1
|
Reed DC, Schroeter SC, Huang D, Weisman D, Beheshti KM, Smith RS. The ecology of giant kelp colonization and its implications for kelp forest restoration. JOURNAL OF PHYCOLOGY 2024; 60:1121-1138. [PMID: 39072751 DOI: 10.1111/jpy.13487] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Revised: 07/03/2024] [Accepted: 07/03/2024] [Indexed: 07/30/2024]
Abstract
The success and cost-effectiveness of kelp forest restoration hinges on understanding the colonization ecology of kelps, particularly with respect to dispersal potential, recruitment success, and subsequent establishment. To gain needed insight into these processes we examined spatial patterns and temporal trajectories of the colonization of a large artificial reef by the giant kelp Macrocystis pyrifera. The 151 ha artificial reef complex was constructed in three phases over 21 years, enabling dispersal, recruitment, and subsequent establishment to be examined for a wide range of environmental conditions, dispersal distances, and source population sizes. Natural colonization of all phases of the artificial reef by giant kelp was rapid (within 1 year) and extended across the entire 7-km-long reef complex. Colonization density declined with distance from the nearest source population, but only during the first phase when the distance from the nearest source population was ≤3.5 km. Despite this decline, recruitment on artificial reef modules farthest from the source population was sufficient to produce dense stands of kelp within a couple of years. Experimental outplanting of the artificial reef with laboratory-reared kelp embryos was largely successful but proved unnecessary, as the standing biomass of kelp resulting from natural recruitment exceeded that observed on nearby natural reefs within 2-3 years of artificial reef construction for all three phases. Such high potential for natural colonization following disturbance has important implications for kelp forest restoration efforts that employ costly and logistically difficult methods to mimic this process by active seeding and transplanting.
Collapse
Affiliation(s)
- Daniel C Reed
- Marine Science Institute, University of California, Santa Barbara, California, USA
| | - Stephen C Schroeter
- Marine Science Institute, University of California, Santa Barbara, California, USA
| | - David Huang
- Marine Science Institute, University of California, Santa Barbara, California, USA
| | - Denise Weisman
- Marine Science Institute, University of California, Santa Barbara, California, USA
| | - Kathryn M Beheshti
- Marine Science Institute, University of California, Santa Barbara, California, USA
| | - Rachel S Smith
- Marine Science Institute, University of California, Santa Barbara, California, USA
| |
Collapse
|
2
|
Catalano KA, Drenkard EJ, Curchitser EN, Dedrick AG, Stuart MR, Montes HR, Pinsky ML. The contribution of nearshore oceanography to temporal variation in larval dispersal. Ecology 2024; 105:e4412. [PMID: 39193809 DOI: 10.1002/ecy.4412] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/22/2023] [Revised: 03/27/2024] [Accepted: 06/24/2024] [Indexed: 08/29/2024]
Abstract
Patterns of population connectivity shape ecological and evolutionary phenomena from population persistence to local adaptation and can inform conservation strategy. Connectivity patterns emerge from the interaction of individual behavior with a complex and heterogeneous environment. Despite ample observation that dispersal patterns vary through time, the extent to which variation in the physical environment can explain emergent connectivity variation is not clear. Empirical studies of its contribution promise to illuminate a potential source of variability that shapes the dynamics of natural populations. We leveraged simultaneous direct dispersal observations and oceanographic transport simulations of the clownfish Amphiprion clarkii in the Camotes Sea, Philippines, to assess the contribution of oceanographic variability to emergent variation in connectivity. We found that time-varying oceanographic simulations on both annual and monsoonal timescales partly explained the observed dispersal patterns, suggesting that temporal variation in oceanographic transport shapes connectivity variation on these timescales. However, interannual variation in observed mean dispersal distance was nearly 10 times the expected variation from biophysical simulations, revealing that additional biotic and abiotic factors contribute to interannual connectivity variation. Simulated dispersal kernels also predicted a smaller scale of dispersal than the observations, supporting the hypothesis that undocumented abiotic factors and behaviors such as swimming and navigation enhance the probability of successful dispersal away from, as opposed to retention near, natal sites. Our findings highlight the potential for coincident observations and biophysical simulations to test dispersal hypotheses and the influence of temporal variability on metapopulation persistence, local adaptation, and other population processes.
Collapse
Affiliation(s)
- Katrina A Catalano
- Department of Ecology, Evolution, and Natural Resources, Rutgers University, New Brunswick, New Jersey, USA
| | - Elizabeth J Drenkard
- Department of Environmental Sciences, Rutgers University, New Brunswick, New Jersey, USA
- NOAA Geophysical Fluid Dynamics Laboratory, Princeton, New Jersey, USA
| | - Enrique N Curchitser
- Department of Environmental Sciences, Rutgers University, New Brunswick, New Jersey, USA
| | - Allison G Dedrick
- Department of Ecology, Evolution, and Natural Resources, Rutgers University, New Brunswick, New Jersey, USA
| | - Michelle R Stuart
- Department of Ecology, Evolution, and Natural Resources, Rutgers University, New Brunswick, New Jersey, USA
| | | | - Malin L Pinsky
- Department of Ecology, Evolution, and Natural Resources, Rutgers University, New Brunswick, New Jersey, USA
- Department of Ecology & Evolutionary Biology, University of California Santa Cruz, Santa Cruz, California, USA
| |
Collapse
|
3
|
Wanner MS, Walter JA, Reuman DC, Bell TW, Castorani MCN. Dispersal synchronizes giant kelp forests. Ecology 2024; 105:e4270. [PMID: 38415343 DOI: 10.1002/ecy.4270] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Revised: 12/07/2023] [Accepted: 01/22/2024] [Indexed: 02/29/2024]
Abstract
Spatial synchrony is the tendency for population fluctuations to be correlated among different locations. This phenomenon is a ubiquitous feature of population dynamics and is important for ecosystem stability, but several aspects of synchrony remain unresolved. In particular, the extent to which any particular mechanism, such as dispersal, contributes to observed synchrony in natural populations has been difficult to determine. To address this gap, we leveraged recent methodological improvements to determine how dispersal structures synchrony in giant kelp (Macrocystis pyrifera), a global marine foundation species that has served as a useful system for understanding synchrony. We quantified population synchrony and fecundity with satellite imagery across 11 years and 880 km of coastline in southern California, USA, and estimated propagule dispersal probabilities using a high-resolution ocean circulation model. Using matrix regression models that control for the influence of geographic distance, resources (seawater nitrate), and disturbance (destructive waves), we discovered that dispersal was an important driver of synchrony. Our findings were robust to assumptions about propagule mortality during dispersal and consistent between two metrics of dispersal: (1) the individual probability of dispersal and (2) estimates of demographic connectivity that incorporate fecundity (the number of propagules dispersing). We also found that dispersal and environmental conditions resulted in geographic clusters with distinct patterns of synchrony. This study is among the few to statistically associate synchrony with dispersal in a natural population and the first to do so in a marine organism. The synchronizing effects of dispersal and environmental conditions on foundation species, such as giant kelp, likely have cascading effects on the spatial stability of biodiversity and ecosystem function.
Collapse
Affiliation(s)
- Miriam S Wanner
- Department of Environmental Sciences, University of Virginia, Charlottesville, Virginia, USA
| | - Jonathan A Walter
- Department of Environmental Sciences, University of Virginia, Charlottesville, Virginia, USA
- Center for Watershed Sciences, University of California, Davis, California, USA
| | - Daniel C Reuman
- Department of Ecology and Evolutionary Biology and Center for Ecological Research, University of Kansas, Lawrence, Kansas, USA
| | - Tom W Bell
- Department of Applied Ocean Physics and Engineering, Woods Hole Oceanographic Institution, Woods Hole, Massachusetts, USA
| | - Max C N Castorani
- Department of Environmental Sciences, University of Virginia, Charlottesville, Virginia, USA
| |
Collapse
|
4
|
Tennies NK, Alberto F. A tool for detecting giant kelp canopy biomass decline in the Californias. JOURNAL OF PHYCOLOGY 2023; 59:1100-1106. [PMID: 37435715 DOI: 10.1111/jpy.13365] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/12/2023] [Revised: 06/09/2023] [Accepted: 06/12/2023] [Indexed: 07/13/2023]
Abstract
Kelp species provide many ecosystem services associated with their three-dimensional structures. Among these, fast-growth, canopy-forming species, like giant kelp Macrocystis pyrifera, are the foundation of kelp forests across many temperate reefs. Giant kelp populations have experienced regional declines in different parts of the world. Giant kelp canopy is very dynamic and can take years to recover from disturbance, challenging comparisons of standing biomass with historical baselines. The Santa Barbara Coastal LTER (SBC LTER), curates a time series of Landsat sensed surface cover and biomass for giant kelp in the west coast of North America. In the last decade, this resource has been fundamental to understanding the species' population dynamics and drivers. However, simple ready-to-use summary statistics aimed at classifying regional kelp decline or recovery are not readily available to stakeholders and coastal managers. To this end, we describe here two simple metrics made available through the R package kelpdecline. First, the proportion of Landsat pixels in decline (PPD), in which current biomass is compared with a historical baseline, and second, a pixel occupancy trend (POT), in which current year pixel occupancy is compared to the time-series long probability of occupancy. The package produces raster maps and output tables summarizing kelp decline and trends over a 0.25 × 0.25° scale. Using kelpdecline, we show how sensitivity analysis on PPD parameter variation can increase the confidence of kelp decline estimates.
Collapse
Affiliation(s)
- Nathan K Tennies
- Department of Biological Sciences, University of Wisconsin-Milwaukee, Milwaukee, Wisconsin, USA
| | - Filipe Alberto
- Department of Biological Sciences, University of Wisconsin-Milwaukee, Milwaukee, Wisconsin, USA
| |
Collapse
|
5
|
Giraldo Ospina A, Ruiz‐Montoya L, Kendrick GA, Hovey RK. Cross‐depth connectivity shows that deep kelps may act as refugia by reseeding climate‐vulnerable shallow beds. Ecosphere 2023. [DOI: 10.1002/ecs2.4471] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/30/2023] Open
|
6
|
Schiebelhut LM, Gaylord B, Grosberg RK, Jurgens LJ, Dawson MN. Species' attributes predict the relative magnitude of ecological and genetic recovery following mass mortality. Mol Ecol 2022; 31:5714-5728. [PMID: 36178057 PMCID: PMC9828784 DOI: 10.1111/mec.16707] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2021] [Revised: 07/24/2022] [Accepted: 07/27/2022] [Indexed: 01/13/2023]
Abstract
Theoretically, species' characteristics should allow estimation of dispersal potential and, in turn, explain levels of population genetic differentiation. However, a mismatch between traits and genetic patterns is often reported for marine species, and interpreted as evidence that life-history traits do not influence dispersal. Here, we couple ecological and genomic methods to test the hypothesis that species with attributes favouring greater dispersal potential-e.g., longer pelagic duration, higher fecundity and larger population size-have greater realized dispersal overall. We used a natural experiment created by a large-scale and multispecies mortality event which created a "clean slate" on which to study recruitment dynamics, thus simplifying a usually complex problem. We surveyed four species of differing dispersal potential to quantify the abundance and distribution of recruits and to genetically assign these recruits to probable parental sources. Species with higher dispersal potential recolonized a broader extent of the impacted range, did so more quickly and recovered more genetic diversity than species with lower dispersal potential. Moreover, populations of taxa with higher dispersal potential exhibited more immigration (71%-92% of recruits) than taxa with lower dispersal potential (17%-44% of recruits). By linking ecological with genomic perspectives, we demonstrate that a suite of interacting life-history and demographic attributes do influence species' realized dispersal and genetic neighbourhoods. To better understand species' resilience and recovery in this time of global change, integrative eco-evolutionary approaches are needed to more rigorously evaluate the effect of dispersal-linked attributes on realized dispersal and population genetic differentiation.
Collapse
Affiliation(s)
| | - Brian Gaylord
- Bodega Marine LaboratoryUniversity of CaliforniaDavisCaliforniaUSA
| | | | - Laura J. Jurgens
- Department of Marine BiologyTexas A&M University at GalvestonGalvestonTexasUSA
| | - Michael N Dawson
- Life and Environmental SciencesUniversity of CaliforniaMercedCaliforniaUSA
| |
Collapse
|
7
|
Castorani MCN, Bell TW, Walter JA, Reuman D, Cavanaugh KC, Sheppard LW. Disturbance and nutrients synchronise kelp forests across scales through interacting Moran effects. Ecol Lett 2022; 25:1854-1868. [PMID: 35771209 PMCID: PMC9541195 DOI: 10.1111/ele.14066] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Revised: 05/20/2022] [Accepted: 06/02/2022] [Indexed: 11/30/2022]
Abstract
Spatial synchrony is a ubiquitous and important feature of population dynamics, but many aspects of this phenomenon are not well understood. In particular, it is largely unknown how multiple environmental drivers interact to determine synchrony via Moran effects, and how these impacts vary across spatial and temporal scales. Using new wavelet statistical techniques, we characterised synchrony in populations of giant kelp Macrocystis pyrifera, a widely distributed marine foundation species, and related synchrony to variation in oceanographic conditions across 33 years (1987-2019) and >900 km of coastline in California, USA. We discovered that disturbance (storm-driven waves) and resources (seawater nutrients)-underpinned by climatic variability-act individually and interactively to produce synchrony in giant kelp across geography and timescales. Our findings demonstrate that understanding and predicting synchrony, and thus the regional stability of populations, relies on resolving the synergistic and antagonistic Moran effects of multiple environmental drivers acting on different timescales.
Collapse
Affiliation(s)
- Max C. N. Castorani
- Department of Environmental SciencesUniversity of VirginiaCharlottesvilleVirginiaUSA
| | - Tom W. Bell
- Department of Applied Ocean Physics & EngineeringWoods Hole Oceanographic InstitutionWoods HoleMassachusettsUSA
- Earth Research InstituteUniversity of CaliforniaSanta BarbaraCaliforniaUSA
| | - Jonathan A. Walter
- Department of Environmental SciencesUniversity of VirginiaCharlottesvilleVirginiaUSA
| | - Daniel C. Reuman
- Department of Ecology and Evolutionary BiologyUniversity of KansasLawrenceKansasUSA
- Center for Ecological ResearchUniversity of KansasLawrenceKansasUSA
- Laboratory of PopulationsRockefeller UniversityNew YorkNew YorkUSA
| | - Kyle C. Cavanaugh
- Department of GeographyUniversity of CaliforniaLos AngelesCaliforniaUSA
| | - Lawrence W. Sheppard
- Department of Ecology and Evolutionary BiologyUniversity of KansasLawrenceKansasUSA
- Marine Biological Association of the United KingdomPlymouthUK
| |
Collapse
|
8
|
García-Reyes M, Thompson SA, Rogers-Bennett L, Sydeman WJ. Winter oceanographic conditions predict summer bull kelp canopy cover in northern California. PLoS One 2022; 17:e0267737. [PMID: 35511813 PMCID: PMC9070938 DOI: 10.1371/journal.pone.0267737] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2021] [Accepted: 04/13/2022] [Indexed: 11/18/2022] Open
Abstract
Bull kelp, Nereocystis luetkeana, is an iconic kelp forest species of the Northeast Pacific that provides a wide range of ecosystem services to coastal marine species and society. In northern California, U.S.A., Nereocystis abundance declined sharply in 2014 and has yet to recover. While abiotic and biotic stressors were present prior to 2014, the population collapse highlights the need for a better understanding of how environmental conditions impact Nereocystis. In this study, we used a newly-developed, satellite-based dataset of bull kelp abundance, proxied by canopy cover over 20 years, to test the hypothesis that winter oceanographic conditions determine summer Nereocystis canopy cover. For the years before the collapse (1991 through 2013), wintertime ocean conditions, synthesized in a Multivariate Ocean Climate Indicator (MOCI), were indeed a good predictor of summer Nereocystis canopy cover (R2 = 0.40 to 0.87). We attribute this relationship to the effects of upwelling and/or temperature on nutrient availability. South of Point Arena, California, winter ocean conditions had slightly lower explanatory power than north of Point Arena, also reflective of spring upwelling-driven nutrient entrainment. Results suggest that the Nereocystis gametophytes and/or early sporophytes are sensitive to winter oceanographic conditions. Furthermore, environmental conditions in winter 2014 could have been used to predict the Nereocystis collapse in summer 2014, and for kelp north of Point Arena, a further decline in 2015. Importantly, environmental models do not predict changes in kelp after 2015, suggesting biotic factors suppressed kelp recovery, most likely extreme sea urchin herbivory. Conditions during winter, a season that is often overlooked in studies of biophysical interactions, are useful for predicting summer Nereocystis kelp forest canopy cover, and will be useful in supporting kelp restoration actions in California and perhaps elsewhere in the world.
Collapse
Affiliation(s)
| | | | - Laura Rogers-Bennett
- Coastal Marine Science Institute, Karen C. Drayer, Wildlife Health Center, UC Davis, Bodega Marine Lab, Bodega Bay, California, United States of America
- California Department Fish and Wildlife, Bodega Marine Lab, Bodega Bay, California, United States of America
| | - William J. Sydeman
- Farallon Institute, Petaluma, California, United States of America
- Bodega Marine Lab, UC Davis, Bodega Bay, California, United States of America
| |
Collapse
|
9
|
Walter JA, Castorani MCN, Bell TW, Sheppard L, Cavanaugh KC, Reuman DC. Tail-dependent spatial synchrony arises from nonlinear driver-response relationships. Ecol Lett 2022; 25:1189-1201. [PMID: 35246946 PMCID: PMC9543197 DOI: 10.1111/ele.13991] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Revised: 02/08/2022] [Accepted: 02/09/2022] [Indexed: 02/04/2023]
Abstract
Spatial synchrony may be tail-dependent, that is, stronger when populations are abundant than scarce, or vice-versa. Here, 'tail-dependent' follows from distributions having a lower tail consisting of relatively low values and an upper tail of relatively high values. We present a general theory of how the distribution and correlation structure of an environmental driver translates into tail-dependent spatial synchrony through a non-linear response, and examine empirical evidence for theoretical predictions in giant kelp along the California coastline. In sheltered areas, kelp declines synchronously (lower-tail dependence) when waves are relatively intense, because waves below a certain height do little damage to kelp. Conversely, in exposed areas, kelp is synchronised primarily by periods of calmness that cause shared recovery (upper-tail dependence). We find evidence for geographies of tail dependence in synchrony, which helps structure regional population resilience: areas where population declines are asynchronous may be more resilient to disturbance because remnant populations facilitate reestablishment.
Collapse
Affiliation(s)
- Jonathan A. Walter
- Department of Environmental SciencesUniversity of VirginiaCharlottesvilleVirginiaUSA
| | - Max C. N. Castorani
- Department of Environmental SciencesUniversity of VirginiaCharlottesvilleVirginiaUSA
| | - Tom W. Bell
- Woods Hole Oceanographic InstitutionWoods HoleMassachusettsUSA
| | - Lawrence W. Sheppard
- Department of Ecology and Evolutionary Biology and Center for Ecological Research and Kansas Biological SurveyUniversity of KansasLawrenceKansasUSA
- Marine Biological Association of the United KingdomPlymouthUK
| | - Kyle C. Cavanaugh
- Department of GeographyUniversity of California, Los AngelesLos AngelesCaliforniaUSA
| | - Daniel C. Reuman
- Department of Ecology and Evolutionary Biology and Center for Ecological Research and Kansas Biological SurveyUniversity of KansasLawrenceKansasUSA
| |
Collapse
|
10
|
|
11
|
Castorani MCN, Harrer SL, Miller RJ, Reed DC. Disturbance structures canopy and understory productivity along an environmental gradient. Ecol Lett 2021; 24:2192-2206. [PMID: 34339096 PMCID: PMC8518717 DOI: 10.1111/ele.13849] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Revised: 04/13/2021] [Accepted: 06/29/2021] [Indexed: 01/31/2023]
Abstract
Disturbances often disproportionately impact different vegetation layers in forests and other vertically stratified ecosystems, shaping community structure and ecosystem function. However, disturbance-driven changes may be mediated by environmental conditions that affect habitat quality and species interactions. In a decade-long field experiment, we tested how kelp forest net primary productivity (NPP) responds to repeated canopy loss along a gradient in grazing and substrate suitability. We discovered that habitat quality can mediate the effects of intensified disturbance on canopy and understory NPP. Experimental annual and quarterly disturbances suppressed total macroalgal NPP, but effects were strongest in high-quality habitats that supported dense kelp canopies that were removed by disturbance. Understory macroalgae partly compensated for canopy NPP losses and this effect magnified with increasing habitat quality. Disturbance-driven increases in understory NPP were still rising after 5-10 years of disturbance, demonstrating the value of long-term experimentation for understanding ecosystem responses to changing disturbance regimes.
Collapse
Affiliation(s)
- Max C. N. Castorani
- Department of Environmental SciencesUniversity of VirginiaCharlottesvilleVAUSA
| | | | - Robert J. Miller
- Marine Science InstituteUniversity of CaliforniaSanta BarbaraCAUSA
| | - Daniel C. Reed
- Marine Science InstituteUniversity of CaliforniaSanta BarbaraCAUSA
| |
Collapse
|
12
|
Theuerkauf SJ, Puckett BJ, Eggleston DB. Metapopulation dynamics of oysters: sources, sinks, and implications for conservation and restoration. Ecosphere 2021. [DOI: 10.1002/ecs2.3573] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Affiliation(s)
- Seth J. Theuerkauf
- Center for Marine Sciences and Technology Department of Marine, Earth and Atmospheric Sciences North Carolina State University Morehead City North Carolina28557USA
| | - Brandon J. Puckett
- Center for Marine Sciences and Technology Department of Marine, Earth and Atmospheric Sciences North Carolina State University Morehead City North Carolina28557USA
- North Carolina Coastal Reserve and National Estuarine Research Reserve Beaufort North Carolina28516USA
| | - David B. Eggleston
- Center for Marine Sciences and Technology Department of Marine, Earth and Atmospheric Sciences North Carolina State University Morehead City North Carolina28557USA
| |
Collapse
|
13
|
Chanyandura A, Muposhi VK, Gandiwa E, Muboko N. An analysis of threats, strategies, and opportunities for African rhinoceros conservation. Ecol Evol 2021; 11:5892-5910. [PMID: 34141191 PMCID: PMC8207337 DOI: 10.1002/ece3.7536] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Revised: 03/14/2021] [Accepted: 03/19/2021] [Indexed: 12/11/2022] Open
Abstract
The complexity and magnitude of threats to black (Diceros bicornis) and white (Ceratotherium simum) rhinoceros conservation in Africa have triggered global concerns and actions. In this study, we analyzed (i) threats to rhinoceros conservation including external shocks, (ii) historical rhinoceros conservation strategies in Zimbabwe and Africa, more broadly, and (iii) opportunities for enhanced rhinoceros conservation in Zimbabwe and Africa. A literature search from 1975 to 2020 was carried out using a predefined search protocol, involving a number of filters based on a set of keywords to balance search sensitivity with specificity. A total of 193 articles, which were most relevant to key themes on rhinoceros conservation, were used in this study. The common threats to rhinoceros conservation identified in this paper include poaching, habitat fragmentation and loss, international trade in illegal rhino products, and external shocks such as global financial recessions and pandemics. Cascading effects emanating from these threats include small and isolated populations, which are prone to genetic, demographic, and environmental uncertainties. Rhinoceros conservation strategies being implemented include education and awareness campaigns, better equipped and more antipoaching efforts, use of innovative systems and technologies, dehorning, and enhancing safety nets, and livelihoods of local communities. Opportunities for rhinoceros conservation vary across the spatial scale, and these include (a) a well-coordinated stakeholder and community involvement, (b) strategic meta-population management, (c) enhancing law enforcement initiatives through incorporating real-time surveillance technologies and intruder detection sensor networks for crime detection, (d) scaling up demand reduction awareness campaigns, and (e) developing more certified wildlife crime and forensic laboratories, and information repository for international corporation.
Collapse
Affiliation(s)
- Admire Chanyandura
- School of Wildlife, Ecology and ConservationChinhoyi University of TechnologyChinhoyiZimbabwe
| | - Victor K. Muposhi
- School of Wildlife, Ecology and ConservationChinhoyi University of TechnologyChinhoyiZimbabwe
| | - Edson Gandiwa
- Scientific ServicesZimbabwe Parks and Wildlife Management AuthorityHarareZimbabwe
| | - Never Muboko
- School of Wildlife, Ecology and ConservationChinhoyi University of TechnologyChinhoyiZimbabwe
| |
Collapse
|
14
|
Iwaniec DM, Gooseff M, Suding KN, Samuel Johnson D, Reed DC, Peters DPC, Adams B, Barrett JE, Bestelmeyer BT, Castorani MCN, Cook EM, Davidson MJ, Groffman PM, Hanan NP, Huenneke LF, Johnson PTJ, McKnight DM, Miller RJ, Okin GS, Preston DL, Rassweiler A, Ray C, Sala OE, Schooley RL, Seastedt T, Spasojevic MJ, Vivoni ER. Connectivity: insights from the U.S. Long Term Ecological Research Network. Ecosphere 2021. [DOI: 10.1002/ecs2.3432] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Affiliation(s)
- David M. Iwaniec
- Urban Studies Institute Andrew Young School of Policy Studies Georgia State University Atlanta Georgia30303USA
| | - Michael Gooseff
- Institute of Arctic and Alpine Research University of Colorado Boulder Colorado80309USA
| | - Katharine N. Suding
- Institute of Arctic and Alpine Research University of Colorado Boulder Colorado80309USA
| | - David Samuel Johnson
- Virginia Institute of Marine Science William & Mary Gloucester Point Virginia23062USA
| | - Daniel C. Reed
- Marine Science Institute University of California Santa Barbara California93106USA
| | - Debra P. C. Peters
- US Department of Agriculture Agricultural Research Service Jornada Experimental Range Unit Las Cruces New Mexico88003‐0003USA
- Jornada Basin Long Term Ecological Research Program New Mexico State University Las Cruces New Mexico88003USA
| | - Byron Adams
- Department of Biology and Monte L. Bean Museum Brigham Young University Provo Utah84602USA
| | - John E. Barrett
- Department of Biological Sciences Virginia Tech University Blacksburg Virginia24061USA
| | - Brandon T. Bestelmeyer
- US Department of Agriculture Agricultural Research Service Jornada Experimental Range Unit Las Cruces New Mexico88003‐0003USA
- Jornada Basin Long Term Ecological Research Program New Mexico State University Las Cruces New Mexico88003USA
| | - Max C. N. Castorani
- Department of Environmental Sciences University of Virginia Charlottesville Virginia22904USA
| | - Elizabeth M. Cook
- Environmental Sciences Department Barnard College New York New York10027USA
| | - Melissa J. Davidson
- School Sustainability and Julie Ann Wrigley Global Institute of Sustainability Arizona State University Tempe Arizona85287USA
| | - Peter M. Groffman
- City University of New York Advanced Science Research Center at the Graduate Center New York New York10031USA
- Cary Institute of Ecosystem Studies Millbrook New York12545USA
| | - Niall P. Hanan
- Jornada Basin Long Term Ecological Research Program New Mexico State University Las Cruces New Mexico88003USA
- Department of Plant and Environmental Sciences New Mexico State University Las Cruces New Mexico88003USA
| | - Laura F. Huenneke
- Jornada Basin Long Term Ecological Research Program New Mexico State University Las Cruces New Mexico88003USA
- School of Earth and Sustainability Northern Arizona University Flagstaff Arizona86011USA
| | - Pieter T. J. Johnson
- Department of Ecology and Evolutionary Biology University of Colorado Boulder Colorado80309USA
| | - Diane M. McKnight
- Civil, Environmental and Architectural Engineering University of Colorado Boulder Colorado80309USA
| | - Robert J. Miller
- Marine Science Institute University of California Santa Barbara California93106USA
| | - Gregory S. Okin
- Jornada Basin Long Term Ecological Research Program New Mexico State University Las Cruces New Mexico88003USA
- Department of Geography University of California Los Angeles California90095USA
| | - Daniel L. Preston
- Department of Fish, Wildlife, and Conservation Biology Colorado State University Fort Collins Colorado80523USA
| | - Andrew Rassweiler
- Department of Biological Science Florida State University Tallahassee Florida32304USA
| | - Chris Ray
- Institute of Arctic and Alpine Research University of Colorado Boulder Colorado80309USA
| | - Osvaldo E. Sala
- Jornada Basin Long Term Ecological Research Program New Mexico State University Las Cruces New Mexico88003USA
- Global Drylands Center School of Life Sciences and School of Sustainability Arizona State University Tempe Arizona85287USA
| | - Robert L. Schooley
- Jornada Basin Long Term Ecological Research Program New Mexico State University Las Cruces New Mexico88003USA
- Department of Natural Resources and Environmental Sciences University of Illinois Urbana Illinois61801USA
| | - Timothy Seastedt
- Institute of Arctic and Alpine Research University of Colorado Boulder Colorado80309USA
| | - Marko J. Spasojevic
- Department of Evolution, Ecology, and Organismal Biology University of California Riverside Riverside California92521USA
| | - Enrique R. Vivoni
- Jornada Basin Long Term Ecological Research Program New Mexico State University Las Cruces New Mexico88003USA
- School of Earth and Space Exploration and School of Sustainable Engineering and the Built Environment Arizona State University Tempe Arizona85287USA
| |
Collapse
|
15
|
Catalano KA, Dedrick AG, Stuart MR, Puritz JB, Montes HR, Pinsky ML. Quantifying dispersal variability among nearshore marine populations. Mol Ecol 2020; 30:2366-2377. [PMID: 33197290 DOI: 10.1111/mec.15732] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2020] [Revised: 10/26/2020] [Accepted: 11/03/2020] [Indexed: 01/17/2023]
Abstract
Dispersal drives diverse processes from population persistence to community dynamics. However, the amount of temporal variation in dispersal and its consequences for metapopulation dynamics is largely unknown for organisms with environmentally driven dispersal (e.g., many marine larvae, arthropods and plant seeds). Here, we used genetic parentage analysis to detect larval dispersal events in a common coral reef fish, Amphiprion clarkii, along 30 km of coastline consisting of 19 reef patches in Ormoc Bay, Leyte, Philippines. We quantified variation in the dispersal kernel across seven years (2012-2018) and monsoon seasons with 71 parentage assignments from 791 recruits and 1,729 adults. Connectivity patterns differed significantly among years and seasons in the scale and shape but not in the direction of dispersal. This interannual variation in dispersal kernels introduced positive temporal covariance among dispersal routes that theory predicts is likely to reduce stochastic metapopulation growth rates below the growth rates expected from only a single or a time-averaged connectivity estimate. The extent of variation in mean dispersal distance observed here among years is comparable in magnitude to the differences across reef fish species. Considering dispersal variation will be an important avenue for further metapopulation and metacommunity research across diverse taxa.
Collapse
Affiliation(s)
- Katrina A Catalano
- Ecology, Evolution, and Natural Resources, Rutgers University, New Brunswick, NJ, USA
| | - Allison G Dedrick
- Ecology, Evolution, and Natural Resources, Rutgers University, New Brunswick, NJ, USA
| | - Michelle R Stuart
- Ecology, Evolution, and Natural Resources, Rutgers University, New Brunswick, NJ, USA
| | - Jonathan B Puritz
- Department of Biological Sciences, University of Rhode Island, Kingston, RI, USA
| | | | - Malin L Pinsky
- Ecology, Evolution, and Natural Resources, Rutgers University, New Brunswick, NJ, USA
| |
Collapse
|
16
|
Phylogeography of split kelp Hedophyllum nigripes: northern ice-age refugia and trans-Arctic dispersal. Polar Biol 2020. [DOI: 10.1007/s00300-020-02748-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
|
17
|
Griffiths SM, Butler MJ, Behringer DC, Pérez T, Preziosi RF. Oceanographic features and limited dispersal shape the population genetic structure of the vase sponge Ircinia campana in the Greater Caribbean. Heredity (Edinb) 2020; 126:63-76. [PMID: 32699391 PMCID: PMC7852562 DOI: 10.1038/s41437-020-0344-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2019] [Revised: 07/13/2020] [Accepted: 07/13/2020] [Indexed: 11/10/2022] Open
Abstract
Understanding population genetic structure can help us to infer dispersal patterns, predict population resilience and design effective management strategies. For sessile species with limited dispersal, this is especially pertinent because genetic diversity and connectivity are key aspects of their resilience to environmental stressors. Here, we describe the population structure of Ircinia campana, a common Caribbean sponge subject to mass mortalities and disease. Microsatellites were used to genotype 440 individuals from 19 sites throughout the Greater Caribbean. We found strong genetic structure across the region, and significant isolation by distance across the Lesser Antilles, highlighting the influence of limited larval dispersal. We also observed spatial genetic structure patterns congruent with oceanography. This includes evidence of connectivity between sponges in the Florida Keys and the southeast coast of the United States (>700 km away) where the oceanographic environment is dominated by the strong Florida Current. Conversely, the population in southern Belize was strongly differentiated from all other sites, consistent with the presence of dispersal-limiting oceanographic features, including the Gulf of Honduras gyre. At smaller spatial scales (<100 km), sites showed heterogeneous patterns of low-level but significant genetic differentiation (chaotic genetic patchiness), indicative of temporal variability in recruitment or local selective pressures. Genetic diversity was similar across sites, but there was evidence of a genetic bottleneck at one site in Florida where past mass mortalities have occurred. These findings underscore the relationship between regional oceanography and weak larval dispersal in explaining population genetic patterns, and could inform conservation management of the species.
Collapse
Affiliation(s)
- Sarah M Griffiths
- Ecology and Environment Research Centre, Manchester Metropolitan University, Manchester, UK.
| | - Mark J Butler
- Department of Biological Sciences, Institute of Environment, Florida International University, North Miami, FL, USA
| | - Donald C Behringer
- Fisheries and Aquatic Sciences, University of Florida, Gainesville, FL, USA.,Emerging Pathogens Institute, University of Florida, Gainesville, FL, USA
| | - Thierry Pérez
- Institut Méditerranéen de Biodiversité et d'Ecologie Marine et Continentale, Aix Marseille Université, Marseille, France
| | - Richard F Preziosi
- Ecology and Environment Research Centre, Manchester Metropolitan University, Manchester, UK
| |
Collapse
|
18
|
Hamilton SL, Bell TW, Watson JR, Grorud-Colvert KA, Menge BA. Remote sensing: generation of long-term kelp bed data sets for evaluation of impacts of climatic variation. Ecology 2020; 101:e03031. [PMID: 32108936 DOI: 10.1002/ecy.3031] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/09/2019] [Revised: 01/14/2020] [Accepted: 01/30/2020] [Indexed: 02/06/2023]
Abstract
A critical tool in assessing ecosystem change is the analysis of long-term data sets, yet such information is generally sparse and often unavailable for many habitats. Kelp forests are an example of rapidly changing ecosystems that are in most cases data poor. Because kelp forests are highly dynamic and have high intrinsic interannual variability, understanding how regional-scale drivers are driving kelp populations-and particularly how kelp populations are responding to climate change-requires long-term data sets. However, much of the work on kelp responses to climate change has focused on just a few, relatively long-lived, perennial, canopy-forming species. To understand how kelp populations with different life history traits are responding to climate-related variability, we leverage 35 yr of Landsat satellite imagery to track the population size of an annual, ruderal kelp, Nereocystis luetkeana, across Oregon. We found high levels of interannual variability in Nereocystis canopy area and varying population trajectories over the last 35 yr. Surprisingly, Oregon Nereocystis population sizes were unresponsive to a 2014 marine heat wave accompanied by increases in urchin densities that decimated northern California Nereocystis populations. Some Oregon Nereocystis populations have even increased in area relative to pre-2014 levels. Analysis of environmental drivers found that Nereocystis population size was negatively correlated with estimated nitrate levels and positively correlated with winter wave height. This pattern is the inverse of the predicted relationship based on extensive prior work on the perennial kelp Macrocystis pyrifera and may be related to the annual life cycle of Nereocystis. This article demonstrates (1) the value of novel remote sensing tools to create long-term data sets that may challenge our understanding of nearshore marine species and (2) the need to incorporate life history traits into our theory of how climate change will shape the ocean of the future.
Collapse
Affiliation(s)
- Sara L Hamilton
- Department of Integrative Biology, Oregon State University, Corvallis, Oregon, 97331, USA
| | - Tom W Bell
- Earth Research Institute, University of California, Santa Barbara, California, 93106, USA
| | - James R Watson
- Department of Geography, Oregon State University, Corvallis, Oregon, 97331, USA
| | | | - Bruce A Menge
- Department of Integrative Biology, Oregon State University, Corvallis, Oregon, 97331, USA
| |
Collapse
|
19
|
Bullock JM, Wichmann MC, Hails RS, Hodgson DJ, Alexander MJ, Morley K, Knopp T, Ridding LE, Hooftman DAP. Human-mediated dispersal and disturbance shape the metapopulation dynamics of a long-lived herb. Ecology 2020; 101:e03087. [PMID: 32320472 DOI: 10.1002/ecy.3087] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/06/2019] [Revised: 02/12/2020] [Accepted: 03/30/2020] [Indexed: 11/11/2022]
Abstract
As anthropogenic impacts on the natural world escalate, there is increasing interest in the role of humans in dispersing seeds. But the consequences of this Human-Mediated Dispersal (HMD) on plant spatial dynamics are little studied. In this paper, we ask how secondary dispersal by HMD affects the dynamics of a natural plant metapopulation. In addition to dispersal between patches, we suggest within-patch processes can be critical. To address this, we assess how variation in local population dynamics, caused by small-scale disturbances, affects metapopulation size. We created an empirically based model with stochastic population dynamics and dispersal among patches, which represented a real-world, cliff-top metapopulation of wild cabbage Brassica oleracea. We collected demographic data from multiple populations by tagging plants over eight years. We assessed seed survival, and establishment and survival of seedlings in intact vegetation vs. small disturbances. We modeled primary dispersal by wind using field data and used experimental data on secondary HMD by hikers. We monitored occupancy patterns over a 14-yr period in the real metapopulation. Disturbance had large effects on local population growth rates, by increasing seedling establishment and survival. This meant that the modeled metapopulation grew in size only when the area disturbed in each patch was above 35%. In these growing metapopulations, although only 0.2% of seeds underwent HMD, this greatly enhanced metapopulation growth rates. Similarly, HMD allowed more colonizations in declining metapopulations under low disturbance, and this slowed the rate of decline. The real metapopulation showed patterns of varying patch occupancy over the survey years, which were related to habitat quality, but also positively to human activity along the cliffs, hinting at beneficial effects of humans. These findings illustrate that realistic changes to dispersal or demography, specifically by humans, can have fundamental effects on the viability of a species at the landscape scale.
Collapse
Affiliation(s)
- James M Bullock
- UK Centre for Ecology & Hydrology, Benson Lane, Wallingford, Oxfordshire, OX10 8BB, United Kingdom
| | - Matthias C Wichmann
- UK Centre for Ecology & Hydrology, Benson Lane, Wallingford, Oxfordshire, OX10 8BB, United Kingdom.,Heinz Sielmann Stiftung, Unter den Kiefern 9, 14641, Wustermark, OT Elstal, Germany
| | - Rosemary S Hails
- UK Centre for Ecology & Hydrology, Benson Lane, Wallingford, Oxfordshire, OX10 8BB, United Kingdom.,National Trust, Heelis, Kemble Drive, Swindon, SN2 2NA, United Kingdom
| | - David J Hodgson
- Centre for Ecology and Conservation, University of Exeter, Penryn Campus, Penryn, TR10 9FE, United Kingdom
| | - Matt J Alexander
- UK Centre for Ecology & Hydrology, Benson Lane, Wallingford, Oxfordshire, OX10 8BB, United Kingdom
| | - Kathryn Morley
- Defra, 2 Marsham Street, London, SW1P 4DF, United Kingdom
| | - Tatjana Knopp
- UK Centre for Ecology & Hydrology, Benson Lane, Wallingford, Oxfordshire, OX10 8BB, United Kingdom
| | - Lucy E Ridding
- UK Centre for Ecology & Hydrology, Benson Lane, Wallingford, Oxfordshire, OX10 8BB, United Kingdom
| | - Danny A P Hooftman
- UK Centre for Ecology & Hydrology, Benson Lane, Wallingford, Oxfordshire, OX10 8BB, United Kingdom.,Lactuca: Environmental Data Analyses and Modelling, Diemen, 1112NC, The Netherlands
| |
Collapse
|
20
|
Castorani MCN, Baskett ML. Disturbance size and frequency mediate the coexistence of benthic spatial competitors. Ecology 2019; 101:e02904. [PMID: 31562771 DOI: 10.1002/ecy.2904] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/14/2019] [Accepted: 09/11/2019] [Indexed: 11/07/2022]
Abstract
Disturbance plays a key role in structuring community dynamics and is central to conservation and natural resource management. However, ecologists continue to debate the importance of disturbance for species coexistence and biodiversity. Such disagreements may arise in part because few studies have examined variation across multiple dimensions of disturbance (e.g., size, frequency) and how the effects of disturbance may depend on species attributes (e.g., competitiveness, dispersal ability). In light of this gap in understanding and accelerating changes to disturbance regimes worldwide, we used spatial population models to explore how disturbance size and frequency interact with species attributes to affect coexistence between seagrass (Zostera marina) and colonial burrowing shrimp (Neotrypaea californiensis) that compete for benthic space in estuaries throughout the west coast of North America. By simulating population dynamics under a range of ecologically relevant disturbance regimes, we discovered that intermediate disturbance (approximately 9-23% of landscape area per year) to short-dispersing, competitively dominant seagrass can foster long-term stable coexistence with broad-dispersing, competitively inferior burrowing shrimp via the spatial storage effect. When holding the total extent of disturbance constant, the individual size and annual frequency of disturbance altered landscape spatial patterns and mediated the dominance and evenness of competitors. Many small disturbances favored short-dispersing seagrass by hastening recolonization, whereas fewer large disturbances benefited rapidly colonizing burrowing shrimp by creating temporary refugia from competition. As a result, large, infrequent disturbances generally improved the strength and stability of coexistence relative to small, frequent disturbances. Regardless of disturbance size or frequency, the dispersal ability of the superior competitor (seagrass), the competitive ability of the inferior competitor (burrowing shrimp), and the reproduction and survival of both species strongly influenced population abundances and coexistence. Our results show that disturbance size and frequency can promote or constrain coexistence by altering the duration of time over which inferior competitors can escape competitive exclusion, particularly when colonization depends on the spatial pattern of disturbance due to dispersal traits. For coastal managers and conservation practitioners, our findings indicate that reducing particularly large disturbances may help conserve globally imperiled seagrass meadows and control burrowing shrimp colonies that can threaten the viability of oyster aquaculture.
Collapse
Affiliation(s)
- Max C N Castorani
- Department of Environmental Sciences, University of Virginia, Charlottesville, Virginia, 22904, USA
| | - Marissa L Baskett
- Department of Environmental Science and Policy, University of California, Davis, California, 95616, USA
| |
Collapse
|
21
|
Snell RS, Beckman NG, Fricke E, Loiselle BA, Carvalho CS, Jones LR, Lichti NI, Lustenhouwer N, Schreiber SJ, Strickland C, Sullivan LL, Cavazos BR, Giladi I, Hastings A, Holbrook KM, Jongejans E, Kogan O, Montaño-Centellas F, Rudolph J, Rogers HS, Zwolak R, Schupp EW. Consequences of intraspecific variation in seed dispersal for plant demography, communities, evolution and global change. AOB PLANTS 2019; 11:plz016. [PMID: 31346404 PMCID: PMC6644487 DOI: 10.1093/aobpla/plz016] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/19/2018] [Accepted: 03/20/2019] [Indexed: 05/22/2023]
Abstract
As the single opportunity for plants to move, seed dispersal has an important impact on plant fitness, species distributions and patterns of biodiversity. However, models that predict dynamics such as risk of extinction, range shifts and biodiversity loss tend to rely on the mean value of parameters and rarely incorporate realistic dispersal mechanisms. By focusing on the mean population value, variation among individuals or variability caused by complex spatial and temporal dynamics is ignored. This calls for increased efforts to understand individual variation in dispersal and integrate it more explicitly into population and community models involving dispersal. However, the sources, magnitude and outcomes of intraspecific variation in dispersal are poorly characterized, limiting our understanding of the role of dispersal in mediating the dynamics of communities and their response to global change. In this manuscript, we synthesize recent research that examines the sources of individual variation in dispersal and emphasize its implications for plant fitness, populations and communities. We argue that this intraspecific variation in seed dispersal does not simply add noise to systems, but, in fact, alters dispersal processes and patterns with consequences for demography, communities, evolution and response to anthropogenic changes. We conclude with recommendations for moving this field of research forward.
Collapse
Affiliation(s)
- Rebecca S Snell
- Department of Environmental and Plant Biology, Ohio University, Athens, OH, USA
| | - Noelle G Beckman
- Department of Biology and Ecology Center, Utah State University, Logan, UT, USA
| | - Evan Fricke
- Department of Ecology, Evolution, and Organismal Biology, Iowa State University, Ames, IA, USA
| | - Bette A Loiselle
- Department of Wildlife Ecology and Conservation, University of Florida, Gainesville, FL, USA
- Center for Latin American Studies, University of Florida, Gainsville, FL, USA
| | | | - Landon R Jones
- Department of Forestry and Natural Resources, Purdue University, West Lafayette, IN, USA
| | | | - Nicky Lustenhouwer
- Department of Ecology and Evolutionary Biology, University of California, Santa Cruz, CA, USA
| | - Sebastian J Schreiber
- Department of Evolution and Ecology and Center for Population Biology, University of California, Davis, CA, USA
| | - Christopher Strickland
- Department of Mathematics and Department of Ecology and Evolutionary Biology, University of Tennessee, Knoxville, Knoxville, TN, USA
| | - Lauren L Sullivan
- Division of Biological Sciences, University of Missouri, Columbia, MO, USA
| | - Brittany R Cavazos
- Department of Ecology, Evolution, and Organismal Biology, Iowa State University, Ames, IA, USA
| | - Itamar Giladi
- Mitrani Department of Desert Ecology, Swiss Institute for Dryland Environmental and Energy Research, Jacob Blaustein Institutes for Desert Research, Ben-Gurion University of the Negev, Midreshet Ben-Gurion, Israel
| | - Alan Hastings
- Department of Environmental Science and Policy, University of California, Davis, CA, USA
- Santa Fe Institute, Santa Fe, NM, USA
| | | | - Eelke Jongejans
- Institute for Water and Wetland Research, Radboud University, Nijmegen, Netherlands
| | - Oleg Kogan
- Physics Department, California Polytechnic State University, San Luis Obispo, CA, USA
| | | | - Javiera Rudolph
- Department of Biology, University of Florida, Gainesville, FL, USA
| | - Haldre S Rogers
- Department of Ecology, Evolution, and Organismal Biology, Iowa State University, Ames, IA, USA
| | - Rafal Zwolak
- Department of Systematic Zoology, Adam Mickiewicz University, Poznań, Poland
| | - Eugene W Schupp
- Department of Wildland Resources and Ecology Center, Utah State University, Logan, UT, USA
| |
Collapse
|
22
|
Friesen SK, Martone R, Rubidge E, Baggio JA, Ban NC. An approach to incorporating inferred connectivity of adult movement into marine protected area design with limited data. ECOLOGICAL APPLICATIONS : A PUBLICATION OF THE ECOLOGICAL SOCIETY OF AMERICA 2019; 29:e01890. [PMID: 30929286 PMCID: PMC6850429 DOI: 10.1002/eap.1890] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2018] [Revised: 12/12/2018] [Accepted: 02/20/2019] [Indexed: 05/28/2023]
Abstract
Marine protected areas (MPAs) are important conservation tools that can support the resilience of marine ecosystems. Many countries, including Canada, have committed to protecting at least 10% of their marine areas under the Convention on Biological Diversity's Aichi Target 11, which includes connectivity as a key aspect. Connectivity, the movement of individuals among habitats, can enhance population stability and resilience within and among MPAs. However, little is known about regional spatial patterns of marine ecological connectivity, particularly adult movement. We developed a method to assess and design MPA networks that maximize inferred connectivity within habitat types for adult movement when ecological data are limited. We used the Northern Shelf Bioregion in British Columbia, Canada, to explore two different approaches: (1) evaluating sites important for inferred regional connectivity (termed hotspots) and (2) assessing MPA network configurations based on their overlap with connectivity hotspots and interconnectedness between MPAs. To assess inferred connectivity via adult movement, we used two different threshold distances (15 and 50 km) to capture moderate home ranges, which are most appropriate to consider in MPA design. We applied graph theory to assess inferred connectivity within 16 habitat and depth categories (proxies for distinct ecological communities), and used novel multiplex network methodologies to perform an aggregated assessment of inferred connectivity. We evaluated inferred regional connectivity hotspots based on betweenness and eigenvector centrality metrics, finding that the existing MPA network overlapped a moderate proportion of these regional hotspots and identified key areas to be considered as candidate MPAs. Network density among existing MPAs was low within the individual habitat networks, as well as the multiplex. This work informs an ongoing MPA planning process, and approaches for incorporating connectivity into MPA design when data are limited, with lessons for other contexts.
Collapse
Affiliation(s)
- Sarah K. Friesen
- School of Environmental StudiesUniversity of VictoriaVictoriaBritish ColumbiaV8W 2Y2Canada
| | - Rebecca Martone
- Ministry of Forests, Lands, Natural Resource Operations and Rural Development, Province of British ColumbiaVictoriaBritish ColumbiaV8W 9N1Canada
| | - Emily Rubidge
- Institute of Ocean Sciences, Fisheries and Oceans CanadaSidneyBritish ColumbiaV8L 4B2Canada
- Department of Forest and Conservation SciencesUniversity of British ColumbiaVancouverBritish ColumbiaV6T 1Z4Canada
| | - Jacopo A. Baggio
- Department of Political ScienceUniversity of Central FloridaOrlandoFlorida32816USA
- Sustainable Coastal Systems ClusterNational Center for Integrated Coastal ResearchUniversity of Central FloridaOrlandoFlorida32816USA
| | - Natalie C. Ban
- School of Environmental StudiesUniversity of VictoriaVictoriaBritish ColumbiaV8W 2Y2Canada
| |
Collapse
|
23
|
Van der Stocken T, Wee AKS, De Ryck DJR, Vanschoenwinkel B, Friess DA, Dahdouh-Guebas F, Simard M, Koedam N, Webb EL. A general framework for propagule dispersal in mangroves. Biol Rev Camb Philos Soc 2019; 94:1547-1575. [PMID: 31058451 DOI: 10.1111/brv.12514] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2018] [Revised: 03/19/2019] [Accepted: 03/27/2019] [Indexed: 12/29/2022]
Abstract
Dispersal allows species to shift their distributions in response to changing climate conditions. As a result, dispersal is considered a key process contributing to a species' long-term persistence. For many passive dispersers, fluid dynamics of wind and water fuel these movements and different species have developed remarkable adaptations for utilizing this energy to reach and colonize suitable habitats. The seafaring propagules (fruits and seeds) of mangroves represent an excellent example of such passive dispersal. Mangroves are halophytic woody plants that grow in the intertidal zones along tropical and subtropical shorelines and produce hydrochorous propagules with high dispersal potential. This results in exceptionally large coastal ranges across vast expanses of ocean and allows species to shift geographically and track the conditions to which they are adapted. This is particularly relevant given the challenges presented by rapid sea-level rise, higher frequency and intensity of storms, and changes in regional precipitation and temperature regimes. However, despite its importance, the underlying drivers of mangrove dispersal have typically been studied in isolation, and a conceptual synthesis of mangrove oceanic dispersal across spatial scales is lacking. Here, we review current knowledge on mangrove propagule dispersal across the various stages of the dispersal process. Using a general framework, we outline the mechanisms and ecological processes that are known to modulate the spatial patterns of mangrove dispersal. We show that important dispersal factors remain understudied and that adequate empirical data on the determinants of dispersal are missing for most mangrove species. This review particularly aims to provide a baseline for developing future research agendas and field campaigns, filling current knowledge gaps and increasing our understanding of the processes that shape global mangrove distributions.
Collapse
Affiliation(s)
- Tom Van der Stocken
- Earth Science Section, Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA, 91109, U.S.A.,Radar Science and Engineering Section, Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA, 91109, U.S.A.,Ecology and Biodiversity, Vrije Universiteit Brussel, Brussels, 1050, Belgium
| | - Alison K S Wee
- Department of Biological Sciences, National University of Singapore, Singapore, 117543, Singapore.,Key Laboratory of Forest Ecology and Conservation, College of Forestry, Guangxi University, Nanning, Guangxi, 530004, China
| | - Dennis J R De Ryck
- Ecology and Biodiversity, Vrije Universiteit Brussel, Brussels, 1050, Belgium
| | | | - Daniel A Friess
- Department of Geography, National University of Singapore, Singapore, 117570, Singapore
| | - Farid Dahdouh-Guebas
- Ecology and Biodiversity, Vrije Universiteit Brussel, Brussels, 1050, Belgium.,Systems Ecology and Resource Management, Université Libre de Bruxelles, Brussels, 1050, Belgium
| | - Marc Simard
- Radar Science and Engineering Section, Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA, 91109, U.S.A
| | - Nico Koedam
- Ecology and Biodiversity, Vrije Universiteit Brussel, Brussels, 1050, Belgium
| | - Edward L Webb
- Department of Biological Sciences, National University of Singapore, Singapore, 117543, Singapore
| |
Collapse
|
24
|
Singer A, Bradter U, Fabritius H, Snäll T. Dating past colonization events to project future species distributions. Methods Ecol Evol 2019. [DOI: 10.1111/2041-210x.13134] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Alexander Singer
- Swedish Species Information CentreSwedish University of Agricultural Sciences Uppsala Sweden
| | - Ute Bradter
- Swedish Species Information CentreSwedish University of Agricultural Sciences Uppsala Sweden
| | - Henna Fabritius
- Swedish Species Information CentreSwedish University of Agricultural Sciences Uppsala Sweden
| | - Tord Snäll
- Swedish Species Information CentreSwedish University of Agricultural Sciences Uppsala Sweden
| |
Collapse
|
25
|
Abstract
Mangroves are of considerable ecological and socioeconomical importance; however, substantial areal losses have been recorded in many regions, driven primarily by anthropogenic disturbances and sea level rise. Oceanic dispersal of mangrove propagules provides a key mechanism for shifting distributions in response to environmental change. Here we provide a model framework for describing global dispersal and connectivity in mangroves. We identify important dispersal routes, barriers, and stepping-stones and quantify the influence of minimum and maximum floating periods on simulated connectivity patterns. Our study provides a baseline to improve our understanding of observed mangrove species distributions and, in combination with climate data, the expected range shifts under climate change. Dispersal provides a key mechanism for geographical range shifts in response to changing environmental conditions. For mangroves, which are highly susceptible to climate change, the spatial scale of dispersal remains largely unknown. Here we use a high-resolution, eddy- and tide-resolving numerical ocean model to simulate mangrove propagule dispersal across the global ocean and generate connectivity matrices between mangrove habitats using a range of floating periods. We find high rates of along-coast transport and transoceanic dispersal across the Atlantic, Pacific, and Indian Oceans. No connectivity is observed between populations on either side of the American and African continents. Archipelagos, such as the Galapagos and those found in Polynesia, Micronesia, and Melanesia, act as critical stepping-stones for dispersal across the Pacific Ocean. Direct and reciprocal dispersal routes across the Indian Ocean via the South Equatorial Current and seasonally reversing monsoon currents, respectively, allow connectivity between western Indian Ocean and Indo-West Pacific sites. We demonstrate the isolation of the Hawaii Islands and help explain the presence of mangroves on the latitudinal outlier Bermuda. Finally, we find that dispersal distance and connectivity are highly sensitive to the minimum and maximum floating periods. We anticipate that our findings will guide future research agendas to quantify biophysical factors that determine mangrove dispersal and connectivity, including the influence of ocean surface water properties on metabolic processes and buoyancy behavior, which may determine the potential of viably reaching a suitable habitat. Ultimately, this will lead to a better understanding of global mangrove species distributions and their response to changing climate conditions.
Collapse
|
26
|
Castorani MCN, Reed DC, Miller RJ. Loss of foundation species: disturbance frequency outweighs severity in structuring kelp forest communities. Ecology 2018; 99:2442-2454. [PMID: 30376154 DOI: 10.1002/ecy.2485] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/05/2018] [Revised: 06/03/2018] [Accepted: 07/05/2018] [Indexed: 11/09/2022]
Abstract
Disturbances often cause the disproportionate loss of foundation species but understanding how the frequency and severity of disturbance to such organisms influence biological communities remains unresolved. This gap in knowledge exists in part because of the rarity of ecologically meaningful studies capable of disentangling different elements of disturbance. Hence, we carried out a long-term (9 yr), large-scale (2,000 m2 plots), spatially replicated (4 sites) field experiment in which we manipulated disturbance to a globally distributed marine foundation species, the giant kelp Macrocystis pyrifera, and tracked community responses over time. To distinguish the effects of disturbance frequency and severity on the biodiversity and composition of temperate rocky reef communities, we simulated the repeated loss of giant kelp from destructive winter waves across a background of natural variation in disturbance. By following the response of over 200 taxa from the surrounding community, we discovered that the frequency of disturbance to giant kelp changed the biomass, diversity, and composition of community guilds in a manner commensurate with their dependence on the physical (i.e., benthic light and space), trophic (i.e., living and detrital biomass), and habitat (i.e., biogenic structure) resources mediated by this foundation species. Annual winter disturbance to giant kelp reduced living and detrital giant kelp biomass by 57% and 40%, respectively, enhanced bottom light by 22%, and halved the seafloor area covered by giant kelp holdfasts. Concomitantly, the biomass of understory algae and epilithic sessile invertebrates more than doubled, while the biomass of rock-boring clams, mobile invertebrates, and fishes decreased 30-61%. Frequent loss of giant kelp boosted understory algal richness by 82% and lowered sessile invertebrate richness by 13% but did not affect the biodiversity of mobile fauna. In contrast to changes driven by disturbance frequency, interannual variation in the severity of disturbance to giant kelp had weaker, less consistent effects, causing only modest changes in assemblages of sessile invertebrates, mobile invertebrate herbivores, and fishes. Our results broaden the foundation species concept by demonstrating that repeated disturbance to a dominant habitat-forming species can outweigh the influence of less frequent but severe disturbances for the surrounding community.
Collapse
Affiliation(s)
- Max C N Castorani
- Marine Science Institute, University of California, Santa Barbara, California, 93106, USA
- Department of Environmental Sciences, University of Virginia, Charlottesville, Virginia, 22904, USA
| | - Daniel C Reed
- Marine Science Institute, University of California, Santa Barbara, California, 93106, USA
| | - Robert J Miller
- Marine Science Institute, University of California, Santa Barbara, California, 93106, USA
| |
Collapse
|
27
|
Conklin EE, Neuheimer AB, Toonen RJ. Modeled larval connectivity of a multi-species reef fish and invertebrate assemblage off the coast of Moloka'i, Hawai'i. PeerJ 2018; 6:e5688. [PMID: 30280049 PMCID: PMC6166622 DOI: 10.7717/peerj.5688] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2018] [Accepted: 09/04/2018] [Indexed: 01/13/2023] Open
Abstract
We use a novel individual-based model (IBM) to simulate larval dispersal around the island of Moloka‘i in the Hawaiian Archipelago. Our model uses ocean current output from the Massachusetts Institute of Technology general circulation model (MITgcm) as well as biological data on four invertebrate and seven fish species of management relevance to produce connectivity maps among sites around the island of Moloka‘i. These 11 species span the range of life history characteristics of Hawaiian coral reef species and show different spatial and temporal patterns of connectivity as a result. As expected, the longer the pelagic larval duration (PLD), the greater the proportion of larvae that disperse longer distances, but regardless of PLD (3–270 d) most successful dispersal occurs either over short distances within an island (<30 km) or to adjacent islands (50–125 km). Again, regardless of PLD, around the island of Moloka‘i, connectivity tends to be greatest among sites along the same coastline and exchange between northward, southward, eastward and westward-facing shores is limited. Using a graph-theoretic approach to visualize the data, we highlight that the eastern side of the island tends to show the greatest out-degree and betweenness centrality, which indicate important larval sources and connectivity pathways for the rest of the island. The marine protected area surrounding Kalaupapa National Historical Park emerges as a potential source for between-island larval connections, and the west coast of the Park is one of the few regions on Moloka‘i that acts as a net larval source across all species. Using this IBM and visualization approach reveals patterns of exchange between habitat regions and highlights critical larval sources and multi-generational pathways to indicate priority areas for marine resource managers.
Collapse
Affiliation(s)
- Emily E Conklin
- Hawai'i Institute of Marine Biology, University of Hawai'i at Mānoa, Kāne'ohe, Hawai'i
| | - Anna B Neuheimer
- Department of Oceanography, University of Hawai'i at Mānoa, Honolulu, Hawai'i.,Aarhus Institute of Advanced Studies (AIAS), Aarhus University, Aarhus, Denmark
| | - Robert J Toonen
- Hawai'i Institute of Marine Biology, University of Hawai'i at Mānoa, Kāne'ohe, Hawai'i
| |
Collapse
|
28
|
Entropy, or Information, Unifies Ecology and Evolution and Beyond. ENTROPY 2018; 20:e20100727. [PMID: 33265816 PMCID: PMC7512290 DOI: 10.3390/e20100727] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/06/2018] [Revised: 08/18/2018] [Accepted: 09/11/2018] [Indexed: 02/07/2023]
Abstract
This article discusses how entropy/information methods are well-suited to analyzing and forecasting the four processes of innovation, transmission, movement, and adaptation, which are the common basis to ecology and evolution. Macroecologists study assemblages of differing species, whereas micro-evolutionary biologists study variants of heritable information within species, such as DNA and epigenetic modifications. These two different modes of variation are both driven by the same four basic processes, but approaches to these processes sometimes differ considerably. For example, macroecology often documents patterns without modeling underlying processes, with some notable exceptions. On the other hand, evolutionary biologists have a long history of deriving and testing mathematical genetic forecasts, previously focusing on entropies such as heterozygosity. Macroecology calls this Gini-Simpson, and has borrowed the genetic predictions, but sometimes this measure has shortcomings. Therefore it is important to note that predictive equations have now been derived for molecular diversity based on Shannon entropy and mutual information. As a result, we can now forecast all major types of entropy/information, creating a general predictive approach for the four basic processes in ecology and evolution. Additionally, the use of these methods will allow seamless integration with other studies such as the physical environment, and may even extend to assisting with evolutionary algorithms.
Collapse
|
29
|
Dispersal traits interact with dynamic connectivity to affect metapopulation growth and stability. THEOR ECOL-NETH 2018. [DOI: 10.1007/s12080-018-0393-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
30
|
Isolating the roles of movement and reproduction on effective connectivity alters conservation priorities for an endangered bird. Proc Natl Acad Sci U S A 2018; 115:8591-8596. [PMID: 30082379 DOI: 10.1073/pnas.1800183115] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Movement is important for ecological and evolutionary theory as well as connectivity conservation, which is increasingly critical for species responding to environmental change. Key ecological and evolutionary outcomes of movement, such as population growth and gene flow, require effective dispersal: movement that is followed by successful reproduction. However, the relative roles of movement and postmovement reproduction for effective dispersal and connectivity remain unclear. Here we isolate the contributions of movement and immigrant reproduction to effective dispersal and connectivity across the entire breeding range of an endangered raptor, the snail kite (Rostrhamus sociabilis plumbeus). To do so, we unite mark-resight data on movement and reproduction across 9 years and 27 breeding patches with an integrated model that decomposes effective dispersal into its hierarchical levels of movement, postmovement breeding attempt, and postmovement reproductive success. We found that immigrant reproduction limits effective dispersal more than movement for this endangered species, demonstrating that even highly mobile species may have limited effective connectivity due to reduced immigrant reproduction. We found different environmental limitations for the reproductive component of effective dispersal compared with movement, indicating that different conservation strategies may be needed when promoting effective dispersal rather than movement alone. We also demonstrate that considering immigrant reproduction, rather than movement alone, alters which patches are the most essential for connectivity, thereby changing conservation priorities. These results challenge the assumption that understanding movement alone is sufficient to infer connectivity and highlight that connectivity conservation may require not only fostering movement but also successful reproduction of immigrants.
Collapse
|
31
|
Meng JW, He DC, Zhu W, Yang LN, Wu EJ, Xie JH, Shang LP, Zhan J. Human-Mediated Gene Flow Contributes to Metapopulation Genetic Structure of the Pathogenic Fungus Alternaria alternata from Potato. FRONTIERS IN PLANT SCIENCE 2018; 9:198. [PMID: 29497439 PMCID: PMC5818430 DOI: 10.3389/fpls.2018.00198] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/06/2017] [Accepted: 02/01/2018] [Indexed: 06/01/2023]
Abstract
Metapopulation structure generated by recurrent extinctions and recolonizations plays an important role in the evolution of species but is rarely considered in agricultural systems. In this study, generation and mechanism of metapopulation structure were investigated by microsatellite assaying 725 isolates of Alternaria alternata sampled from potato hosts at 16 locations across China. We found a single major cluster, no isolate-geography associations and no bottlenecks in the A. alternata isolates, suggesting a metapopulation genetic structure of the pathogen. We also found weak isolation-by-distance, lower among than within cropping region population differentiation, concordant moving directions of potato products and net gene flow and the highest gene diversity in the region with the most potato imports. These results indicate that in addition to natural dispersal, human-mediated gene flow also contributes to the generation and dynamics of the metapopulation genetic structure of A. alternata in China. Metapopulation structure increases the adaptive capacity of the plant pathogen as a result of enhanced genetic variation and reduced population fragmentation. Consequently, rigid quarantine regulations may be required to reduce population connectivity and the evolutionary potential of A. alternata and other pathogens with a similar population dynamics for a sustainable plant disease management.
Collapse
Affiliation(s)
- Jing-Wen Meng
- Fujian Key Laboratory of Plant Virology, Institute of Plant Virology, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Dun-Chun He
- Fujian Key Laboratory of Plant Virology, Institute of Plant Virology, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Wen Zhu
- Fujian Key Laboratory of Plant Virology, Institute of Plant Virology, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Li-Na Yang
- Fujian Key Laboratory of Plant Virology, Institute of Plant Virology, Fujian Agriculture and Forestry University, Fuzhou, China
| | - E-Jiao Wu
- Fujian Key Laboratory of Plant Virology, Institute of Plant Virology, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Jia-Hui Xie
- Fujian Key Laboratory of Plant Virology, Institute of Plant Virology, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Li-Ping Shang
- Fujian Key Laboratory of Plant Virology, Institute of Plant Virology, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Jiasui Zhan
- Fujian Key Laboratory of Plant Virology, Institute of Plant Virology, Fujian Agriculture and Forestry University, Fuzhou, China
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Fujian Agriculture and Forestry University, Fuzhou, China
| |
Collapse
|