1
|
Wu T, Cao DH, Liu Y, Yu H, Fu DY, Ye H, Xu J. Mating-Induced Common and Sex-Specific Behavioral, Transcriptional Changes in the Moth Fall Armyworm ( Spodoptera frugiperda, Noctuidae, Lepidoptera) in Laboratory. INSECTS 2023; 14:209. [PMID: 36835778 PMCID: PMC9964209 DOI: 10.3390/insects14020209] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Revised: 02/10/2023] [Accepted: 02/17/2023] [Indexed: 06/18/2023]
Abstract
The intermediate process between mating and postmating behavioral changes in insects is still poorly known. Here, we studied mating-induced common and sex-specific behavioral and transcriptional changes in both sexes of Spodoptera frugiperda and tested whether the transcriptional changes are linked to postmating behavioral changes in each sex. A behavioral study showed that mating caused a temporary suppression of female calling and male courting behavior, and females did not lay eggs until the next day after the first mating. The significant differences on daily fecundity under the presence of males or not, and the same or novel males, suggest that females may intentionally retain eggs to be fertilized by novel males or to be fertilized competitively by different males. RNA sequencing in females revealed that there are more reproduction related GO (gene ontology) terms and KEGG (Kyoto encyclopedia of genes and genomes) pathways (mainly related to egg and zygote development) enriched to upregulated DEGs (differentially expressed genes) than to downregulated DEGs at 0 and 24 h postmating. In males, however, mating induced DEGs did not enrich any reproduction related terms/pathways, which may be because male reproductive bioinformatics is relatively limited in moths. Mating also induced upregulation on soma maintenance (such as immune activity and stress reaction) related processes in females at 0, 6 and 24 h postmating. In males, mating also induced upregulation on soma maintenance related processes at 0 h postmating, but induced downregulation on these processes at 6 and 24 h postmating. In conclusion, this study demonstrated that mating induced sex-specific postmating behavioral and transcriptional changes in both sexes of S. frugiperda and suggested that the transcriptional changes are correlated with postmating physiological and behavioral changes in each sex.
Collapse
Affiliation(s)
- Ting Wu
- Yunnan Academy of Biodiversity, Southwest Forestry University, Kunming 650224, China
| | - Da-Hu Cao
- Yunnan Academy of Biodiversity, Southwest Forestry University, Kunming 650224, China
| | - Yu Liu
- Yunnan Academy of Biodiversity, Southwest Forestry University, Kunming 650224, China
| | - Hong Yu
- Yunnan Key Laboratory of Plateau Wetland Conservation, Restoration and Ecological Services, Southwest Forestry University, Kunming 650224, China
| | - Da-Ying Fu
- School of Life Science, Southwest Forestry University, Kunming 650224, China
| | - Hui Ye
- School of Ecology and Environment, Yunnan University, Kunming 650091, China
| | - Jin Xu
- Yunnan Academy of Biodiversity, Southwest Forestry University, Kunming 650224, China
- Yunnan Key Laboratory of Plateau Wetland Conservation, Restoration and Ecological Services, Southwest Forestry University, Kunming 650224, China
| |
Collapse
|
2
|
Niogret J, Kendra PE, Ekayanti A, Zhang A, Marelli JP, Tabanca N, Epsky N. Development of a Kairomone-Based Attractant as a Monitoring Tool for the Cocoa Pod Borer, Conopomorpha cramerella (Snellen) (Lepidoptera: Gracillariidae). INSECTS 2022; 13:813. [PMID: 36135513 PMCID: PMC9504553 DOI: 10.3390/insects13090813] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Revised: 09/01/2022] [Accepted: 09/03/2022] [Indexed: 06/16/2023]
Abstract
The cocoa pod borer (CPB), Conopomorpha cramerella, is a major economic pest of cocoa, Theobroma cacao, in Southeast Asia. CPB monitoring programs currently use a costly synthetic pheromone lure attractive to males. Field trapping experiments demonstrating an effective plant-based alternative are presented in this study. Five lychee-based products were compared for their attractiveness to CPB males. The organic lychee flavor extract (OLFE), the most attractive product, captured significantly more CPB as a 1 mL vial formulation than unbaited traps, while being competitive with the commercial pheromone lures. Additional experiments show that a 20 mL membrane OLFE lure was most effective, attracting significantly more CPB than the pheromone. When the kairomone and pheromone lures were combined, no additive or synergistic effects were observed. Concentrating the OLFE product (OLFEc) using a rotary evaporator increased the lure attractiveness to field longevity for up to 28 weeks; in contrast, pheromone lures were effective for approximately 4 weeks. The 20 mL concentrated OLFE membrane lures should provide a cheaper and more efficient monitoring tool for CPB than the current commercial pheromone lures.
Collapse
Affiliation(s)
- Jerome Niogret
- Mars Wrigley, Nguma-Bada Campus, James Cook University, Smithfield, QLD 4878, Australia
- Centre for Tropical Environmental & Sustainability Science, Nguma-Bada Campus, James Cook University, Smithfield, QLD 4878, Australia
| | - Paul E. Kendra
- Subtropical Horticulture Research Station, USDA-ARS, Miami, FL 33158, USA
| | - Arni Ekayanti
- Mars Cocoa Research Centre, Mars Wrigley, Tarengge, Luwu Timur 92971, Sulawesi Selatan, Indonesia
| | - Aijun Zhang
- Invasive Insect Biocontrol and Behavior Laboratory, United States Department of Agriculture, Agricultural Research Service, Beltsville, MD 20705, USA
| | | | - Nurhayat Tabanca
- Subtropical Horticulture Research Station, USDA-ARS, Miami, FL 33158, USA
| | - Nancy Epsky
- Subtropical Horticulture Research Station, USDA-ARS, Miami, FL 33158, USA
| |
Collapse
|
3
|
Rizvi SAH, George J, Reddy GVP, Zeng X, Guerrero A. Latest Developments in Insect Sex Pheromone Research and Its Application in Agricultural Pest Management. INSECTS 2021; 12:insects12060484. [PMID: 34071020 PMCID: PMC8224804 DOI: 10.3390/insects12060484] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/14/2021] [Revised: 05/14/2021] [Accepted: 05/20/2021] [Indexed: 02/07/2023]
Abstract
Since the first identification of the silkworm moth sex pheromone in 1959, significant research has been reported on identifying and unravelling the sex pheromone mechanisms of hundreds of insect species. In the past two decades, the number of research studies on new insect pheromones, pheromone biosynthesis, mode of action, peripheral olfactory and neural mechanisms, and their practical applications in Integrated Pest Management has increased dramatically. An interdisciplinary approach that uses the advances and new techniques in analytical chemistry, chemical ecology, neurophysiology, genetics, and evolutionary and molecular biology has helped us to better understand the pheromone perception mechanisms and its practical application in agricultural pest management. In this review, we present the most recent developments in pheromone research and its application in the past two decades.
Collapse
Affiliation(s)
| | - Justin George
- Southern Insect Management Research Unit, USDA-ARS, Stoneville, MS 38776, USA; (J.G.); (G.V.P.R.)
| | - Gadi V. P. Reddy
- Southern Insect Management Research Unit, USDA-ARS, Stoneville, MS 38776, USA; (J.G.); (G.V.P.R.)
| | - Xinnian Zeng
- College of Plant Protection, South China Agricultural University, Guangzhou 510642, China
- Correspondence: (X.Z.); (A.G.)
| | - Angel Guerrero
- Department of Biological Chemistry, Institute of Advanced Chemistry of Catalonia-CSIC, 08034 Barcelona, Spain
- Correspondence: (X.Z.); (A.G.)
| |
Collapse
|
4
|
Wang X, Verschut TA, Billeter JC, Maan ME. Seven Questions on the Chemical Ecology and Neurogenetics of Resource-Mediated Speciation. Front Ecol Evol 2021. [DOI: 10.3389/fevo.2021.640486] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Adaptation to different environments can result in reproductive isolation between populations and the formation of new species. Food resources are among the most important environmental factors shaping local adaptation. The chemosensory system, the most ubiquitous sensory channel in the animal kingdom, not only detects food resources and their chemical composition, but also mediates sexual communication and reproductive isolation in many taxa. Chemosensory divergence may thus play a crucial role in resource-mediated adaptation and speciation. Understanding how the chemosensory system can facilitate resource-mediated ecological speciation requires integrating mechanistic studies of the chemosensory system with ecological studies, to link the genetics and physiology of chemosensory properties to divergent adaptation. In this review, we use examples of insect research to present seven key questions that can be used to understand how the chemosensory system can facilitate resource-mediated ecological speciation in consumer populations.
Collapse
|
5
|
Anton S, Rössler W. Plasticity and modulation of olfactory circuits in insects. Cell Tissue Res 2020; 383:149-164. [PMID: 33275182 PMCID: PMC7873004 DOI: 10.1007/s00441-020-03329-z] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2020] [Accepted: 10/27/2020] [Indexed: 12/15/2022]
Abstract
Olfactory circuits change structurally and physiologically during development and adult life. This allows insects to respond to olfactory cues in an appropriate and adaptive way according to their physiological and behavioral state, and to adapt to their specific abiotic and biotic natural environment. We highlight here findings on olfactory plasticity and modulation in various model and non-model insects with an emphasis on moths and social Hymenoptera. Different categories of plasticity occur in the olfactory systems of insects. One type relates to the reproductive or feeding state, as well as to adult age. Another type of plasticity is context-dependent and includes influences of the immediate sensory and abiotic environment, but also environmental conditions during postembryonic development, periods of adult behavioral maturation, and short- and long-term sensory experience. Finally, plasticity in olfactory circuits is linked to associative learning and memory formation. The vast majority of the available literature summarized here deals with plasticity in primary and secondary olfactory brain centers, but also peripheral modulation is treated. The described molecular, physiological, and structural neuronal changes occur under the influence of neuromodulators such as biogenic amines, neuropeptides, and hormones, but the mechanisms through which they act are only beginning to be analyzed.
Collapse
Affiliation(s)
- Sylvia Anton
- IGEPP, INRAE, Institut Agro, Univ Rennes, INRAE, 49045, Angers, France.
| | - Wolfgang Rössler
- Behavioral Physiology and Sociobiology (Zoology II), Biozentrum, University of Würzburg, Am Hubland, 97074, Würzburg, Germany.
| |
Collapse
|
6
|
Zhao Z, McBride CS. Evolution of olfactory circuits in insects. J Comp Physiol A Neuroethol Sens Neural Behav Physiol 2020; 206:353-367. [PMID: 31984441 PMCID: PMC7192870 DOI: 10.1007/s00359-020-01399-6] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2019] [Revised: 12/12/2019] [Accepted: 01/06/2020] [Indexed: 02/07/2023]
Abstract
Recent years have seen an explosion of interest in the evolution of neural circuits. Comparison of animals from different families, orders, and phyla reveals fascinating variation in brain morphology, circuit structure, and neural cell types. However, it can be difficult to connect the complex changes that occur across long evolutionary distances to behavior. Luckily, these changes accumulate through processes that should also be observable in recent time, making more tractable comparisons of closely related species relevant and complementary. Here, we review several decades of research on the evolution of insect olfactory circuits across short evolutionary time scales. We describe two well-studied systems, Drosophila sechellia flies and Heliothis moths, in detailed case studies. We then move through key types of circuit evolution, cataloging examples from other insects and looking for general patterns. The literature is dominated by changes in sensory neuron number and tuning at the periphery-often enhancing neural response to odorants with new ecological or social relevance. However, changes in the way olfactory information is processed by central circuits is clearly important in a few cases, and we suspect the development of genetic tools in non-model species will reveal a broad role for central circuit evolution. Moving forward, such tools should also be used to rigorously test causal links between brain evolution and behavior.
Collapse
Affiliation(s)
- Zhilei Zhao
- Department of Ecology and Evolutionary Biology, Princeton University, Princeton, NJ, 08544, USA.
- Princeton Neuroscience Institute, Princeton University, Princeton, NJ, 08544, USA.
| | - Carolyn S McBride
- Department of Ecology and Evolutionary Biology, Princeton University, Princeton, NJ, 08544, USA.
- Princeton Neuroscience Institute, Princeton University, Princeton, NJ, 08544, USA.
| |
Collapse
|
7
|
Latorre-Estivalis JM, Sterkel M, Ons S, Lorenzo MG. Transcriptomics supports local sensory regulation in the antenna of the kissing-bug Rhodnius prolixus. BMC Genomics 2020; 21:101. [PMID: 32000664 PMCID: PMC6993403 DOI: 10.1186/s12864-020-6514-3] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2019] [Accepted: 01/20/2020] [Indexed: 12/16/2022] Open
Abstract
Background Rhodnius prolixus has become a model for revealing the molecular bases of insect sensory biology due to the publication of its genome and its well-characterized behavioural repertoire. Gene expression modulation underlies behaviour-triggering processes at peripheral and central levels. Still, the regulation of sensory-related gene transcription in sensory organs is poorly understood. Here we study the genetic bases of plasticity in antennal sensory function, using R. prolixus as an insect model. Results Antennal expression of neuromodulatory genes such as those coding for neuropeptides, neurohormones and their receptors was characterized in fifth instar larvae and female and male adults by means of RNA-Sequencing (RNA-Seq). New nuclear receptor and takeout gene sequences were identified for this species, as well as those of enzymes involved in the biosynthesis and processing of neuropeptides and biogenic amines. Conclusions We report a broad repertoire of neuromodulatory and neuroendocrine-related genes expressed in the antennae of R. prolixus and suggest that they may serve as the local basis for modulation of sensory neuron physiology. Diverse neuropeptide precursor genes showed consistent expression in the antennae of all stages studied. Future studies should characterize the role of these modulatory components acting over antennal sensory processes to assess the relative contribution of peripheral and central regulatory systems on the plastic expression of insect behaviour.
Collapse
Affiliation(s)
- Jose Manuel Latorre-Estivalis
- Vector Behaviour and Pathogen Interaction Group, Instituto René Rachou - FIOCRUZ, Belo Horizonte, Minas Gerais, Brazil. .,Laboratorio de Neurobiología de Insectos - Centro Regional de Estudios Genómicos - CREG, Facultad de Ciencias Exactas. Universidad Nacional de La Plata, La Plata, Buenos Aires, Argentina.
| | - Marcos Sterkel
- Laboratorio de Neurobiología de Insectos - Centro Regional de Estudios Genómicos - CREG, Facultad de Ciencias Exactas. Universidad Nacional de La Plata, La Plata, Buenos Aires, Argentina
| | - Sheila Ons
- Laboratorio de Neurobiología de Insectos - Centro Regional de Estudios Genómicos - CREG, Facultad de Ciencias Exactas. Universidad Nacional de La Plata, La Plata, Buenos Aires, Argentina
| | - Marcelo Gustavo Lorenzo
- Vector Behaviour and Pathogen Interaction Group, Instituto René Rachou - FIOCRUZ, Belo Horizonte, Minas Gerais, Brazil
| |
Collapse
|
8
|
Tang B, Tai S, Dai W, Zhang C. Expression and Functional Analysis of Two Odorant-Binding Proteins from Bradysia odoriphaga (Diptera: Sciaridae). JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2019; 67:3565-3574. [PMID: 30866622 DOI: 10.1021/acs.jafc.9b00568] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/15/2023]
Abstract
Two OBP genes, BodoOBP1 and BodoOBP2, were cloned from Bradysia odoriphaga, a major agricultural pest of Chinese chives. The amino acid sequence alignment of both BodoOBPs showed high similarity. Fluorescence competitive binding assays revealed that both BodoOBPs have a moderate binding affinity to dipropyl trisulfide. Tissue expression profiles indicated that both BodoOBPs are antennae-specific and more abundant in the male antennae than in the female antennae. Developmental expression profile analysis indicated that expression levels of both BodoOBPs were higher in the male adult stage than in the other developmental stages. Both BodoOBPs also showed differential expression in pre- and postmating adults. RNAi assays indicated that ability of dsOBPs-treated males to detect females was significantly reduced compared to controls. Attraction of plant volatile dipropyl trisulfide to dsOBPs-treated adults was also significantly lower than in the control. Our findings indicate that both BodoOBPs are involved in host-seeking behavior and in detecting sex pheromones.
Collapse
Affiliation(s)
- Bowen Tang
- Key Laboratory of Plant Protection Resources and Pest Integrated Management of the Ministry of Education, College of Plant Protection , Northwest A&F University , Yangling , Shaanxi 712100 , P. R. China
| | - Shulei Tai
- Key Laboratory of Plant Protection Resources and Pest Integrated Management of the Ministry of Education, College of Plant Protection , Northwest A&F University , Yangling , Shaanxi 712100 , P. R. China
| | - Wu Dai
- Key Laboratory of Plant Protection Resources and Pest Integrated Management of the Ministry of Education, College of Plant Protection , Northwest A&F University , Yangling , Shaanxi 712100 , P. R. China
| | - Chunni Zhang
- Key Laboratory of Plant Protection Resources and Pest Integrated Management of the Ministry of Education, College of Plant Protection , Northwest A&F University , Yangling , Shaanxi 712100 , P. R. China
| |
Collapse
|
9
|
Crava CM, Sassù F, Tait G, Becher PG, Anfora G. Functional transcriptome analyses of Drosophila suzukii antennae reveal mating-dependent olfaction plasticity in females. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2019; 105:51-59. [PMID: 30590188 DOI: 10.1016/j.ibmb.2018.12.012] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/27/2018] [Revised: 12/20/2018] [Accepted: 12/21/2018] [Indexed: 06/09/2023]
Abstract
Insect olfaction modulates basal behaviors and it is often influenced by the physiological condition of each individual such as the reproductive state. Olfactory plasticity can be achieved by modifications at both peripheral and central nervous system levels. Here we performed a genome-wide transcriptomic analysis of the main olfactory organ, the antenna, to investigate how gene expression varies with female mating status in Drosophila suzukii, a destructive and invasive soft fruit pest. We observed a wide mating-induced up-regulation of chemosensory-related genes in females, especially odorant receptor (Or) genes. We then used a candidate gene approach to define the comprehensive dataset of antenna-expressed chemosensory receptors and binding proteins, which showed many similarities with Drosophila melanogaster. Candidate gene approach was also used to finely quantify differential expression at Or isoform level, suggesting post-mating transcriptional modulation of genes involved in the peripheral olfactory system. We identified 27 up-regulated Or transcripts encoded by 25 genes, seven of them were duplications specific to D. suzukii lineage. Post-mating olfactory modulation was further supported by electroantennogram recordings that showed a differential response according to mating status to one out of eight odors tested (isoamyl-acetate). Our study characterizes the transcriptional mechanisms driven by mating in D. suzukii female antennae. Understanding the role of genes differentially expressed in virgin or mated females will be crucial to better understand host finding and the crop-damaging oviposition behavior of this species.
Collapse
Affiliation(s)
- Cristina M Crava
- Research and Innovation Centre (CRI), Fondazione Edmund Mach (FEM), San Michele all'Adige, Italy.
| | - Fabiana Sassù
- Research and Innovation Centre (CRI), Fondazione Edmund Mach (FEM), San Michele all'Adige, Italy; Department of Forest and Soil Sciences, Boku University of Natural Resources and Life Sciences, Wien, Austria
| | - Gabriella Tait
- Research and Innovation Centre (CRI), Fondazione Edmund Mach (FEM), San Michele all'Adige, Italy; Department of Agricultural and Environmental Sciences, University of Udine, Udine, Italy
| | - Paul G Becher
- Department of Plant Protection Biology, Chemical Ecology Horticulture, Swedish University of Agricultural Sciences (SLU), Alnarp, Sweden
| | - Gianfranco Anfora
- Research and Innovation Centre (CRI), Fondazione Edmund Mach (FEM), San Michele all'Adige, Italy; Centre for Agriculture, Food and the Environment (C3A), University of Trento, San Michele all'Adige, Italy
| |
Collapse
|
10
|
Gassias E, Durand N, Demondion E, Bourgeois T, Aguilar P, Bozzolan F, Debernard S. A critical role for Dop1-mediated dopaminergic signaling in the plasticity of behavioral and neuronal responses to sex pheromone in a moth. J Exp Biol 2019; 222:jeb.211979. [DOI: 10.1242/jeb.211979] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2019] [Accepted: 10/25/2019] [Indexed: 12/22/2022]
Abstract
Most animal species, including insects, are able to modulate their responses to sexual chemosignals and this flexibility originates from the remodeling of olfactory areas under the influence of dopaminergic system. In the moth Agrotis ipsilon, the behavioral response of males to the female-emitted sex pheromone increases throughout adult life and after a prior exposure to pheromone signal and this change is accompanied by an increase in neuronal sensitivity within the primary olfactory centers, the antennal lobes (ALs). To identify the underlying neuromodulatory mechanisms, we examined whether this age- and experience-dependent olfactory plasticity is mediated by dopamine (DA) through the Dop1 receptor, an ortholog of the vertebrate D1-type dopamine receptors, which is positively coupled to adenylyl cyclase. We cloned A. ipsilon Dop1 (AiDop1) which is expressed predominantly in brain and especially in ALs and its knockdown induced decreased AL cAMP amounts and altered sex pheromone-orientated flight. The levels of DA, AiDop1 expression and cAMP in ALs increased from the third day of adult life and at 24h and 48h following pre-exposure to sex pheromone and the dynamic of these changes correlated with the increased responsiveness to sex pheromone. These results demonstrate that Dop1 is required for the display of male sexual behavior and that age- and experience-related neuronal and behavioral changes are sustained by DA-Dop1 signaling that operates within ALs probably through cAMP-dependent mechanisms in A. ipsilon. Thus, this study expands our understanding of the neuromodulatory mechanisms underlying olfactory plasticity, mechanisms that appear to be highly conserved between insects and mammals.
Collapse
Affiliation(s)
- Edmundo Gassias
- Institute of Biology, Complutense University of Madrid, Pozuelo de Alarcon, 28223 Madrid, Spain
| | - Nicolas Durand
- FRE CNRS 3498, Ecologie et Dynamique des Systèmes Anthropisés, Université de Picardie, Jules Verne, 80039 Amiens, France
| | - Elodie Demondion
- Sorbonne Université, INRA, CNRS, UPEC, IRD, Univ. P7, Institute of Ecology and Environmental Sciences of Paris, 78026 Versailles, France
| | - Thomas Bourgeois
- Sorbonne Université, INRA, CNRS, UPEC, IRD, Univ. P7, Institute of Ecology and Environmental Sciences of Paris, 78026 Versailles, France
| | - Paleo Aguilar
- Institute of Biology, Complutense University of Madrid, Pozuelo de Alarcon, 28223 Madrid, Spain
| | - Françoise Bozzolan
- Sorbonne Université, INRA, CNRS, UPEC, IRD, Univ. P7, Institute of Ecology and Environmental Sciences of Paris, 75005 Paris, France
| | - Stéphane Debernard
- Sorbonne Université, INRA, CNRS, UPEC, IRD, Univ. P7, Institute of Ecology and Environmental Sciences of Paris, 75005 Paris, France
| |
Collapse
|
11
|
Borrero-Echeverry F, Bengtsson M, Nakamuta K, Witzgall P. Plant odor and sex pheromone are integral elements of specific mate recognition in an insect herbivore. Evolution 2018; 72:2225-2233. [PMID: 30095166 PMCID: PMC6220987 DOI: 10.1111/evo.13571] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2017] [Accepted: 07/21/2018] [Indexed: 01/04/2023]
Abstract
Specific mate recognition relies on the chemical senses in most animals, and especially in nocturnal insects. Two signal types mediate premating olfactory communication in terrestrial habitats: sex pheromones, which blend into an atmosphere of plant odorants. We show that host plant volatiles affect the perception of sex pheromone in males of the African cotton leafworm Spodoptera littoralis and that pheromone and plant volatiles are not perceived as independent messages. In clean air, S. littoralis males are attracted to single synthetic pheromone components or even the pheromone of a sibling species, oriental cotton leafworm S. litura. Presence of host plant volatiles, however, reduces the male response to deficient or heterospecific pheromone signals. That plant cues enhance discrimination of sex pheromone quality confirms the idea that specific mate recognition in noctuid moths has evolved in concert with adaptation to host plants. Shifts in either female host preference or sex pheromone biosynthesis give rise to new communication channels that have the potential to initiate or contribute to reproductive isolation.
Collapse
Affiliation(s)
| | - Marie Bengtsson
- Chemical Ecology Unit, Department of Plant Protection Biology, Swedish University of Agricultural Sciences, Alnarp 230 53, Sweden
| | - Kiyoshi Nakamuta
- Graduate School of Horticulture, Chiba University, Matsudo, Chiba 271-8510, Japan
| | - Peter Witzgall
- Chemical Ecology Unit, Department of Plant Protection Biology, Swedish University of Agricultural Sciences, Alnarp 230 53, Sweden
| |
Collapse
|
12
|
Liu H, Chen ZS, Zhang DJ, Lu YY. BdorOR88a Modulates the Responsiveness to Methyl Eugenol in Mature Males of Bactrocera dorsalis (Hendel). Front Physiol 2018; 9:987. [PMID: 30140233 PMCID: PMC6094957 DOI: 10.3389/fphys.2018.00987] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2018] [Accepted: 07/05/2018] [Indexed: 01/06/2023] Open
Abstract
Insect attractants are important prevention tools for managing populations of the Oriental fruit fly, Bactrocera dorsalis (Hendel), which is a highly destructive agricultural pest with health implications in tropical and subtropical countries. Methyl eugenol (ME) is still considered the gold standard of B. dorsalis attractants. Mature male flies use their olfactory system to detect ME, but the molecular mechanism underlying their olfactory detection of ME largely remains unclear. Here, we showed that ME activates the odorant receptors OR63a-1 and OR88a in mature B. dorsalis males antennae by RNA-Seq and qRT-PCR analysis. Interestingly, ME only elicited robust responses in the BdorOR88a/BdorOrco-expressing Xenopus oocytes, thus suggesting that BdorOR88a is necessary for ME reception and tropism in B. dorsalis. Next, our indoor behavioral assays demonstrated that BdorOR63a-1 knockdown had no significant effects on ME detection and tropism. By contrast, reducing the BdorOR88a transcript levels led to a significant decrease in the males' responsiveness to ME. Taken together, our results gave novel insight in the understanding of the olfactory background to the Oriental fruit fly's attraction toward ME.
Collapse
Affiliation(s)
| | | | | | - Yong-Yue Lu
- Department of Entomology, South China Agricultural University, Guangzhou, China
| |
Collapse
|
13
|
Huang GZ, Liu JT, Zhou JJ, Wang Q, Dong JZ, Zhang YJ, Li XC, Li J, Gu SH. Expressional and functional comparisons of two general odorant binding proteins in Agrotis ipsilon. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2018; 98:34-47. [PMID: 29778539 DOI: 10.1016/j.ibmb.2018.05.003] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/08/2018] [Revised: 04/27/2018] [Accepted: 05/16/2018] [Indexed: 06/08/2023]
Abstract
Insect general odorant binding proteins (GOBPs) have been long thought to bind and transport host plant volatiles to the olfactory receptors on the dendrite membrane of the olfactory neurons. Recent studies indicate that they can also bind female sex pheromones. In present study, two GOBP genes, AipsGOBP1 and AipsGOBP2 were cloned from the adult antennae of Agrotis ipsilon. Tissue expression profiles indicated that both of them are antennae-specific and more abundant in the female antennae than in the male antennae. Temporal expression profiles showed that both AipsGOBP1 and AipsGOBP2 began to express in antennae 3 days prior to adult emergence from pupae, and reached their highest expression level 3 and 4 days after adult emergence, respectively. Mating increased their expression in the female antennae but reduced their expression in the male antennae. In situ hybridization and immunolocalization demonstrated that both AipsGOBP1 and AipsGOBP2 are expressed and co-localized in sensilla basiconica and sensilla trichodea of both sexes. AipsGOBP2 exhibited a high binding affinity in vitro with the two major sex pheromone components Z7-12:Ac and Z9-14:Ac and the four plant volatiles cis-3-hexen-1-ol, oleic acid, dibutyl phthalate and β-caryophyllene with Ki values less than 5 μM. AipsGOBP1, on the other hand, showed medium binding affinities with the five A. ipsilon sex pheromones and six plant volatiles. AipsGOBP2 also showed a broader ligand-binding spectrum and a greater ligand-binding affinity than AipsGOBP1 with the tested aldehyde and alcohol sex pheromones of Lepidoptera species. Taken together, our results indicate that AipsGOBP2 may play greater roles than AipsGOBP1 does in binding sex pheromones and host plant volatiles.
Collapse
Affiliation(s)
- Guang-Zhen Huang
- College of Plant Protection, Agricultural University of Hebei, Baoding, 071001, China; State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Science, Beijing, 100193, China
| | - Jing-Tao Liu
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Science, Beijing, 100193, China; College of Plant Protection, Shenyang Agricultural University, Shenyang, China
| | - Jing-Jiang Zhou
- Department of Biological Chemistry and Crop Protection, Rothamsted Research, Harpenden, UK
| | - Qian Wang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Science, Beijing, 100193, China
| | - Jian-Zhen Dong
- College of Plant Protection, Agricultural University of Hebei, Baoding, 071001, China
| | - Yong-Jun Zhang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Science, Beijing, 100193, China
| | - Xian-Chun Li
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Science, Beijing, 100193, China; Department of Entomology and BIO5 Institute, University of Arizona, Tucson, USA
| | - Jing Li
- College of Plant Protection, Agricultural University of Hebei, Baoding, 071001, China.
| | - Shao-Hua Gu
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Science, Beijing, 100193, China.
| |
Collapse
|
14
|
Wang Y, Zhang J, Chen Q, Zhao H, Wang J, Wen M, Xi J, Ren B. Identification and evolution of olfactory genes in the small poplar longhorn beetle Saperda populnea. COMPARATIVE BIOCHEMISTRY AND PHYSIOLOGY D-GENOMICS & PROTEOMICS 2018; 26:58-68. [PMID: 29626726 DOI: 10.1016/j.cbd.2018.03.003] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2017] [Revised: 03/03/2018] [Accepted: 03/17/2018] [Indexed: 01/26/2023]
Abstract
Saperda populnea is a serious pest of poplar and willow trees in the Palaearctic region, causing extensive damage to forests and the lumber industry. Until recently, there is no safe and effective chemical method to control this pest due to the lack of sufficient knowledge on the molecular basis of its olfactory genes, moreover, the evolutionary history of the olfactory gene family in subfamily Lamiinae is still fully unknown. Our RNA sequencing of the antennae of S. populnea identified 43 odorant binding proteins (OBPs), 15 chemosensory proteins (CSPs), 56 odorant receptors (ORs) and 24 inotropic receptors (IRs) in S. populnea. The RT-PCR results showed several genes were expressed in a sex specific manner, suggesting that these genes might play key role in their olfactory-sensing and sex-related behaviors. Further evolutionary studies were performed on these olfactory genes, overall comparison of the Ka/Ks values of orthologous genes in S. populnea and two other Lamiinae species showed three main conclusions: 1. olfactory genes have evolved more rapidly than the non-olfactory genes in the tested long horn beetles; 2. the IR gene family are under a strong purifying selection; 3. the OBPs of Monochamus alternatus evolved more rapidly than the other two species, which is speculated to be correlated with differentiation of selective pressure in different geographic origins. Detailed evolutionary studies on each olfactory genes showed that several OBPs and ORs are under significantly purifying/relaxed selective pressure, and several positive selection sites were also detected, modeling of SpopOR14 and SpopOBP4/5 showed that most of the positive selection sites were distributed at the N-terminus of SpopOR14, while the positive selection sites in SpopOBP4/5 were located in H-bond donors, results suggest that these sites are more likely to be linked with the selectivity of modeled olfactory genes. The research provided a better understanding of the molecular basis and evolutionary history of the olfactory genes in Lamiinae, through elaborating the mechanism whereby amino structural evolution affects specific variants in OBPs and ORs.
Collapse
Affiliation(s)
- Yinliang Wang
- Jilin Provincial Key Laboratory of Animal Resource Conservation and Utilization, Northeast Normal University, Changchun, Jilin, China; Key Laboratory of Vegetation Ecology, MOE, Northeast Normal University, Changchun, China
| | - Jian Zhang
- College of Plant Science, Jilin University, Changchun, Jilin, China; Institute of Forest Protection, Jilin Provincial Academy of Forestry, Changchun, Jilin, China
| | - Qi Chen
- Jilin Provincial Key Laboratory of Animal Resource Conservation and Utilization, Northeast Normal University, Changchun, Jilin, China; Key Laboratory of Vegetation Ecology, MOE, Northeast Normal University, Changchun, China
| | - Hanbo Zhao
- Jilin Provincial Key Laboratory of Animal Resource Conservation and Utilization, Northeast Normal University, Changchun, Jilin, China; Key Laboratory of Vegetation Ecology, MOE, Northeast Normal University, Changchun, China
| | - Jiatong Wang
- Jilin Provincial Key Laboratory of Animal Resource Conservation and Utilization, Northeast Normal University, Changchun, Jilin, China; Key Laboratory of Vegetation Ecology, MOE, Northeast Normal University, Changchun, China
| | - Ming Wen
- Jilin Provincial Key Laboratory of Animal Resource Conservation and Utilization, Northeast Normal University, Changchun, Jilin, China; Key Laboratory of Vegetation Ecology, MOE, Northeast Normal University, Changchun, China
| | - Jinghui Xi
- College of Plant Science, Jilin University, Changchun, Jilin, China.
| | - Bingzhong Ren
- Jilin Provincial Key Laboratory of Animal Resource Conservation and Utilization, Northeast Normal University, Changchun, Jilin, China; Key Laboratory of Vegetation Ecology, MOE, Northeast Normal University, Changchun, China.
| |
Collapse
|
15
|
Xu H, Turlings TCJ. Plant Volatiles as Mate-Finding Cues for Insects. TRENDS IN PLANT SCIENCE 2018; 23:100-111. [PMID: 29229187 DOI: 10.1016/j.tplants.2017.11.004] [Citation(s) in RCA: 79] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2017] [Revised: 11/06/2017] [Accepted: 11/13/2017] [Indexed: 05/04/2023]
Abstract
Plant volatiles are used not only by herbivorous insects to find their host plants, but also by the natural enemies of the herbivores to find their prey. There is also increasing evidence that plant volatiles, in addition to species-specific pheromones, help these insects to find mating partners. Plant structures such as flowers, fruit, and leaves are frequently rendezvous sites for mate-seeking insects. Here we propose that the combined use of plant volatiles and pheromones can efficiently guide insects to these sites, where they will have access to both mates and food. This notion is supported by the fact that plant volatiles can stimulate the release of sex pheromones and can render various insects more receptive to potential mates.
Collapse
Affiliation(s)
- Hao Xu
- Laboratory of Fundamental and Applied Research in Chemical Ecology (FARCE), Institute of Biology, University of Neuchâtel, CH-2000 Neuchâtel, Switzerland.
| | - Ted C J Turlings
- Laboratory of Fundamental and Applied Research in Chemical Ecology (FARCE), Institute of Biology, University of Neuchâtel, CH-2000 Neuchâtel, Switzerland.
| |
Collapse
|
16
|
Lenschow M, Cordel M, Pokorny T, Mair MM, Hofferberth J, Ruther J. The Post-mating Switch in the Pheromone Response of Nasonia Females Is Mediated by Dopamine and Can Be Reversed by Appetitive Learning. Front Behav Neurosci 2018; 12:14. [PMID: 29441003 PMCID: PMC5797616 DOI: 10.3389/fnbeh.2018.00014] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2017] [Accepted: 01/17/2018] [Indexed: 02/03/2023] Open
Abstract
The olfactory sense is of crucial importance for animals, but their response to chemical stimuli is plastic and depends on their physiological state and prior experience. In many insect species, mating status influences the response to sex pheromones, but the underlying neuromodulatory mechanisms are poorly understood. After mating, females of the parasitic wasp Nasonia vitripennis are no longer attracted to the male sex pheromone. Here we show that this post-mating behavioral switch is mediated by dopamine (DA). Females fed a DA-receptor antagonist prior to mating maintained their attraction to the male pheromone after mating while virgin females injected with DA became unresponsive. However, the switch is reversible as mated females regained their pheromone preference after appetitive learning. Feeding mated N. vitripennis females with antagonists of either octopamine- (OA) or DA-receptors prevented relearning of the pheromone preference suggesting that both receptors are involved in appetitive learning. Moreover, DA injection into mated females was sufficient to mimic the oviposition reward during odor conditioning with the male pheromone. Our data indicate that DA plays a key role in the plastic pheromone response of N. vitripennis females and reveal some striking parallels between insects and mammals in the neuromodulatory mechanisms underlying olfactory plasticity.
Collapse
Affiliation(s)
- Maria Lenschow
- Institute of Zoology, University of Regensburg, Regensburg, Germany
| | - Michael Cordel
- Institute of Zoology, University of Regensburg, Regensburg, Germany
| | - Tamara Pokorny
- Institute of Zoology, University of Regensburg, Regensburg, Germany
| | - Magdalena M Mair
- Institute of Zoology, University of Regensburg, Regensburg, Germany
| | - John Hofferberth
- Department of Chemistry, Kenyon College, Gambier, OH, United States
| | - Joachim Ruther
- Institute of Zoology, University of Regensburg, Regensburg, Germany
| |
Collapse
|
17
|
Jin S, Zhou X, Gu F, Zhong G, Yi X. Olfactory Plasticity: Variation in the Expression of Chemosensory Receptors in Bactrocera dorsalis in Different Physiological States. Front Physiol 2017; 8:672. [PMID: 28959208 PMCID: PMC5603674 DOI: 10.3389/fphys.2017.00672] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2017] [Accepted: 08/23/2017] [Indexed: 11/13/2022] Open
Abstract
Changes in physiological conditions could influence the perception of external odors, which is important for the reproduction and survival of insect. With the alteration of physiological conditions, such as, age, feeding state, circadian rhythm, and mating status, insect can modulate their olfactory systems accordingly. Ionotropic, gustatory, and odorant receptors (IR, GR, and ORs) are important elements of the insect chemosensory system, which enable insects to detect various external stimuli. In this study, we investigated the changes in these receptors at the mRNA level in Bactrocera dorsalis in different physiological states. We performed transcriptome analysis to identify chemosensory receptors: 21 IRs, 12 GRs, and 43 ORs were identified from B. dorsalis antennae, including almost all previously known chemoreceptors in B. dorsalis and a few more. Quantitative real-time polymerase chain reaction analysis revealed the effects of feeding state, mating status and time of day on the expression of IR, GR, and OR genes. The results showed that expression of chemosensory receptors changed in response to different physiological states, and these changes were completely different for different types of receptors and between male and female flies. Our study suggests that the expressions of chemosensory receptors change to adapt to different physiological states, which may indicate the significant role of these receptors in such physiological processes.
Collapse
Affiliation(s)
- Sha Jin
- Key Laboratory of Crop Integrated Pest Management in South China, Ministry of Agriculture, South China Agricultural UniversityGuangzhou, China.,Key Laboratory of Natural Pesticide and Chemical Biology, Ministry of Education, South China Agricultural UniversityGuangzhou, China
| | - Xiaofan Zhou
- Guangdong Province Key Laboratory of Microbial Signals and Disease Control, Integrative Microbiology Research Centre, College of AgricultureGuangzhou, China
| | - Feng Gu
- Key Laboratory of Crop Integrated Pest Management in South China, Ministry of Agriculture, South China Agricultural UniversityGuangzhou, China.,Key Laboratory of Natural Pesticide and Chemical Biology, Ministry of Education, South China Agricultural UniversityGuangzhou, China
| | - Guohua Zhong
- Key Laboratory of Crop Integrated Pest Management in South China, Ministry of Agriculture, South China Agricultural UniversityGuangzhou, China.,Key Laboratory of Natural Pesticide and Chemical Biology, Ministry of Education, South China Agricultural UniversityGuangzhou, China
| | - Xin Yi
- Key Laboratory of Crop Integrated Pest Management in South China, Ministry of Agriculture, South China Agricultural UniversityGuangzhou, China.,Key Laboratory of Natural Pesticide and Chemical Biology, Ministry of Education, South China Agricultural UniversityGuangzhou, China
| |
Collapse
|
18
|
Short-term peripheral sensitization by brief exposure to pheromone components in Spodoptera littoralis. J Comp Physiol A Neuroethol Sens Neural Behav Physiol 2017; 203:973-982. [PMID: 28852845 DOI: 10.1007/s00359-017-1205-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2017] [Revised: 07/31/2017] [Accepted: 08/08/2017] [Indexed: 02/05/2023]
Abstract
In insects, the olfactory system displays a high degree of plasticity. In Spodoptera littoralis, pre-exposure of males to the sex pheromone has been shown to increase the sensitivity of the olfactory sensory neurons at peripheral level. In this study, we have investigated this sensitization effect by recording the electroantennographic responses of male antennae to the major sex pheromone component (Z,E)-9,11-tetradecadienyl acetate and to the minor components (Z,E)-9,12-tetradecadienyl acetate and (Z)-9-tetradecenyl acetate. Responses to the conjugated diene acetate at 1 and 10 µg and to the unconjugated ester at 10 µg at three different times (11, 22 and 33 min) after pre-exposure (T = 0 min) were significantly higher than those at T = 0, whereas no increase of sensitivity to the pheromone was elicited by any dose of the minor monoene acetate. In addition, pre-exposed antennae to sub-threshold amounts (0.1, 1 and 10 ng) of the major pheromone component also induced an increased response to the chemical at different times (5 and 15 min) after exposure. Our results revealed that pre-exposed isolated antennae display a short-term higher sensitivity at the peripheral level when compared to naive antennae. In addition, we provide evidence of a peripheral sensitization mediated not only by the major pheromone component, but also by the minor unconjugated diene acetate, and the induction of this sensitivity appears to be dependent on the pre-exposure dose and the time span between pre-exposure and subsequent recordings. Possible implications of the sensitization effect displayed by the minor component for a more effective discrimination of the pheromone bouquets of other closely related species are highlighted.
Collapse
|
19
|
Conchou L, Anderson P, Birgersson G. Host Plant Species Differentiation in a Polyphagous Moth: Olfaction is Enough. J Chem Ecol 2017; 43:794-805. [PMID: 28812177 DOI: 10.1007/s10886-017-0876-2] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2017] [Revised: 07/14/2017] [Accepted: 08/02/2017] [Indexed: 11/25/2022]
Abstract
Polyphagous herbivorous insects need to discriminate suitable from unsuitable host plants in complex plant communities. While studies on the olfactory system of monophagous herbivores have revealed close adaptations to their host plant's characteristic volatiles, such adaptive fine-tuning is not possible when a large diversity of plants is suitable. Instead, the available literature on polyphagous herbivore preferences suggests a higher level of plasticity, and a bias towards previously experienced plant species. It is therefore necessary to take into account the diversity of plant odors that polyphagous herbivores encounter in the wild in order to unravel the olfactory basis of their host plant choice behaviour. In this study we show that a polyphagous moth, Spodoptera littoralis, has the sensory ability to distinguish five host plant species using olfaction alone, this being a prerequisite to the ability to make a choice. We have used gas chromatography mass spectrometry (GC-MS) and gas chromatography electroantennographic detection (GC-EAD) in order to describe host plant odor profiles as perceived by S. littoralis. We find that each plant emits specific combinations and proportions of GC-EAD active volatiles, leading to statistically distinct profiles. In addition, at least four of these plants show GC-EAD active compound proportions that are conserved across individual plants, a characteristic that enables insects to act upon previous olfactory experiences during host plant choice. By identifying the volatiles involved in olfactory differentiation of alternative host plants by Spodoptera littoralis, we set the groundwork for deeper investigations of how olfactory perceptions translate into behaviour in polyphagous herbivores.
Collapse
Affiliation(s)
- Lucie Conchou
- Department of Plant Protection Biology, Swedish University of Agricultural Sciences, Sundsvägen 14, Box 102, 23053, Alnarp, Sweden.
- UMR IEES, INRA, Route de Saint Cyr, 78026, Versailles, France.
| | - Peter Anderson
- Department of Plant Protection Biology, Swedish University of Agricultural Sciences, Sundsvägen 14, Box 102, 23053, Alnarp, Sweden
| | - Göran Birgersson
- Department of Plant Protection Biology, Swedish University of Agricultural Sciences, Sundsvägen 14, Box 102, 23053, Alnarp, Sweden
| |
Collapse
|
20
|
de Fouchier A, Walker WB, Montagné N, Steiner C, Binyameen M, Schlyter F, Chertemps T, Maria A, François MC, Monsempes C, Anderson P, Hansson BS, Larsson MC, Jacquin-Joly E. Functional evolution of Lepidoptera olfactory receptors revealed by deorphanization of a moth repertoire. Nat Commun 2017; 8:15709. [PMID: 28580965 PMCID: PMC5465368 DOI: 10.1038/ncomms15709] [Citation(s) in RCA: 106] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2016] [Accepted: 04/20/2017] [Indexed: 02/07/2023] Open
Abstract
Insects detect their hosts or mates primarily through olfaction, and olfactory receptors (ORs) are at the core of odorant detection. Each species has evolved a unique repertoire of ORs whose functional properties are expected to meet its ecological needs, though little is known about the molecular basis of olfaction outside Diptera. Here we report a pioneer functional analysis of a large array of ORs in a lepidopteran, the herbivorous pest Spodoptera littoralis. We demonstrate that most ORs are narrowly tuned to ubiquitous plant volatiles at low, relevant odorant titres. Our phylogenetic analysis highlights a basic conservation of function within the receptor repertoire of Lepidoptera, across the expansive evolutionary radiation of different major clades. Our study provides a reference for further studies of olfactory mechanisms in Lepidoptera, a historically crucial insect order in olfactory research.
Collapse
Affiliation(s)
- Arthur de Fouchier
- INRA, Institute of Ecology & Environmental Sciences of Paris, Department of Sensory Ecology, Route de Saint-Cyr, 78026 Versailles Cedex, France
| | - William B. Walker
- Department of Plant Protection Biology, Swedish University of Agricultural Sciences, Sundsvägen 14, 230 53 Alnarp, Sweden
| | - Nicolas Montagné
- Sorbonne Universités—UPMC University Paris 06, Institute of Ecology & Environmental Sciences of Paris, Department of Sensory Ecology, 7 quai Saint Bernard, 75252 Paris Cedex 05, France
| | - Claudia Steiner
- Department of Plant Protection Biology, Swedish University of Agricultural Sciences, Sundsvägen 14, 230 53 Alnarp, Sweden
- Sorbonne Universités—UPMC University Paris 06, Institute of Ecology & Environmental Sciences of Paris, Department of Sensory Ecology, 7 quai Saint Bernard, 75252 Paris Cedex 05, France
| | - Muhammad Binyameen
- Department of Plant Protection Biology, Swedish University of Agricultural Sciences, Sundsvägen 14, 230 53 Alnarp, Sweden
- Chemical Ecology Laboratory, Department of Entomology, Bahauddin Zakariya University, Multan 60800, Pakistan
| | - Fredrik Schlyter
- Department of Plant Protection Biology, Swedish University of Agricultural Sciences, Sundsvägen 14, 230 53 Alnarp, Sweden
| | - Thomas Chertemps
- Sorbonne Universités—UPMC University Paris 06, Institute of Ecology & Environmental Sciences of Paris, Department of Sensory Ecology, 7 quai Saint Bernard, 75252 Paris Cedex 05, France
| | - Annick Maria
- Sorbonne Universités—UPMC University Paris 06, Institute of Ecology & Environmental Sciences of Paris, Department of Sensory Ecology, 7 quai Saint Bernard, 75252 Paris Cedex 05, France
| | - Marie-Christine François
- INRA, Institute of Ecology & Environmental Sciences of Paris, Department of Sensory Ecology, Route de Saint-Cyr, 78026 Versailles Cedex, France
| | - Christelle Monsempes
- INRA, Institute of Ecology & Environmental Sciences of Paris, Department of Sensory Ecology, Route de Saint-Cyr, 78026 Versailles Cedex, France
| | - Peter Anderson
- Department of Plant Protection Biology, Swedish University of Agricultural Sciences, Sundsvägen 14, 230 53 Alnarp, Sweden
| | - Bill S. Hansson
- Department of Evolutionary Neuroethology, Max Planck Institute for Chemical Ecology, 07745 Jena, Germany
| | - Mattias C. Larsson
- Department of Plant Protection Biology, Swedish University of Agricultural Sciences, Sundsvägen 14, 230 53 Alnarp, Sweden
| | - Emmanuelle Jacquin-Joly
- INRA, Institute of Ecology & Environmental Sciences of Paris, Department of Sensory Ecology, Route de Saint-Cyr, 78026 Versailles Cedex, France
| |
Collapse
|
21
|
Durand N, Chertemps T, Bozzolan F, Maïbèche M. Expression and modulation of neuroligin and neurexin in the olfactory organ of the cotton leaf worm Spodoptera littoralis. INSECT SCIENCE 2017; 24:210-221. [PMID: 26749290 DOI: 10.1111/1744-7917.12312] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 12/27/2015] [Indexed: 06/05/2023]
Abstract
Carboxylesterases are enzymes widely distributed within living organisms. In insects, they have been mainly involved in dietary metabolism and detoxification function. Interestingly, several members of this family called carboxylesterase-like adhesion molecules (CLAMs) have lost their catalytic properties and are mainly involved in neuro/developmental functions. CLAMs include gliotactins, neurotactins, glutactins, and neuroligins. The latter have for binding partner the neurexin. In insects, the function of these proteins has been mainly studied in Drosophila central nervous system or neuromuscular junction. Some studies suggested a role of neuroligins and neurexin in sensory processing but CLAM expression within sensory systems has not been investigated. Here, we reported the identification of 5 putative CLAMs expressed in the olfactory system of the model pest insect Spodoptera littoralis. One neuroligin, Slnlg4-yll and its putative binding partner neurexin SlnrxI were the most expressed in the antennae and were surprisingly associated with olfactory sensilla. In addition, both transcripts were upregulated in male antennae after mating, known to modulate the sensitivity of the peripheral olfactory system in S. littoralis, suggesting that these molecules could be involved in sensory plasticity.
Collapse
Affiliation(s)
- Nicolas Durand
- Sorbonne Universités UPMC - Univ Paris 06, Institut d'Ecologie et des Sciences de 'Environnement de Paris, INRA, CNRS, IRD, UPEC, Département d'Ecologie Sensorielle, F-75252, Paris, France
| | - Thomas Chertemps
- Sorbonne Universités UPMC - Univ Paris 06, Institut d'Ecologie et des Sciences de 'Environnement de Paris, INRA, CNRS, IRD, UPEC, Département d'Ecologie Sensorielle, F-75252, Paris, France
| | - Françoise Bozzolan
- Sorbonne Universités UPMC - Univ Paris 06, Institut d'Ecologie et des Sciences de 'Environnement de Paris, INRA, CNRS, IRD, UPEC, Département d'Ecologie Sensorielle, F-75252, Paris, France
| | - Martine Maïbèche
- Sorbonne Universités UPMC - Univ Paris 06, Institut d'Ecologie et des Sciences de 'Environnement de Paris, INRA, CNRS, IRD, UPEC, Département d'Ecologie Sensorielle, F-75252, Paris, France
| |
Collapse
|
22
|
López-Ley JU, Toledo J, Malo EA, Gomez J, Santiesteban A, Rojas JC. Carambola Cultivar, Fruit Ripeness, and Damage by Conspecific Larvae Influence the Host-Related Behaviors of Anastrepha obliqua (Diptera: Tephritidae). JOURNAL OF ECONOMIC ENTOMOLOGY 2016; 109:154-160. [PMID: 26411483 DOI: 10.1093/jee/tov280] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/18/2015] [Accepted: 08/31/2015] [Indexed: 06/05/2023]
Abstract
In this study, we investigated the influence of cultivar type, fruit ripeness, and damage by conspecific larvae on the attraction of Anastrepha obliqua (Macquart) (Diptera: Tephritidae) to and oviposition on carambola fruit (Averroha carambola L.). The attraction of both sexes of A. obliqua to fruit of different quality was evaluated through cage experiments in the field, and the oviposition preferences of mated females were examined in laboratory tests. Both sexes, mated or virgin, were more attracted to the "Maha" fruit than to the "Golden Star" fruit, and the females oviposited more frequently on the Maha cultivar than the Golden Star cultivar. Both sexes were more attracted to ripe and half-ripe Maha fruits than to mature green fruit, and although females did not show a preference for ovipositing on half-ripe or ripe fruits, they did not oviposit on mature green fruits. Males did not show a preference for the volatiles from uninfested, artificially damaged, or infested Maha fruits, but females were more attracted to uninfested fruits than to artificially damaged and infested Maha fruits. Furthermore, females preferred to oviposit on uninfested fruits compared with artificially damaged fruit, and they did not oviposit on infested fruits.
Collapse
Affiliation(s)
- Jorge Ulises López-Ley
- Grupo de Ecología de Artrópodos y Manejo de Plagas, Departamento de Agricultura, Sociedad y Ambiente, El Colegio de la Frontera Sur, Carretera Antiguo Aeropuerto Km 2.5, Tapachula, Chiapas 30700, Mexico (; ; ; ; ; ) and
| | - Jorge Toledo
- Grupo de Ecología de Artrópodos y Manejo de Plagas, Departamento de Agricultura, Sociedad y Ambiente, El Colegio de la Frontera Sur, Carretera Antiguo Aeropuerto Km 2.5, Tapachula, Chiapas 30700, Mexico (; ; ; ; ; ) and
| | - Edi A Malo
- Grupo de Ecología de Artrópodos y Manejo de Plagas, Departamento de Agricultura, Sociedad y Ambiente, El Colegio de la Frontera Sur, Carretera Antiguo Aeropuerto Km 2.5, Tapachula, Chiapas 30700, Mexico (; ; ; ; ; ) and
| | - Jaime Gomez
- Grupo de Ecología de Artrópodos y Manejo de Plagas, Departamento de Agricultura, Sociedad y Ambiente, El Colegio de la Frontera Sur, Carretera Antiguo Aeropuerto Km 2.5, Tapachula, Chiapas 30700, Mexico (; ; ; ; ; ) and
| | - Antonio Santiesteban
- Grupo de Ecología de Artrópodos y Manejo de Plagas, Departamento de Agricultura, Sociedad y Ambiente, El Colegio de la Frontera Sur, Carretera Antiguo Aeropuerto Km 2.5, Tapachula, Chiapas 30700, Mexico (; ; ; ; ; ) and
| | - Julio C Rojas
- Grupo de Ecología de Artrópodos y Manejo de Plagas, Departamento de Agricultura, Sociedad y Ambiente, El Colegio de la Frontera Sur, Carretera Antiguo Aeropuerto Km 2.5, Tapachula, Chiapas 30700, Mexico (; ; ; ; ; ) and
| |
Collapse
|
23
|
Borges RM. On the Air: Broadcasting and Reception of Volatile Messages in Brood-Site Pollination Mutualisms. SIGNALING AND COMMUNICATION IN PLANTS 2016. [DOI: 10.1007/978-3-319-33498-1_10] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
24
|
Gadenne C, Barrozo RB, Anton S. Plasticity in Insect Olfaction: To Smell or Not to Smell? ANNUAL REVIEW OF ENTOMOLOGY 2016; 61:317-333. [PMID: 26982441 DOI: 10.1146/annurev-ento-010715-023523] [Citation(s) in RCA: 147] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
In insects, olfaction plays a crucial role in many behavioral contexts, such as locating food, sexual partners, and oviposition sites. To successfully perform such behaviors, insects must respond to chemical stimuli at the right moment. Insects modulate their olfactory system according to their physiological state upon interaction with their environment. Here, we review the plasticity of behavioral responses to different odor types according to age, feeding state, circadian rhythm, and mating status. We also summarize what is known about the underlying neural and endocrinological mechanisms, from peripheral detection to central nervous integration, and cover neuromodulation from the molecular to the behavioral level. We describe forms of olfactory plasticity that have contributed to the evolutionary success of insects and have provided them with remarkable tools to adapt to their ever-changing environment.
Collapse
Affiliation(s)
- Christophe Gadenne
- Neuroéthologie-RCIM, INRA-Université d'Angers, UPRES EA 2647 USC INRA 1330, 49071 Beaucouzé cedex, France; ,
| | - Romina B Barrozo
- Laboratorio de Fisiología de Insectos, DBBE, FCEyN, Universidad de Buenos Aires, IBBEA, CONICET-UBA, Ciudad Universitaria, C1428EHA, Buenos Aires, Argentina;
| | - Sylvia Anton
- Neuroéthologie-RCIM, INRA-Université d'Angers, UPRES EA 2647 USC INRA 1330, 49071 Beaucouzé cedex, France; ,
| |
Collapse
|
25
|
Anton S, Chabaud MA, Schmidt-Büsser D, Gadenne B, Iqbal J, Juchaux M, List O, Gaertner C, Devaud JM. Brief sensory experience differentially affects the volume of olfactory brain centres in a moth. Cell Tissue Res 2015; 364:59-65. [PMID: 26463049 DOI: 10.1007/s00441-015-2299-0] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2015] [Accepted: 09/14/2015] [Indexed: 12/22/2022]
Abstract
Experience modifies behaviour in animals so that they adapt to their environment. In male noctuid moths, Spodoptera littoralis, brief pre-exposure to various behaviourally relevant sensory signals modifies subsequent behaviour towards the same or different sensory modalities. Correlated with a behavioural increase in responses of male moths to the female-emitted sex pheromone after pre-exposure to olfactory, acoustic or gustatory stimuli, an increase in sensitivity of olfactory neurons within the primary olfactory centre, the antennal lobe, is found for olfactory and acoustic stimuli, but not for gustatory stimuli. Here, we investigated whether anatomical changes occurring in the antennal lobes and in the mushroom bodies (the secondary olfactory centres) possibly correlated with the changes observed in behaviour and in olfactory neuron physiology. Our results showed that significant volume changes occurred in glomeruli (olfactory units) responsive to sex pheromone following exposure to both pheromone and predator sounds. The volume of the mushroom body input region (calyx) also increased significantly after pheromone and predator sound treatment. However, we found no changes in the volume of antennal lobe glomeruli or of the mushroom body calyx after pre-exposure to sucrose. These findings show a relationship of antennal lobe sensitivity changes to the pheromone with changes in the volume of the related glomeruli and the output area of antennal lobe projection neurons elicited by sensory cues causing a behavioural change. Behavioural changes observed after sucrose pre-exposure must originate from changes in higher integration centres in the brain.
Collapse
Affiliation(s)
- Sylvia Anton
- Neuroéthologie-RCIM, INRA-Université d'Angers, UPRES EA 2647, USC INRA 1330, SFR 4207 QUASAV, 42 Rue Georges Morel, 49071, Beaucouzé, France. .,Institut d'Ecologie et des Sciences de l'Environnement de Paris, INRA, Route de Saint Cyr, 78026, Versailles cedex, France.
| | - Marie-Ange Chabaud
- Laboratoire Récepteurs et Canaux Ioniques Membranaires (RCIM), UPRES EA 2647, USC INRA 1330 SFR, 4207 QUASAV, Université d'Angers, UFR Sciences, Angers, France
| | - Daniela Schmidt-Büsser
- Institut d'Ecologie et des Sciences de l'Environnement de Paris, INRA, Route de Saint Cyr, 78026, Versailles cedex, France
| | - Bruno Gadenne
- Institut d'Ecologie et des Sciences de l'Environnement de Paris, INRA, Route de Saint Cyr, 78026, Versailles cedex, France
| | - Javaid Iqbal
- Institut d'Ecologie et des Sciences de l'Environnement de Paris, INRA, Route de Saint Cyr, 78026, Versailles cedex, France.,Department of Entomology, University College of Agriculture & Environmental Sciences, The Islamia University of Bahawalpur, Bahawalpur, Pakistan
| | | | - Olivier List
- Laboratoire Récepteurs et Canaux Ioniques Membranaires (RCIM), UPRES EA 2647, USC INRA 1330 SFR, 4207 QUASAV, Université d'Angers, UFR Sciences, Angers, France
| | - Cyril Gaertner
- Institut d'Ecologie et des Sciences de l'Environnement de Paris, INRA, Route de Saint Cyr, 78026, Versailles cedex, France.,Centre de Recherches sur la Cognition Animale, Université de Toulouse, UPS, 118 Route de Narbonne, 31062, Toulouse, France
| | - Jean-Marc Devaud
- Centre de Recherches sur la Cognition Animale, CNRS, 118 Route de Narbonne, 31062, Toulouse, France
| |
Collapse
|
26
|
Feeding regulates sex pheromone attraction and courtship in Drosophila females. Sci Rep 2015; 5:13132. [PMID: 26255707 PMCID: PMC4530334 DOI: 10.1038/srep13132] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2015] [Accepted: 07/20/2015] [Indexed: 01/03/2023] Open
Abstract
In Drosophila melanogaster, gender-specific behavioural responses to the male-produced sex pheromone cis-vaccenyl acetate (cVA) rely on sexually dimorphic, third-order neural circuits. We show that nutritional state in female flies modulates cVA perception in first-order olfactory neurons. Starvation increases, and feeding reduces attraction to food odour, in both sexes. Adding cVA to food odour, however, maintains attraction in fed females, while it has no effect in males. Upregulation of sensitivity and behavioural responsiveness to cVA in fed females is paralleled by a strong increase in receptivity to male courtship. Functional imaging of the antennal lobe (AL), the olfactory centre in the insect brain, shows that olfactory input to DA1 and VM2 glomeruli is also modulated by starvation. Knocking down insulin receptors in neurons converging onto the DA1 glomerulus suggests that insulin-signalling partly controls pheromone perception in the AL, and adjusts cVA attraction according to nutritional state and sexual receptivity in Drosophila females.
Collapse
|
27
|
Borrero-Echeverry F, Becher PG, Birgersson GÃ, Bengtsson M, Witzgall P, Saveer AM. Flight attraction of Spodoptera littoralis (Lepidoptera, Noctuidae) to cotton headspace and synthetic volatile blends. Front Ecol Evol 2015. [DOI: 10.3389/fevo.2015.00056] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
|
28
|
Sexual Behavior of Drosophila suzukii. INSECTS 2015; 6:183-96. [PMID: 26463074 PMCID: PMC4553537 DOI: 10.3390/insects6010183] [Citation(s) in RCA: 65] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/27/2014] [Revised: 02/20/2015] [Accepted: 02/25/2015] [Indexed: 12/12/2022]
Abstract
A high reproductive potential is one reason for the rapid spread of Drosophila suzukii in Europe and in the United States. In order to identify mechanisms that mediate mating and reproduction in D. suzukii we studied the fly’s reproductive behavior, diurnal mating activity and sexual maturation. Furthermore, we studied the change of female cuticular hydrocarbons (CHCs) with age and conducted a preliminary investigation on the role of female-derived chemical signals in male mating behavior. Sexual behavior in D. suzukii is characterized by distinct elements of male courtship leading to female acceptance for mating. Time of day and age modulate D. suzukii mating activity. As with other drosophilids, female sexual maturity is paralleled by a quantitative increase in CHCs. Neither female CHCs nor other olfactory signals were required to induce male courtship, however, presence of those signals significantly increased male sexual behavior. With this pilot study we hope to stimulate research on the reproductive biology of D. suzukii, which is relevant for the development of pest management tools.
Collapse
|