1
|
Jellison BM, Elsmore KE, Miller JT, Ng G, Ninokawa AT, Hill TM, Gaylord B. Low-pH seawater alters indirect interactions in rocky-shore tidepools. Ecol Evol 2022; 12:e8607. [PMID: 35169457 PMCID: PMC8840877 DOI: 10.1002/ece3.8607] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2021] [Revised: 01/11/2022] [Accepted: 01/14/2022] [Indexed: 11/24/2022] Open
Abstract
Ocean acidification is expected to degrade marine ecosystems, yet most studies focus on organismal-level impacts rather than ecological perturbations. Field studies are especially sparse, particularly ones examining shifts in direct and indirect consumer interactions. Here we address such connections within tidepool communities of rocky shores, focusing on a three-level food web involving the keystone sea star predator, Pisaster ochraceus, a common herbivorous snail, Tegula funebralis, and a macroalgal basal resource, Macrocystis pyrifera. We demonstrate that during nighttime low tides, experimentally manipulated declines in seawater pH suppress the anti-predator behavior of snails, bolstering their grazing, and diminishing the top-down influence of predators on basal resources. This attenuation of top-down control is absent in pools maintained experimentally at higher pH. These findings suggest that as ocean acidification proceeds, shifts of behaviorally mediated links in food webs could change how cascading effects of predators manifest within marine communities.
Collapse
Affiliation(s)
- Brittany M. Jellison
- Department of Biological SciencesUniversity of New HampshireDurhamNew HampshireUSA
| | - Kristen E. Elsmore
- Bodega Marine LaboratoryUniversity of California DavisBodega BayCaliforniaUSA
| | - Jeffrey T. Miller
- Minnesota Supercomputing InstituteUniversity of MinnesotaMinneapolisMinnesotaUSA
| | - Gabriel Ng
- Smithsonian Environmental Research CenterEdgewaterMarylandUSA
- Marine Invasions LaboratoryEstuary Ocean Science CenterTiburonCaliforniaUSA
| | - Aaron T. Ninokawa
- Bodega Marine LaboratoryUniversity of California DavisBodega BayCaliforniaUSA
| | - Tessa M. Hill
- Bodega Marine LaboratoryUniversity of California DavisBodega BayCaliforniaUSA
- Department of Earth and Planetary SciencesUniversity of California DavisDavisCaliforniaUSA
| | - Brian Gaylord
- Bodega Marine LaboratoryUniversity of California DavisBodega BayCaliforniaUSA
- Department of Evolution and EcologyUniversity of California DavisDavisCaliforniaUSA
| |
Collapse
|
2
|
Peña V, Harvey BP, Agostini S, Porzio L, Milazzo M, Horta P, Le Gall L, Hall-Spencer JM. Major loss of coralline algal diversity in response to ocean acidification. GLOBAL CHANGE BIOLOGY 2021; 27:4785-4798. [PMID: 34268846 DOI: 10.1111/gcb.15757] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Revised: 06/17/2021] [Accepted: 06/17/2021] [Indexed: 06/13/2023]
Abstract
Calcified coralline algae are ecologically important in rocky habitats in the marine photic zone worldwide and there is growing concern that ocean acidification will severely impact them. Laboratory studies of these algae in simulated ocean acidification conditions have revealed wide variability in growth, photosynthesis and calcification responses, making it difficult to assess their future biodiversity, abundance and contribution to ecosystem function. Here, we apply molecular systematic tools to assess the impact of natural gradients in seawater carbonate chemistry on the biodiversity of coralline algae in the Mediterranean and the NW Pacific, link this to their evolutionary history and evaluate their potential future biodiversity and abundance. We found a decrease in the taxonomic diversity of coralline algae with increasing acidification with more than half of the species lost in high pCO2 conditions. Sporolithales is the oldest order (Lower Cretaceous) and diversified when ocean chemistry favoured low Mg calcite deposition; it is less diverse today and was the most sensitive to ocean acidification. Corallinales were also reduced in cover and diversity but several species survived at high pCO2 ; it is the most recent order of coralline algae and originated when ocean chemistry favoured aragonite and high Mg calcite deposition. The sharp decline in cover and thickness of coralline algal carbonate deposits at high pCO2 highlighted their lower fitness in response to ocean acidification. Reductions in CO2 emissions are needed to limit the risk of losing coralline algal diversity.
Collapse
Affiliation(s)
- Viviana Peña
- BioCost Research Group, Facultad de Ciencias, Centro de Investigaciones Científicas Avanzadas (CICA), Universidade da Coruña, A Coruña, Spain
- Institut de Systématique, Évolution, Biodiversité (ISYEB), Muséum national d'Histoire naturelle, CNRS, Sorbonne Université, EPHE, Université des Antilles, Paris, France
| | - Ben P Harvey
- Shimoda Marine Research Center, University of Tsukuba, Shizuoka, Japan
| | - Sylvain Agostini
- Shimoda Marine Research Center, University of Tsukuba, Shizuoka, Japan
| | - Lucia Porzio
- Shimoda Marine Research Center, University of Tsukuba, Shizuoka, Japan
| | - Marco Milazzo
- Department of Earth and Marine Sciences (DiSTeM), University of Palermo, Palermo, Italy
| | - Paulo Horta
- Laboratory of Phycology, Department of Botany, Center for Biological Sciences, Federal University of Santa Catarina, Florianópolis, Santa Catarina, Brazil
| | - Line Le Gall
- Institut de Systématique, Évolution, Biodiversité (ISYEB), Muséum national d'Histoire naturelle, CNRS, Sorbonne Université, EPHE, Université des Antilles, Paris, France
| | - Jason M Hall-Spencer
- Shimoda Marine Research Center, University of Tsukuba, Shizuoka, Japan
- School of Biological and Marine Sciences, University of Plymouth, Plymouth, UK
| |
Collapse
|
3
|
McCoy SJ, Santillán-Sarmiento A, Brown MT, Widdicombe S, Wheeler GL. Photosynthetic Responses of Turf-forming Red Macroalgae to High CO 2 Conditions. JOURNAL OF PHYCOLOGY 2020; 56:85-96. [PMID: 31553063 DOI: 10.1111/jpy.12922] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/12/2019] [Accepted: 08/18/2019] [Indexed: 06/10/2023]
Abstract
Seaweeds are important components of near-shore ecosystems as primary producers, foundation species, and biogeochemical engineers. Seaweed communities are likely to alter under predicted climate change scenarios. We tested the physiological responses of three perennial, turf-building, intertidal rhodophytes, Mastocarpus stellatus, Osmundea pinnatifida, and the calcified Ellisolandia elongata, to elevated pCO2 over 6 weeks. Responses varied between these three species. E. elongata was strongly affected by high pCO2 , whereas non-calcified species were not. Elevated pCO2 did not induce consistent responses of photosynthesis and respiration across these three species. While baseline photophysiology differed significantly between species, we found few clear effects of elevated pCO2 on this aspect of macroalgal physiology. We found effects of within-species variation in elevated pCO2 response in M. stellatus, but not in the other species. Overall, our data confirm the sensitivity of calcified macroalgae to elevated pCO2 , but we found no evidence suggesting that elevated pCO2 conditions will have a strong positive or negative impact on photosynthetic parameters in non-calcified macroalgae.
Collapse
Affiliation(s)
- Sophie J McCoy
- Department of Biological Science, Florida State University, 319 Stadium Drive, Tallahassee, Florida, 32306-4295, USA
- Plymouth Marine Laboratory, Prospect Place, Plymouth, Devon, PL1 3DH, UK
| | - Alex Santillán-Sarmiento
- School of Biological and Marine Sciences, University of Plymouth, 4th Floor Davy Building, Drake Circus, Plymouth, PL4 8AA, UK
- Department of Integrative Marine Ecology, Stazione Zoologica Anton Dohrn, Villa Comunale 1, 80121, Napoli, Italy
- Faculty of Engineering, National University of Chimborazo, Av. Antonio José de Sucre Km 1 1/2 via Guano, EC 060108, Riobamba, Ecuador
| | - Murray T Brown
- School of Biological and Marine Sciences, University of Plymouth, 4th Floor Davy Building, Drake Circus, Plymouth, PL4 8AA, UK
| | - Stephen Widdicombe
- Plymouth Marine Laboratory, Prospect Place, Plymouth, Devon, PL1 3DH, UK
| | - Glen L Wheeler
- Marine Biological Association of the UK, Citadel Hill, Plymouth, PL1 2PB, UK
| |
Collapse
|
4
|
McCoy SJ, Kamenos NA. Coralline algal skeletal mineralogy affects grazer impacts. GLOBAL CHANGE BIOLOGY 2018; 24:4775-4783. [PMID: 30030870 DOI: 10.1111/gcb.14370] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/19/2018] [Revised: 05/14/2018] [Accepted: 06/12/2018] [Indexed: 06/08/2023]
Abstract
In macroalgal-dominated systems, herbivory is a major driver in controlling ecosystem structure. However, the role of altered plant-herbivore interactions and effects of changes to trophic control under global change are poorly understood. This is because both macroalgae and grazers themselves may be affected by global change, making changes in plant-herbivore interactions hard to predict. Coralline algae lay down a calcium carbonate skeleton, which serves as protection from grazing and is preserved in archival samples. Here, we compare grazing damage and intensity to coralline algae in situ over 4 decades characterized by changing seawater acidity. While grazing intensity, herbivore abundance and identity remained constant over time, grazing wound width increased together with Mg content of the skeleton and variability in its mineral organization. In one species, decreases in skeletal organization were found concurrent with deeper skeletal damage by grazers over time since the 1980s. Thus, in a future characterized by acidification, we suggest coralline algae may be more prone to grazing damage, mediated by effects of variability between individuals and species.
Collapse
Affiliation(s)
- Sophie J McCoy
- Department of Biological Science, Florida State University, Tallahassee, Florida
| | - Nicholas A Kamenos
- School of Geographical and Earth Science, University of Glasgow, Glasgow, UK
| |
Collapse
|
5
|
Sordo L, Santos R, Barrote I, Silva J. High CO 2 decreases the long-term resilience of the free-living coralline algae Phymatolithon lusitanicum. Ecol Evol 2018; 8:4781-4792. [PMID: 29876057 PMCID: PMC5980507 DOI: 10.1002/ece3.4020] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2017] [Revised: 02/04/2018] [Accepted: 02/25/2018] [Indexed: 01/10/2023] Open
Abstract
Mäerl/rhodolith beds are protected habitats that may be affected by ocean acidification (OA), but it is still unclear how the availability of CO 2 will affect the metabolism of these organisms. Some of the inconsistencies found among OA experimental studies may be related to experimental exposure time and synergetic effects with other stressors. Here, we investigated the long-term (up to 20 months) effects of OA on the production and calcification of the most common mäerl species of southern Portugal, Phymatolithon lusitanicum. Both the photosynthetic and calcification rates increased with CO 2 after the first 11 months of the experiment, whereas respiration slightly decreased with CO 2. After 20 months, the pattern was reversed. Acidified algae showed lower photosynthetic and calcification rates, as well as lower accumulated growth than control algae, suggesting that a metabolic threshold was exceeded. Our results indicate that long-term exposure to high CO 2 will decrease the resilience of Phymatolithon lusitanicum. Our results also show that shallow communities of these rhodoliths may be particularly at risk, while deeper rhodolith beds may become ocean acidification refuges for this biological community.
Collapse
Affiliation(s)
- Laura Sordo
- Marine Plant Ecology Research GroupCentre of Marine Sciences (CCMAR)University of AlgarveFaroPortugal
| | - Rui Santos
- Marine Plant Ecology Research GroupCentre of Marine Sciences (CCMAR)University of AlgarveFaroPortugal
| | - Isabel Barrote
- Marine Plant Ecology Research GroupCentre of Marine Sciences (CCMAR)University of AlgarveFaroPortugal
| | - João Silva
- Marine Plant Ecology Research GroupCentre of Marine Sciences (CCMAR)University of AlgarveFaroPortugal
| |
Collapse
|
6
|
Kamenos NA, Perna G, Gambi MC, Micheli F, Kroeker KJ. Coralline algae in a naturally acidified ecosystem persist by maintaining control of skeletal mineralogy and size. Proc Biol Sci 2017; 283:rspb.2016.1159. [PMID: 27733544 PMCID: PMC5069505 DOI: 10.1098/rspb.2016.1159] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2016] [Accepted: 09/19/2016] [Indexed: 12/31/2022] Open
Abstract
To understand the effects of ocean acidification (OA) on marine calcifiers, the trade-offs among different sublethal responses within individual species and the emergent effects of these trade-offs must be determined in an ecosystem setting. Crustose coralline algae (CCA) provide a model to test the ecological consequences of such sublethal effects as they are important in ecosystem functioning, service provision, carbon cycling and use dissolved inorganic carbon to calcify and photosynthesize. Settlement tiles were placed in ambient pH, low pH and extremely low pH conditions for 14 months at a natural CO2 vent. The size, magnesium (Mg) content and molecular-scale skeletal disorder of CCA patches were assessed at 3.5, 6.5 and 14 months from tile deployment. Despite reductions in their abundance in low pH, the largest CCA from ambient and low pH zones were of similar sizes and had similar Mg content and skeletal disorder. This suggests that the most resilient CCA in low pH did not trade-off skeletal structure to maintain growth. CCA that settled in the extremely low pH, however, were significantly smaller and exhibited altered skeletal mineralogy (high Mg calcite to gypsum (hydrated calcium sulfate)), although at present it is unclear if these mineralogical changes offered any fitness benefits in extreme low pH. This field assessment of biological effects of OA provides endpoint information needed to generate an ecosystem relevant understanding of calcifying system persistence.
Collapse
Affiliation(s)
- N A Kamenos
- School of Geographical and Earth Sciences, University of Glasgow, Glasgow G12 8QQ, UK
| | - G Perna
- School of Geographical and Earth Sciences, University of Glasgow, Glasgow G12 8QQ, UK
| | - M C Gambi
- Department of Integrative Marine Ecology, Stazione Zoologica Anton Dohrn, Villa Dohrn-Benthic Ecology Center, Villa Dohrn, Punta San Pietro 80077 Ischia, Naples, Italy
| | - F Micheli
- Department of Biology, Stanford University, Hopkins Marine Station, Pacific Grove, CA 93950, USA
| | - K J Kroeker
- Ecology and Evolutionary Biology, University of California Santa Cruz, CA 95064, USA
| |
Collapse
|