1
|
Gamelon M, Araya-Ajoy YG, Sæther BE. The concept of critical age group for density dependence: bridging the gap between demographers, evolutionary biologists and behavioural ecologists. Philos Trans R Soc Lond B Biol Sci 2024; 379:20220457. [PMID: 39463250 PMCID: PMC11528359 DOI: 10.1098/rstb.2022.0457] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Revised: 03/11/2024] [Accepted: 04/03/2024] [Indexed: 10/29/2024] Open
Abstract
Density dependence plays an important role in population regulation in the wild. It involves a decrease in population growth rate when the population size increases. Fifty years ago, Charlesworth introduced the concept of 'critical age group', denoting the age classes in which variation in the number of individuals most strongly contributes to density regulation. Since this pioneering work, this concept has rarely been used. In light of Charlesworth's concept, we discuss the need to develop work between behavioural ecology, demography and evolutionary biology to better understand the mechanisms acting in density-regulated age-structured populations. We highlight demographic studies that explored age-specific contributions to density dependence and discuss the underlying evolutionary processes. Understanding competitive interactions among individuals is pivotal to identify the ages contributing most strongly to density regulation, highlighting the need to move towards behavioural ecology to decipher mechanisms acting in density-regulated age-structured populations. Because individual characteristics other than age can be linked to competitive abilities, expanding the concept of critical age to other structures (e.g. sex, dominance rank) offers interesting perspectives. Linking research fields based on the concept of the critical age group is key to move from a pattern-oriented view of density regulation to a process-oriented approach.This article is part of the discussion meeting issue 'Understanding age and society using natural populations'.
Collapse
Affiliation(s)
- Marlène Gamelon
- Laboratoire de Biométrie et Biologie Evolutive, UMR 5558, CNRS, Université Claude Bernard Lyon 1, Villeurbanne69622, France
| | - Yimen G. Araya-Ajoy
- Gjærevoll Centre for Biodiversity Foresight Analysis, Norwegian University of Science and Technology, TrondheimNO-7491, Norway
| | - Bernt-Erik Sæther
- Gjærevoll Centre for Biodiversity Foresight Analysis, Norwegian University of Science and Technology, TrondheimNO-7491, Norway
| |
Collapse
|
2
|
Sæther BE. How population size shapes the evolution of guppy fish. Nature 2024; 626:725-726. [PMID: 38321158 DOI: 10.1038/d41586-024-00276-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2024]
|
3
|
Travis J, Bassar RD, Coulson T, Lopez-Sepulcre A, Reznick D. Population Regulation and Density-Dependent Demography in the Trinidadian Guppy. Am Nat 2023; 202:413-432. [PMID: 37792920 DOI: 10.1086/725796] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/06/2023]
Abstract
AbstractClassic theory for density-dependent selection for delayed maturation requires that a population be regulated through some combination of adult fecundity and/or juvenile survival. We tested whether those demographic conditions were met in four experimental populations of Trinidadian guppies in which delayed maturation of males evolved when the densities of those populations became high. We used monthly mark-recapture data to examine population dynamics and demography in these populations. Three of the four populations displayed clear evidence of regulation. In all four populations, monthly adult survival rates were independent of biomass density or actually increased with increased biomass density. Juvenile recruitment, which is a combination of adult fecundity and juvenile survival, decreased as biomass density increased in all four populations. Demography showed marked seasonality, with greater survival and higher recruitment in the dry season than the wet season. Population regulation via juvenile recruitment supports the hypothesis that density-dependent selection was responsible for the evolution of delayed maturity in males. This body of work represents one of the few complete tests of density-dependent selection theory.
Collapse
|
4
|
Reed TE, Visser ME, Waples RS. The opportunity for selection: A slippery concept in ecology and evolution. J Anim Ecol 2023; 92:7-15. [PMID: 36366942 PMCID: PMC10098507 DOI: 10.1111/1365-2656.13841] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Accepted: 10/18/2022] [Indexed: 11/13/2022]
Abstract
Natural selection can only occur if individuals differ in fitness. For this reason, the variance in relative fitness has been equated with the 'opportunity for selection' (I ), which has a long, albeit somewhat controversial, history. In this paper we discuss the use/misuse ofI and related metrics in evolutionary ecology. The opportunity is only realised if some fraction ofI is caused by trait variation. Thus,I > 0 does not imply that selection is occurring, as sometimes erroneously assumed, because all fitness variation could be independent of phenotype. The selection intensity on any given trait cannot exceedI , but this upper limit will never be reached because (a) stochastic factors always affect fitness, and (b) there might be multiple traits under selection. The expected magnitude of the stochastic component ofI is negatively correlated with mean fitness. Uncertainty in realisedI is also larger when mean fitness or population/sample size are low. Variation inI across time or space thus can be dominated (or solely driven) by variation in the strength of demographic stochasticity. We illustrate these points using simulations and empirical data from a population study on great tits Parus major. Our analysis shows that the scope for fecundity selection in the great tits is substantially higher when using annual number of recruits as the fitness measure, rather than fledglings or eggs, even after adjusting for the dependence ofI on mean fitness. This suggests nonrandom survival of juveniles across families between life stages. Indeed, previous work on this population has shown that offspring recruitment is often nonrandom with respect to clutch size and laying date of parents, for example. We conclude that one cannot make direct inferences about selection based on fitness data alone. However, examining variation in∆ I F (the opportunity for fecundity selection adjusted for mean fitness) across life stages, years or environments can offer clues as to when/where fecundity selection might be strongest, which can be useful for research planning and experimental design.
Collapse
Affiliation(s)
- Thomas E. Reed
- School of Biological, Earth & Environmental SciencesUniversity College Cork, Distillery FieldsCorkIreland
- Environmental Research InstituteUniversity College CorkCorkIreland
| | - Marcel E. Visser
- Department of Animal EcologyNetherlands Institute of Ecology (NIOO‐KNAW)WageningenThe Netherlands
| | - Robin S. Waples
- Northwest Fisheries Science Center, National Marine Fisheries ServiceNational Oceanic and Atmospheric AdministrationSeattleWashingtonUSA
| |
Collapse
|
5
|
Simberloff D. In Memoriam. Am Nat 2022; 200:627-633. [DOI: 10.1086/721257] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
6
|
Einum S, Ullern ER, Walsh M, Burton T. Evolution of population dynamics following invasion by a non-native predator. Ecol Evol 2022; 12:e9348. [PMID: 36188513 PMCID: PMC9487876 DOI: 10.1002/ece3.9348] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Revised: 09/06/2022] [Accepted: 09/07/2022] [Indexed: 11/08/2022] Open
Abstract
Invasive predatory species are frequently observed to cause evolutionary responses in prey phenotypes, which in turn may lead to evolutionary shifts in the population dynamics of prey. Research has provided a link between rates of predation and the evolution of prey population growth in the lab, but studies from natural populations are rare. Here, we tested for evolutionary changes in population dynamics parameters of zooplankton Daphnia pulicaria following invasion by the predator Bythotrephes longimanus into Lake Kegonsa, Wisconsin, US. We used a resurrection ecological approach, whereby clones from pre- and post-invasive periods were hatched from eggs obtained in sediment cores and were used in a 3-month growth experiment. Based on these data, we estimated intrinsic population growth rates (r), the shape of density dependence (θ) and carrying capacities (K) using theta-logistic models. We found that post-invasion Daphnia maintained a higher r and K under these controlled, predation-free laboratory conditions. Evidence for changes in θ was weaker. Whereas previous experimental evolution studies of predator-prey interactions have demonstrated that genotypes that have evolved under predation have inferior competitive ability when the predator is absent, this was not the case for the Daphnia. Given that our study was conducted in a laboratory environment and the possibility for genotype-by-environment interactions, extrapolating these apparent counterintuitive results to the wild should be done with caution. However, barring such complications, we discuss how selection for reduced predator exposure, either temporally or spatially, may have led to the observed changes. This scenario suggests that complexities in ecological interactions represents a challenge when predicting the evolutionary responses of population dynamics to changes in predation pressure in natural systems.
Collapse
Affiliation(s)
- Sigurd Einum
- Centre for Biodiversity Dynamics, Department of BiologyNorwegian University of Science and TechnologyTrondheimNorway
| | - Emil R. Ullern
- Centre for Biodiversity Dynamics, Department of BiologyNorwegian University of Science and TechnologyTrondheimNorway
| | - Matthew Walsh
- Department of BiologyUniversity of Texas at ArlingtonArlingtonTexasUSA
| | - Tim Burton
- Centre for Biodiversity Dynamics, Department of BiologyNorwegian University of Science and TechnologyTrondheimNorway
- Norwegian Institute for Nature ResearchTrondheimNorway
| |
Collapse
|
7
|
Kvalnes T, Sæther BE, Engen S, Roulin A. Density-dependent selection and the maintenance of colour polymorphism in barn owls. Proc Biol Sci 2022; 289:20220296. [PMID: 35642371 PMCID: PMC9156910 DOI: 10.1098/rspb.2022.0296] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
The capacity of natural selection to generate adaptive changes is (according to the fundamental theorem of natural selection) proportional to the additive genetic variance in fitness. In spite of its importance for development of new adaptations to a changing environment, processes affecting the magnitude of the genetic variance in fitness-related traits are poorly understood. Here, we show that the red-white colour polymorphism in female barn owls is subject to density-dependent selection at the phenotypic and genotypic level. The diallelic melanocortin-1 receptor gene explained a large amount of the phenotypic variance in reddish coloration in the females ([Formula: see text]). Red individuals (RR genotype) were selected for at low densities, while white individuals (WW genotype) were favoured at high densities and were less sensitive to changes in density. We show that this density-dependent selection favours white individuals and predicts fixation of the white allele in this population at longer time scales without immigration or other selective forces. Still, fluctuating population density will cause selection to fluctuate and periodically favour red individuals. These results suggest how balancing selection caused by fluctuations in population density can be a general mechanism affecting the level of additive genetic variance in natural populations.
Collapse
Affiliation(s)
- Thomas Kvalnes
- Department of Biology, Centre for Biodiversity Dynamics (CBD), Norwegian University of Science and Technology (NTNU), Trondheim NO-7491, Norway
| | - Bernt-Erik Sæther
- Department of Biology, Centre for Biodiversity Dynamics (CBD), Norwegian University of Science and Technology (NTNU), Trondheim NO-7491, Norway
| | - Steinar Engen
- Department of Mathematical Sciences, Centre for Biodiversity Dynamics (CBD), Norwegian University of Science and Technology (NTNU), Trondheim NO-7491, Norway
| | - Alexandre Roulin
- Department of Ecology and Evolution, University of Lausanne, Biophore Building, Lausanne CH-1015, Switzerland
| |
Collapse
|
8
|
Eccard JA, Herde A, Schuster AC, Liesenjohann T, Knopp T, Heckel G, Dammhahn M. Fitness, risk taking, and spatial behavior covary with boldness in experimental vole populations. Ecol Evol 2022; 12:e8521. [PMID: 35154645 PMCID: PMC8829380 DOI: 10.1002/ece3.8521] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Revised: 10/12/2021] [Accepted: 10/21/2021] [Indexed: 11/17/2022] Open
Abstract
Individuals of a population may vary along a pace-of-life syndrome from highly fecund, short-lived, bold, dispersive "fast" types at one end of the spectrum to less fecund, long-lived, shy, plastic "slow" types at the other end. Risk-taking behavior might mediate the underlying life history trade-off, but empirical evidence supporting this hypothesis is still ambiguous. Using experimentally created populations of common voles (Microtus arvalis)-a species with distinct seasonal life history trajectories-we aimed to test whether individual differences in boldness behavior covary with risk taking, space use, and fitness. We quantified risk taking, space use (via automated tracking), survival, and reproductive success (via genetic parentage analysis) in 8 to 14 experimental, mixed-sex populations of 113 common voles of known boldness type in large grassland enclosures over a significant part of their adult life span and two reproductive events. Populations were assorted to contain extreme boldness types (bold or shy) of both sexes. Bolder individuals took more risks than shyer ones, which did not affect survival. Bolder males but not females produced more offspring than shy conspecifics. Daily home range and core area sizes, based on 95% and 50% Kernel density estimates (20 ± 10 per individual, n = 54 individuals), were highly repeatable over time. Individual space use unfolded differently for sex-boldness type combinations over the course of the experiment. While day ranges decreased for shy females, they increased for bold females and all males. Space use trajectories may, hence, indicate differences in coping styles when confronted with a novel social and physical environment. Thus, interindividual differences in boldness predict risk taking under near-natural conditions and have consequences for fitness in males, which have a higher reproductive potential than females. Given extreme inter- and intra-annual fluctuations in population density in the study species and its short life span, density-dependent fluctuating selection operating differently on the sexes might maintain (co)variation in boldness, risk taking, and pace-of-life.
Collapse
Affiliation(s)
- Jana A Eccard
- Animal Ecology Institute of Biochemistry and Biology University of Potsdam Potsdam Germany
| | - Antje Herde
- Animal Ecology Institute of Biochemistry and Biology University of Potsdam Potsdam Germany
- Animal Behaviour Faculty of Biology University of Bielefeld Bielefeld Germany
| | - Andrea C Schuster
- Animal Ecology Institute of Biochemistry and Biology University of Potsdam Potsdam Germany
- Institute of Ecology and Evolution University of Bern Bern Switzerland
| | - Thilo Liesenjohann
- Animal Ecology Institute of Biochemistry and Biology University of Potsdam Potsdam Germany
- BioConsult SH GmbH & Co. KG Husum Germany
| | - Tatjana Knopp
- Animal Ecology Institute of Biochemistry and Biology University of Potsdam Potsdam Germany
| | - Gerald Heckel
- Institute of Ecology and Evolution University of Bern Bern Switzerland
| | - Melanie Dammhahn
- Animal Ecology Institute of Biochemistry and Biology University of Potsdam Potsdam Germany
| |
Collapse
|
9
|
Milles A, Dammhahn M, Jeltsch F, Schlägel U, Grimm V. Fluctuations in density-dependent selection drive the evolution of a pace-of-life-syndrome within and between populations. Am Nat 2021; 199:E124-E139. [DOI: 10.1086/718473] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
10
|
Engen S, Grøtan V, Sæther BE, Coste CFD. An Evolutionary and Ecological Community Model for Distribution of Phenotypes and Abundances among Competing Species. Am Nat 2021; 198:13-32. [PMID: 34143723 DOI: 10.1086/714529] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
AbstractHere, we propose a theory for the structure of communities of competing species. We include ecologically realistic assumptions, such as density dependence and stochastic fluctuations in the environment, and analyze how evolution caused by r- and K-selection will affect the packing of species in the phenotypic space as well as the species abundance distribution. Species-specific traits have the same matrix G of additive genetic variances and covariances, and evolution of mean traits is affected by fluctuations in population size of all species. In general, the model produces a shape of the distributions of log abundances that is skewed to the left, which is typical of most natural communities. Mean phenotypes of the species in the community are distributed approximately uniformly on the surface of a multidimensional sphere. However, environmental stochasticity generates selection that deviates species slightly from this surface; nonetheless, phenotypic distribution will be different from a random packing of species. This model of community evolution provides a theoretical framework that predicts a relationship between the structure of the phenotypic space and the form of species abundance distributions that can be compared against time series of variation in community structure.
Collapse
|
11
|
Bell DA, Kovach RP, Robinson ZL, Whiteley AR, Reed TE. The ecological causes and consequences of hard and soft selection. Ecol Lett 2021; 24:1505-1521. [PMID: 33931936 DOI: 10.1111/ele.13754] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2020] [Revised: 02/17/2021] [Accepted: 03/15/2021] [Indexed: 01/01/2023]
Abstract
Interactions between natural selection and population dynamics are central to both evolutionary-ecology and biological responses to anthropogenic change. Natural selection is often thought to incur a demographic cost that, at least temporarily, reduces population growth. However, hard and soft selection clarify that the influence of natural selection on population dynamics depends on ecological context. Under hard selection, an individual's fitness is independent of the population's phenotypic composition, and substantial population declines can occur when phenotypes are mismatched with the environment. In contrast, under soft selection, an individual's fitness is influenced by its phenotype relative to other interacting conspecifics. Soft selection generally influences which, but not how many, individuals survive and reproduce, resulting in little effect on population growth. Despite these important differences, the distinction between hard and soft selection is rarely considered in ecology. Here, we review and synthesize literature on hard and soft selection, explore their ecological causes and implications and highlight their conservation relevance to climate change, inbreeding depression, outbreeding depression and harvest. Overall, these concepts emphasise that natural selection and evolution may often have negligible or counterintuitive effects on population growth-underappreciated outcomes that have major implications in a rapidly changing world.
Collapse
Affiliation(s)
- Donovan A Bell
- Wildlife Biology Program, W.A. Franke College of Forestry and Conservation, University of Montana, Missoula, MT, USA
| | | | - Zachary L Robinson
- Wildlife Biology Program, W.A. Franke College of Forestry and Conservation, University of Montana, Missoula, MT, USA
| | - Andrew R Whiteley
- Wildlife Biology Program, W.A. Franke College of Forestry and Conservation, University of Montana, Missoula, MT, USA
| | - Thomas E Reed
- School of Biological, Earth and Environmental Sciences, University College Cork, Cork, Ireland.,Environmental Research Institute, University College Cork, Lee Road, Cork, Ireland
| |
Collapse
|
12
|
Niemelä PT, Tiso S, Dingemanse NJ. Density-dependent individual variation in male attractiveness in a wild field cricket. Behav Ecol 2021. [DOI: 10.1093/beheco/arab009] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Abstract
Social environments modify a male’s ability to attract females and thus affect its fitness. Theory implies that an individual’s fitness should trade-off with its ability to cope with competition. Individuals are expected to solve this trade-off differently: some males should be more attractive at low but others instead at high density. This prediction has rarely been tested in the wild. We used an automated RFID-surveillance system to quantify for each hour of the day, over 30 days (i.e., almost the entire adult lifespan of our model organism), whether a male had attracted a female in its burrow. The data were collected across a range of naturally varying local densities in wild field crickets, Gryllus campestris. We also estimated whether the shape of the relationship between attractiveness and density was under selection. At the population level, attractiveness increased from low to intermediate density, suggesting an Allee effect. Attractiveness subsequently declined at higher densities, for example, because of detrimental effects of increased competition. Opposite to expectations, males that were more attractive under low densities were also more attractive under higher densities. However, the increase in attractiveness with density varied among males, suggesting that Allee effects were individual-specific. Finally, selection was not acting on density-dependent attractiveness but males that lived longer acquired more mating partners. Our study reveals that social environments shape attractiveness in wild male insects, and imply the occurrence of individual-specific Allee effect that may be evolvable.
Collapse
Affiliation(s)
- Petri T Niemelä
- Behavioural Ecology, Department of Biology, Ludwig-Maximilians University of Munich, Großhaderner Str. 2, Planegg-Martinsried, Germany
| | - Stefano Tiso
- Behavioural Ecology, Department of Biology, Ludwig-Maximilians University of Munich, Großhaderner Str. 2, Planegg-Martinsried, Germany
| | - Niels J Dingemanse
- Behavioural Ecology, Department of Biology, Ludwig-Maximilians University of Munich, Großhaderner Str. 2, Planegg-Martinsried, Germany
| |
Collapse
|
13
|
Sæther BE, Engen S, Gustafsson L, Grøtan V, Vriend SJG. Density-Dependent Adaptive Topography in a Small Passerine Bird, the Collared Flycatcher. Am Nat 2020; 197:93-110. [PMID: 33417521 DOI: 10.1086/711752] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
AbstractAdaptive topography is a central concept in evolutionary biology, describing how the mean fitness of a population changes with gene frequencies or mean phenotypes. We use expected population size as a quantity to be maximized by natural selection to show that selection on pairwise combinations of reproductive traits of collared flycatchers caused by fluctuations in population size generated an adaptive topography with distinct peaks often located at intermediate phenotypes. This occurred because r- and K-selection made phenotypes favored at small densities different from those with higher fitness at population sizes close to the carrying capacity K. Fitness decreased rapidly with a delay in the timing of egg laying, with a density-dependent effect especially occurring among early-laying females. The number of fledglings maximizing fitness was larger at small population sizes than when close to K. Finally, there was directional selection for large fledglings independent of population size. We suggest that these patterns can be explained by increased competition for some limiting resources or access to favorable nest sites at high population densities. Thus, r- and K-selection based on expected population size as an evolutionary maximization criterion may influence life-history evolution and constrain the selective responses to changes in the environment.
Collapse
|
14
|
Layton-Matthews K, Grøtan V, Hansen BB, Loonen MJJE, Fuglei E, Childs DZ. Environmental change reduces body condition, but not population growth, in a high-arctic herbivore. Ecol Lett 2020; 24:227-238. [PMID: 33184991 DOI: 10.1111/ele.13634] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2020] [Revised: 06/10/2020] [Accepted: 10/06/2020] [Indexed: 11/28/2022]
Abstract
Environmental change influences fitness-related traits and demographic rates, which in herbivores are often linked to resource-driven variation in body condition. Coupled body condition-demographic responses may therefore be important for herbivore population dynamics in fluctuating environments, such as the Arctic. We applied a transient Life-Table Response Experiment ('transient-LTRE') to demographic data from Svalbard barnacle geese (Branta leucopsis), to quantify their population-dynamic responses to changes in body mass. We partitioned contributions from direct and delayed demographic and body condition-mediated processes to variation in population growth. Declines in body condition (1980-2017), which positively affected reproduction and fledgling survival, had negligible consequences for population growth. Instead, population growth rates were largely reproduction-driven, in part through positive responses to rapidly advancing spring phenology. The virtual lack of body condition-mediated effects indicates that herbivore population dynamics may be more resilient to changing body condition than previously expected, with implications for their persistence under environmental change.
Collapse
Affiliation(s)
- Kate Layton-Matthews
- Centre for Biodiversity Dynamics, Department of Biology, Norwegian University of Science and Technology, Trondheim, Norway
| | - Vidar Grøtan
- Centre for Biodiversity Dynamics, Department of Biology, Norwegian University of Science and Technology, Trondheim, Norway
| | - Brage Bremset Hansen
- Centre for Biodiversity Dynamics, Department of Biology, Norwegian University of Science and Technology, Trondheim, Norway
| | | | - Eva Fuglei
- Norwegian Polar Institute, Tromsø, Norway
| | - Dylan Z Childs
- Department of Animal and Plant Sciences, University of Sheffield, Sheffield, UK
| |
Collapse
|
15
|
Leung C, Rescan M, Grulois D, Chevin LM. Reduced phenotypic plasticity evolves in less predictable environments. Ecol Lett 2020; 23:1664-1672. [PMID: 32869431 PMCID: PMC7754491 DOI: 10.1111/ele.13598] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2020] [Revised: 07/22/2020] [Accepted: 08/06/2020] [Indexed: 01/16/2023]
Abstract
Phenotypic plasticity is a prominent mechanism for coping with variable environments, and a key determinant of extinction risk. Evolutionary theory predicts that phenotypic plasticity should evolve to lower levels in environments that fluctuate less predictably, because they induce mismatches between plastic responses and selective pressures. However, this prediction is difficult to test in nature, where environmental predictability is not controlled. Here, we exposed 32 lines of the halotolerant microalga Dunaliella salina to ecologically realistic, randomly fluctuating salinity, with varying levels of predictability, for 500 generations. We found that morphological plasticity evolved to lower degrees in lines that experienced less predictable environments. Evolution of plasticity mostly concerned phases with slow population growth, rather than the exponential phase where microbes are typically phenotyped. This study underlines that long‐term experiments with complex patterns of environmental change are needed to test theories about population responses to altered environmental predictability, as currently observed under climate change.
Collapse
Affiliation(s)
- Christelle Leung
- CEFE, Université de Montpellier, CNRS, EPHE, IRD, Université Paul Valéry Montpellier 3, Montpellier, France
| | - Marie Rescan
- CEFE, Université de Montpellier, CNRS, EPHE, IRD, Université Paul Valéry Montpellier 3, Montpellier, France
| | - Daphné Grulois
- CEFE, Université de Montpellier, CNRS, EPHE, IRD, Université Paul Valéry Montpellier 3, Montpellier, France
| | - Luis-Miguel Chevin
- CEFE, Université de Montpellier, CNRS, EPHE, IRD, Université Paul Valéry Montpellier 3, Montpellier, France
| |
Collapse
|
16
|
Engen S, Wright J, Araya-Ajoy YG, Saether BE. Phenotypic evolution in stochastic environments: The contribution of frequency- and density-dependent selection. Evolution 2020; 74:1923-1941. [PMID: 32656772 DOI: 10.1111/evo.14058] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2019] [Revised: 06/24/2020] [Accepted: 07/02/2020] [Indexed: 02/06/2023]
Abstract
Understanding how environmental variation affects phenotypic evolution requires models based on ecologically realistic assumptions that include variation in population size and specific mechanisms by which environmental fluctuations affect selection. Here we generalize quantitative genetic theory for environmentally induced stochastic selection to include general forms of frequency- and density-dependent selection. We show how the relevant fitness measure under stochastic selection relates to Fisher's fundamental theorem of natural selection, and present a general class of models in which density regulation acts through total use of resources rather than just population size. In this model, there is a constant adaptive topography for expected evolution, and the function maximized in the long run is the expected factor restricting population growth. This allows us to generalize several previous results and to explain why apparently " K -selected" species with slow life histories often have low carrying capacities. Our joint analysis of density- and frequency-dependent selection reveals more clearly the relationship between population dynamics and phenotypic evolution, enabling a broader range of eco-evolutionary analyses of some of the most interesting problems in evolution in the face of environmental variation.
Collapse
Affiliation(s)
- Steinar Engen
- Department of Mathematical Sciences, Centre for Biodiversity Dynamics, Norwegian University of Science and Technology, Trondheim, N-7491, Norway
| | - Jonathan Wright
- Department of Biology, Centre for Biodiversity Dynamics, Norwegian University of Science and Technology, Trondheim, N-7491, Norway
| | - Yimen G Araya-Ajoy
- Department of Biology, Centre for Biodiversity Dynamics, Norwegian University of Science and Technology, Trondheim, N-7491, Norway
| | - Bernt-Erik Saether
- Department of Biology, Centre for Biodiversity Dynamics, Norwegian University of Science and Technology, Trondheim, N-7491, Norway
| |
Collapse
|
17
|
Kentie R, Clegg SM, Tuljapurkar S, Gaillard J, Coulson T. Life‐history strategy varies with the strength of competition in a food‐limited ungulate population. Ecol Lett 2020; 23:811-820. [DOI: 10.1111/ele.13470] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2019] [Revised: 11/04/2019] [Accepted: 01/13/2020] [Indexed: 01/22/2023]
Affiliation(s)
- Rosemarie Kentie
- Department of Zoology University of Oxford Oxford OX1 3PS UK
- Department of Coastal Systems NIOZ Royal Netherlands Institute for Sea Research Utrecht University P.O. Box 59 1790 AB Den Burg, Texel the Netherlands
| | - Sonya M. Clegg
- Department of Zoology University of Oxford Oxford OX1 3PS UK
- Department of Zoology Edward Grey Institute University of Oxford OX1 3PS UK
| | | | - Jean‐Michel Gaillard
- UMR 5558 Biometrie et Biologie Evolutive, Batiment G. Mendel Universite Claude Bernard Lyon 1 43 boulevard du 11 novembre 1918 69622 Villeurbanne Cedex France
| | - Tim Coulson
- Department of Zoology University of Oxford Oxford OX1 3PS UK
| |
Collapse
|
18
|
Wright J, Solbu EB, Engen S. Contrasting patterns of density-dependent selection at different life stages can create more than one fast-slow axis of life-history variation. Ecol Evol 2020; 10:3068-3078. [PMID: 32211177 PMCID: PMC7083673 DOI: 10.1002/ece3.6122] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2020] [Revised: 01/28/2020] [Accepted: 02/04/2020] [Indexed: 11/24/2022] Open
Abstract
There has been much recent research interest in the existence of a major axis of life-history variation along a fast-slow continuum within almost all major taxonomic groups. Eco-evolutionary models of density-dependent selection provide a general explanation for such observations of interspecific variation in the "pace of life." One issue, however, is that some large-bodied long-lived "slow" species (e.g., trees and large fish) often show an explosive "fast" type of reproduction with many small offspring, and species with "fast" adult life stages can have comparatively "slow" offspring life stages (e.g., mayflies). We attempt to explain such life-history evolution using the same eco-evolutionary modeling approach but with two life stages, separating adult reproductive strategies from offspring survival strategies. When the population dynamics in the two life stages are closely linked and affect each other, density-dependent selection occurs in parallel on both reproduction and survival, producing the usual one-dimensional fast-slow continuum (e.g., houseflies to blue whales). However, strong density dependence at either the adult reproduction or offspring survival life stage creates quasi-independent population dynamics, allowing fast-type reproduction alongside slow-type survival (e.g., trees and large fish), or the perhaps rarer slow-type reproduction alongside fast-type survival (e.g., mayflies-short-lived adults producing few long-lived offspring). Therefore, most types of species life histories in nature can potentially be explained via the eco-evolutionary consequences of density-dependent selection given the possible separation of demographic effects at different life stages.
Collapse
Affiliation(s)
- Jonathan Wright
- Department of BiologyCentre for Biodiversity DynamicsNorwegian University of Science and Technology (NTNU)TrondheimNorway
| | - Erik Blystad Solbu
- Department of BiologyCentre for Biodiversity DynamicsNorwegian University of Science and Technology (NTNU)TrondheimNorway
- Department of Landscape and BiodiversityNorwegian Institute of Bioeconomy Research (NIBIO)TrondheimNorway
| | - Steinar Engen
- Department of MathematicsCentre for Biodiversity DynamicsNorwegian University of Science and Technology (NTNU)TrondheimNorway
| |
Collapse
|
19
|
From nest site lottery to host lottery: continuous model of growth suppression driven by the availability of nest sites for newborns or hosts for parasites and its impact on the selection of life history strategies. Theory Biosci 2020; 139:171-188. [DOI: 10.1007/s12064-019-00307-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2019] [Accepted: 12/04/2019] [Indexed: 10/25/2022]
|
20
|
Haaland TR, Wright J, Ratikainen II. Bet-hedging across generations can affect the evolution of variance-sensitive strategies within generations. Proc Biol Sci 2019; 286:20192070. [PMID: 31771482 PMCID: PMC6939271 DOI: 10.1098/rspb.2019.2070] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
In order to understand how organisms cope with ongoing changes in environmental variability, it is necessary to consider multiple adaptations to environmental uncertainty on different time scales. Conservative bet-hedging (CBH) represents a long-term genotype-level strategy maximizing lineage geometric mean fitness in stochastic environments by decreasing individual fitness variance, despite also lowering arithmetic mean fitness. Meanwhile, variance-prone (aka risk-prone) strategies produce greater variance in short-term payoffs, because this increases expected arithmetic mean fitness if the relationship between payoffs and fitness is accelerating. Using evolutionary simulation models, we investigate whether selection for such variance-prone strategies is counteracted by selection for bet-hedging that works to adaptively reduce fitness variance. In our model, variance proneness evolves in fine-grained environments (lower correlations among individuals in energetic state and/or payoffs), and with larger numbers of independent decision events over which resources accumulate prior to selection. Conversely, multiplicative fitness accumulation, caused by coarser environmental grain and fewer decision events selection, favours CBH via greater variance aversion. We discuss examples of variance-sensitive strategies in optimal foraging, migration, life histories and cooperative breeding using this bet-hedging perspective. By linking disparate fields of research studying adaptations to variable environments, we should be better able to understand effects of human-induced rapid environmental change.
Collapse
Affiliation(s)
- Thomas R Haaland
- Centre for Biodiversity Dynamics, Department of Biology, Norwegian University of Science and Technology, Høgskoleringen 5, 7491 Trondheim, Norway
| | - Jonathan Wright
- Centre for Biodiversity Dynamics, Department of Biology, Norwegian University of Science and Technology, Høgskoleringen 5, 7491 Trondheim, Norway
| | - Irja I Ratikainen
- Centre for Biodiversity Dynamics, Department of Biology, Norwegian University of Science and Technology, Høgskoleringen 5, 7491 Trondheim, Norway
| |
Collapse
|
21
|
Hunter DC, Pemberton JM, Pilkington JG, Morrissey MB. Quantification and decomposition of environment-selection relationships. Evolution 2019. [PMID: 29518255 DOI: 10.1111/evo.13461] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
In nature, selection varies across time in most environments, but we lack an understanding of how specific ecological changes drive this variation. Ecological factors can alter phenotypic selection coefficients through changes in trait distributions or individual mean fitness, even when the trait-absolute fitness relationship remains constant. We apply and extend a regression-based approach in a population of Soay sheep (Ovis aries) and suggest metrics of environment-selection relationships that can be compared across studies. We then introduce a novel method that constructs an environmentally structured fitness function. This allows calculation of full (as in existing approaches) and partial (acting separately through the absolute fitness function slope, mean fitness, and phenotype distribution) sensitivities of selection to an ecological variable. Both approaches show positive overall effects of density on viability selection of lamb mass. However, the second approach demonstrates that this relationship is largely driven by effects of density on mean fitness, rather than on the trait-fitness relationship slope. If such mechanisms of environmental dependence of selection are common, this could have important implications regarding the frequency of fluctuating selection, and how previous selection inferences relate to longer term evolutionary dynamics.
Collapse
Affiliation(s)
- Darren C Hunter
- School of Biology, University of St Andrews, St Andrews, Fife KY16 9TH, United Kingdom
| | - Josephine M Pemberton
- Institute of Evolutionary Biology, School of Biological Sciences, University of Edinburgh, Edinburgh EH9 3FL, United Kingdom
| | - Jill G Pilkington
- Institute of Evolutionary Biology, School of Biological Sciences, University of Edinburgh, Edinburgh EH9 3FL, United Kingdom
| | - Michael B Morrissey
- School of Biology, University of St Andrews, St Andrews, Fife KY16 9TH, United Kingdom
| |
Collapse
|
22
|
Vrtílek M, Žák J, Polačik M, Blažek R, Reichard M. Rapid growth and large body size in annual fish populations are compromised by density-dependent regulation. JOURNAL OF FISH BIOLOGY 2019; 95:673-678. [PMID: 31102276 DOI: 10.1111/jfb.14052] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/16/2019] [Accepted: 05/17/2019] [Indexed: 06/09/2023]
Abstract
We tested the effect of population density on maximum body size in three sympatric species of annual killifishes Nothobranchius spp. from African ephemeral pools. We found a clear negative effect of population density on body size, limiting their capacity for extremely fast development and rapid growth. This suggests that density-dependent population regulation and the ephemeral character of their habitat impose contrasting selective pressures on the life history of annual killifishes.
Collapse
Affiliation(s)
- Milan Vrtílek
- The Czech Academy of Sciences, Institute of Vertebrate Biology, Brno, Czech Republic
| | - Jakub Žák
- The Czech Academy of Sciences, Institute of Vertebrate Biology, Brno, Czech Republic
- Department of Zoology, Faculty of Sciences, Charles University, Praha, Czech Republic
| | - Matej Polačik
- The Czech Academy of Sciences, Institute of Vertebrate Biology, Brno, Czech Republic
| | - Radim Blažek
- The Czech Academy of Sciences, Institute of Vertebrate Biology, Brno, Czech Republic
| | - Martin Reichard
- The Czech Academy of Sciences, Institute of Vertebrate Biology, Brno, Czech Republic
| |
Collapse
|
23
|
Engen S, Sæther BE. Ecological dynamics and large scale phenotypic differentiation in density-dependent populations. Theor Popul Biol 2019; 127:133-143. [DOI: 10.1016/j.tpb.2019.04.005] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2018] [Revised: 04/04/2019] [Accepted: 04/08/2019] [Indexed: 11/25/2022]
|
24
|
Ramakers JJC, Gienapp P, Visser ME. Phenological mismatch drives selection on elevation, but not on slope, of breeding time plasticity in a wild songbird. Evolution 2019; 73:175-187. [PMID: 30556587 PMCID: PMC6519030 DOI: 10.1111/evo.13660] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2018] [Accepted: 11/16/2018] [Indexed: 12/18/2022]
Abstract
Phenotypic plasticity is an important mechanism for populations to respond to fluctuating environments, yet may be insufficient to adapt to a directionally changing environment. To study whether plasticity can evolve under current climate change, we quantified selection and genetic variation in both the elevation (RNE ) and slope (RNS ) of the breeding time reaction norm in a long-term (1973-2016) study population of great tits (Parus major). The optimal RNE (the caterpillar biomass peak date regressed against the temperature used as cue by great tits) changed over time, whereas the optimal RNS did not. Concordantly, we found strong directional selection on RNE , but not RNS , of egg-laying date in the second third of the study period; this selection subsequently waned, potentially due to increased between-year variability in optimal laying dates. We found individual and additive genetic variation in RNE but, contrary to previous studies on our population, not in RNS . The predicted and observed evolutionary change in RNE was, however, marginal, due to low heritability and the sex limitation of laying date. We conclude that adaptation to climate change can only occur via micro-evolution of RNE, but this will necessarily be slow and potentially hampered by increased variability in phenotypic optima.
Collapse
Affiliation(s)
- Jip J. C. Ramakers
- Department of Animal EcologyNetherlands Institute of Ecology (NIOO‐KNAW)6700AB WageningenThe Netherlands
| | - Phillip Gienapp
- Department of Animal EcologyNetherlands Institute of Ecology (NIOO‐KNAW)6700AB WageningenThe Netherlands
| | - Marcel E. Visser
- Department of Animal EcologyNetherlands Institute of Ecology (NIOO‐KNAW)6700AB WageningenThe Netherlands
| |
Collapse
|
25
|
Wright J, Bolstad GH, Araya-Ajoy YG, Dingemanse NJ. Life-history evolution under fluctuating density-dependent selection and the adaptive alignment of pace-of-life syndromes. Biol Rev Camb Philos Soc 2019; 94:230-247. [PMID: 30019372 DOI: 10.1111/brv.12451] [Citation(s) in RCA: 59] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2017] [Revised: 06/16/2018] [Accepted: 06/22/2018] [Indexed: 01/24/2023]
Abstract
We present a novel perspective on life-history evolution that combines recent theoretical advances in fluctuating density-dependent selection with the notion of pace-of-life syndromes (POLSs) in behavioural ecology. These ideas posit phenotypic co-variation in life-history, physiological, morphological and behavioural traits as a continuum from the highly fecund, short-lived, bold, aggressive and highly dispersive 'fast' types at one end of the POLS to the less fecund, long-lived, cautious, shy, plastic and socially responsive 'slow' types at the other. We propose that such variation in life histories and the associated individual differences in behaviour can be explained through their eco-evolutionary dynamics with population density - a single and ubiquitous selective factor that is present in all biological systems. Contrasting regimes of environmental stochasticity are expected to affect population density in time and space and create differing patterns of fluctuating density-dependent selection, which generates variation in fast versus slow life histories within and among populations. We therefore predict that a major axis of phenotypic co-variation in life-history, physiological, morphological and behavioural traits (i.e. the POLS) should align with these stochastic fluctuations in the multivariate fitness landscape created by variation in density-dependent selection. Phenotypic plasticity and/or genetic (co-)variation oriented along this major POLS axis are thus expected to facilitate rapid and adaptively integrated changes in various aspects of life histories within and among populations and/or species. The fluctuating density-dependent selection POLS framework presented here therefore provides a series of clear testable predictions, the investigation of which should further our fundamental understanding of life-history evolution and thus our ability to predict natural population dynamics.
Collapse
Affiliation(s)
- Jonathan Wright
- Department of Biology, Centre for Biodiversity Dynamics (CBD), Norwegian University of Science and Technology (NTNU), N-7491 Trondheim, Norway
| | - Geir H Bolstad
- Norwegian Institute for Nature Research (NINA), N-7485 Trondheim, Norway
| | - Yimen G Araya-Ajoy
- Department of Biology, Centre for Biodiversity Dynamics (CBD), Norwegian University of Science and Technology (NTNU), N-7491 Trondheim, Norway
| | - Niels J Dingemanse
- Behavioural Ecology, Department of Biology, Ludwig Maximilian University of Munich (LMU), 82152 Planegg-Martinsried, Germany
| |
Collapse
|
26
|
Gamelon M, Tufto J, Nilsson ALK, Jerstad K, Røstad OW, Stenseth NC, Saether BE. Environmental drivers of varying selective optima in a small passerine: A multivariate, multiepisodic approach. Evolution 2018; 72:2325-2342. [DOI: 10.1111/evo.13610] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2018] [Accepted: 09/14/2018] [Indexed: 01/17/2023]
Affiliation(s)
- Marlène Gamelon
- Centre for Biodiversity Dynamics CBD, Department of Biology; Norwegian University of Science and Technology; 7491 Trondheim Norway
| | - Jarle Tufto
- Centre for Biodiversity Dynamics CBD, Department of Mathematical Sciences; Norwegian University of Science and Technology; 7491 Trondheim Norway
| | - Anna L. K. Nilsson
- Centre for Ecological and Evolutionary Synthesis CEES, Department of Biosciences; University of Oslo; 0316 Oslo Norway
| | - Kurt Jerstad
- Jerstad Viltforvaltning; Aurebekksveien 61 4516 Mandal Norway
| | - Ole W. Røstad
- Faculty of Environmental Sciences and Natural Resource Management; Norwegian University of Life Sciences; 1432 Ås Norway
| | - Nils C. Stenseth
- Centre for Biodiversity Dynamics CBD, Department of Biology; Norwegian University of Science and Technology; 7491 Trondheim Norway
- Centre for Ecological and Evolutionary Synthesis CEES, Department of Biosciences; University of Oslo; 0316 Oslo Norway
| | - Bernt-Erik Saether
- Centre for Biodiversity Dynamics CBD, Department of Biology; Norwegian University of Science and Technology; 7491 Trondheim Norway
| |
Collapse
|
27
|
Evolution of stochastic demography with life history tradeoffs in density-dependent age-structured populations. Proc Natl Acad Sci U S A 2017; 114:11582-11590. [PMID: 29078347 DOI: 10.1073/pnas.1710679114] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
We analyze the stochastic demography and evolution of a density-dependent age- (or stage-) structured population in a fluctuating environment. A positive linear combination of age classes (e.g., weighted by body mass) is assumed to act as the single variable of population size, [Formula: see text], exerting density dependence on age-specific vital rates through an increasing function of population size. The environment fluctuates in a stationary distribution with no autocorrelation. We show by analysis and simulation of age structure, under assumptions often met by vertebrate populations, that the stochastic dynamics of population size can be accurately approximated by a univariate model governed by three key demographic parameters: the intrinsic rate of increase and carrying capacity in the average environment, [Formula: see text] and [Formula: see text], and the environmental variance in population growth rate, [Formula: see text] Allowing these parameters to be genetically variable and to evolve, but assuming that a fourth parameter, [Formula: see text], measuring the nonlinearity of density dependence, remains constant, the expected evolution maximizes [Formula: see text] This shows that the magnitude of environmental stochasticity governs the classical trade-off between selection for higher [Formula: see text] versus higher [Formula: see text] However, selection also acts to decrease [Formula: see text], so the simple life-history trade-off between [Formula: see text]- and [Formula: see text]-selection may be obscured by additional trade-offs between them and [Formula: see text] Under the classical logistic model of population growth with linear density dependence ([Formula: see text]), life-history evolution in a fluctuating environment tends to maximize the average population size.
Collapse
|
28
|
Engen S, Sæther BE. Extinction Risk and Lack of Evolutionary Rescue under Resource Depletion or Area Reduction. Am Nat 2017; 190:73-82. [DOI: 10.1086/692011] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
29
|
Shen SF, Emlen ST, Koenig WD, Rubenstein DR. The ecology of cooperative breeding behaviour. Ecol Lett 2017; 20:708-720. [PMID: 28480586 DOI: 10.1111/ele.12774] [Citation(s) in RCA: 85] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2017] [Revised: 03/10/2017] [Accepted: 03/28/2017] [Indexed: 01/11/2023]
Abstract
Ecology is a fundamental driving force for the evolutionary transition from solitary living to breeding cooperatively in groups. However, the fact that both benign and harsh, as well as stable and fluctuating, environments can favour the evolution of cooperative breeding behaviour constitutes a paradox of environmental quality and sociality. Here, we propose a new model - the dual benefits framework - for resolving this paradox. Our framework distinguishes between two categories of grouping benefits - resource defence benefits that derive from group-defended critical resources and collective action benefits that result from social cooperation among group members - and uses insider-outsider conflict theory to simultaneously consider the interests of current group members (insiders) and potential joiners (outsiders) in determining optimal group size. We argue that the different grouping benefits realised from resource defence and collective action profoundly affect insider-outsider conflict resolution, resulting in predictable differences in the per capita productivity, stable group size, kin structure and stability of the social group. We also suggest that different types of environmental variation (spatial vs. temporal) select for societies that form because of the different grouping benefits, thus helping to resolve the paradox of why cooperative breeding evolves in such different types of environments.
Collapse
Affiliation(s)
- Sheng-Feng Shen
- Biodiversity Research Center, Academia Sinica, Taipei, 115, Taiwan
| | - Stephen T Emlen
- Department of Neurobiology and Behavior, Cornell University, Ithaca, NY, 14853, USA
| | - Walter D Koenig
- Department of Neurobiology and Behavior, Cornell University, Ithaca, NY, 14853, USA.,Lab of Ornithology, Cornell University, Ithaca, NY, 14850, USA
| | - Dustin R Rubenstein
- Department of Ecology, Evolution and Environmental Biology, Columbia University, New York, NY, 10027, USA.,Center for Integrative Animal Behavior, Columbia University, New York, NY, 10027, USA
| |
Collapse
|
30
|
San-Jose LM, Peñalver-Alcázar M, Huyghe K, Breedveld MC, Fitze PS. Inter-class competition in stage-structured populations: effects of adult density on life-history traits of adult and juvenile common lizards. Oecologia 2016; 182:1063-1074. [PMID: 27655331 DOI: 10.1007/s00442-016-3738-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2016] [Accepted: 09/16/2016] [Indexed: 11/26/2022]
Abstract
Ecological and evolutionary processes in natural populations are largely influenced by the population's stage-structure. Commonly, different classes have different competitive abilities, e.g., due to differences in body size, suggesting that inter-class competition may be important and largely asymmetric. However, experimental evidence states that inter-class competition, which is important, is rare and restricted to marine fish. Here, we manipulated the adult density in six semi-natural populations of the European common lizard, Zootoca vivipara, while holding juvenile density constant. Adult density affected juveniles, but not adults, in line with inter-class competition. High adult density led to lower juvenile survival and growth before hibernation. In contrast, juvenile survival after hibernation was higher in populations with high adult density, pointing to relaxed inter-class competition. As a result, annual survival was not affected by adult density, showing that differences in pre- and post-hibernation survival balanced each other out. The intensity of inter-class competition affected reproduction, performance, and body size in juveniles. Path analyses unravelled direct treatment effects on early growth (pre-hibernation) and no direct treatment effects on the parameters measured after hibernation. This points to allometry of treatment-induced differences in early growth, and it suggests that inter-class competition mainly affects the early growth of the competitively inferior class and thereby their future performance and reproduction. These results are in contrast with previous findings and, together with results in marine fish, suggest that the strength and direction of density dependence may depend on the degree of inter-class competition, and thus on the availability of resources used by the competing classes.
Collapse
Affiliation(s)
- Luis M San-Jose
- Department of Ecology and Evolution, University of Lausanne, Le Biophore, 1015, Lausanne, Switzerland.
| | - Miguel Peñalver-Alcázar
- Department of Biogeography and Global Change, Museo Nacional de Ciencias Naturales (MNCN, CSIC), José Gutiérrez Abascal 2, 28006, Madrid, Spain
| | - Katleen Huyghe
- Department of Biology, University of Antwerp, Universiteitsplein 1, 2610, Antwerp, Belgium
| | - Merel C Breedveld
- Department of Biodiversity and Evolutionary Biology, Museo Nacional de Ciencias Naturales (MNCN, CSIC), José Gutiérrez Abascal 2, 28006, Madrid, Spain
- Instituto Pirenaico de Ecología (MNCN, CSIC), Ntra. Señora de la Victoria, 22700, Jaca, Spain
| | - Patrick S Fitze
- Department of Ecology and Evolution, University of Lausanne, Le Biophore, 1015, Lausanne, Switzerland
- Department of Biodiversity and Evolutionary Biology, Museo Nacional de Ciencias Naturales (MNCN, CSIC), José Gutiérrez Abascal 2, 28006, Madrid, Spain
- Instituto Pirenaico de Ecología (MNCN, CSIC), Ntra. Señora de la Victoria, 22700, Jaca, Spain
- Fundación Araid, Edificio CEEI Aragón, María de Luna 11, 50018, Zaragoza, Spain
| |
Collapse
|