1
|
Rondeau S, Raine NE. Bumblebee (Bombus impatiens) queens prefer pesticide-contaminated soils when selecting underground hibernation sites. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 954:176534. [PMID: 39332727 DOI: 10.1016/j.scitotenv.2024.176534] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2024] [Revised: 09/12/2024] [Accepted: 09/24/2024] [Indexed: 09/29/2024]
Abstract
New evidence points to substantial impacts of exposure to pesticide residues in soil for a range of bee taxa that have close regular contact with this substrate. Among others, the risk of exposure is high for bumblebee (Bombus spp.) queens hibernating in agricultural soils. An important question is whether bumblebee queens can detect and avoid pesticide-contaminated soils, or whether they might be attracted to such agrochemical residues. To address this question, we performed a multiple-choice preference experiment in which newly emerged bumblebee (Bombus impatiens) queens were given access to arrays of 36 crates of soil treated with different pesticides in large mesh-covered enclosures. Five of the most commonly encountered pesticides in agricultural soils (boscalid, chlorantraniliprole, clothianidin, cyantraniliprole, difenoconazole) were selected for testing at two contamination levels (lower or higher), based on field-realistic exposure estimates. Bumblebee queens consistently avoided hibernating in pesticide-free soil at both contamination levels, while showing no avoidance for any pesticide-treated soil types. At the lower contamination level, queens selected the pesticide-free soil 1.3 to 2.4-fold less frequently on average than any of the spiked soils, while none of the queens from the higher contamination group selected pesticide-free soil. This apparent preference for pesticide-contaminated soils increases the likelihood of exposure to and potential hazard from pesticide residues in soil for bumblebee queens during hibernation, a critical and highly vulnerable period of their annual life cycle.
Collapse
Affiliation(s)
- Sabrina Rondeau
- School of Environmental Sciences, University of Guelph, Guelph, ON, N1G 2W1, Canada.
| | - Nigel E Raine
- School of Environmental Sciences, University of Guelph, Guelph, ON, N1G 2W1, Canada.
| |
Collapse
|
2
|
Palmer J, Samuelson AE, Gill RJ, Leadbeater E, Jansen VAA. Foraging distance distributions reveal how honeybee waggle dance recruitment varies with landscape. Commun Biol 2024; 7:1306. [PMID: 39394388 PMCID: PMC11470012 DOI: 10.1038/s42003-024-06987-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Accepted: 09/28/2024] [Indexed: 10/13/2024] Open
Abstract
Honeybee (Apis mellifera) colonies use a unique collective foraging system, the waggle dance, to communicate and process the location of resources. Here, we present a means to quantify the effect of recruitment on colony forager allocation across the landscape by simply observing the waggle dance on the dancefloor. We show first, through a theoretical model, that recruitment leaves a characteristic imprint on the distance distribution of foraging sites that a colony visits, which varies according to the proportion of trips driven by individual search. Next, we fit this model to the real-world empirical distance distribution of forage sites visited by 20 honeybee colonies in urban and rural landscapes across South East England, obtained via dance decoding. We show that there is considerable variation in the use of dancing information in colony foraging, particularly in agri-rural landscapes. In our dataset, reliance on dancing increases as arable land gives way to built-up areas, suggesting that dancing may have the greatest impact on colony foraging in the complex and heterogeneous landscapes of forage-rich urban areas. Our model provides a tool to assess the relevance of this extraordinary behaviour across modern anthropogenic landscape types.
Collapse
Affiliation(s)
- Joseph Palmer
- Department of Biological Sciences, Royal Holloway University of London, Egham, Surrey, TW20 0EX, UK
- The Alan Turing Institute, 96 Euston Road, London, NW1 2DB, UK
| | - Ash E Samuelson
- Department of Biological Sciences, Royal Holloway University of London, Egham, Surrey, TW20 0EX, UK
| | - Richard J Gill
- Department of Life Sciences, Imperial College London, Silwood Park Campus, London, UK
| | - Ellouise Leadbeater
- Department of Biological Sciences, Royal Holloway University of London, Egham, Surrey, TW20 0EX, UK
- Department of Genetics, Evolution and Environment, University College London, London, WC1E 6BT, UK
| | - Vincent A A Jansen
- Department of Biological Sciences, Royal Holloway University of London, Egham, Surrey, TW20 0EX, UK.
| |
Collapse
|
3
|
Pyenson BC, Rehan SM. Gene regulation supporting sociality shared across lineages and variation in complexity. Genome 2024; 67:99-108. [PMID: 38096504 DOI: 10.1139/gen-2023-0054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2024]
Abstract
Across evolutionary lineages, insects vary in social complexity, from those that exhibit extended parental care to those with elaborate divisions of labor. Here, we synthesize the sociogenomic resources from hundreds of species to describe common gene regulatory mechanisms in insects that regulate social organization across phylogeny and levels of social complexity. Different social phenotypes expressed by insects can be linked to the organization of co-expressing gene networks and features of the epigenetic landscape. Insect sociality also stems from processes like the emergence of parental care and the decoupling of ancestral genetic programs. One underexplored avenue is how variation in a group's social environment affects the gene expression of individuals. Additionally, an experimental reduction of gene expression would demonstrate how the activity of specific genes contributes to insect social phenotypes. While tissue specificity provides greater localization of the gene expression underlying social complexity, emerging transcriptomic analysis of insect brains at the cellular level provides even greater resolution to understand the molecular basis of social insect evolution.
Collapse
Affiliation(s)
| | - Sandra M Rehan
- Department of Biology, York University, Toronto, ON M3J 1P3, Canada
| |
Collapse
|
4
|
Manfredini F, Wurm Y, Sumner S, Leadbeater E. Transcriptomic responses to location learning by honeybee dancers are partly mirrored in the brains of dance-followers. Proc Biol Sci 2023; 290:20232274. [PMID: 38113935 PMCID: PMC10730293 DOI: 10.1098/rspb.2023.2274] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Accepted: 11/20/2023] [Indexed: 12/21/2023] Open
Abstract
The waggle dances of honeybees are a strikingly complex form of animal communication that underlie the collective foraging behaviour of colonies. The mechanisms by which bees assess the locations of forage sites that they have visited for representation on the dancefloor are now well-understood, but few studies have considered the remarkable backward translation of such information into flight vectors by dance-followers. Here, we explore whether the gene expression patterns that are induced through individual learning about foraging locations are mirrored when bees learn about those same locations from their nest-mates. We first confirmed that the mushroom bodies of honeybee dancers show a specific transcriptomic response to learning about distance, and then showed that approximately 5% of those genes were also differentially expressed by bees that follow dances for the same foraging sites, but had never visited them. A subset of these genes were also differentially expressed when we manipulated distance perception through an optic flow paradigm, and responses to learning about target direction were also in part mirrored in the brains of dance followers. Our findings show a molecular footprint of the transfer of learnt information from one animal to another through this extraordinary communication system, highlighting the dynamic role of the genome in mediating even very short-term behavioural changes.
Collapse
Affiliation(s)
- Fabio Manfredini
- Present address: School of Biological Sciences, University of Aberdeen, AB24 3UL Aberdeen, UK
- Department of Biological Sciences, Royal Holloway University of London, TW20 OEX Egham, UK
| | - Yannick Wurm
- School of Biological & Behavioural Sciences, Queen Mary University of London, E1 4NS London, UK
- Digital Environment Research Institute, Queen Mary University of London, E1 4NS London, UK
| | - Seirian Sumner
- Department of Genetics, Evolution and Environment, University College London, WC1E 6BT London, UK
| | - Ellouise Leadbeater
- Department of Biological Sciences, Royal Holloway University of London, TW20 OEX Egham, UK
| |
Collapse
|
5
|
Chatterjee A, Bais D, Brockmann A, Ramesh D. Search Behavior of Individual Foragers Involves Neurotransmitter Systems Characteristic for Social Scouting. FRONTIERS IN INSECT SCIENCE 2021; 1:664978. [PMID: 38468879 PMCID: PMC10926421 DOI: 10.3389/finsc.2021.664978] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/06/2021] [Accepted: 05/10/2021] [Indexed: 03/13/2024]
Abstract
In honey bees search behavior occurs as social and solitary behavior. In the context of foraging, searching for food sources is performed by behavioral specialized foragers, the scouts. When the scouts have found a new food source, they recruit other foragers (recruits). These recruits never search for a new food source on their own. However, when the food source is experimentally removed, they start searching for that food source. Our study provides a detailed description of this solitary search behavior and the variation of this behavior among individual foragers. Furthermore, mass spectrometric measurement showed that the initiation and performance of this solitary search behavior is associated with changes in glutamate, GABA, histamine, aspartate, and the catecholaminergic system in the optic lobes and central brain area. These findings strikingly correspond with the results of an earlier study that showed that scouts and recruits differ in the expression of glutamate and GABA receptors. Together, the results of both studies provide first clear support for the hypothesis that behavioral specialization in honey bees is based on adjusting modulatory systems involved in solitary behavior to increase the probability or frequency of that behavior.
Collapse
Affiliation(s)
- Arumoy Chatterjee
- National Centre for Biological Sciences, Tata Institute of Fundamental Research, Bangalore, India
- School of Chemical and Biotechnology, SASTRA University, Thanjavur, India
| | - Deepika Bais
- National Centre for Biological Sciences, Tata Institute of Fundamental Research, Bangalore, India
| | - Axel Brockmann
- National Centre for Biological Sciences, Tata Institute of Fundamental Research, Bangalore, India
| | - Divya Ramesh
- National Centre for Biological Sciences, Tata Institute of Fundamental Research, Bangalore, India
- Department of Biology, University of Konstanz, Konstanz, Germany
| |
Collapse
|
6
|
Bozek K, Hebert L, Portugal Y, Mikheyev AS, Stephens GJ. Markerless tracking of an entire honey bee colony. Nat Commun 2021; 12:1733. [PMID: 33741938 PMCID: PMC7979864 DOI: 10.1038/s41467-021-21769-1] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2020] [Accepted: 02/05/2021] [Indexed: 01/31/2023] Open
Abstract
From cells in tissue, to bird flocks, to human crowds, living systems display a stunning variety of collective behaviors. Yet quantifying such phenomena first requires tracking a significant fraction of the group members in natural conditions, a substantial and ongoing challenge. We present a comprehensive, computational method for tracking an entire colony of the honey bee Apis mellifera using high-resolution video on a natural honeycomb background. We adapt a convolutional neural network (CNN) segmentation architecture to automatically identify bee and brood cell positions, body orientations and within-cell states. We achieve high accuracy (~10% body width error in position, ~10° error in orientation, and true positive rate > 90%) and demonstrate months-long monitoring of sociometric colony fluctuations. These fluctuations include ~24 h cycles in the counted detections, negative correlation between bee and brood, and nightly enhancement of bees inside comb cells. We combine detected positions with visual features of organism-centered images to track individuals over time and through challenging occluding events, recovering ~79% of bee trajectories from five observation hives over 5 min timespans. The trajectories reveal important individual behaviors, including waggle dances and crawling inside comb cells. Our results provide opportunities for the quantitative study of collective bee behavior and for advancing tracking techniques of crowded systems.
Collapse
Affiliation(s)
- Katarzyna Bozek
- Biological Physics Theory Unit, OIST Graduate University, Okinawa, Japan.
- University of Cologne, Center for Molecular Medicine Cologne (CMMC), Faculty of Medicine and University Hospital Cologne, Cologne, Germany.
| | - Laetitia Hebert
- Biological Physics Theory Unit, OIST Graduate University, Okinawa, Japan
| | - Yoann Portugal
- Biological Physics Theory Unit, OIST Graduate University, Okinawa, Japan
- Ecology and Evolution Unit, OIST Graduate University, Okinawa, Japan
| | - Alexander S Mikheyev
- Ecology and Evolution Unit, OIST Graduate University, Okinawa, Japan
- Research School of Biology, Australian National University, Canberra, Australia
| | - Greg J Stephens
- Biological Physics Theory Unit, OIST Graduate University, Okinawa, Japan
- Department of Physics and Astronomy, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| |
Collapse
|
7
|
Shell WA, Rehan SM. Social modularity: conserved genes and regulatory elements underlie caste-antecedent behavioural states in an incipiently social bee. Proc Biol Sci 2019; 286:20191815. [PMID: 31771475 PMCID: PMC6939254 DOI: 10.1098/rspb.2019.1815] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2019] [Accepted: 10/29/2019] [Indexed: 12/15/2022] Open
Abstract
The evolutionary origins of advanced eusociality, one of the most complex forms of phenotypic plasticity in nature, have long been a focus within the field of sociobiology. Although eusocial insects are known to have evolved from solitary ancestors, sociogenomic research among incipiently social taxa has only recently provided empirical evidence supporting theories that modular regulation and deeply conserved genes may play important roles in both the evolutionary emergence and elaboration of insect sociality. There remains, however, a paucity of data to further test the biological reality of these and other evolutionary theories among taxa in the earliest stages of social evolution. Here, we present brain transcriptomic data from the incipiently social small carpenter bee, Ceratina calcarata, which captures patterns of cis-regulation and gene expression associated with female maturation, and underlying two well-defined behavioural states, foraging and guarding, concurrently demonstrated by mothers and daughters during early autumn. We find that an incipiently social nest environment may dramatically affect gene expression. We further reveal foraging and guarding behaviours to be putatively caste-antecedent states in C. calcarata, and offer strong empirical support for the operation of modular regulation, involving deeply conserved and differentially expressed genes in the expression of early social forms.
Collapse
Affiliation(s)
- Wyatt A. Shell
- Department of Biological Sciences, University of New Hampshire, 38 Academic Way, Durham, NH 03824, USA
| | - Sandra M. Rehan
- Department of Biological Sciences, University of New Hampshire, 38 Academic Way, Durham, NH 03824, USA
- Department of Biology, York University, 4700 Keele Street, Toronto, Ontario, CanadaM3 J 1P3
| |
Collapse
|
8
|
Lemanski NJ, Cook CN, Smith BH, Pinter-Wollman N. A Multiscale Review of Behavioral Variation in Collective Foraging Behavior in Honey Bees. INSECTS 2019; 10:E370. [PMID: 31731405 PMCID: PMC6920954 DOI: 10.3390/insects10110370] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 09/18/2019] [Revised: 10/18/2019] [Accepted: 10/21/2019] [Indexed: 11/17/2022]
Abstract
The emergence of collective behavior from local interactions is a widespread phenomenon in social groups. Previous models of collective behavior have largely overlooked the impact of variation among individuals within the group on collective dynamics. Honey bees (Apis mellifera) provide an excellent model system for exploring the role of individual differences in collective behavior due to their high levels of individual variation and experimental tractability. In this review, we explore the causes and consequences of individual variation in behavior for honey bee foraging across multiple scales of organization. We summarize what is currently known about the genetic, developmental, and neurophysiological causes of individual differences in learning and memory among honey bees, as well as the consequences of this variation for collective foraging behavior and colony fitness. We conclude with suggesting promising future directions for exploration of the genetic and physiological underpinnings of individual differences in behavior in this model system.
Collapse
Affiliation(s)
- Natalie J. Lemanski
- Department of Ecology and Evolutionary Biology, University of California, Los Angeles, CA 90024, USA;
| | - Chelsea N. Cook
- School of Life Sciences, Arizona State University, Tempe, AZ 85287, USA; (C.N.C.); (B.H.S.)
| | - Brian H. Smith
- School of Life Sciences, Arizona State University, Tempe, AZ 85287, USA; (C.N.C.); (B.H.S.)
| | - Noa Pinter-Wollman
- Department of Ecology and Evolutionary Biology, University of California, Los Angeles, CA 90024, USA;
| |
Collapse
|
9
|
Felden A, Paris C, Chapple DG, Suarez AV, Tsutsui ND, Lester PJ, Gruber MAM. Native and introduced Argentine ant populations are characterised by distinct transcriptomic signatures associated with behaviour and immunity. NEOBIOTA 2019. [DOI: 10.3897/neobiota.49.36086] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Biological invasions can be influenced by trait variation in the invader, such as behavioural traits and ecological factors, such as variation in pathogen pressure. High-throughput nucleotide sequencing has increased our capacity to investigate the genomic basis of the functional changes associated with biological invasions. Here, we used RNA-sequencing in Argentina and California, Australia and New Zealand to investigate if native and introduced Argentine ant populations were characterised by distinct transcriptomic signatures. We focused our analysis on viral pressure and immunity, as well as genes associated with biogenic amines known to modulate key behaviour in social insects. Using a combination of differential expression analysis, gene co-expression network analysis and candidate gene approach, we show that native and introduced populations have distinct transcriptomic signatures. Genes associated with biogenic amines were overall up-regulated in the native range compared to introduced populations. Although we found no significant variation in overall viral loads amongst regions for viruses known to infect Argentine ants, viral diversity was lower in most of the introduced range which was interestingly associated with down-regulation of the RNAi immune pathway, primarily directed against viruses. Altogether, our data show that Argentine ant populations exhibit range-specific transcriptomic signatures, perhaps reflecting regional adaptations that may contribute to the ecological success of introduced populations.
Collapse
|
10
|
Alleman A, Stoldt M, Feldmeyer B, Foitzik S. Tandem-running and scouting behaviour are characterized by up-regulation of learning and memory formation genes within the ant brain. Mol Ecol 2019; 28:2342-2359. [PMID: 30903719 DOI: 10.1111/mec.15079] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2018] [Revised: 03/09/2019] [Accepted: 03/12/2019] [Indexed: 12/13/2022]
Abstract
Tandem-running is a recruitment behaviour in ants that has been described as a form of teaching, where spatial information possessed by a leader is conveyed to following nestmates. Within Temnothorax ants, tandem-running is used within a variety of contexts, from foraging and nest relocation to-in the case of slavemaking species-slave raiding. Here, we elucidate the transcriptomic basis of scouting, tandem-leading and tandem-following behaviours across two species with divergent lifestyles: the slavemaking Temnothorax americanus and its primary, nonparasitic host T. longispinosus. Analysis of gene expression data from brains revealed that only a small number of unique differentially expressed genes are responsible for scouting and tandem-running. Comparison of orthologous genes between T. americanus and T. longispinosus suggests that tandem-running is characterized by species-specific patterns of gene usage. However, within both species, tandem-leaders showed gene expression patterns median to those of scouts and tandem-followers, which was expected, as leaders can be recruited from either of the other two behavioural states. Most importantly, a number of differentially expressed behavioural genes were found, with functions relating to learning and memory formation in other social and nonsocial insects. This includes a number of up-regulated receptor genes such as a glutamate and dopamine receptor, as well as serine/threonine-protein phosphatases and kinases. Learning and memory genes were specifically up-regulated within scouts and tandem-followers, not only reinforcing previous behavioural studies into how Temnothorax navigate novel environments and share information, but also providing insight into the molecular underpinnings of teaching and learning within social insects.
Collapse
Affiliation(s)
- Austin Alleman
- Institute of Organismic and Molecular Evolution, Johannes Gutenberg University Mainz, Mainz, Germany
| | - Marah Stoldt
- Institute of Organismic and Molecular Evolution, Johannes Gutenberg University Mainz, Mainz, Germany
| | - Barbara Feldmeyer
- Senckenberg Biodiversity and Climate Research Centre, Senckenberg Gesellschaft für Naturforschung, Frankfurt am Main, Germany
| | - Susanne Foitzik
- Institute of Organismic and Molecular Evolution, Johannes Gutenberg University Mainz, Mainz, Germany
| |
Collapse
|
11
|
Cook CN, Mosquiero T, Brent CS, Ozturk C, Gadau J, Pinter-Wollman N, Smith BH. Individual differences in learning and biogenic amine levels influence the behavioural division between foraging honeybee scouts and recruits. J Anim Ecol 2019; 88:236-246. [PMID: 30289166 PMCID: PMC6379132 DOI: 10.1111/1365-2656.12911] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2018] [Accepted: 08/31/2018] [Indexed: 11/29/2022]
Abstract
Animals must effectively balance the time they spend exploring the environment for new resources and exploiting them. One way that social animals accomplish this balance is by allocating these two tasks to different individuals. In honeybees, foraging is divided between scouts, which tend to explore the landscape for novel resources, and recruits, which tend to exploit these resources. Exploring the variation in cognitive and physiological mechanisms of foraging behaviour will provide a deeper understanding of how the division of labour is regulated in social insect societies. Here, we uncover how honeybee foraging behaviour may be shaped by predispositions in performance of latent inhibition (LI), which is a form of non-associative learning by which individuals learn to ignore familiar information. We compared LI between scouts and recruits, hypothesizing that differences in learning would correlate with differences in foraging behaviour. Scouts seek out and encounter many new odours while locating novel resources, while recruits continuously forage from the same resource, even as its quality degrades. We found that scouts show stronger LI than recruits, possibly reflecting their need to discriminate forage quality. We also found that scouts have significantly elevated tyramine compared to recruits. Furthermore, after associative odour training, recruits have significantly diminished octopamine in their brains compared to scouts. These results suggest that individual variation in learning behaviour shapes the phenotypic behavioural differences between different types of honeybee foragers. These differences in turn have important consequences for how honeybee colonies interact with their environment. Uncovering the proximate mechanisms that influence individual variation in foraging behaviour is crucial for understanding the ecological context in which societies evolve.
Collapse
Affiliation(s)
- Chelsea N Cook
- Arizona State University, School of Life Sciences, Tempe, Arizona
| | - Thiago Mosquiero
- University of California at Los Angeles, Department of Evolutionary Biology, Los Angeles, California
| | - Colin S. Brent
- USDA – ALARC, Department of Pest Management, Maricopa, Arizona
| | - Cahit Ozturk
- Arizona State University, School of Life Sciences, Tempe, Arizona
| | - Jürgen Gadau
- Institute for Evolution and Biodiversity, University of Münster Germany
| | - Noa Pinter-Wollman
- University of California at Los Angeles, Department of Evolutionary Biology, Los Angeles, California
| | - Brian H. Smith
- Arizona State University, School of Life Sciences, Tempe, Arizona
| |
Collapse
|
12
|
Singh AS, Shah A, Brockmann A. Honey bee foraging induces upregulation of early growth response protein 1, hormone receptor 38 and candidate downstream genes of the ecdysteroid signalling pathway. INSECT MOLECULAR BIOLOGY 2018; 27:90-98. [PMID: 28987007 DOI: 10.1111/imb.12350] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
In honey bees, continuous foraging at an artificial feeder induced a sustained upregulation of the immediate early genes early growth response protein 1 (Egr-1) and hormone receptor 38 (Hr38). This gene expression response was accompanied by an upregulation of several Egr-1 candidate downstream genes: ecdysone receptor (EcR), dopamine/ecdysteroid receptor (DopEcR), dopamine decarboxylase and dopamine receptor 2. Hr38, EcR and DopEcR are components of the ecdysteroid signalling pathway, which is highly probably involved in learning and memory processes in honey bees and other insects. Time-trained foragers still showed an upregulation of Egr-1 when the feeder was presented at an earlier time of the day, suggesting that the genomic response is more dependent on the food reward than training time. However, presentation of the feeder at the training time without food was still capable of inducing a transient increase in Egr-1 expression. Thus, learnt feeder cues, or even training time, probably affect Egr-1 expression. In contrast, whole brain Egr-1 expression changes did not differ between dancing and nondancing foragers. On the basis of our results we propose that food reward induced continuous foraging ultimately elicits a genomic response involving Egr-1 and Hr38 and their downstream genes. Furthermore this genomic response is highly probably involved in foraging-related learning and memory responses.
Collapse
Affiliation(s)
- A S Singh
- National Centre for Biological Sciences, Tata Institute of Fundamental Research, Bangalore, India
| | - A Shah
- National Centre for Biological Sciences, Tata Institute of Fundamental Research, Bangalore, India
| | - A Brockmann
- National Centre for Biological Sciences, Tata Institute of Fundamental Research, Bangalore, India
| |
Collapse
|
13
|
Manfredini F, Romero AE, Pedroso I, Paccanaro A, Sumner S, Brown MJF. Neurogenomic Signatures of Successes and Failures in Life-History Transitions in a Key Insect Pollinator. Genome Biol Evol 2017; 9:3059-3072. [PMID: 29087523 PMCID: PMC5714134 DOI: 10.1093/gbe/evx220] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/25/2017] [Indexed: 12/22/2022] Open
Abstract
Life-history transitions require major reprogramming at the behavioral and physiological level. Mating and reproductive maturation are known to trigger changes in gene transcription in reproductive tissues in a wide range of organisms, but we understand little about the molecular consequences of a failure to mate or become reproductively mature, and it is not clear to what extent these processes trigger neural as well as physiological changes. In this study, we examined the molecular processes underpinning the behavioral changes that accompany the major life-history transitions in a key pollinator, the bumblebee Bombus terrestris. We compared neuro-transcription in queens that succeeded or failed in switching from virgin and immature states, to mated and reproductively mature states. Both successes and failures were associated with distinct molecular profiles, illustrating how development during adulthood triggers distinct molecular profiles within a single caste of a eusocial insect. Failures in both mating and reproductive maturation were explained by a general up-regulation of brain gene transcription. We identified 21 genes that were highly connected in a gene coexpression network analysis: nine genes are involved in neural processes and four are regulators of gene expression. This suggests that negotiating life-history transitions involves significant neural processing and reprogramming, and not just changes in physiology. These findings provide novel insights into basic life-history transitions of an insect. Failure to mate or to become reproductively mature is an overlooked component of variation in natural systems, despite its prevalence in many sexually reproducing organisms, and deserves deeper investigation in the future.
Collapse
Affiliation(s)
- Fabio Manfredini
- School of Biological Sciences, Royal Holloway University of London, Egham, United Kingdom
- Department of Computer Science, and Centre for Systems and Synthetic Biology, Royal Holloway University of London, Egham, United Kingdom
| | - Alfonso E Romero
- Department of Computer Science, and Centre for Systems and Synthetic Biology, Royal Holloway University of London, Egham, United Kingdom
| | - Inti Pedroso
- Center for Systems Biotechnology, Fraunhofer Chile Research Foundation, Santiago, Chile
| | - Alberto Paccanaro
- Department of Computer Science, and Centre for Systems and Synthetic Biology, Royal Holloway University of London, Egham, United Kingdom
| | - Seirian Sumner
- School of Biological Sciences, University of Bristol, United Kingdom
- Present address: Centre for Biodiversity & Environment Research, Department of Genetics, Evolution & Environment, University College London, London, United Kingdom
| | - Mark J F Brown
- School of Biological Sciences, Royal Holloway University of London, Egham, United Kingdom
| |
Collapse
|
14
|
Jandt JM, Gordon DM. The behavioral ecology of variation in social insects. CURRENT OPINION IN INSECT SCIENCE 2016; 15:40-44. [PMID: 27436730 DOI: 10.1016/j.cois.2016.02.012] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/26/2016] [Revised: 02/22/2016] [Accepted: 02/23/2016] [Indexed: 06/06/2023]
Abstract
Understanding the ecological relevance of variation within and between colonies has been an important and recurring theme in social insect research. Recent research addresses the genomic and physiological factors and fitness effects associated with behavioral variation, within and among colonies, in regulation of activity, cognitive abilities, and aggression. Behavioral variation among colonies has consequences for survival and reproductive success that are the basis for evolutionary change.
Collapse
Affiliation(s)
- J M Jandt
- Iowa State University, Department of Ecology, Evolution, and Organismal Biology, 251 Bessey Hall, Ames, IA 50011, USA.
| | - D M Gordon
- Stanford University, Department of Biology, Gilbert Biological Sciences Building, rm 410, 371 Serra Mall, Stanford, CA 94305, USA
| |
Collapse
|