridization.
Collapse
Affiliation(s)
- Min Deng
- School of Ecology and Environmental Science, Yunnan University, Kunming, 650500, Yunnan, China
- Yunnan Key Laboratory of Plant Reproductive Adaptation and Evolutionary Ecology and Institute of Biodiversity, Yunnan University, Kunming, 650504, Yunnan, China
- Yunnan Key Laboratory for Integrative Conservation of Plant Species With Extremely Small Populations, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, Yunnan, China
| | - Kaiping Yao
- School of Ecology and Environmental Science, Yunnan University, Kunming, 650500, Yunnan, China
- Yunnan Key Laboratory of Plant Reproductive Adaptation and Evolutionary Ecology and Institute of Biodiversity, Yunnan University, Kunming, 650504, Yunnan, China
- Yunnan Key Laboratory for Integrative Conservation of Plant Species With Extremely Small Populations, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, Yunnan, China
| | - Chengcheng Shi
- Shanghai Chenshan Botanical Garden, Shanghai, 201602, China
| | - Wen Shao
- Shanghai Chenshan Botanical Garden, Shanghai, 201602, China
| | - Qiansheng Li
- Horticultural Sciences Department, University of Florida, FL, 32611, USA.
| |
Collapse
|
17
|
Attia Z, Pogoda C, Vergara D, Kane NC. Mitochondrial genomes do not appear to regulate flowering pattern/reproductive strategy in Cannabis sativa. AOB PLANTS 2022; 14:plab068. [PMID: 35558164 PMCID: PMC9089828 DOI: 10.1093/aobpla/plab068] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/10/2021] [Accepted: 10/05/2021] [Indexed: 06/15/2023]
Abstract
Currently, the amount of genetic data for Cannabis is lacking due to the illegal nature of the plant. Our study used 73 Cannabis sativa whole-genome shotgun libraries to reveal eight different mtDNA haplotypes. The most common haplotype contained 60 of the 73 samples studied and was composed of only dioecious individuals. However, other haplotypes contained a mix of both mating strategies (i.e. monoecious and dioecious). From these haplotype groupings we further examined the fully annotated mitochondrial genomes of four hemp individuals with different mt haplotypes and recorded gene content, copy number variation and synteny. Our results revealed highly syntenic mitochondrial genomes that contained ~60 identifiable sequences for protein-coding genes, tRNAs and rRNAs and no obvious rearrangements or chimeric genes. We found no clear evidence that modern reproductive patterns are due to simple cytoplasmic male sterility mutations. It is likely the interaction between nuclear genetic components and the X/Y sex chromosomes that determines reproductive strategy. Additionally, we added 50 % more mitochondrial genomes to the publicly available repository.
Collapse
Affiliation(s)
- Ziv Attia
- Ecology and Evolutionary and Biology, University of Colorado, Boulder, 1900 Pleasant Street, Boulder, CO 80302, USA
| | - Cloe Pogoda
- Ecology and Evolutionary and Biology, University of Colorado, Boulder, 1900 Pleasant Street, Boulder, CO 80302, USA
| | - Daniela Vergara
- Ecology and Evolutionary and Biology, University of Colorado, Boulder, 1900 Pleasant Street, Boulder, CO 80302, USA
| | - Nolan C Kane
- Ecology and Evolutionary and Biology, University of Colorado, Boulder, 1900 Pleasant Street, Boulder, CO 80302, USA
| |
Collapse
|
18
|
Pla S, Benvenuto C, Capellini I, Piferrer F. Switches, stability and reversals in the evolutionary history of sexual systems in fish. Nat Commun 2022; 13:3029. [PMID: 35637181 PMCID: PMC9151764 DOI: 10.1038/s41467-022-30419-z] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2021] [Accepted: 04/29/2022] [Indexed: 11/09/2022] Open
Abstract
Sexual systems are highly diverse and have profound consequences for population dynamics and resilience. Yet, little is known about how they evolved. Using phylogenetic Bayesian modelling and a sample of 4614 species, we show that gonochorism is the likely ancestral condition in teleost fish. While all hermaphroditic forms revert quickly to gonochorism, protogyny and simultaneous hermaphroditism are evolutionarily more stable than protandry. In line with theoretical expectations, simultaneous hermaphroditism does not evolve directly from gonochorism but can evolve slowly from sequential hermaphroditism, particularly protandry. We find support for the predictions from life history theory that protogynous, but not protandrous, species live longer than gonochoristic species and invest the least in male gonad mass. The distribution of teleosts' sexual systems on the tree of life does not seem to reflect just adaptive predictions, suggesting that adaptations alone may not fully explain why some sexual forms evolve in some taxa but not others (Williams' paradox). We propose that future studies should incorporate mating systems, spawning behaviours, and the diversity of sex determining mechanisms. Some of the latter might constrain the evolution of hermaphroditism, while the non-duality of the embryological origin of teleost gonads might explain why protogyny predominates over protandry in teleosts.
Collapse
Affiliation(s)
- Susanna Pla
- Institut de Ciències del Mar, Spanish National Research Council (CSIC), Barcelona, Spain
| | - Chiara Benvenuto
- School of Science, Engineering and Environment, University of Salford, Salford, UK
| | | | - Francesc Piferrer
- Institut de Ciències del Mar, Spanish National Research Council (CSIC), Barcelona, Spain.
| |
Collapse
|
19
|
Cooper BJ, Moore MJ, Douglas NA, Wagner WL, Johnson MG, Overson RP, Kinosian SP, McDonnell AJ, Levin RA, Raguso RA, Flores Olvera H, Ochoterena H, Fant JB, Skogen KA, Wickett NJ. Target enrichment and extensive population sampling help untangle the recent, rapid radiation of Oenothera sect. Calylophus. Syst Biol 2022:6588089. [PMID: 35583314 DOI: 10.1093/sysbio/syac032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Revised: 04/14/2022] [Accepted: 04/22/2022] [Indexed: 11/14/2022] Open
Abstract
Oenothera sect. Calylophus is a North American group of 13 recognized taxa in the evening primrose family (Onagraceae) with an evolutionary history that may include independent origins of bee pollination, edaphic endemism, and permanent translocation heterozygosity. Like other groups that radiated relatively recently and rapidly, taxon boundaries within Oenothera sect. Calylophus have remained challenging to circumscribe. In this study, we used target enrichment, flanking non-coding regions, gene tree/species tree methods, tests for gene flow modified for target-enrichment data, and morphometric analysis to reconstruct phylogenetic hypotheses, evaluate current taxon circumscriptions, and examine character evolution in Oenothera sect. Calylophus. Because sect. Calylophus comprises a clade with a relatively restricted geographic range, we were able to extensively sample across the range of geographic, edaphic and morphological diversity in the group. We found that the combination of exons and flanking non-coding regions led to improved support for species relationships. We reconstructed potential hybrid origins of some accessions and note that if processes such as hybridization are not taken into account, the number of inferred evolutionary transitions may be artificially inflated. We recovered strong evidence for multiple evolutionary origins of bee pollination from ancestral hawkmoth pollination, edaphic specialization on gypsum, and permanent translocation heterozygosity. This study applies newly emerging techniques alongside dense infraspecific sampling and morphological analyses to effectively reconstruct the recalcitrant history of a rapid radiation.
Collapse
Affiliation(s)
- Benjamin J Cooper
- The Negaunee Institute for Plant Conservation Science and Action, Chicago Botanic Garden, 1000 Lake Cook Rd., Glencoe, IL 60022, USA.,Northwestern University,Program in Plant Biology and Conservation,O.T. Hogan Hall, Room, 6-140B, 2205 Tech Drive, Evanston, IL 60208, USA
| | - Michael J Moore
- Oberlin College, Department of Biology, 119 Woodland St., Oberlin, OH 44074, USA
| | - Norman A Douglas
- Department of Biology, University of Florida, Gainesville, FL 32611, USA
| | - Warren L Wagner
- Department of Botany, MRC-166, Smithsonian Institution, PO Box 37012, Washington, DC 20013-7012, USA
| | - Matthew G Johnson
- The Negaunee Institute for Plant Conservation Science and Action, Chicago Botanic Garden, 1000 Lake Cook Rd., Glencoe, IL 60022, USA.,Department of Biological Sciences, Texas Tech University, Box 43131 Lubbock, TX 79409, USA
| | - Rick P Overson
- The Negaunee Institute for Plant Conservation Science and Action, Chicago Botanic Garden, 1000 Lake Cook Rd., Glencoe, IL 60022, USA.,School of Sustainability, Arizona State University, PO Box 875502, Tempe, AZ 85287-5502, USA
| | - Sylvia P Kinosian
- The Negaunee Institute for Plant Conservation Science and Action, Chicago Botanic Garden, 1000 Lake Cook Rd., Glencoe, IL 60022, USA
| | - Angela J McDonnell
- The Negaunee Institute for Plant Conservation Science and Action, Chicago Botanic Garden, 1000 Lake Cook Rd., Glencoe, IL 60022, USA
| | - Rachel A Levin
- Department of Biology, Amherst College, 25 East Drive, Amherst, MA, 01002, USA
| | - Robert A Raguso
- Department of Neurobiology and Behavior, Cornell University, 215 Tower Road, Ithaca, NY 14853, USA
| | - Hilda Flores Olvera
- Departamento de Botánica, Instituto de Biología, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Helga Ochoterena
- Departamento de Botánica, Instituto de Biología, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Jeremie B Fant
- The Negaunee Institute for Plant Conservation Science and Action, Chicago Botanic Garden, 1000 Lake Cook Rd., Glencoe, IL 60022, USA.,Northwestern University,Program in Plant Biology and Conservation,O.T. Hogan Hall, Room, 6-140B, 2205 Tech Drive, Evanston, IL 60208, USA
| | - Krissa A Skogen
- The Negaunee Institute for Plant Conservation Science and Action, Chicago Botanic Garden, 1000 Lake Cook Rd., Glencoe, IL 60022, USA.,Northwestern University,Program in Plant Biology and Conservation,O.T. Hogan Hall, Room, 6-140B, 2205 Tech Drive, Evanston, IL 60208, USA
| | - Norman J Wickett
- The Negaunee Institute for Plant Conservation Science and Action, Chicago Botanic Garden, 1000 Lake Cook Rd., Glencoe, IL 60022, USA.,Northwestern University,Program in Plant Biology and Conservation,O.T. Hogan Hall, Room, 6-140B, 2205 Tech Drive, Evanston, IL 60208, USA
| |
Collapse
|
20
|
Abstract
The purpose of this work is to present the archaeological and historical background of viticulture and winemaking from ancient times to the present day in the Mediterranean basin. According to recent archaeological, archaeochemical and archaeobotanical data, winemaking emerged during the Neolithic period (c. 7th–6th millennium BC) in the South Caucasus, situated between the basins of the Black and Caspian Seas, and subsequently reached the Iberian Peninsula and Western Europe during the local beginning of Iron Age (c. 8th century BC), following the main maritime civilizations. This review summarises the most relevant findings evidencing that the expansion of wine production, besides depending on adequate pedo-climatic conditions and wine-growing practices, also required the availability of pottery vessels to properly ferment, store and transport wine without deterioration. The domestication of wild grapevines enabled the selection of more productive varieties, further sustaining the development of wine trade. Other fermented beverages such as mead and beer gradually lost their relevance and soon wine became the most valorised. Together with grapes, it became an object and a system of value for religious rituals and social celebrations throughout successive ancient Western civilizations. Moreover, wine was used for medicinal purposes and linked to a wide variety of health benefits. In everyday life, wine was a pleasant drink consumed by the elite classes and commoner populations during jubilee years, festivals, and banquets, fulfilling the social function of easy communication. In the present work, emphasis is put on the technical interpretation of the selected archaeological and historical sources that may explain present viticultural and oenological practices. Hopefully, this review will contribute to nurturing mutual understanding between archaeologists and wine professionals.
Collapse
|
21
|
Appiah-Madson HJ, Knox EB, Caruso CM, Case AL. Do Genetic Drift and Gene Flow Affect the Geographic Distribution of Female Plants in Gynodioecious Lobelia siphilitica? PLANTS (BASEL, SWITZERLAND) 2022; 11:825. [PMID: 35336707 PMCID: PMC8950786 DOI: 10.3390/plants11060825] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Revised: 03/18/2022] [Accepted: 03/18/2022] [Indexed: 06/14/2023]
Abstract
Variation in population sex ratio is particularly pronounced in gynodioecious angiosperms. Extremely high female frequencies in gynodioecious populations cannot be readily explained by selective forces alone. To assess the contributions of drift and gene flow to extreme sex-ratio variation, we documented sex ratio and population size in 92 populations of Lobelia siphilitica across its range and genotyped plants using plastid and nuclear genetic markers. Similarity in spatial patterns of genetic and demographic variables may suggest that drift and/or gene flow have contributed to population sex-ratio variation in L. siphilitica. We found strong spatial structuring of extremely high female frequencies: populations with >50% female plants are restricted to the south−central portion of the range. However, we did not detect any spatial structuring in population size nor metrics of genetic diversity, suggesting that extreme variation in female frequency is not strongly affected by drift or gene flow. Extreme sex-ratio variation is frequently observed in gynodioecious plants, but its causes are difficult to identify. Further investigation into mechanisms that create or maintain the spatial structure of sex ratios in gynodioecious species will provide much needed insight.
Collapse
Affiliation(s)
- Hannah J. Appiah-Madson
- Department of Marine and Environmental Science, Ocean Genome Legacy Center, Northeastern University, Nahant, MA 01908, USA
| | - Eric B. Knox
- Department of Biology, Indiana University, Bloomington, IN 47405, USA;
| | - Christina M. Caruso
- Department of Integrative Biology, University of Guelph, Guelph, ON N1G 2W1, Canada;
| | - Andrea L. Case
- Department of Biological Sciences, Kent State University, Kent, OH 44240, USA;
| |
Collapse
|
22
|
Bergamo PJ, Freitas L, Sazima M, Wolowski M. Pollinator-mediated facilitation alleviates pollen limitation in a plant-hummingbird network. Oecologia 2022; 198:205-217. [PMID: 35067800 DOI: 10.1007/s00442-021-05095-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2021] [Accepted: 12/12/2021] [Indexed: 10/19/2022]
Abstract
Facilitation and competition among plants sharing pollinators have contrasting consequences for plant fitness. However, it is unclear whether pollinator-mediated facilitation and competition may affect pollen limitation (potential contribution of pollination to fitness) in pollination networks. Here, we investigated how pollinator sharing affects pollen limitation in a tropical hummingbird-pollinated community marked by facilitation. We employed indices describing how much a plant species potentially affects the pollination of other co-flowering species through shared pollinators (acting degree) and is affected by other co-flowering species (target degree) within the plant-hummingbird network. Since facilitation often increases pollination quantity but not necessarily quality, we expected both indices to be associated with reductions in pollen limitation estimates that depend on pollination quantity (fruit set and seed number) rather than estimates more strictly related to quality (seed weight and germination). We found that both indices were associated with reductions in pollen limitation only for seed weight and germination. Thus, facilitation occurred via qualitative estimates of pollen limitation. Our results suggest that facilitation may enhance plant fitness estimates even if quantitative components of plant fecundity are already saturated. Overall, we showed that pollinator-mediated indirect effects in a multispecies context are important drivers of plant fitness estimates with consequences for coexistence in diverse communities.
Collapse
Affiliation(s)
- Pedro Joaquim Bergamo
- Programa de Pós-Graduação em Ecologia, Universidade Estadual de Campinas, Campinas, Bertrand Russel Av, PO Box 6109, Campinas, Brazil. .,Rio de Janeiro Botanical Garden, Rio de Janeiro, Brazil.
| | | | - Marlies Sazima
- Plant Biology Department, Institute of Biology, University of Campinas, Campinas, Brazil
| | - Marina Wolowski
- Institute of Natural Sciences, Federal University of Alfenas, Alfenas, Brazil
| |
Collapse
|
23
|
Watanabe K, Shimizu A, Sugawara T. Polygamous breeding system identified in the distylous genus Psychotria: P. manillensis in the Ryukyu archipelago, Japan. PeerJ 2021; 9:e12318. [PMID: 34824905 PMCID: PMC8590391 DOI: 10.7717/peerj.12318] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2020] [Accepted: 09/25/2021] [Indexed: 11/20/2022] Open
Abstract
Distyly is a genetic polymorphism composed of long-and short-styled flowers in a population. The evolutionary breakdown of distyly has been reported in many taxa, and mainly involves a shift toward monomorphism or dioecism. However, a shift toward monoecism has not been reported in distylous species. Psychotria (Rubiaceae), one of the world largest genera, consists of distylous species and their derivatives. In our preliminary study, however, we identified some monoecious individuals in a population of Psychotria manillensis. To understand the breeding system and reproductive biology of P. manillensis, we investigated floral traits, open fruit set, and flower visitors, and performed hand pollination and bagging experiments in five populations of Okinawa and Iriomote islands, Ryukyu Islands, Japan. The populations of P. manillensis were composed mainly of monoecious individuals (54%), followed by female (30%), male (14%), and hermaphroditic (2%) individuals at the time of flower collection. Of the collected flowers, 93% were functionally unisexual (male or female), whereas only 6.5% were perfect (hermaphroditic). However, some individuals changed sex mainly towards increasing femaleness during the flowering period. Moreover, 35% of the studied plants changed their sexual expression over the years. P. manillensis showed self-compatibility and no agamospermy. The fruit set under open pollination varied among populations and years (1.8–21.9%), but it was significantly higher than that of auto-selfing (0.68–1.56%). Wasps and flies were the main flower visitors and probably the main pollinators of the species. In conclusion, P. manillensis was revealed to be polygamous, involving monoecious, female, male, and hermaphroditic individuals. This is the first report of the polygamous breeding system not only in the genus Psychotria, but also in all heterostylous taxa.
Collapse
Affiliation(s)
- Kenta Watanabe
- National Institute of Technology, Okinawa College, Henoko, Nago, Okinawa, Japan
| | - Akira Shimizu
- Department of Biological Sciences, School of Science, Tokyo Metropolitan University, Minami-Ohsawa, Hachioji, Tokyo, Japan.,Research Institute of Evolutionary Biology, Inc., Setagaya-ku, Tokyo, Japan.,University Museum, the University of Tokyo, Bunkyo-ku, Tokyo, Japan
| | - Takashi Sugawara
- Department of Botany, National Museum of Nature and Science, Amakubo, Tsukuba, Ibaraki, Japan
| |
Collapse
|
24
|
Cássia-Silva C, Freitas CG, Jardim L, Bacon CD, Collevatti RG. In situ radiation explains the frequency of dioecious palms on islands. ANNALS OF BOTANY 2021; 128:205-215. [PMID: 33949659 PMCID: PMC8324027 DOI: 10.1093/aob/mcab056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2021] [Accepted: 04/28/2021] [Indexed: 06/12/2023]
Abstract
BACKGROUND AND AIMS Dioecy has evolved up to 5000 times in angiosperms, despite the potentially high intrinsic costs to unisexuality. Dioecy prevents inbreeding, which is especially relevant on isolated islands when gene pools are small. Dioecy is also associated with certain dispersal traits, such as fruit size and type. However, the influence of dioecy on other life history traits and island distribution remains poorly understood. Here, we test the effect of dioecy on palm (Arecaceae) speciation rates, fruit size and frequency on islands. METHODS We used phylogenetic comparative methods to estimate the ancestral state of the sexual system and its impact on speciation rates and fruit size. Frequency of sexual systems, effect of insularity on the probability of being dioecious, and phylogenetic clustering of island dioecious vs. mainland species were inferred. Lastly, we determined the interplay of insularity and sexual system on speciation rates. KEY RESULTS Palms repeatedly evolved different sexual systems (dioecy, monoecy and polygamy) from a hermaphrodite origin. Differences in speciation rates and fruit size among the different sexual systems were not identified. An effect of islands on the probability of the palms being dioecious was also not found. However, we found a high frequency and phylogenetic clustering of dioecious palms on islands, which were not correlated with higher speciation rates. CONCLUSIONS The high frequency and phylogenetic clustering may be the result of in situ radiation and suggest an 'island effect' for dioecious palms, which was not explained by differential speciation rates. This island effect also cannot be attributed to long-distance dispersal due to the lack of fruit size difference among sexual systems, and particularly because palm dispersal to islands is highly constrained by the interaction between the sizes of fruit and frugivores. Taken together, we suggest that trait flexibility in sexual system evolution and the in situ radiation of dioecious lineages are the underlying causes of the outstanding distribution of palms on islands.
Collapse
Affiliation(s)
- Cibele Cássia-Silva
- Laboratório de Genética & Biodiversidade, Instituto de Ciências Biológicas, Universidade Federal de Goiás, Goiânia, GO, Brazil
| | - Cíntia G Freitas
- Pós-Graduação em Ecologia e Conservação, Setor de Ciências Biológicas, Universidade Federal do Paraná, Curitiba, PR, Brazil
| | - Lucas Jardim
- Laboratório de Ecologia Teórica e Síntese, Departamento de Ecologia, Instituto de Ciências Biológicas, Universidade Federal de Goiás, Goiânia, GO, Brazil
| | - Christine D Bacon
- Department of Biological and Environmental Sciences, University of Gothenburg, Gothenburg, Sweden
- Gothenburg Global Biodiversity Centre, Gothenburg, Sweden
| | - Rosane G Collevatti
- Laboratório de Genética & Biodiversidade, Instituto de Ciências Biológicas, Universidade Federal de Goiás, Goiânia, GO, Brazil
| |
Collapse
|
25
|
Xu K. The coevolution of flower longevity and self-fertilization in hermaphroditic plants. Evolution 2021; 75:2114-2123. [PMID: 34192348 DOI: 10.1111/evo.14303] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2020] [Revised: 05/06/2021] [Accepted: 05/25/2021] [Indexed: 11/26/2022]
Abstract
Self-fertilization, prevalent in plants, is typically divided into three modes - prior, competing, and delayed selfing - based on the timing in which it occurs. Flower longevity affects both the opportunity for pollination and the resources allocated for fertility, and thus may influence the selection on different modes of self-fertilization. Additionally, selfing causes fertilization to depend less on pollinators, which may also influence the evolution of flower longevity. Using game-theoretical models, I investigate how inbreeding depression and the pollination environment influences the coevolution of the three modes of self-fertilization with flower longevity. Invasion of prior selfing allows the subsequent evolution of shorter flower longevity, and thus is favored over competing selfing. Prior selfing can also invade even under high inbreeding depression when the pollen deposition rate is low, but is inhibited by a higher level of delayed selfing. In general, the evolution of selfing decreases flower longevity, and reveals asymmetric effects of pollen deposition and removal on flower longevity. This study suggests considering realization of selfing and outcrossing as concrete processes by incorporating flower reproductive strategies (e.g., flower longevity) and pollination ecology (e.g., accrual rate) may offer better understanding of the evolution of mating systems and flower reproductive traits.
Collapse
Affiliation(s)
- Kuangyi Xu
- Department of Biology, University of North Carolina, Chapel Hill, North Carolina, USA
| |
Collapse
|
26
|
Wang Y, Luo A, Lyu T, Dimitrov D, Xu X, Freckleton RP, Li Y, Su X, Li Y, Liu Y, Sandanov D, Li Q, Hao Z, Liu S, Wang Z. Global distribution and evolutionary transitions of angiosperm sexual systems. Ecol Lett 2021; 24:1835-1847. [PMID: 34121305 DOI: 10.1111/ele.13815] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Revised: 01/01/2021] [Accepted: 05/03/2021] [Indexed: 01/08/2023]
Abstract
Angiosperm sexual systems are fundamental to the evolution and distribution of plant diversity, yet spatiotemporal patterns in angiosperm sexual systems and their drivers remain poorly known. Using data on sexual systems and distributions of 68453 angiosperm species, we present the first global maps of sexual system frequencies and evaluate sexual system evolution during the Cenozoic. Frequencies of dioecy and monoecy increase with latitude, while hermaphrodites are more frequent in warm and arid regions. Transitions to dioecy from other states were higher than to hermaphroditism, but transitions away from dioecy increased since the Cenozoic, suggesting that dioecy is not an evolutionary end point. Transitions between hermaphroditism and dioecy increased, while transitions to monoecy decreased with paleo-temperature when paleo-temperature >0℃. Our study demonstrates the biogeography of angiosperm sexual systems from a macroecological perspective, and enhances our understanding of plant diversity patterns and their response to climate change.
Collapse
Affiliation(s)
- Yunyun Wang
- Faculty of Life Science and Technology, Central South University of Forestry and Technology and National Engineering Laboratory for Applied Forest Ecological Technology in Southern China, Changsha, China.,Institute of Ecology and Key Laboratory for Earth Surface Processes of the Ministry of Education, College of Urban and Environmental Sciences, Peking University, Beijing, China
| | - Ao Luo
- Institute of Ecology and Key Laboratory for Earth Surface Processes of the Ministry of Education, College of Urban and Environmental Sciences, Peking University, Beijing, China
| | - Tong Lyu
- Institute of Ecology and Key Laboratory for Earth Surface Processes of the Ministry of Education, College of Urban and Environmental Sciences, Peking University, Beijing, China
| | - Dimitar Dimitrov
- Department of Natural History, University Museum of Bergen, University of Bergen, Bergen, Norway
| | - Xiaoting Xu
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, Sichuan, China
| | - Robert P Freckleton
- Department of Animal and Plant Sciences, University of Sheffield, Sheffield, UK
| | - Yaoqi Li
- Institute of Ecology and Key Laboratory for Earth Surface Processes of the Ministry of Education, College of Urban and Environmental Sciences, Peking University, Beijing, China
| | - Xiangyan Su
- Institute of Ecology and Key Laboratory for Earth Surface Processes of the Ministry of Education, College of Urban and Environmental Sciences, Peking University, Beijing, China
| | - Yichao Li
- Institute of Ecology and Key Laboratory for Earth Surface Processes of the Ministry of Education, College of Urban and Environmental Sciences, Peking University, Beijing, China
| | - Yunpeng Liu
- Institute of Ecology and Key Laboratory for Earth Surface Processes of the Ministry of Education, College of Urban and Environmental Sciences, Peking University, Beijing, China
| | - Denis Sandanov
- Institute of General and Experimental Biology, Siberian Branch of Russian Academy of Science, Ulan-Ude, Russia
| | - Qingjun Li
- Laboratory of Ecology and Evolutionary Biology, State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan University, Kunming, Yunnan, China
| | - Zhanqing Hao
- Research Center for Ecology and Environmental Sciences, Xian, China
| | - Shuguang Liu
- Faculty of Life Science and Technology, Central South University of Forestry and Technology and National Engineering Laboratory for Applied Forest Ecological Technology in Southern China, Changsha, China
| | - Zhiheng Wang
- Institute of Ecology and Key Laboratory for Earth Surface Processes of the Ministry of Education, College of Urban and Environmental Sciences, Peking University, Beijing, China
| |
Collapse
|
27
|
Timerman D, Barrett SCH. The biomechanics of pollen release: new perspectives on the evolution of wind pollination in angiosperms. Biol Rev Camb Philos Soc 2021; 96:2146-2163. [PMID: 34076950 DOI: 10.1111/brv.12745] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2020] [Revised: 05/07/2021] [Accepted: 05/11/2021] [Indexed: 11/30/2022]
Abstract
Evolutionary transitions from animal to wind pollination have occurred repeatedly during the history of the angiosperms, but the selective mechanisms remain elusive. Here, we propose that knowledge of pollen release biomechanics is critical for understanding the ecological and evolutionary processes underpinning this shift in pollination mode. Pollen release is the critical first stage of wind pollination (anemophily) and stamen properties are therefore likely to be under strong selection early in the transition. We describe current understanding of pollen release biomechanics to provide insights on the phenotypic and ecological drivers of wind pollination. Pollen release occurs when detachment forces dominate resistive forces retaining pollen within anthers. Detachment forces can be active or passive depending on whether they require energy input from the environment. Passive release is more widespread in anemophilous species and involves processes driven by steady or unsteady aerodynamic forces or turbulence-induced vibrations that shake pollen from anthers. We review empirical and theoretical studies suggesting that stamen vibration is likely to be a key mechanism of pollen release. The vibration response is governed by morphological and biomechanical properties of stamens, which may undergo divergent selection in the presence or absence of pollinators. Resistive forces have rarely been investigated for pollen within anthers, but are probably sensitive to environmental conditions and depend on flower age, varying systematically between animal- and wind-pollinated species. Animal and wind pollination are traditionally viewed as dichotomous alternatives because they are usually associated with strikingly different pollination syndromes. But this perspective has diverted attention from subtler, continuously varying traits which mediate the fluid dynamic process of pollen release. Reinterpreting the flower as a biomechanical entity that responds to fluctuating environmental forces may provide a promising way forward. We conclude by identifying several profitable areas for future research to obtain deeper insight into the evolution of wind pollination.
Collapse
Affiliation(s)
- David Timerman
- Department of Ecology and Evolutionary Biology, University of Toronto, 25 Willcocks Street, Toronto, M5S 3B2, Canada
| | - Spencer C H Barrett
- Department of Ecology and Evolutionary Biology, University of Toronto, 25 Willcocks Street, Toronto, M5S 3B2, Canada
| |
Collapse
|
28
|
Droissart V, Azandi L, Onguene ER, Savignac M, Smith TB, Deblauwe V. PICT: A low‐cost, modular, open‐source camera trap system to study plant–insect interactions. Methods Ecol Evol 2021. [DOI: 10.1111/2041-210x.13618] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Affiliation(s)
- Vincent Droissart
- AMAP Lab Université MontpellierIRDCNRSINRAECIRAD Montpellier France
- Herbarium et Bibliothèque de Botanique Africaine Université Libre de Bruxelles Brussels Belgium
- Plant Systematics and Ecology Laboratory Higher Teachers’ Training CollegeUniversity of Yaoundé I Yaoundé Cameroon
| | - Laura Azandi
- Herbarium et Bibliothèque de Botanique Africaine Université Libre de Bruxelles Brussels Belgium
- Plant Systematics and Ecology Laboratory Higher Teachers’ Training CollegeUniversity of Yaoundé I Yaoundé Cameroon
| | - Eric Rostand Onguene
- International Institute of Tropical Agriculture Yaoundé Cameroon
- National Forestry School Mbalmayo Mbalmayo Cameroon
| | - Marie Savignac
- AMAP Lab Université MontpellierIRDCNRSINRAECIRAD Montpellier France
- Plant Systematics and Ecology Laboratory Higher Teachers’ Training CollegeUniversity of Yaoundé I Yaoundé Cameroon
| | - Thomas B. Smith
- Center for Tropical Research Institute of the Environment and Sustainability University of California Los Angeles CA USA
| | - Vincent Deblauwe
- Herbarium et Bibliothèque de Botanique Africaine Université Libre de Bruxelles Brussels Belgium
- International Institute of Tropical Agriculture Yaoundé Cameroon
- Center for Tropical Research Institute of the Environment and Sustainability University of California Los Angeles CA USA
| |
Collapse
|
29
|
Lovo J, Alcantara S, Vasconcelos TNC, Sajo MDG, Rudall PJ, Prenner G, Aguiar AJC, Mello-Silva R. Evolutionary lability in floral ontogeny affects pollination biology in Trimezieae. AMERICAN JOURNAL OF BOTANY 2021; 108:828-843. [PMID: 34019302 DOI: 10.1002/ajb2.1655] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/05/2020] [Accepted: 01/07/2021] [Indexed: 06/12/2023]
Abstract
PREMISE There is little direct evidence linking floral development and pollination biology in plants. We characterize both aspects in plain and ornamented flowers of Trimezieae (Iridaceae) to investigate how changes in floral ontogeny may affect their interactions with pollinators through time. METHODS We examined floral ontogeny in 11 species and documented pollination biology in five species displaying a wide range of floral morphologies. We coded and reconstructed ancestral states of flower types over the tribal phylogeny to estimate the frequency of transition between different floral types. RESULTS All Trimezieae flowers are similar in early floral development, but ornamented flowers have additional ontogenetic steps compared with plain flowers, indicating heterochrony. Ornamented flowers have a hinge pollination mechanism (newly described here) and attract more pollinator guilds, while plain flowers offer less variety of resources for a shorter time. Although the ornamented condition is plesiomorphic in this clade, shifts to plain flowers have occurred frequently and abruptly during the past 5 million years, with some subsequent reversals. CONCLUSIONS Heterochrony has resulted in labile morphological changes during flower evolution in Trimezieae. Counterintuitively, species with plain flowers, which are endemic to the campo rupestre, are derived within the tribe and show a higher specialization than the ornamented species, with the former being visited by pollen-collecting bees only.
Collapse
Affiliation(s)
- Juliana Lovo
- Departamento de Sistemática e Ecologia, Universidade Federal da Paraíba, Caixa Postal 5065, Cidade Universitária, João Pessoa, PB, 58051-970, Brazil
- Departamento de Botânica, Universidade de São Paulo, Rua do Matão, 277, São Paulo, SP, 05508-090, Brazil
| | - Suzana Alcantara
- Departamento de Botânica, Universidade de São Paulo, Rua do Matão, 277, São Paulo, SP, 05508-090, Brazil
- Departamento de Botânica, Universidade Federal de Santa Catarina, Campus Trindade, Florianópolis, SC, 88040-900, Brazil
| | - Thais N C Vasconcelos
- Departamento de Botânica, Universidade de São Paulo, Rua do Matão, 277, São Paulo, SP, 05508-090, Brazil
- Department of Biological Sciences, University of Arkansas, Fayetteville, Arkansas, 72701, USA
| | | | - Paula J Rudall
- Royal Botanic Gardens, Kew, Richmond, Surrey, TW9 3DS, United Kingdom
| | - Gerhard Prenner
- Royal Botanic Gardens, Kew, Richmond, Surrey, TW9 3DS, United Kingdom
| | - Antônio J C Aguiar
- Departamento de Zoologia, Universidade de Brasília, Brasília, DF, 70910-900, Brazil
| | - Renato Mello-Silva
- Departamento de Botânica, Universidade de São Paulo, Rua do Matão, 277, São Paulo, SP, 05508-090, Brazil
| |
Collapse
|
30
|
Rose JP, Sytsma KJ. Complex interactions underlie the correlated evolution of floral traits and their association with pollinators in a clade with diverse pollination systems. Evolution 2021; 75:1431-1449. [PMID: 33818785 DOI: 10.1111/evo.14220] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2020] [Revised: 02/15/2021] [Accepted: 03/14/2021] [Indexed: 11/28/2022]
Abstract
Natural selection by pollinators is an important factor in the morphological diversity and adaptive radiation of flowering plants. Selection by similar pollinators in unrelated plants leads to convergence in floral morphology, or "floral syndromes." Previous investigations into floral syndromes have mostly studied relatively small and/or simple systems, emphasizing vertebrate pollination. Despite the importance of multiple floral traits in plant-pollinator interactions, these studies have examined few quantitative traits, so their co-variation and phenotypic integration have been underexplored. To gain better insights into pollinator-trait dynamics, we investigate the model system of the phlox family (Polemoniaceae), a clade of ∼400 species pollinated by a diversity of vectors. Using a comprehensive phylogeny and large dataset of traits and observations of pollinators, we reconstruct ancestral pollination system, accounting for the temporal history of pollinators. We conduct phylogenetically controlled analyses of trait co-variation and association with pollinators, integrating many analyses over phylogenetic uncertainty. Pollinator shifts are more heterogeneous than previously hypothesized. The evolution of floral traits is partially constrained by phylogenetic history and trait co-variation, but traits are convergent and differences are associated with different pollinators. Trait shifts are usually gradual, rather than rapid, suggesting complex genetic and ecological interactions of flowers at macroevolutionary scales.
Collapse
Affiliation(s)
- Jeffrey P Rose
- Department of Botany, University of Wisconsin-Madison, Madison, Wisconsin, 53706.,Current Address: Department of Biology, University of Nebraska at Kearney, Kearney, Nebraska, 68849
| | - Kenneth J Sytsma
- Department of Botany, University of Wisconsin-Madison, Madison, Wisconsin, 53706
| |
Collapse
|
31
|
van der Niet T. Paucity of natural history data impedes phylogenetic analyses of pollinator-driven evolution. THE NEW PHYTOLOGIST 2021; 229:1201-1205. [PMID: 32786085 DOI: 10.1111/nph.16813] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2020] [Accepted: 07/03/2020] [Indexed: 06/11/2023]
Affiliation(s)
- Timotheüs van der Niet
- Centre for Functional Biodiversity, School of Life Sciences, University of KwaZulu-Natal, P. Bag X01, Pietermaritzburg, South Africa
| |
Collapse
|
32
|
Kerbs B, Crawford DJ, White G, Moura M, Borges Silva L, Schaefer H, Brown K, Mort ME, Kelly JK. How rapidly do self-compatible populations evolve selfing? Mating system estimation within recently evolved self-compatible populations of Azorean Tolpis succulenta (Asteraceae). Ecol Evol 2020; 10:13990-13999. [PMID: 33391697 PMCID: PMC7771160 DOI: 10.1002/ece3.6992] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2020] [Revised: 10/08/2020] [Accepted: 10/14/2020] [Indexed: 01/04/2023] Open
Abstract
Genome-wide genotyping and Bayesian inference method (BORICE) were employed to estimate outcrossing rates and paternity in two small plant populations of Tolpis succulenta (Asteraceae) on Graciosa island in the Azores. These two known extant populations of T. succulenta on Graciosa have recently evolved self-compatibility. Despite the expectation that selfing would occur at an appreciable rate (self-incompatible populations of the same species show low but nonzero selfing), high outcrossing was found in progeny arrays from maternal plants in both populations. This is inconsistent with an immediate transition to high selfing following the breakdown of a genetic incompatibility system. This finding is surprising given the small population sizes and the recent colonization of an island from self-incompatible colonists of T. succulenta from another island in the Azores, and a potential paucity of pollinators, all factors selecting for selfing through reproductive assurance. The self-compatible lineage(s) likely have high inbreeding depression (ID) that effectively halts the evolution of increased selfing, but this remains to be determined. Like their progeny, all maternal plants in both populations are fully outbred, which is consistent with but not proof of high ID. High multiple paternity was found in both populations, which may be due in part to the abundant pollinators observed during the flowering season.
Collapse
Affiliation(s)
- Benjamin Kerbs
- Department of Ecology & Evolutionary BiologyUniversity of KansasLawrenceKSUSA
| | - Daniel J. Crawford
- Department of Ecology & Evolutionary BiologyUniversity of KansasLawrenceKSUSA
- Biodiversity InstituteUniversity of KansasLawrenceKSUSA
| | - Griffin White
- Department of Ecology & Evolutionary BiologyUniversity of KansasLawrenceKSUSA
- ETH ZurichFunctional Genomics Center ZurichZurichSwitzerland
| | - Mónica Moura
- InBIO Laboratório Associado, Pólo dos AçoresFaculdade de Ciências TecnoclogiaCIBIO, Centro de Investigação em Biodiversidade e Recursos GenéticosUniversidade dos AçoresPonta DelgadaPortugal
| | - Lurdes Borges Silva
- InBIO Laboratório Associado, Pólo dos AçoresFaculdade de Ciências TecnoclogiaCIBIO, Centro de Investigação em Biodiversidade e Recursos GenéticosUniversidade dos AçoresPonta DelgadaPortugal
| | - Hanno Schaefer
- Department of Ecology and Ecosystem ManagementPlant Biodiversity ResearchTechnical University of MunichFreisingGermany
| | - Keely Brown
- Department of Ecology & Evolutionary BiologyUniversity of KansasLawrenceKSUSA
| | - Mark E. Mort
- Department of Ecology & Evolutionary BiologyUniversity of KansasLawrenceKSUSA
| | - John K. Kelly
- Department of Ecology & Evolutionary BiologyUniversity of KansasLawrenceKSUSA
| |
Collapse
|
33
|
Wang Y, Lyu T, Luo A, Li Y, Liu Y, Freckleton RP, Liu S, Wang Z. Spatial Patterns and Drivers of Angiosperm Sexual Systems in China Differ Between Woody and Herbaceous Species. FRONTIERS IN PLANT SCIENCE 2020; 11:1222. [PMID: 32849756 PMCID: PMC7432134 DOI: 10.3389/fpls.2020.01222] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/10/2020] [Accepted: 07/27/2020] [Indexed: 06/11/2023]
Abstract
Plant sexual systems play an important role in the evolution of angiosperm diversity. However, large-scale patterns in the frequencies of sexual systems (i.e. dioecy, monoecy, and hermaphroditism) and their drivers for species with different growth forms remain poorly known. Here, using a newly compiled database on the sexual systems and distributions of 19780 angiosperm species in China, we map the large-scale geographical patterns in frequencies of the sexual systems of woody and herbaceous species separately. We use these data to test the following two hypotheses: (1) the prevalence of sexual systems differs between woody and herbaceous assemblies because woody plants have taller canopies and are found in warm and humid climates; (2) the relative contributions of different drivers (specifically climate, evolutionary age, and mature plant height) to these patterns differ between woody and herbaceous species. We show that geographical patterns in proportions of different sexual systems (especially dioecy) differ between woody and herbaceous species. Geographical variations in sexual systems of woody species were influenced by climate, evolutionary age and plant height. In contrast, these have only weakly significant effects on the patterns of sexual systems of herbaceous species. We suggest that differences between species with woody and herbaceous growth forms in terms of biogeographic patterns of sexual systems, and their drivers, may reflect their differences in physiological and ecological adaptions, as well as the coevolution of sexual system with vegetative traits in response to environmental changes.
Collapse
Affiliation(s)
- Yunyun Wang
- National Engineering Laboratory for Applied Technology of Forestry & Ecology in Southern China, and College of Life Science and Technology, Central South University of Forest and Technology, Changsha, China
- Institute of Ecology and Key Laboratory for Earth Surface Processes of the Ministry of Education, College of Urban and Environmental Sciences, Peking University, Beijing, China
| | - Tong Lyu
- Institute of Ecology and Key Laboratory for Earth Surface Processes of the Ministry of Education, College of Urban and Environmental Sciences, Peking University, Beijing, China
- School of Urban Planning and Design, Shenzhen Graduate School, Peking University, Shenzhen, China
| | - Ao Luo
- Institute of Ecology and Key Laboratory for Earth Surface Processes of the Ministry of Education, College of Urban and Environmental Sciences, Peking University, Beijing, China
| | - Yaoqi Li
- Institute of Ecology and Key Laboratory for Earth Surface Processes of the Ministry of Education, College of Urban and Environmental Sciences, Peking University, Beijing, China
| | - Yunpeng Liu
- Institute of Ecology and Key Laboratory for Earth Surface Processes of the Ministry of Education, College of Urban and Environmental Sciences, Peking University, Beijing, China
| | - Robert P. Freckleton
- Department of Animal and Plant Sciences, University of Sheffield, Sheffield, United Kingdom
| | - Shuguang Liu
- National Engineering Laboratory for Applied Technology of Forestry & Ecology in Southern China, and College of Life Science and Technology, Central South University of Forest and Technology, Changsha, China
| | - Zhiheng Wang
- Institute of Ecology and Key Laboratory for Earth Surface Processes of the Ministry of Education, College of Urban and Environmental Sciences, Peking University, Beijing, China
| |
Collapse
|
34
|
Walter GM, Abbott RJ, Brennan AC, Bridle JR, Chapman M, Clark J, Filatov D, Nevado B, Ortiz-Barrientos D, Hiscock SJ. Senecio as a model system for integrating studies of genotype, phenotype and fitness. THE NEW PHYTOLOGIST 2020; 226:326-344. [PMID: 31951018 DOI: 10.1111/nph.16434] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/19/2019] [Accepted: 12/17/2019] [Indexed: 05/24/2023]
Abstract
Two major developments have made it possible to use examples of ecological radiations as model systems to understand evolution and ecology. First, the integration of quantitative genetics with ecological experiments allows detailed connections to be made between genotype, phenotype, and fitness in the field. Second, dramatic advances in molecular genetics have created new possibilities for integrating field and laboratory experiments with detailed genetic sequencing. Combining these approaches allows evolutionary biologists to better study the interplay between genotype, phenotype, and fitness to explore a wide range of evolutionary processes. Here, we present the genus Senecio (Asteraceae) as an excellent system to integrate these developments, and to address fundamental questions in ecology and evolution. Senecio is one of the largest and most phenotypically diverse genera of flowering plants, containing species ranging from woody perennials to herbaceous annuals. These Senecio species exhibit many growth habits, life histories, and morphologies, and they occupy a multitude of environments. Common within the genus are species that have hybridized naturally, undergone polyploidization, and colonized diverse environments, often through rapid phenotypic divergence and adaptive radiation. These diverse experimental attributes make Senecio an attractive model system in which to address a broad range of questions in evolution and ecology.
Collapse
Affiliation(s)
- Greg M Walter
- School of Biological Sciences, University of Bristol, Bristol, BS8 1TQ, UK
| | - Richard J Abbott
- School of Biology, University of St Andrews, St Andrews, Fife, KY16 9TH, UK
| | - Adrian C Brennan
- School of Biological and Biomedical Sciences, University of Durham, Durham, DH1 3LE, UK
| | - Jon R Bridle
- School of Biological Sciences, University of Bristol, Bristol, BS8 1TQ, UK
| | - Mark Chapman
- School of Biological Sciences, University of Southampton, Southampton, SO17 1BJ, UK
| | - James Clark
- Department of Plant Sciences, University of Oxford, Oxford, OX1 3RB, UK
| | - Dmitry Filatov
- Department of Plant Sciences, University of Oxford, Oxford, OX1 3RB, UK
| | - Bruno Nevado
- Department of Plant Sciences, University of Oxford, Oxford, OX1 3RB, UK
| | | | - Simon J Hiscock
- Department of Plant Sciences, University of Oxford, Oxford, OX1 3RB, UK
| |
Collapse
|
35
|
Sellinger TPP, Abu Awad D, Moest M, Tellier A. Inference of past demography, dormancy and self-fertilization rates from whole genome sequence data. PLoS Genet 2020; 16:e1008698. [PMID: 32251472 PMCID: PMC7173940 DOI: 10.1371/journal.pgen.1008698] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2019] [Revised: 04/21/2020] [Accepted: 02/24/2020] [Indexed: 02/04/2023] Open
Abstract
Several methods based on the Sequential Markovian coalescence (SMC) have been developed that make use of genome sequence data to uncover population demographic history, which is of interest in its own right and is a key requirement to generate a null model for selection tests. While these methods can be applied to all possible kind of species, the underlying assumptions are sexual reproduction in each generation and non-overlapping generations. However, in many plants, invertebrates, fungi and other taxa, those assumptions are often violated due to different ecological and life history traits, such as self-fertilization or long term dormant structures (seed or egg-banking). We develop a novel SMC-based method to infer 1) the rates/parameters of dormancy and of self-fertilization, and 2) the populations' past demographic history. Using simulated data sets, we demonstrate the accuracy of our method for a wide range of demographic scenarios and for sequence lengths from one to 30 Mb using four sampled genomes. Finally, we apply our method to a Swedish and a German population of Arabidopsis thaliana demonstrating a selfing rate of ca. 0.87 and the absence of any detectable seed-bank. In contrast, we show that the water flea Daphnia pulex exhibits a long lived egg-bank of three to 18 generations. In conclusion, we here present a novel method to infer accurate demographies and life-history traits for species with selfing and/or seed/egg-banks. Finally, we provide recommendations for the use of SMC-based methods for non-model organisms, highlighting the importance of the per site and the effective ratios of recombination over mutation.
Collapse
Affiliation(s)
| | - Diala Abu Awad
- Department of Population Genetics, Technische Universitaet Muenchen, Freising, Germany
| | - Markus Moest
- Department of Ecology, University of Innsbruck, Innsbruck, Austria
| | - Aurélien Tellier
- Department of Population Genetics, Technische Universitaet Muenchen, Freising, Germany
| |
Collapse
|
36
|
Roberts WR, Roalson EH. Co-expression clustering across flower development identifies modules for diverse floral forms in Achimenes (Gesneriaceae). PeerJ 2020; 8:e8778. [PMID: 32201652 PMCID: PMC7071821 DOI: 10.7717/peerj.8778] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2019] [Accepted: 02/21/2020] [Indexed: 01/09/2023] Open
Abstract
BACKGROUND Genetic pathways involved with flower color and shape are thought to play an important role in the development of flowers associated with different pollination syndromes, such as those associated with bee, butterfly, or hummingbird pollination. Because pollination syndromes are complex traits that are orchestrated by multiple genes and pathways, the gene regulatory networks have not been explored. Gene co-expression networks provide a systems level approach to identify important contributors to floral diversification. METHODS RNA-sequencing was used to assay gene expression across two stages of flower development (an early bud and an intermediate stage) in 10 species of Achimenes (Gesneriaceae). Two stage-specific co-expression networks were created from 9,503 orthologs and analyzed to identify module hubs and the network periphery. Module association with bee, butterfly, and hummingbird pollination syndromes was tested using phylogenetic mixed models. The relationship between network connectivity and evolutionary rates (d N/d S) was tested using linear models. RESULTS Networks contained 65 and 62 modules that were largely preserved between developmental stages and contained few stage-specific modules. Over a third of the modules in both networks were associated with flower color, shape, and pollination syndrome. Within these modules, several hub nodes were identified that related to the production of anthocyanin and carotenoid pigments and the development of flower shape. Evolutionary rates were decreased in highly connected genes and elevated in peripheral genes. DISCUSSION This study aids in the understanding of the genetic architecture and network properties underlying the development of floral form and provides valuable candidate modules and genes for future studies.
Collapse
Affiliation(s)
- Wade R. Roberts
- School of Biological Sciences, Washington State University, Pullman, WA, USA
- Biological Sciences, University of Arkansas, Fayetteville, AR, USA
| | - Eric H. Roalson
- School of Biological Sciences, Washington State University, Pullman, WA, USA
| |
Collapse
|
37
|
Kraaij M, van der Kooi CJ. Surprising absence of association between flower surface microstructure and pollination system. PLANT BIOLOGY (STUTTGART, GERMANY) 2020; 22:177-183. [PMID: 31710761 PMCID: PMC7064994 DOI: 10.1111/plb.13071] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/06/2019] [Accepted: 11/03/2019] [Indexed: 05/25/2023]
Abstract
The epidermal cells of flowers come in different shapes and have different functions, but how they evolved remains largely unknown. Floral micro-texture can provide tactile cues to insects, and increases in surface roughness by means of conical (papillose) epidermal cells may facilitate flower handling by landing insect pollinators. Whether flower microstructure correlates with pollination system remains unknown. Here, we investigate the floral epidermal microstructure in 29 (congeneric) species pairs with contrasting pollination system. We test whether flowers pollinated by bees and/or flies feature more structured, rougher surfaces than flowers pollinated by non-landing moths or birds and flowers that self-pollinate. In contrast with earlier studies, we find no correlation between epidermal microstructure and pollination system. The shape, cell height and roughness of floral epidermal cells varies among species, but is not correlated with pollinators at large. Intriguingly, however, we find that the upper (adaxial) flower surface that surrounds the reproductive organs and often constitutes the floral display is markedly more structured than the lower (abaxial) surface. We thus conclude that conical epidermal cells probably play a role in plant reproduction other than providing grip or tactile cues, such as increasing hydrophobicity or enhancing the visual signal.
Collapse
Affiliation(s)
- M. Kraaij
- Groningen Institute for Evolutionary Life SciencesUniversity of GroningenGroningenthe Netherlands
| | - C. J. van der Kooi
- Groningen Institute for Evolutionary Life SciencesUniversity of GroningenGroningenthe Netherlands
| |
Collapse
|
38
|
Oleques SS, Radaeski JN, Bauerman S, Chauveau O, de Souza-Chies TT. The specialization–generalization continuum in oil-bee pollination systems: a case study of six Brazilian species of Tigridieae (Iridaceae). Biol J Linn Soc Lond 2020. [DOI: 10.1093/biolinnean/blz185] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]
Abstract
Abstract
Several South American species of Iridaceae, especially those of Tigridieae, produce floral oils as rewards to oil-bee pollinators. The present study aimed to contribute to a deeper understanding of the reproductive biology, pollination ecology and level of specialization of the interactions of species encompassed in Tigridieae. Data on breeding and pollination systems were acquired from six species native to Southern Brazil. The visitation frequency and pollen load of pollen- and oil-collecting bees were also investigated. The results strongly suggest that the studied species are distributed along a specialization–generalization continuum. Three oil-producing taxa, Cypella herbertii, Cypella pusilla and Cypella amplimaculata, were pollinated effectively by oil-bees, whereas in the other two studied species, Kelissa brasiliensis and Herbertia pulchella, the oil-bees appeared to function as oil thieves, owing to failure to contact the plant reproductive parts during oil-foraging behaviour. New insights into aspects of the specialization–generalization continuum of pollination systems, differences in pollinator behaviour during oil and pollen foraging, and reproductive outputs of the studied species are provided. Taken together, our results provide a significant contribution towards a better understanding of reproductive biology and plant–pollinator interactions between Iridaceae and oil-collecting bees.
Collapse
Affiliation(s)
- Suiane Santos Oleques
- Departamento de Botânica, Programa de Pós-graduação em Botânica, Universidade Federal do Rio Grande do Sul—UFRGS, Porto Alegre, Rio Grande do Sul, Brazil
- Laboratório de Pesquisa em Interações Ecológicas, Universidade Federal do Pampa - UNIPAMPA, São Gabriel, Rio Grande do Sul, Brazil
| | - Jefferson Nunes Radaeski
- Departamento de Biologia, Universidade Luterana do Brasil – ULBRA, Laboratório de Palinologia, Canoas, Rio Grande do Sul, Brazil
| | - Soraia Bauerman
- Departamento de Biologia, Universidade Luterana do Brasil – ULBRA, Laboratório de Palinologia, Canoas, Rio Grande do Sul, Brazil
| | - Olivier Chauveau
- Departamento de Botânica, Programa de Pós-graduação em Botânica, Universidade Federal do Rio Grande do Sul—UFRGS, Porto Alegre, Rio Grande do Sul, Brazil
- Laboratório de Pesquisa em Interações Ecológicas, Universidade Federal do Pampa - UNIPAMPA, São Gabriel, Rio Grande do Sul, Brazil
- Université Paris Sud, Agro Paris Tech, —Unité Écologie, Systématique et Évolution, Orsay, France
| | - Tatiana Teixeira de Souza-Chies
- Departamento de Botânica, Programa de Pós-graduação em Botânica, Universidade Federal do Rio Grande do Sul—UFRGS, Porto Alegre, Rio Grande do Sul, Brazil
- Laboratório de Pesquisa em Interações Ecológicas, Universidade Federal do Pampa - UNIPAMPA, São Gabriel, Rio Grande do Sul, Brazil
- Departamento de Botânica, Universidade Federal do Rio Grande do Sul, Porto Alegre, Rio Grande do Sul, Brazil
| |
Collapse
|
39
|
Mackenzie SA, Kundariya H. Organellar protein multi-functionality and phenotypic plasticity in plants. Philos Trans R Soc Lond B Biol Sci 2019; 375:20190182. [PMID: 31787051 PMCID: PMC6939364 DOI: 10.1098/rstb.2019.0182] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
With the increasing impact of climate instability on agricultural and ecological systems has come a heightened sense of urgency to understand plant adaptation mechanisms in more detail. Plant species have a remarkable ability to disperse their progeny to a wide range of environments, demonstrating extraordinary resiliency mechanisms that incorporate epigenetics and transgenerational stability. Surprisingly, some of the underlying versatility of plants to adapt to abiotic and biotic stress emerges from the neofunctionalization of organelles and organellar proteins. We describe evidence of possible plastid specialization and multi-functional organellar protein features that serve to enhance plant phenotypic plasticity. These features appear to rely on, for example, spatio-temporal regulation of plastid composition, and unusual interorganellar protein targeting and retrograde signalling features that facilitate multi-functionalization. Although we report in detail on three such specializations, involving MSH1, WHIRLY1 and CUE1 proteins in Arabidopsis, there is ample reason to believe that these represent only a fraction of what is yet to be discovered as we begin to elaborate cross-species diversity. Recent observations suggest that plant proteins previously defined in one context may soon be rediscovered in new roles and that much more detailed investigation of proteins that show subcellular multi-targeting may be warranted. This article is part of the theme issue ‘Linking the mitochondrial genotype to phenotype: a complex endeavour’.
Collapse
Affiliation(s)
- Sally A Mackenzie
- Departments of Biology and Plant Science, The Pennsylvania State University, 362 Frear North Building, University Park, PA 16802, USA
| | - Hardik Kundariya
- Departments of Biology and Plant Science, The Pennsylvania State University, 362 Frear North Building, University Park, PA 16802, USA
| |
Collapse
|
40
|
Pauw A. A Bird's-Eye View of Pollination: Biotic Interactions as Drivers of Adaptation and Community Change. ANNUAL REVIEW OF ECOLOGY EVOLUTION AND SYSTEMATICS 2019. [DOI: 10.1146/annurev-ecolsys-110218-024845] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Nectarivorous birds and bird-pollinated plants are linked by a network of interactions. Here I ask how these interactions influence evolution and community composition. I find near complete evidence for the effect of birds on plant evolution. Experiments show the process in action—birds select among floral phenotypes in a population—and comparative studies find the resulting pattern—bird-pollinated species have long-tubed, red flowers with large nectar volumes. Speciation is accomplished in one “magical” step when adaptation for bird pollination brings about divergent morphology and reproductive isolation. In contrast, evidence that plants drive bird evolution is fragmentary. Studies of selection on population-level variation are lacking, but the resulting pattern is clear—nectarivorous birds have evolved a remarkable number of times and often have long bills and brush-tipped or tubular tongues. At the level of the ecological guild, birds select among plant species via an effect on seed set and thus determine plant community composition. Plants simultaneously influence the relative fitness of bird species and thus determine the composition of the bird guild. Interaction partners may give one guild member a constant fitness advantage, resulting in competitive exclusion and community change, or may act as limiting resources that depress the fitness of frequent species, thus stabilizing community composition and allowing the coexistence of diversity within bird and plant guilds.
Collapse
Affiliation(s)
- Anton Pauw
- Department of Botany and Zoology, Stellenbosch University, Matieland 7602, South Africa
| |
Collapse
|
41
|
Zenil-Ferguson R, Burleigh JG, Freyman WA, Igić B, Mayrose I, Goldberg EE. Interaction among ploidy, breeding system and lineage diversification. THE NEW PHYTOLOGIST 2019; 224:1252-1265. [PMID: 31617595 DOI: 10.1111/nph.16184] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2019] [Accepted: 08/14/2019] [Indexed: 05/28/2023]
Abstract
If particular traits consistently affect rates of speciation and extinction, broad macroevolutionary patterns can be interpreted as consequences of selection at high levels of the biological hierarchy. Identifying traits associated with diversification rates is difficult because of the wide variety of characters under consideration and the statistical challenges of testing for associations from comparative phylogenetic data. Ploidy (diploid vs polyploid states) and breeding system (self-incompatible vs self-compatible states) are both thought to be drivers of differential diversification in angiosperms. We fit 29 diversification models to extensive trait and phylogenetic data in Solanaceae and investigate how speciation and extinction rate differences are associated with ploidy, breeding system, and the interaction between these traits. We show that diversification patterns in Solanaceae are better explained by breeding system and an additional unobserved factor, rather than by ploidy. We also find that the most common evolutionary pathway to polyploidy in Solanaceae occurs via direct breakdown of self-incompatibility by whole genome duplication, rather than indirectly via breakdown followed by polyploidization. Comparing multiple stochastic diversification models that include complex trait interactions alongside hidden states enhances our understanding of the macroevolutionary patterns in plant phylogenies.
Collapse
Affiliation(s)
| | - J Gordon Burleigh
- Department of Biology, University of Florida, Gainesville, FL, 32611, USA
| | - William A Freyman
- Department of Ecology, Evolution and Behavior, University of Minnesota, Saint Paul, MN, 55108, USA
| | - Boris Igić
- Department of Biological Sciences, University of Illinois at Chicago, Chicago, IL, 60607, USA
| | - Itay Mayrose
- School of Plant Sciences and Food Security, Tel Aviv University, Tel Aviv, 6997801, Israel
| | - Emma E Goldberg
- Department of Ecology, Evolution and Behavior, University of Minnesota, Saint Paul, MN, 55108, USA
| |
Collapse
|
42
|
Wessinger CA, Rausher MD, Hileman LC. Adaptation to hummingbird pollination is associated with reduced diversification in Penstemon. Evol Lett 2019; 3:521-533. [PMID: 31636944 PMCID: PMC6791294 DOI: 10.1002/evl3.130] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2019] [Revised: 06/12/2019] [Accepted: 07/12/2019] [Indexed: 12/24/2022] Open
Abstract
A striking characteristic of the Western North American flora is the repeated evolution of hummingbird pollination from insect-pollinated ancestors. This pattern has received extensive attention as an opportunity to study repeated trait evolution as well as potential constraints on evolutionary reversibility, with little attention focused on the impact of these transitions on species diversification rates. Yet traits conferring adaptation to divergent pollinators potentially impact speciation and extinction rates, because pollinators facilitate plant reproduction and specify mating patterns between flowering plants. Here, we examine macroevolutionary processes affecting floral pollination syndrome diversity in the largest North American genus of flowering plants, Penstemon. Within Penstemon, transitions from ancestral bee-adapted flowers to hummingbird-adapted flowers have frequently occurred, although hummingbird-adapted species are rare overall within the genus. We inferred macroevolutionary transition and state-dependent diversification rates and found that transitions from ancestral bee-adapted flowers to hummingbird-adapted flowers are associated with reduced net diversification rate, a finding based on an estimated 17 origins of hummingbird pollination in our sample. Although this finding is congruent with hypotheses that hummingbird adaptation in North American Flora is associated with reduced species diversification rates, it contrasts with studies of neotropical plant families where hummingbird pollination has been associated with increased species diversification. We further used the estimated macroevolutionary rates to predict the expected pattern of floral diversity within Penstemon over time, assuming stable diversification and transition rates. Under these assumptions, we find that hummingbird-adapted species are expected to remain rare due to their reduced diversification rates. In fact, current floral diversity in the sampled Penstemon lineage, where less than one-fifth of species are hummingbird adapted, is consistent with predicted levels of diversity under stable macroevolutionary rates.
Collapse
Affiliation(s)
- Carolyn A Wessinger
- Department of Ecology and Evolutionary Biology University of Kansas Lawrence Kansas 66045
| | - Mark D Rausher
- Department of Biology Duke University Durham North Carolina 27708
| | - Lena C Hileman
- Department of Ecology and Evolutionary Biology University of Kansas Lawrence Kansas 66045
| |
Collapse
|
43
|
Ibañez A, Moré M, Salazar G, Leiva S, Barboza G, Cocucci A. Crescendo, diminuendo and subito of the trumpets: winds of change in the concerted evolution between flowers and pollinators in Salpichroa (Solanaceae). Mol Phylogenet Evol 2019; 132:90-99. [DOI: 10.1016/j.ympev.2018.11.020] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2018] [Revised: 10/18/2018] [Accepted: 11/26/2018] [Indexed: 01/01/2023]
|
44
|
Vasconcelos TNC, Chartier M, Prenner G, Martins AC, Schönenberger J, Wingler A, Lucas E. Floral uniformity through evolutionary time in a species-rich tree lineage. THE NEW PHYTOLOGIST 2019; 221:1597-1608. [PMID: 30284282 DOI: 10.1111/nph.15453] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/02/2018] [Accepted: 08/21/2018] [Indexed: 06/08/2023]
Abstract
Changes in floral morphology are expected across evolutionary time and are often promoted as important drivers in angiosperm diversification. Such a statement, however, is in contrast to empirical observations of species-rich lineages that show apparent conservative floral morphologies even under strong selective pressure to change from their environments. Here, we provide quantitative evidence for prolific speciation despite uniform floral morphology in a tropical species-rich tree lineage. We analyse floral disparity in the environmental and phylogenetic context of Myrcia (Myrtaceae), one of the most diverse and abundant tree genera in Neotropical biomes. Variation in floral morphology among Myrcia clades is exceptionally low, even among distantly related species. Discrete floral specialisations do occur, but these are few, present low phylogenetic signal, have no strong correlation with abiotic factors, and do not affect overall macroevolutionary dynamics in the lineage. Results show that floral form and function may be conserved over large evolutionary time scales even in environments full of opportunities for ecological interactions and niche specialisation. Species accumulation in diverse lineages with uniform flowers apparently does not result from shifts in pollination strategies, but from speciation mechanisms that involve other, nonfloral plant traits.
Collapse
Affiliation(s)
- Thais N C Vasconcelos
- Jodrell Laboratory, Comparative Plant and Fungal Biology Department, Royal Botanic Gardens Kew, Richmond, TW9 3DS, UK
- Laboratório de Sistemética Vegetal, Departamento de Botânica, Universidade de São Paulo, São Paulo, SP 05508- 090, Brazil
| | - Marion Chartier
- Department of Botany and Biodiversity Research, University of Vienna, Rennweg 14, Vienna, 1030, Austria
| | - Gerhard Prenner
- Jodrell Laboratory, Comparative Plant and Fungal Biology Department, Royal Botanic Gardens Kew, Richmond, TW9 3DS, UK
| | - Aline C Martins
- Departamento de Botânica, Centro Politécnico, Universidade Federal do Paraná, Curitiba, PR 81531-980, Brazil
| | - Jürg Schönenberger
- Department of Botany and Biodiversity Research, University of Vienna, Rennweg 14, Vienna, 1030, Austria
| | - Astrid Wingler
- School of Biological, Earth & Environmental Sciences and Environmental Research Institute, University College Cork, Distillery Fields, North Mall, Cork, T23 XA50, Ireland
| | - Eve Lucas
- Jodrell Laboratory, Comparative Plant and Fungal Biology Department, Royal Botanic Gardens Kew, Richmond, TW9 3DS, UK
| |
Collapse
|
45
|
Hewitt TL, Wood CL, Ó Foighil D. Ecological correlates and phylogenetic signal of host use in North American unionid mussels. Int J Parasitol 2019; 49:71-81. [DOI: 10.1016/j.ijpara.2018.09.006] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2018] [Revised: 09/01/2018] [Accepted: 09/03/2018] [Indexed: 10/27/2022]
|
46
|
Zhang Q, Onstein RE, Little SA, Sauquet H. Estimating divergence times and ancestral breeding systems in Ficus and Moraceae. ANNALS OF BOTANY 2019; 123:191-204. [PMID: 30202847 PMCID: PMC6344110 DOI: 10.1093/aob/mcy159] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/20/2017] [Accepted: 08/06/2018] [Indexed: 05/30/2023]
Abstract
Background and Aims Although dioecy, which characterizes only 6 % of angiosperm species, has been considered an evolutionary dead end, recent studies have demonstrated that this is not necessarily the case. Moraceae (40 genera, 1100 spp., including Ficus, 750 spp.) are particularly diverse in breeding systems (including monoecy, gynodioecy, androdioecy and dioecy) and thus represent a model clade to study macroevolution of dioecy. Methods Ancestral breeding systems of Ficus and Moraceae were inferred. To do so, a new dated phylogenetic tree of Ficus and Moraceae was first reconstructed by combining a revised 12-fossil calibration set and a densely sampled molecular data set of eight markers and 320 species. Breeding system evolution was then reconstructed using both parsimony and model-based (maximum likelihood and Bayesian) approaches with this new time scale. Key Results The crown group ages of Ficus and Moraceae were estimated in the Eocene (40.6-55.9 Ma) and Late Cretaceous (73.2-84.7 Ma), respectively. Strong support was found for ancestral dioecy in Moraceae. Although the ancestral state of Ficus remained particularly sensitive to model selection, the results show that monoecy and gynodioecy evolved from dioecy in Moraceae, and suggest that gynodioecy probably evolved from monoecy in Ficus. Conclusions Dioecy was found not to be an evolutionary dead end in Moraceae. This study provides a new time scale for the phylogeny and a new framework of breeding system evolution in Ficus and Moraceae.
Collapse
Affiliation(s)
- Qian Zhang
- Laboratoire Ecologie Systématique Evolution, Univ. Paris-Sud, CNRS, AgroParisTech, Université Paris-Saclay, Orsay, France
| | - Renske E Onstein
- Laboratoire Ecologie Systématique Evolution, Univ. Paris-Sud, CNRS, AgroParisTech, Université Paris-Saclay, Orsay, France
- German Centre for Integrative Biodiversity Research (iDiv), Halle‐Jena‐Leipzig, Leipzig, Germany
| | - Stefan A Little
- Laboratoire Ecologie Systématique Evolution, Univ. Paris-Sud, CNRS, AgroParisTech, Université Paris-Saclay, Orsay, France
| | - Hervé Sauquet
- Laboratoire Ecologie Systématique Evolution, Univ. Paris-Sud, CNRS, AgroParisTech, Université Paris-Saclay, Orsay, France
- National Herbarium of New South Wales (NSW), Royal Botanic Gardens and Domain Trust, Sydney, Australia
| |
Collapse
|
47
|
Pennell MW, Mank JE, Peichel CL. Transitions in sex determination and sex chromosomes across vertebrate species. Mol Ecol 2018; 27:3950-3963. [PMID: 29451715 PMCID: PMC6095824 DOI: 10.1111/mec.14540] [Citation(s) in RCA: 95] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2017] [Revised: 01/30/2018] [Accepted: 02/06/2018] [Indexed: 12/14/2022]
Abstract
Despite the prevalence of sexual reproduction across eukaryotes, there is a remarkable diversity of sex-determination mechanisms. The underlying causes of this diversity remain unclear, and it is unknown whether there are convergent trends in the directionality of turnover in sex-determination mechanisms. We used the recently assembled Tree of Sex database to assess patterns in the evolution of sex-determination systems in the remarkably diverse vertebrate clades of teleost fish, squamate reptiles and amphibians. Contrary to theoretical predictions, we find no evidence that the evolution of separate sexes is irreversible, as transitions from separate sexes to hermaphroditism occur at higher rates than the reverse in fish. We also find that transitions from environmental sex determination to genetic sex determination occur at higher rates than the reverse in both squamates and fish, suggesting that genetic sex determination is more stable. However, our data are not consistent with the hypothesis that heteromorphic sex chromosomes are an "evolutionary trap." Rather, we find similar transition rates between homomorphic and heteromorphic sex chromosomes in both fish and amphibians, and to environmental sex determination from heteromorphic vs. homomorphic sex chromosome systems in fish. Finally, we find that transitions between male and female heterogamety occur at similar rates in amphibians and squamates, while transitions to male heterogamety occur at higher rates in fish. Together, these results provide the most comprehensive view to date of the evolution of vertebrate sex determination in a phylogenetic context, providing new insight into long-standing questions about the evolution of sexual reproduction.
Collapse
Affiliation(s)
- Matthew W. Pennell
- Department of Zoology and Biodiversity Research Centre, University of British Columbia, Vancouver, BC, Canada
| | - Judith E. Mank
- Department of Genetics, Evolution and Environment, University College London, London, UK
- Department of Organismal Biology, Uppsala University, Sweden
| | | |
Collapse
|
48
|
Walas Ł, Mandryk W, Thomas PA, Tyrała-Wierucka Ż, Iszkuło G. Sexual systems in gymnosperms: A review. Basic Appl Ecol 2018. [DOI: 10.1016/j.baae.2018.05.009] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
49
|
Lazcano-Lara JC, Ackerman JD. Best in the company of nearby males: female success in the threatened cycad, Zamia portoricensis. PeerJ 2018; 6:e5252. [PMID: 30065868 PMCID: PMC6063211 DOI: 10.7717/peerj.5252] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2018] [Accepted: 06/27/2018] [Indexed: 11/25/2022] Open
Abstract
Variation in plant reproductive success is affected by ecological conditions including the proximity of potential mates. We address the hypothesis that spatial distribution of sexes affects female reproductive success (RS) in the dioecious cycad, Zamia portoricensis. Are the frequencies of males, operational sex ratios, and distances to the nearest mate associated with RS in females? We studied the spatial distribution of sexes in two populations in Puerto Rico and compared RS of target females with the number of males and operational sex ratios. Population structure suggests regular successful recruitment. Adults, males, and females were randomly distributed with respect to one another. Reproductive success of females was highly variable, but was higher in neighborhoods with more males than females and generally decreased with increasing distance to the nearest male, becoming statistically significant beyond 190 cm. This possible mate-finding Allee effect indicates that pollinator movement among plants may be limited for this mutually dependent plant-pollinator interaction. Yet being close to male plants is a matter of chance, perhaps a factor generating the high intra-population genetic diversity in Z. portoricensis.
Collapse
Affiliation(s)
| | - James D. Ackerman
- Department of Biology, University of Puerto Rico, San Juan, Puerto Rico
| |
Collapse
|
50
|
Losada JM, Leslie AB. Why are the seed cones of conifers so diverse at pollination? ANNALS OF BOTANY 2018; 121:1319-1331. [PMID: 29528365 PMCID: PMC6007286 DOI: 10.1093/aob/mcy029] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/22/2017] [Accepted: 02/16/2018] [Indexed: 05/24/2023]
Abstract
BACKGROUND AND AIMS Form and function relationships in plant reproductive structures have long fascinated biologists. Although the intricate associations between specific pollinators and reproductive morphology have been widely explored among animal-pollinated plants, the evolutionary processes underlying the diverse morphologies of wind-pollinated plants remain less well understood. Here we study how this diversity may have arisen by focusing on two conifer species in the pine family that have divergent reproductive cone morphologies at pollination. METHODS Standard histology methods, artificial wind pollination assays and phylogenetic analyses were used in this study. KEY RESULTS A detailed study of cone ontogeny in these species reveals that variation in the rate at which their cone scales mature means that pollination occurs at different stages in their development, and thus in association with different specific morphologies. Pollination experiments nevertheless indicate that both species effectively capture pollen. CONCLUSIONS In wind-pollinated plants, morphological diversity may result from simple variation in development among lineages rather than selective pressures for any major differences in function or performance. This work also illustrates the broader importance of developmental context in understanding plant form and function relationships; because plant reproductive structures perform many different functions over their lifetime, subtle differences in development may dramatically alter the specific morphologies that they use to meet these demands.
Collapse
Affiliation(s)
- Juan M Losada
- Department of Ecology and Evolutionary Biology, Brown University, Providence, RI, USA
- Arnold Arboretum of Harvard University, Boston, MA, USA
| | - Andrew B Leslie
- Department of Ecology and Evolutionary Biology, Brown University, Providence, RI, USA
| |
Collapse
|