1
|
Monk CT, Power M, Freitas C, Harrison PM, Heupel M, Kuparinen A, Moland E, Simpfendorfer C, Villegas-Ríos D, Olsen EM. Atlantic cod individual spatial behaviour and stable isotope associations in a no-take marine reserve. J Anim Ecol 2023; 92:2333-2347. [PMID: 37843043 DOI: 10.1111/1365-2656.14014] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Accepted: 09/15/2023] [Indexed: 10/17/2023]
Abstract
Foraging is a behavioural process and, therefore, individual behaviour and diet are theorized to covary. However, few comparisons of individual behaviour type and diet exist in the wild. We tested whether behaviour type and diet covary in a protected population of Atlantic cod, Gadus morhua. Working in a no-take marine reserve, we could collect data on natural behavioural variation and diet choice with minimal anthropogenic disturbance. We inferred behaviour using acoustic telemetry and diet from stable isotope compositions (expressed as δ13 C and δ15 N values). We further investigated whether behaviour and diet could have survival costs. We found cod with shorter diel vertical migration distances fed at higher trophic levels. Cod δ13 C and δ15 N values scaled positively with body size. Neither behaviour nor diet predicted survival, indicating phenotypic diversity is maintained without survival costs for cod in a protected ecosystem. The links between diet and diel vertical migration highlight that future work is needed to understand whether the shifts in this behaviour during environmental change (e.g. fishing or climate), could lead to trophic cascades.
Collapse
Affiliation(s)
- Christopher T Monk
- Institute of Marine Research, Flødevigen Marine Research Station, His, Norway
- Centre for Coastal Research, Department of Natural Sciences, University of Agder, Kristiansand, Norway
- GEOMAR Helmholtz Centre for Ocean Research Kiel, Kiel, Germany
| | - Michael Power
- Biology Department, University of Waterloo, Waterloo, Ontario, Canada
| | - Carla Freitas
- Institute of Marine Research, Flødevigen Marine Research Station, His, Norway
- MARE, Marine and Environmental Sciences Center, Madeira Tecnopolo, Funchal, Madeira, Portugal
| | - Philip M Harrison
- Department of Biology and Faculty of Forestry and Environmental Management, Canadian Rivers Institute, University of New Brunswick, Fredericton, New Brunswick, Canada
| | - Michelle Heupel
- Integrated Marine Observing System (IMOS), University of Tasmania, Hobart, Tasmania, Australia
| | - Anna Kuparinen
- Department of Biological and Environmental Sciences, University of Jyväskylä, Jyväskylä, Finland
| | - Even Moland
- Institute of Marine Research, Flødevigen Marine Research Station, His, Norway
- Centre for Coastal Research, Department of Natural Sciences, University of Agder, Kristiansand, Norway
| | - Colin Simpfendorfer
- College of Science and Engineering, James Cook University, Townsville, Queensland, Australia
| | | | - Esben M Olsen
- Institute of Marine Research, Flødevigen Marine Research Station, His, Norway
- Centre for Coastal Research, Department of Natural Sciences, University of Agder, Kristiansand, Norway
| |
Collapse
|
2
|
Shipley ON, Matich P, Hussey NE, Brooks AML, Chapman D, Frisk MG, Guttridge AE, Guttridge TL, Howey LA, Kattan S, Madigan DJ, O'Shea O, Polunin NV, Power M, Smukall MJ, Schneider EVC, Shea BD, Talwar BS, Winchester M, Brooks EJ, Gallagher AJ. Energetic connectivity of diverse elasmobranch populations - implications for ecological resilience. Proc Biol Sci 2023; 290:20230262. [PMID: 37040803 PMCID: PMC10089721 DOI: 10.1098/rspb.2023.0262] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Accepted: 03/08/2023] [Indexed: 04/13/2023] Open
Abstract
Understanding the factors shaping patterns of ecological resilience is critical for mitigating the loss of global biodiversity. Throughout aquatic environments, highly mobile predators are thought to serve as important vectors of energy between ecosystems thereby promoting stability and resilience. However, the role these predators play in connecting food webs and promoting energy flow remains poorly understood in most contexts. Using carbon and nitrogen isotopes, we quantified the use of several prey resource pools (small oceanic forage, large oceanics, coral reef, and seagrass) by 17 species of elasmobranch fishes (n = 351 individuals) in The Bahamas to determine their functional diversity and roles as ecosystem links. We observed remarkable functional diversity across species and identified four major groups responsible for connecting discrete regions of the seascape. Elasmobranchs were responsible for promoting energetic connectivity between neritic, oceanic and deep-sea ecosystems. Our findings illustrate how mobile predators promote ecosystem connectivity, underscoring their functional significance and role in supporting ecological resilience. More broadly, strong predator conservation efforts in developing island nations, such as The Bahamas, are likely to yield ecological benefits that enhance the resilience of marine ecosystems to combat imminent threats such as habitat degradation and climate change.
Collapse
Affiliation(s)
| | | | - Nigel E. Hussey
- Department of Integrative Biology, University of Windsor, Ontario, Canada
| | - Annabelle M. L. Brooks
- Cape Eleuthera Institute, Cape Eleuthera, Eleuthera, The Bahamas
- Oceanic Whitetip Shark Consortium, Ellicott City, MD, USA
- College of Life and Environmental Sciences, University of Exeter, Exeter, UK
| | | | - Michael G. Frisk
- School of Marine and Atmospheric Sciences, Stony Brook University, Stony Brook, NY, USA
| | | | | | - Lucy A. Howey
- Oceanic Whitetip Shark Consortium, Ellicott City, MD, USA
- College of Life and Environmental Sciences, University of Exeter, Exeter, UK
| | - Sami Kattan
- Beneath The Waves, PO Box 126, Herndon, VA, USA
| | - Daniel J. Madigan
- Department of Integrative Biology, University of Windsor, Ontario, Canada
| | - Owen O'Shea
- The Center for Ocean Research and Education (CORE), Gregory Town, Eleuthera, The Bahamas
| | - Nicholas V. Polunin
- Department of Environmental Sciences, Newcastle University, Newcastle Upon Tyne, UK
| | - Michael Power
- Department of Biology, University of Waterloo, Ontario, Canada
| | | | | | - Brendan D. Shea
- Beneath The Waves, PO Box 126, Herndon, VA, USA
- Department of Fish and Wildlife Conservation, Virginia Tech, Blacksburg, VA, USA
| | - Brendan S. Talwar
- Cape Eleuthera Institute, Cape Eleuthera, Eleuthera, The Bahamas
- Oceanic Whitetip Shark Consortium, Ellicott City, MD, USA
- Department of Biological Sciences, Institute of Environment, Florida International University, Miami, FL, USA
| | | | - Edward J. Brooks
- Cape Eleuthera Institute, Cape Eleuthera, Eleuthera, The Bahamas
- Oceanic Whitetip Shark Consortium, Ellicott City, MD, USA
| | | |
Collapse
|
3
|
Dhellemmes F, Smukall MJ, Guttridge TL, Krause J, Hussey NE. Predator abundance drives the association between exploratory personality and foraging habitat risk in a wild marine meso‐predator. Funct Ecol 2021. [DOI: 10.1111/1365-2435.13874] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Félicie Dhellemmes
- Leibniz‐Institute of Freshwater Ecology and Inland Fisheries (IGB) Berlin Germany
- Faculty of Life Sciences Albrecht Daniel Thaer‐Institute of Agricultural and Horticultural Sciences Humboldt‐Universität zu Berlin Berlin Germany
- Bimini Biological Field Station Foundation South Bimini Bahamas
| | - Matthew J. Smukall
- Bimini Biological Field Station Foundation South Bimini Bahamas
- College of Fisheries and Ocean Sciences University of Alaska Fairbanks Fairbanks AK USA
| | - Tristan L. Guttridge
- Bimini Biological Field Station Foundation South Bimini Bahamas
- Saving the blue Cooper City FL USA
| | - Jens Krause
- Leibniz‐Institute of Freshwater Ecology and Inland Fisheries (IGB) Berlin Germany
- Faculty of Life Sciences Albrecht Daniel Thaer‐Institute of Agricultural and Horticultural Sciences Humboldt‐Universität zu Berlin Berlin Germany
| | | |
Collapse
|
4
|
Dhellemmes F, Finger JS, Smukall MJ, Gruber SH, Guttridge TL, Laskowski KL, Krause J. Personality-driven life history trade-offs differ in two subpopulations of free-ranging predators. J Anim Ecol 2020; 90:260-272. [PMID: 32720305 DOI: 10.1111/1365-2656.13283] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2019] [Accepted: 05/29/2020] [Indexed: 12/14/2022]
Abstract
Consistent individual differences in behaviour (i.e. personality) can be explained in an evolutionary context if they are favoured by life history trade-offs as conceptualized in the pace-of-life syndrome (POLS) hypothesis. Theory predicts that faster-growing individuals suffer higher mortality and that this trade-off is mediated through exploration/risk-taking personality, but empirical support for this remains limited and ambiguous. Equivocal support to the POLS hypothesis suggests that the link between life history and personality may only emerge under certain circumstances. Understanding personality-driven trade-offs would be facilitated by long-term studies in wild populations experiencing different ecological conditions. Here, we tested whether personality measured in semi-captivity was associated with a growth-mortality trade-off via risk-taking in the wild in two subpopulations of juvenile lemon sharks Negaprion brevirostris known to differ in their predator abundance. We expected stronger personality-driven trade-offs in the predator-rich environment as compared to the predator-poor environment. Sharks were captured yearly from 1995 onwards allowing us to obtain long-term data on growth and apparent survival in each subpopulation. We then used a novel open-field assay to test sharks for exploration personality yearly from 2012 to 2017. A subset of the tested sharks was monitored in the field using telemetry to document risk-taking behaviours. We tested (a) if fast explorers in captivity took more risks and grew faster in the wild and (b) if natural selection acted against more explorative, faster-growing sharks. In the subpopulation with fewer predators, more explorative sharks in captivity took more risks in the wild and grew faster. In turn, larger, fast-growing sharks had lower apparent survival. In the predator-rich subpopulation, despite finding selection on fast growth, we found no link between exploration personality and the growth-mortality trade-off. Our study demonstrates that the association between personality and life history is favoured in some ecological contexts but not in others. We identify predator and resource abundance as two main potential drivers of the personality-mediated trade-off and emphasize that future work on the POLS hypothesis would benefit from an approach integrating behaviour and life history across ecological conditions.
Collapse
Affiliation(s)
- Félicie Dhellemmes
- Leibniz-Institute of Freshwater Ecology and Inland Fisheries, Berlin, Germany.,Faculty of Life Sciences, Albrecht Daniel Thaer-Institute of Agricultural and Horticultural Sciences, Humboldt-Universität zu Berlin, Berlin, Germany.,Bimini Biological Field Station Foundation, South Bimini, Bahamas
| | | | - Matthew J Smukall
- Bimini Biological Field Station Foundation, South Bimini, Bahamas.,College of Fisheries and Ocean Sciences, University of Alaska Fairbanks, Fairbanks, AK, USA
| | - Samuel H Gruber
- Bimini Biological Field Station Foundation, South Bimini, Bahamas
| | - Tristan L Guttridge
- Bimini Biological Field Station Foundation, South Bimini, Bahamas.,Saving the Blue, Miami, FL, USA
| | - Kate L Laskowski
- Leibniz-Institute of Freshwater Ecology and Inland Fisheries, Berlin, Germany.,Department of Evolution and Ecology, University of California Davis, Davis, CA, USA
| | - Jens Krause
- Leibniz-Institute of Freshwater Ecology and Inland Fisheries, Berlin, Germany.,Faculty of Life Sciences, Albrecht Daniel Thaer-Institute of Agricultural and Horticultural Sciences, Humboldt-Universität zu Berlin, Berlin, Germany
| |
Collapse
|
5
|
Dhellemmes F, Finger JS, Laskowski KL, Guttridge TL, Krause J. Comparing behavioural syndromes across time and ecological conditions in a free-ranging predator. Anim Behav 2020. [DOI: 10.1016/j.anbehav.2020.01.009] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|
6
|
Weideli OC, Kiszka JJ, Matich P, Heithaus MR. Effects of anticoagulants on stable-isotope values (δ 13 C and δ 15 N) of shark blood components. JOURNAL OF FISH BIOLOGY 2019; 95:1535-1539. [PMID: 31621068 DOI: 10.1111/jfb.14164] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/09/2019] [Accepted: 10/15/2019] [Indexed: 06/10/2023]
Abstract
The effects of anticoagulant EDTA and sodium heparin (SH) on stable carbon δ13 C and nitrogen δ15 N isotopic values of red blood cells (RBC) and blood plasma in juvenile blacktip reef sharks Carcharhinus melanopterus were analysed. Plasma preserved with anticoagulants was not isotopically distinct from plasma stored in no-additive control tubes but RBC δ15 N values exhibited small enrichments when preserved with EDTA and SH. Results suggest EDTA and SH are viable anticoagulants for stable isotopic analyses of blood fractions but further studies are advised to validate results.
Collapse
Affiliation(s)
- Ornella C Weideli
- PSL Research University, EPHE-UPVD-CNRS, USR 3278 CRIOBE, Université de Perpignan, Perpignan, France
- Save Our Seas Foundation - D'Arros Research Centre (SOSF-DRC), Geneva, Switzerland
| | - Jeremy J Kiszka
- Marine Sciences Program, Department of Biological Sciences, Florida International University, North Miami, Florida
| | - Philip Matich
- Department of Marine Biology, Texas A & M University at Galveston, Galveston, Texas
| | - Michael R Heithaus
- Marine Sciences Program, Department of Biological Sciences, Florida International University, North Miami, Florida
| |
Collapse
|
7
|
Same species, different prerequisites: investigating body condition and foraging success in young reef sharks between an atoll and an island system. Sci Rep 2019; 9:13447. [PMID: 31530846 PMCID: PMC6748967 DOI: 10.1038/s41598-019-49761-2] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2019] [Accepted: 08/27/2019] [Indexed: 11/08/2022] Open
Abstract
Acquiring and storing energy is vital to sharks of all age-classes. Viviparous shark embryos receive endogenous maternal energy reserves to sustain the first weeks after birth. Then, in order to maintain body condition, sharks must start foraging. Our goal was to understand whether maternal energy investments vary between blacktip reef sharks (Carcharhinus melanopterus) from two populations and to what extent body condition and the initiation of foraging might be affected by presumably variable maternal investments. A total of 546 young sharks were captured at St. Joseph atoll (Seychelles) and Moorea (French Polynesia) between 2014 and 2018, and indices of body condition and percentage of stomachs containing prey were measured. Maternal investment was found to be site-specific, with significantly larger, heavier, and better conditioned individuals in Moorea. Despite these advantages, as time progressed, Moorea sharks exhibited significant decreases in body condition and were slower to initiate foraging. We suggest that the young sharks' foraging success is independent of the quality of maternal energy resources, and that other factors, such as prey availability, prey quality, and/or anthropogenic stressors are likely responsible for the observed differences across sites. Insights into intraspecific variations in early life-stages may further support site-specific management strategies for young sharks from nearshore habitats.
Collapse
|
8
|
Weideli OC, Papastamatiou YP, Planes S. Size frequency, dispersal distances and variable growth rates of young sharks in a multi-species aggregation. JOURNAL OF FISH BIOLOGY 2019; 94:789-797. [PMID: 30883741 DOI: 10.1111/jfb.13968] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2018] [Accepted: 03/15/2019] [Indexed: 06/09/2023]
Abstract
During a mark-recapture survey from November 2014 until April 2017, 333 neonatal and juvenile blacktip reef sharks Carcharhinus melanopterus and 302 neonatal and juvenile sicklefin lemon sharks Negaprion acutidens were tagged and measured at the uninhabited and isolated St. Joseph Atoll (Republic of Seychelles). Both species demonstrated seasonal reproductive synchronicity and relatively large sizes at birth. Despite the extended times at liberty > 2.5 years, the majority of recaptures were found in close proximity to the initial tagging location (< 500 m). Annual growth rates of C. melanopterus (n = 24) and N. acutidens (n = 62) ranged from 6.6 to 31.7 cm year-1 (mean ± SE; 16.2 ± 1.2 cm year-1 ) and 0.2 to 32.2 cm year-1 (11.8 ± 1 cm year-1 ), respectively and are to date the most variable ever recorded in wild juvenile sharks. High abundances of both species coupled with long-term and repeated recaptures are indicative of a habitat where juveniles can reside for their first years of life. However, large variability in annual growth rates in both species may suggest high intra and interspecific competition induced by a possibly resource limited, isolated habitat.
Collapse
Affiliation(s)
- Ornella C Weideli
- PSL Research University: EPHE-UPVD-CNRS, USR 3278 CRIOBE, Université de Perpignan, Perpignan Cedex, France
- SOSF - D'Arros Research Centre (SOSF-DRC), Geneva, Switzerland
| | - Yannis P Papastamatiou
- Department of Biological Sciences, Marine Sciences Program, Florida International University, North Miami, Florida, USA
| | - Serge Planes
- PSL Research University: EPHE-UPVD-CNRS, USR 3278 CRIOBE, Université de Perpignan, Perpignan Cedex, France
- Laboratoire d'excellence 'CORAIL', EPHE, PSL Research University, UPVD, CNRS, USR 3278 CRIOBE, Papetoai, Moorea, French Polynesia
| |
Collapse
|
9
|
de Sousa Rangel B, Hussey NE, Gomes AD, Rodrigues A, Martinelli LA, Moreira RG. Resource partitioning between two young-of-year cownose rays Rhinoptera bonasus and R. brasiliensis within a communal nursery inferred by trophic biomarkers. JOURNAL OF FISH BIOLOGY 2019; 94:781-788. [PMID: 30868595 DOI: 10.1111/jfb.13958] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/02/2019] [Accepted: 03/13/2019] [Indexed: 06/09/2023]
Abstract
Although interspecific trophic interactions plays a principal role within elasmobranch communal nurseries, little is known over variation in foraging strategies adopted by young-of-year of sympatric species. To test the hypothesis of dietary resource partitioning between batoids within a communal nursery, we investigated two cownose ray species, Rhinoptera bonasus and R. brasiliensis, which occur in heterospecific groups, a strategy predicted to increase survival and foraging success. Using two biochemical tracers, fatty acids (FA) and stable isotopes (δ15 N and δ13 C), the combined effects of maternal investment and the formation of heterospecific groups implying competition for, or partitioning of available food resources were investigated. Through univariate and multivariate analyses of biochemical tracers in several tissues (fin clip, muscle, liver, red blood cells; RBC) and plasma, our results revealed significant interspecific differences in tracers between the two species. Total FAs (∑saturated FA, ∑monounsaturated FA and ∑polyunsaturated FA) and trophic biomarkers (i.e., docosahexaenoic acid, arachidonic acid, oleic acid and δ15 N) were the principle tracers responsible for the differences detected. These data revealed that R. brasiliensis was less enriched in physiologically important essential FAs than R. bonasus. Our findings suggest that these congeneric species differ in maternal investment strategy and moderately partition food resources over relatively fine spatial scales within a single nursery habitat to limit competition. These results provide further knowledge on the foraging strategies adopted by batoids in communal nursery areas, information that is required for improving spatial conservation and management planning.
Collapse
Affiliation(s)
- Bianca de Sousa Rangel
- Departamento de Fisiologia, Laboratório de Metabolismo e Reprodução de Organismos Aquáticos, Instituto de Biociências, Universidade de São Paulo, São Paulo, Brazil
| | - Nigel E Hussey
- University of Windsor - Biological Sciences, Windsor, Ontario, Canada
| | - Aline D Gomes
- Departamento de Fisiologia, Laboratório de Metabolismo e Reprodução de Organismos Aquáticos, Instituto de Biociências, Universidade de São Paulo, São Paulo, Brazil
| | - Alexandre Rodrigues
- Laboratório de Biologia e Genética de Peixes, Instituto de Biociências de Botucatu, Universidade Estadual Paulista, Botucatu, São Paulo, Brazil
| | - Luiz A Martinelli
- Departamento de Ecologia Isotópica, Centro de Energia Nuclear na Agricultura (CENA), Universidade de São Paulo, Piracicaba, São Paulo, Brazil
| | - Renata Guimarães Moreira
- Departamento de Fisiologia, Laboratório de Metabolismo e Reprodução de Organismos Aquáticos, Instituto de Biociências, Universidade de São Paulo, São Paulo, Brazil
| |
Collapse
|