1
|
Alzate A, Hagen O. Dispersal-diversity feedbacks and their consequences for macroecological patterns. Philos Trans R Soc Lond B Biol Sci 2024; 379:20230131. [PMID: 38913062 PMCID: PMC11495398 DOI: 10.1098/rstb.2023.0131] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Revised: 03/26/2024] [Accepted: 04/08/2024] [Indexed: 06/25/2024] Open
Abstract
Dispersal is a key process in ecology and evolution. While the effects of dispersal on diversity are broadly acknowledged, our understanding of the influence of diversity on dispersal remains limited. This arises from the dynamic, context-dependent, nonlinear and ubiquitous nature of dispersal. Diversity outcomes, such as competition, mutualism, parasitism and trophic interactions can feed back on dispersal, thereby influencing biodiversity patterns at several spatio-temporal scales. Here, we shed light on the dispersal-diversity causal links by discussing how dispersal-diversity ecological and evolutionary feedbacks can impact macroecological patterns. We highlight the importance of dispersal-diversity feedbacks for advancing our understanding of macro-eco-evolutionary patterns and their challenges, such as establishing a unified framework for dispersal terminology and methodologies across various disciplines and scales. This article is part of the theme issue 'Diversity-dependence of dispersal: interspecific interactions determine spatial dynamics'.
Collapse
Affiliation(s)
- Adriana Alzate
- Aquaculture and Fisheries Group, Wageningen University and
Research, Wageningen, The Netherlands
- Naturalis Biodiversity Center, Leiden, The Netherlands
| | - Oskar Hagen
- German Centre For Integrative Biodiversity Research (iDiv)
Halle-Jena-Leipzig, Leipzig, Germany
- Department of Ecological Modelling, Helmholtz Centre for
Environmental Research GmbH – UFZ, Leipzig, Germany
| |
Collapse
|
2
|
Fronhofer EA, Bonte D, Bestion E, Cote J, Deshpande JN, Duncan AB, Hovestadt T, Kaltz O, Keith SA, Kokko H, Legrand D, Malusare SP, Parmentier T, Saade C, Schtickzelle N, Zilio G, Massol F. Evolutionary ecology of dispersal in biodiverse spatially structured systems: what is old and what is new? Philos Trans R Soc Lond B Biol Sci 2024; 379:20230142. [PMID: 38913061 PMCID: PMC11391287 DOI: 10.1098/rstb.2023.0142] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 03/14/2024] [Accepted: 05/01/2024] [Indexed: 06/25/2024] Open
Abstract
Dispersal is a well-recognized driver of ecological and evolutionary dynamics, and simultaneously an evolving trait. Dispersal evolution has traditionally been studied in single-species metapopulations so that it remains unclear how dispersal evolves in metacommunities and metafoodwebs, which are characterized by a multitude of species interactions. Since most natural systems are both species-rich and spatially structured, this knowledge gap should be bridged. Here, we discuss whether knowledge from dispersal evolutionary ecology established in single-species systems holds in metacommunities and metafoodwebs and we highlight generally valid and fundamental principles. Most biotic interactions form the backdrop to the ecological theatre for the evolutionary dispersal play because interactions mediate patterns of fitness expectations across space and time. While this allows for a simple transposition of certain known principles to a multispecies context, other drivers may require more complex transpositions, or might not be transferred. We discuss an important quantitative modulator of dispersal evolution-increased trait dimensionality of biodiverse meta-systems-and an additional driver: co-dispersal. We speculate that scale and selection pressure mismatches owing to co-dispersal, together with increased trait dimensionality, may lead to a slower and more 'diffuse' evolution in biodiverse meta-systems. Open questions and potential consequences in both ecological and evolutionary terms call for more investigation. This article is part of the theme issue 'Diversity-dependence of dispersal: interspecific interactions determine spatial dynamics'.
Collapse
Affiliation(s)
- Emanuel A Fronhofer
- ISEM, University of Montpellier, CNRS, IRD, EPHE , Montpellier 34095, France
| | - Dries Bonte
- Terrestrial Ecology Unit (TEREC), Department of Biology, Ghent University, K.L. Ledeganckstraat 35 , Ghent B-9000, Belgium
| | - Elvire Bestion
- Station d'Ecologie Théorique et Expérimentale, CNRS, UAR 2029 , Moulis F-09200, France
| | - Julien Cote
- Laboratoire Évolution & Diversité Biologique, CNRS, Université Toulouse III Paul Sabatier, IRD, UMR 5174, 118 route de Narbonne , Toulouse F-31062, France
| | - Jhelam N Deshpande
- ISEM, University of Montpellier, CNRS, IRD, EPHE , Montpellier 34095, France
| | - Alison B Duncan
- ISEM, University of Montpellier, CNRS, IRD, EPHE , Montpellier 34095, France
| | - Thomas Hovestadt
- Department Animal Ecology and Tropical Biology, Biozentrum, University of Würzburg , Würzburg 97074, Germany
| | - Oliver Kaltz
- ISEM, University of Montpellier, CNRS, IRD, EPHE , Montpellier 34095, France
| | - Sally A Keith
- Lancaster Environment Centre, Lancaster University , Lancaster LA1 4YQ, UK
| | - Hanna Kokko
- Institute of Organismic and Molecular Evolution, Johannes Gutenberg University , Mainz 55128, Germany
| | - Delphine Legrand
- Station d'Ecologie Théorique et Expérimentale, CNRS, UAR 2029 , Moulis F-09200, France
| | - Sarthak P Malusare
- ISEM, University of Montpellier, CNRS, IRD, EPHE , Montpellier 34095, France
| | - Thomas Parmentier
- Terrestrial Ecology Unit (TEREC), Department of Biology, Ghent University, K.L. Ledeganckstraat 35 , Ghent B-9000, Belgium
- Research Unit of Environmental and Evolutionary Biology, Namur Institute of Complex Systems, and Institute of Life, Earth, and the Environment, University of Namur , Namur 5000, Belgium
| | - Camille Saade
- ISEM, University of Montpellier, CNRS, IRD, EPHE , Montpellier 34095, France
| | | | - Giacomo Zilio
- ISEM, University of Montpellier, CNRS, IRD, EPHE , Montpellier 34095, France
| | - François Massol
- Institut Pasteur de Lille, Univ. Lille, CNRS, Inserm, CHU Lille, U1019 - UMR 9017 - CIIL - Center for Infection and Immunity of Lille , Lille 59000, France
| |
Collapse
|
3
|
Hagen O, Viana DS, Wiegand T, Chase JM, Onstein RE. The macro-eco-evolutionary interplay between dispersal, competition and landscape structure in generating biodiversity. Philos Trans R Soc Lond B Biol Sci 2024; 379:20230140. [PMID: 38913052 PMCID: PMC11391298 DOI: 10.1098/rstb.2023.0140] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 03/04/2024] [Accepted: 03/07/2024] [Indexed: 06/25/2024] Open
Abstract
Theory links dispersal and diversity, predicting the highest diversity at intermediate dispersal levels. However, the modulation of this relationship by macro-eco-evolutionary mechanisms and competition within a landscape is still elusive. We examine the interplay between dispersal, competition and landscape structure in shaping biodiversity over 5 million years in a dynamic archipelago landscape. We model allopatric speciation, temperature niche, dispersal, competition, trait evolution and trade-offs between competitive and dispersal traits. Depending on dispersal abilities and their interaction with landscape structure, our archipelago exhibits two 'connectivity regimes', that foster speciation events among the same group of islands. Peaks of diversity (i.e. alpha, gamma and phylogenetic), occurred at intermediate dispersal; while competition shifted diversity peaks towards higher dispersal values for each connectivity regime. This shift demonstrates how competition can boost allopatric speciation events through the evolution of thermal specialists, ultimately limiting geographical ranges. Even in a simple landscape, multiple intermediate dispersal diversity relationships emerged, all shaped similarly and according to dispersal and competition strength. Our findings remain valid as dispersal- and competitive-related traits evolve and trade-off; potentially leaving identifiable biodiversity signatures, particularly when trade-offs are imposed. Overall, we scrutinize the convoluted relationships between dispersal, species interactions and landscape structure on macro-eco-evolutionary processes, with lasting imprints on biodiversity.This article is part of the theme issue 'Diversity-dependence of dispersal: interspecific interactions determine spatial dynamics'.
Collapse
Affiliation(s)
- O Hagen
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Leipzig, Germany
- Department of Ecological Modelling, UFZ - Helmholtz Centre for Environmental Research, Leipzig, Germany
| | - D S Viana
- Estación Biológica de Doñana, CSIC, Seville, Spain
| | - T Wiegand
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Leipzig, Germany
- Department of Ecological Modelling, UFZ - Helmholtz Centre for Environmental Research, Leipzig, Germany
| | - J M Chase
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Leipzig, Germany
| | - R E Onstein
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Leipzig, Germany
- Naturalis Biodiversity Center, Leiden 2333 CR, Netherlands
| |
Collapse
|
4
|
Fajgenblat M, De Meester L, Urban MC. Dispersal evolution alters evolution-mediated priority effects in a metacommunity. Philos Trans R Soc Lond B Biol Sci 2024; 379:20230129. [PMID: 38913063 PMCID: PMC11391303 DOI: 10.1098/rstb.2023.0129] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Revised: 03/13/2024] [Accepted: 05/03/2024] [Indexed: 06/25/2024] Open
Abstract
Biologists have long sought to predict the distribution of species across landscapes to understand biodiversity patterns and dynamics. These efforts usually integrate ecological niche and dispersal dynamics, but evolution can also mediate these ecological dynamics. Species that disperse well and arrive early might adapt to local conditions, which creates an evolution-mediated priority effect that alters biodiversity patterns. Yet, dispersal is also a trait that can evolve and affect evolution-mediated priority effects. We developed an individual-based model where populations of competing species can adapt not only to local environments but also to different dispersal probabilities. We found that lower regional species diversity selects for populations with higher dispersal probabilities and stronger evolution-mediated priority effects. When all species evolved dispersal, they monopolized fewer patches and did so at the same rates. When only one of the species evolved dispersal, it evolved lower dispersal than highly dispersive species and monopolized habitats once freed from maladaptive gene flow. Overall, we demonstrate that dispersal evolution can shape evolution-mediated priority effects when provided with a greater ecological opportunity in species-poor communities. Dispersal- and evolution-mediated priority effects probably play greater roles in species-poor regions like the upper latitudes, isolated islands and in changing environments. This article is part of the theme issue 'Diversity-dependence of dispersal: interspecific interactions determine spatial dynamics'.
Collapse
Affiliation(s)
- Maxime Fajgenblat
- Laboratory of Freshwater Ecology, Evolution and Conservation, KU Leuven , Leuven, Belgium
- Data Science Institute, I-BioStat, Hasselt University , Diepenbeek, Belgium
| | - Luc De Meester
- Laboratory of Freshwater Ecology, Evolution and Conservation, KU Leuven , Leuven, Belgium
- Leibniz Institute für Gewasserökologie und Binnenfischerei (IGB) , Berlin, Germany
- Institute of Biology, Freie Universität Berlin , Berlin, Germany
- Berlin-Brandenburg Institute of Advanced Biodiversity Research (BBIB) , Berlin, Germany
| | - Mark C Urban
- Department of Ecology and Evolutionary Biology and Center of Biological Risk, University of Connecticut , Storrs, CT, USA
| |
Collapse
|
5
|
Calcagno V, David P, Jarne P, Massol F. Coevolution of species colonisation rates controls food-chain length in spatially structured food webs. Ecol Lett 2023; 26 Suppl 1:S140-S151. [PMID: 37303299 DOI: 10.1111/ele.14263] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Revised: 04/13/2023] [Accepted: 05/09/2023] [Indexed: 06/13/2023]
Abstract
How the complexity of food webs depends on environmental variables is a long-standing ecological question. It is unclear though how food-chain length should vary with adaptive evolution of the constitutive species. Here we model the evolution of species colonisation rates and its consequences on occupancies and food-chain length in metacommunities. When colonisation rates can evolve, longer food-chains can persist. Extinction, perturbation and habitat loss all affect evolutionarily stable colonisation rates, but the strength of the competition-colonisation trade-off has a major role: weaker trade-offs yield longer chains. Although such eco-evo dynamics partly alleviates the spatial constraint on food-chain length, it is no magic bullet: the highest, most vulnerable, trophic levels are also those that least benefit from evolution. We provide qualitative predictions regarding how trait evolution affects the response of communities to disturbance and habitat loss. This highlights the importance of eco-evolutionary dynamics at metacommunity level in determining food-chain length.
Collapse
Affiliation(s)
- Vincent Calcagno
- Institut Sophia Agrobiotech, Université Côte d'Azur - CNRS - INRAE, Sophia Antipolis Cedex, France
| | - Patrice David
- CEFE, UMR 5175, CNRS - Université de Montpellier - IRD - EPHE, Montpellier Cedex 5, France
| | - Philippe Jarne
- CEFE, UMR 5175, CNRS - Université de Montpellier - IRD - EPHE, Montpellier Cedex 5, France
| | - François Massol
- Institut Pasteur de Lille, Univ. Lille, CNRS, Inserm, CHU Lille, U1019 - UMR 9017 - CIIL - Center for Infection and Immunity of Lille, Lille, France
| |
Collapse
|
6
|
Fronhofer EA, Corenblit D, Deshpande JN, Govaert L, Huneman P, Viard F, Jarne P, Puijalon S. Eco-evolution from deep time to contemporary dynamics: The role of timescales and rate modulators. Ecol Lett 2023; 26 Suppl 1:S91-S108. [PMID: 37840024 DOI: 10.1111/ele.14222] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Revised: 03/27/2023] [Accepted: 03/29/2023] [Indexed: 10/17/2023]
Abstract
Eco-evolutionary dynamics, or eco-evolution for short, are often thought to involve rapid demography (ecology) and equally rapid heritable phenotypic changes (evolution) leading to novel, emergent system behaviours. We argue that this focus on contemporary dynamics is too narrow: Eco-evolution should be extended, first, beyond pure demography to include all environmental dimensions and, second, to include slow eco-evolution which unfolds over thousands or millions of years. This extension allows us to conceptualise biological systems as occupying a two-dimensional time space along axes that capture the speed of ecology and evolution. Using Hutchinson's analogy: Time is the 'theatre' in which ecology and evolution are two interacting 'players'. Eco-evolutionary systems are therefore dynamic: We identify modulators of ecological and evolutionary rates, like temperature or sensitivity to mutation, which can change the speed of ecology and evolution, and hence impact eco-evolution. Environmental change may synchronise the speed of ecology and evolution via these rate modulators, increasing the occurrence of eco-evolution and emergent system behaviours. This represents substantial challenges for prediction, especially in the context of global change. Our perspective attempts to integrate ecology and evolution across disciplines, from gene-regulatory networks to geomorphology and across timescales, from today to deep time.
Collapse
Affiliation(s)
| | - Dov Corenblit
- GEOLAB, Université Clermont Auvergne, CNRS, Clermont-Ferrand, France
- Laboratoire écologie fonctionnelle et environnement, Université Paul Sabatier, CNRS, INPT, UPS, Toulouse, France
| | | | - Lynn Govaert
- Leibniz Institute of Freshwater Ecology and Inland Fisheries, Berlin, Germany
| | - Philippe Huneman
- Institut d'Histoire et de Philosophie des Sciences et des Techniques (CNRS/Université Paris I Sorbonne), Paris, France
| | - Frédérique Viard
- ISEM, Université de Montpellier, CNRS, IRD, EPHE, Montpellier, France
| | - Philippe Jarne
- CEFE, UMR 5175, CNRS - Université de Montpellier - Université Paul-Valéry Montpellier - IRD - EPHE, Montpellier Cedex 5, France
| | - Sara Puijalon
- Univ Lyon, Université Claude Bernard Lyon 1, CNRS, ENTPE, UMR 5023 LEHNA, Villeurbanne, France
| |
Collapse
|
7
|
Alberti M, Wang T. Detecting patterns of vertebrate biodiversity across the multidimensional urban landscape. Ecol Lett 2022; 25:1027-1045. [PMID: 35113498 DOI: 10.1111/ele.13969] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Revised: 11/22/2021] [Accepted: 11/30/2021] [Indexed: 12/12/2022]
Abstract
Explicit characterisation of the complexity of urban landscapes is critical for understanding patterns of biodiversity and for detecting the underlying social and ecological processes that shape them. Urban environments exhibit variable heterogeneity and connectivity, influenced by different historical contingencies, that affect community assembly across scales. The multidimensional nature of urban disturbance and co-occurrence of multiple stressors can cause synergistic effects leading to nonlinear responses in populations and communities. Yet, current research design of urban ecology and evolutionary studies typically relies on simple representation of the parameter space that can be observed. Sampling approaches apply simple urban gradients such as linear transects in space or comparisons of urban sites across the urban mosaic accounting for a few variables. This rarely considers multiple dimensions and scales of biodiversity, and proves to be inadequate to explain observed patterns. We apply a multidimensional approach that integrates distinctive social, ecological and built characteristics of urban landscapes, representing variations along dimensions of heterogeneity, connectivity and historical contingency. Measuring species richness and beta diversity across 100 US metropolitan areas at the city and 1-km scales, we show that distinctive signatures of urban biodiversity can result from interactions between socioecological heterogeneity and connectivity, mediated by historical contingency.
Collapse
Affiliation(s)
- Marina Alberti
- Department of Urban Design and Planning, University of Washington, Seattle, Washington, USA.,Urban Ecology Research Lab, University of Washington, Seattle, Washington, USA
| | - Tianzhe Wang
- Department of Urban Design and Planning, University of Washington, Seattle, Washington, USA.,Urban Ecology Research Lab, University of Washington, Seattle, Washington, USA
| |
Collapse
|
8
|
Abstract
Ecological fitness is the ability of individuals in a population to survive and reproduce. Individuals with increased fitness are better equipped to withstand the selective pressures of their environments. This paradigm pertains to all organismal life as we know it; however, it is also becoming increasingly clear that within multicellular organisms exist highly complex, competitive, and cooperative populations of cells under many of the same ecological and evolutionary constraints as populations of individuals in nature. In this review I discuss the parallels between populations of cancer cells and populations of individuals in the wild, highlighting how individuals in either context are constrained by their environments to converge on a small number of critical phenotypes to ensure survival and future reproductive success. I argue that the hallmarks of cancer can be distilled into key phenotypes necessary for cancer cell fitness: survival and reproduction. I posit that for therapeutic strategies to be maximally beneficial, they should seek to subvert these ecologically driven phenotypic responses.
Collapse
|
9
|
Yamaguchi R, Iwasa Y, Tachiki Y. Recurrent speciation rates on islands decline with species number. Proc Biol Sci 2021; 288:20210255. [PMID: 33906401 PMCID: PMC8079997 DOI: 10.1098/rspb.2021.0255] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Accepted: 04/01/2021] [Indexed: 11/12/2022] Open
Abstract
In an archipelagic system, species diversity is maintained and determined by the balance among speciation, extinction and migration. As the number of species increases, the average population size of each species decreases, and the extinction likelihood of any given species grows. By contrast, the role of reduced population size in geographic speciation has received comparatively less research attention. Here, to study the rate of recurrent speciation, we adopted a simple multi-species two-island model and considered symmetric interspecific competition on each island. As the number of species increases on an island, the competition intensifies, and the size of the resident population decreases. By contrast, the number of migrants is likely to exhibit a weaker than proportional relationship with the size of the source population due to rare oceanic dispersal. If this is the case, as the number of species on the recipient island increases, the impact of migration strengthens and decelerates the occurrence of further speciation events. According to our analyses, the number of species can be stabilized at a finite level, even in the absence of extinction.
Collapse
Affiliation(s)
- Ryo Yamaguchi
- Department of Advanced Transdisciplinary Sciences, Hokkaido University, Sapporo, Hokkaido 060-0810, Japan
- Department of Biological Sciences, Tokyo Metropolitan University, 1-1 Minami-Osawa, Hachioji, Tokyo 192-0397, Japan
| | - Yoh Iwasa
- Department of Bioscience, School of Science and Technology, Kwansei Gakuin University, Gakuen 2-1, Sanda 669-1337, Japan
| | - Yuuya Tachiki
- Department of Biological Sciences, Tokyo Metropolitan University, 1-1 Minami-Osawa, Hachioji, Tokyo 192-0397, Japan
| |
Collapse
|
10
|
Keenan VA, Cornell SJ. Anomalous invasion dynamics due to dispersal polymorphism and dispersal-reproduction trade-offs. Proc Biol Sci 2021; 288:20202825. [PMID: 33434455 PMCID: PMC7892423 DOI: 10.1098/rspb.2020.2825] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
Dispersal polymorphism and mutation play significant roles during biological invasions, potentially leading to evolution and complex behaviour such as accelerating or decelerating invasion fronts. However, life-history theory predicts that reproductive fitness-another key determinant of invasion dynamics-may be lower for more dispersive strains. Here, we use a mathematical model to show that unexpected invasion dynamics emerge from the combination of heritable dispersal polymorphism, dispersal-fitness trade-offs, and mutation between strains. We show that the invasion dynamics are determined by the trade-off relationship between dispersal and population growth rates of the constituent strains. We find that invasion dynamics can be 'anomalous' (i.e. faster than any of the strains in isolation), but that the ultimate invasion speed is determined by the traits of, at most, two strains. The model is simple but generic, so we expect the predictions to apply to a wide range of ecological, evolutionary, or epidemiological invasions.
Collapse
Affiliation(s)
- Vincent A Keenan
- Institute of Integrative Biology, University of Liverpool, Crown Street, Liverpool L69 7ZB, UK
| | - Stephen J Cornell
- Institute of Integrative Biology, University of Liverpool, Crown Street, Liverpool L69 7ZB, UK
| |
Collapse
|
11
|
Gross T, Allhoff KT, Blasius B, Brose U, Drossel B, Fahimipour AK, Guill C, Yeakel JD, Zeng F. Modern models of trophic meta-communities. Philos Trans R Soc Lond B Biol Sci 2020; 375:20190455. [PMID: 33131442 PMCID: PMC7662193 DOI: 10.1098/rstb.2019.0455] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/17/2020] [Indexed: 02/06/2023] Open
Abstract
Dispersal and foodweb dynamics have long been studied in separate models. However, over the past decades, it has become abundantly clear that there are intricate interactions between local dynamics and spatial patterns. Trophic meta-communities, i.e. meta-foodwebs, are very complex systems that exhibit complex and often counterintuitive dynamics. Over the past decade, a broad range of modelling approaches have been used to study these systems. In this paper, we review these approaches and the insights that they have revealed. We focus particularly on recent papers that study trophic interactions in spatially extensive settings and highlight the common themes that emerged in different models. There is overwhelming evidence that dispersal (and particularly intermediate levels of dispersal) benefits the maintenance of biodiversity in several different ways. Moreover, some insights have been gained into the effect of different habitat topologies, but these results also show that the exact relationships are much more complex than previously thought, highlighting the need for further research in this area. This article is part of the theme issue 'Integrative research perspectives on marine conservation'.
Collapse
Affiliation(s)
- Thilo Gross
- University of California Davis, Department of Computer Science, 1 Shields Avenue, Davis, CA 95616, USA
- Alfred Wegener Institut. Helmholtz Zentrum für Polar und Meeresforschung, Am Handelshafen 12, 27570 Bremerhaven, Germany
- Univeristät Oldenburg, Institut für Chemie und Biologie des Meeres, Carl-von-Ossietzky-Strasse 9-11, 26111 Oldenburg, Germany
- Helmholtz Institute for Functional Marine Bidiversity, Ammerländer Heerstrasse 231, Oldenburg, Germany
| | - Korinna T. Allhoff
- Universität Tübingen, Department of Biology, Auf der Morgenstelle 5, 72076 Tübingen, Germany
| | - Bernd Blasius
- Alfred Wegener Institut. Helmholtz Zentrum für Polar und Meeresforschung, Am Handelshafen 12, 27570 Bremerhaven, Germany
- Univeristät Oldenburg, Institut für Chemie und Biologie des Meeres, Carl-von-Ossietzky-Strasse 9-11, 26111 Oldenburg, Germany
| | - Ulrich Brose
- German Centre for Integrative Biodiversity Research, Deutscher Platz 5e, 04103 Leipzig, Germany
- Institute for Biodiversity, Friedrich Schiller University Jena, Dornburger-Strasse 159, 07743 Jena, Germany
| | - Barbara Drossel
- TU Darmstadt, Institut für Festkörperphysik, Hochschulstrasse 6, 64289 Darmstadt, Germany
| | - Ashkaan K. Fahimipour
- National Oceanic and Atmospheric Administration, Southwest Fisheries Science Center, 110 McAllister Way, Santa Cruz, CA 95060, USA
| | - Christian Guill
- Universität Potsdam, Institut für Biochemie und Biologie, Karl-Liebknecht-Strasse 24-25, 14476 Potsdam, Germany
| | - Justin D. Yeakel
- University of California, Merced, School of Natural Sciences, 5200 North Lake Road, Merced, CA 95343, USA
| | - Fanqi Zeng
- University of Bristol, Department of Engineering Mathematics, Merchant Venturers Building, Bristol BS8 1UB, UK
| |
Collapse
|
12
|
Laroche F, Violle C, Taudière A, Munoz F. Analyzing snapshot diversity patterns with the Neutral Theory can show functional groups' effects on community assembly. Ecology 2020; 101:e02977. [PMID: 31944275 DOI: 10.1002/ecy.2977] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/24/2018] [Revised: 08/29/2019] [Accepted: 12/04/2019] [Indexed: 11/07/2022]
Abstract
A central question of community ecology is to understand how the interplay between processes of the Neutral Theory (e.g., immigration and ecological drift) and niche-based processes (e.g., environmental filtering, intra- and interspecific density dependence) shape species diversity in competitive communities. The articulation between these two categories of mechanisms can be studied through the lens of the intermediate organizational level of "functional groups" (FGs), defined as clusters of species with similar traits. Indeed, FGs stress ecological differences among species and are thus likely to unravel non-neutral interactions within communities. Here we presented a novel approach to explore how FGs affect species coexistence by comparing species and functional diversity patterns. Our framework considers the Neutral Theory as a mechanistic null hypothesis. It assesses how much the functional diversity deviates from species diversity in communities, and compares this deviation, called the "average functional deviation," to a neutral baseline. We showed that the average functional deviation can indicate reduced negative density dependence or environmental filtering among FGs. We validated our framework using simulations illustrating the two situations. We further analyzed tropical tree communities in Western Ghats, India. Our analysis of the average functional deviation revealed environmental filtering between deciduous and evergreen FGs along a broad rainfall gradient. By contrast, we did not find clear evidence for reduced density dependence among FGs. We predict that applying our approach to new case studies where environmental gradients are milder and FGs are more clearly associated to resource partitioning should reveal the missing pattern of reduced density dependence among FGs.
Collapse
Affiliation(s)
| | - Cyrille Violle
- CEFE, Université Paul Valéry Montpellier 3, Université Montpellier, EPHE, CNRS, IRD, Montpellier, France
| | - Adrien Taudière
- CEFE, Université Paul Valéry Montpellier 3, Université Montpellier, EPHE, CNRS, IRD, Montpellier, France
| | - François Munoz
- University Grenoble-Alpes, LECA, 2233 Rue de la Piscine, Grenoble, 38041, France.,Institut Français de Pondichéry, UMIFRE 21 MAEE-CNRS, 11 St. Louis Street, Pondicherry, India
| |
Collapse
|
13
|
Ashby B, Shaw AK, Kokko H. An inordinate fondness for species with intermediate dispersal abilities. OIKOS 2019. [DOI: 10.1111/oik.06704] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Ben Ashby
- Dept of Mathematical Sciences, Univ. of Bath Bath BA2 7AY UK
| | - Allison K. Shaw
- Dept of Ecology, Evolution and Behavior, Univ. of Minnesota St. Paul MN USA
| | - Hanna Kokko
- Dept of Evolutionary Biology and Environmental Studies, Univ. of Zurich Zurich Switzerland
| |
Collapse
|
14
|
Zhou X, Li C, Li H, Shi Q. The competition-dispersal trade-off exists in forbs but not in graminoids: A case study from multispecies alpine grassland communities. Ecol Evol 2019; 9:1403-1409. [PMID: 30805169 PMCID: PMC6374675 DOI: 10.1002/ece3.4856] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2018] [Revised: 10/19/2018] [Accepted: 12/04/2018] [Indexed: 11/07/2022] Open
Abstract
Much theoretical evidence has demonstrated that a trade-off between competitive and dispersal ability plays an important role in facilitating species coexistence. However, experimental evidence from natural communities is still rare. Here, we tested the competition-dispersal trade-off hypothesis in an alpine grassland in the Tianshan Mountains, Xinjiang, China, by quantifying competitive and dispersal ability using a combination of 4 plant traits (seed mass, ramet mass, height, and dispersal mode). Our results show that the competition-dispersal trade-off exists in the alpine grassland community and that this pattern was primarily demonstrated by forbs. The results suggest that most forb species are constrained to be either good competitors or good dispersers but not both, while there was no significant trade-off between competitive and dispersal ability for most graminoids. This might occur because graminoids undergo clonal reproduction, which allows them to find more benign microenvironments, forage for nutrients across a large area and store resources in clonal structures, and they are thus not strictly limited by the particular resources at our study site. To the best of our knowledge, this is the first time the CD trade-off has been tested for plants across the whole life cycle in a natural multispecies plant community, and more comprehensive studies are still needed to explore the underlying mechanisms and the linkage between the CD trade-off and community composition.
Collapse
Affiliation(s)
- Xiaolong Zhou
- Institute of Arid Ecology and EnvironmentXinjiang UniversityUrumqiChina
- Key Laboratory of Oasis Ecology Ministry EducationXinjiang UniversityUrumqiChina
| | - Chengzhi Li
- Institute of Arid Ecology and EnvironmentXinjiang UniversityUrumqiChina
- Key Laboratory of Oasis Ecology Ministry EducationXinjiang UniversityUrumqiChina
| | - Honglin Li
- State Key Laboratory of Plateau Ecology and AgricultureQinghai UniversityXinjiangChina
| | - Qingdong Shi
- Institute of Arid Ecology and EnvironmentXinjiang UniversityUrumqiChina
- Key Laboratory of Oasis Ecology Ministry EducationXinjiang UniversityUrumqiChina
| |
Collapse
|
15
|
Gastauer M, Souza Filho PWM, Ramos SJ, Caldeira CF, Silva JR, Siqueira JO, Furtini Neto AE. Mine land rehabilitation in Brazil: Goals and techniques in the context of legal requirements. AMBIO 2019; 48:74-88. [PMID: 29644620 PMCID: PMC6297110 DOI: 10.1007/s13280-018-1053-8] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/02/2017] [Revised: 02/27/2018] [Accepted: 03/22/2018] [Indexed: 05/11/2023]
Abstract
Environmental legislation in many countries demands the rehabilitation of degraded areas to minimize environmental impacts. Brazilian laws require the restitution of self-sustaining ecosystems to historical conditions but ignore the emergence of novel ecosystems due to large-scale changes, such as species invasions, extinctions, and land-use or climate changes, although these novel ecosystems might fulfill ecosystem services in similar ways as historic ecosystems. Thorough discussions of rehabilitation goals, target ecosystems, applied methods, and approaches to achieving mine land rehabilitation, as well as dialogues about the advantages and risks of chemical inputs or non-native, non-invasive species that include all political, economic, social, and academic stakeholders are necessary to achieve biological feasibility, sociocultural acceptance, economic viability, and institutional tractability during environmental rehabilitation. Scientific knowledge of natural and rehabilitating ecosystems is indispensable for advancing these discussions and achieving more sustainable mining. Both mining companies and public institutions are responsible for obtaining this knowledge.
Collapse
Affiliation(s)
- Markus Gastauer
- Instituto Tecnológico Vale, Rua Boaventura da Silva, 955, Nazaré, Belém, CEP 66055-090 Brazil
| | - Pedro Walfir Martins Souza Filho
- Instituto Tecnológico Vale, Rua Boaventura da Silva, 955, Nazaré, Belém, CEP 66055-090 Brazil
- Universidade Federal do Pará, Geosciences Institute, Av. Augusto Correa 1, Belém, CEP 66075-110 Brazil
| | - Silvio Junio Ramos
- Instituto Tecnológico Vale, Rua Boaventura da Silva, 955, Nazaré, Belém, CEP 66055-090 Brazil
| | - Cecílio Frois Caldeira
- Instituto Tecnológico Vale, Rua Boaventura da Silva, 955, Nazaré, Belém, CEP 66055-090 Brazil
| | - Joyce Reis Silva
- Instituto Tecnológico Vale, Rua Boaventura da Silva, 955, Nazaré, Belém, CEP 66055-090 Brazil
| | - José Oswaldo Siqueira
- Instituto Tecnológico Vale, Rua Boaventura da Silva, 955, Nazaré, Belém, CEP 66055-090 Brazil
| | - Antonio Eduardo Furtini Neto
- Instituto Tecnológico Vale, Rua Boaventura da Silva, 955, Nazaré, Belém, CEP 66055-090 Brazil
- Present Address: Agro Up Consultoria Agropecuária Ltda, R Lazaro Azevedo Melo, 457, Anisio Alves De Abreu, Lavras, MG CEP 37200-000 Brazil
| |
Collapse
|
16
|
Microbiomes as Metacommunities: Understanding Host-Associated Microbes through Metacommunity Ecology. Trends Ecol Evol 2018; 33:926-935. [DOI: 10.1016/j.tree.2018.09.002] [Citation(s) in RCA: 125] [Impact Index Per Article: 20.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2017] [Revised: 08/29/2018] [Accepted: 09/04/2018] [Indexed: 02/07/2023]
|
17
|
Rodger JG, Landi P, Hui C. Heterogeneity in local density allows a positive evolutionary relationship between self-fertilisation and dispersal. Evolution 2018; 72:1784-1800. [PMID: 30039639 DOI: 10.1111/evo.13562] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2017] [Revised: 06/28/2018] [Accepted: 07/10/2018] [Indexed: 12/26/2022]
Abstract
Despite empirical evidence for a positive relationship between dispersal and self-fertilization (selfing), theoretical work predicts that these traits should always be negatively correlated, and the Good Coloniser Syndrome of high dispersal and selfing (Cf. Baker's Law) should not evolve. Critically, previous work assumes that adult density is spatiotemporally homogeneous, so selfing results in identical offspring production for all patches, eliminating the benefit of dispersal for escaping from local resource competition. We investigate the joint evolution of dispersal and selfing in a demographically structured metapopulation model where local density is spatiotemporally heterogeneous due to extinction-recolonization dynamics. Selfing alleviates outcrossing failure due to low local density (an Allee effect) while dispersal alleviates competition through dispersal of propagules from high- to low-density patches. Because local density is spatiotemporally heterogeneous in our model, selfing does not eliminate heterogeneity in competition, so dispersal remains beneficial even under full selfing. Hence the Good Coloniser Syndrome is evolutionarily stable under a broad range of conditions, and both negative and positive relationships between dispersal and selfing are possible, depending on the environment. Our model thus accommodates positive empirical relationships between dispersal and selfing not predicted by previous theoretical work and provides additional explanations for negative relationships.
Collapse
Affiliation(s)
- James G Rodger
- Theoretical Ecology Group, Department of Mathematical Sciences, Stellenbosch University, Matieland, 7602, South Africa.,Department of Ecology and Evolution, University of Lausanne, Lausanne, 1015, Switzerland
| | - Pietro Landi
- Theoretical Ecology Group, Department of Mathematical Sciences, Stellenbosch University, Matieland, 7602, South Africa.,Evolution and Ecology Program, International Institute for Applied Systems Analysis, Laxenburg, 2361, Austria
| | - Cang Hui
- Theoretical Ecology Group, Department of Mathematical Sciences, Stellenbosch University, Matieland, 7602, South Africa.,Mathematical and Physical Biosciences, African Institute for Mathematical Sciences, Muizenberg, 7945, South Africa
| |
Collapse
|
18
|
Karisto P, Kisdi É. Evolution of dispersal under variable connectivity. J Theor Biol 2017; 419:52-65. [PMID: 27851903 DOI: 10.1016/j.jtbi.2016.11.007] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2016] [Revised: 10/31/2016] [Accepted: 11/08/2016] [Indexed: 10/20/2022]
Abstract
The pattern of connectivity between local populations or between microsites supporting individuals within a population is a poorly understood factor affecting the evolution of dispersal. We modify the well-known Hamilton-May model of dispersal evolution to allow for variable connectivity between microsites. For simplicity, we assume that the microsites are either solitary, i.e., weakly connected through costly dispersal, or part of a well-connected cluster of sites with low-cost dispersal within the cluster. We use adaptive dynamics to investigate the evolution of dispersal, obtaining analytic results for monomorphic evolution and numerical results for the co-evolution of two dispersal strategies. A monomorphic population always evolves to a unique singular dispersal strategy, which may be an evolutionarily stable strategy or an evolutionary branching point. Evolutionary branching happens if the contrast between connectivities is sufficiently high and the solitary microsites are common. The dimorphic evolutionary singularity, when it exists, is always evolutionarily and convergence stable. The model exhibits both protected and unprotected dimorphisms of dispersal strategies, but the dimorphic singularity is always protected. Contrasting connectivities can thus maintain dispersal polymorphisms in temporally stable environments.
Collapse
Affiliation(s)
- Petteri Karisto
- Department of Mathematics and Statistics, University of Helsinki, Finland.
| | - Éva Kisdi
- Department of Mathematics and Statistics, University of Helsinki, Finland.
| |
Collapse
|
19
|
Massol F, Altermatt F, Gounand I, Gravel D, Leibold MA, Mouquet N. How life-history traits affect ecosystem properties: effects of dispersal in meta-ecosystems. OIKOS 2017. [DOI: 10.1111/oik.03893] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Affiliation(s)
- François Massol
- CNRS, Univ. de Lille, UMR 8198 Evo-Eco-Paleo, SPICI group; FR-59000 Lille France
| | - Florian Altermatt
- Dept of Aquatic Ecology, Eawag, Swiss Federal Institute of Aquatic Science and Technology; Dübendorf, Switzerland, and: Dept of Evolutionary Biology and Environmental Studies, Univ. of Zürich; Zürich Switzerland
| | - Isabelle Gounand
- Dept of Aquatic Ecology, Eawag, Swiss Federal Institute of Aquatic Science and Technology; Dübendorf, Switzerland, and: Dept of Evolutionary Biology and Environmental Studies, Univ. of Zürich; Zürich Switzerland
| | - Dominique Gravel
- Dépt de biologie; Univ. de Sherbrooke, Sherbrooke, Canada, and: Québec Center for Biodiversity Science; Quebec Canada
| | - Mathew A. Leibold
- Dept of Integrative Biology; Univ. of Texas at Austin; Austin TX USA
| | - Nicolas Mouquet
- 7 UMR MARBEC (MARine Biodiversity, Exploitation and Conservation); Univ. de Montpellier; Montpellier France
| |
Collapse
|
20
|
Affiliation(s)
- Dries Bonte
- Ghent University; Dept. Biology; K.L. Ledeganckstraat 35 BE-9000 Ghent Belgium
| | - Maxime Dahirel
- Ghent University; Dept. Biology; K.L. Ledeganckstraat 35 BE-9000 Ghent Belgium
- Univ. of Rennes 1/ CNRS; UMR 6553 Ecobio Rennes France
| |
Collapse
|