1
|
McAfee A, Martinet B, Przybyla K, Degueldre F, Hoover SE, Aron S, Foster LJ. Conserved and Unique Protein Expression Patterns Across Reproductive Stage Transitions in Social Hymenopteran Queens. Mol Ecol 2024:e17568. [PMID: 39491325 DOI: 10.1111/mec.17568] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Revised: 10/03/2024] [Accepted: 10/15/2024] [Indexed: 11/05/2024]
Abstract
Hymenopteran queens are collectively highly fecund, often long-lived individuals that undergo dramatic physiological changes after they mate and establish a nest. However, the degree to which these changes are conserved among species with different life histories is not well-defined. We conducted a comparative proteomic study investigating differences between reproductive stages (virgin, mated and established queens) of Apis mellifera, Bombus impatiens, B. terrestris and Lasius niger. We analysed haemolymph for all species except L. niger, for which a whole-body analysis was performed due to the small size of these queens. We identified conserved upregulation of proteins involved in anatomical and system development as queens transition to establishing a nest in all species except B. terrestris. We also identified conserved patterns of vitellogenin, vitellogenin receptor and immune-responsive protein (IRP)30, all of which are proteins typically associated with oviposition. However, expression patterns of other immune proteins, heat-shock proteins (HSPs), detoxification enzymes and antioxidant enzymes were more dissimilar, with some species exhibiting similar trends and co-occurrence through reproductive stages, while others exhibited variable or opposite patterns. These conserved and unique profiles likely in part reflect similarities and differences in selective pressure on reproductive stages of each species and may indicate differing abilities to respond to emergent pathogens or environmental change.
Collapse
Affiliation(s)
- Alison McAfee
- Department of Biochemistry and Molecular Biology, Michael Smith Laboratories, University of British Columbia, Vancouver, British Columbia, Canada
- Department of Applied Ecology, North Carolina State University, Raleigh, North Carolina, USA
| | - Baptiste Martinet
- Department of Evolutionary Biology & Ecology, Université Libre de Bruxelles, Brussels, Belgium
| | | | - Félicien Degueldre
- Department of Evolutionary Biology & Ecology, Université Libre de Bruxelles, Brussels, Belgium
| | - Shelley E Hoover
- Department of Biological Sciences, University of Lethbridge, Lethbridge, Alberta, Canada
| | - Serge Aron
- Department of Evolutionary Biology & Ecology, Université Libre de Bruxelles, Brussels, Belgium
| | - Leonard J Foster
- Department of Biochemistry and Molecular Biology, Michael Smith Laboratories, University of British Columbia, Vancouver, British Columbia, Canada
| |
Collapse
|
2
|
Mc Auley MT. The evolution of ageing: classic theories and emerging ideas. Biogerontology 2024; 26:6. [PMID: 39470884 PMCID: PMC11522123 DOI: 10.1007/s10522-024-10143-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Accepted: 10/07/2024] [Indexed: 11/01/2024]
Abstract
Ageing is generally regarded as a non-adaptive by-product of evolution. Based on this premise three classic evolutionary theories of ageing have been proposed. These theories have dominated the literature for several decades. Despite their individual nuances, the common thread which unites them is that they posit that ageing results from a decline in the intensity of natural selection with chronological age. Empirical evidence has been identified which supports each theory. However, a consensus remains to be fully established as to which theory best accounts for the evolution of ageing. A consequence of this uncertainty are counter arguments which advocate for alternative theoretical frameworks, such as those which propose an adaptive origin for ageing, senescence, or death. Given this backdrop, this review has several aims. Firstly, to briefly discuss the classic evolutionary theories. Secondly, to evaluate how evolutionary forces beyond a monotonic decrease in natural selection can affect the evolution of ageing. Thirdly, to examine alternatives to the classic theories. Finally, to introduce a pluralistic interpretation of the evolution of ageing. The basis of this pluralistic theoretical framework is the recognition that certain evolutionary ideas will be more appropriate depending on the organism, its ecological context, and its life history.
Collapse
Affiliation(s)
- Mark T Mc Auley
- School of Science, Engineering and Environment, University of Salford Manchester, Salford, M5 4NT, UK.
| |
Collapse
|
3
|
Birch G, Nichols HJ, Mwanguhya F, Thompson FJ, Cant MA, Blount JD. Lifetime trajectories of male mating effort under reproductive conflict in a cooperatively breeding mammal. Proc Biol Sci 2024; 291:20241499. [PMID: 39288806 PMCID: PMC11513156 DOI: 10.1098/rspb.2024.1499] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Revised: 08/10/2024] [Accepted: 08/12/2024] [Indexed: 09/19/2024] Open
Abstract
The costs of reproductive conflict can shape the evolution of life-histories in animal societies. These costs may change as individuals age and grow, and with within-group competition. Social costs of reproductive conflict have been invoked to explain why females might gain from delaying maturity or ceasing reproduction midway through life, but not in males. Here, we analyse more than 20 years of data to understand how individual male banded mongooses adjust their reproductive activity in response to the costs of reproductive conflict. In banded mongoose groups, multiple female breeders enter oestrus synchronously that are each guarded by a single male that aggressively wards-off rivals. The heaviest males in the group gained the greatest share of paternity. Those lighter males that are reproductively active paid disproportionate survival costs, and by engaging in reproductive activity early had lower lifetime reproductive success. Our results suggest that reproductive inactivity early in life is adaptive, as males recoup any lost fitness by first growing before engaging in less costly and more profitable reproductive activity later in life. These results suggest that resource holding potential of males and the intensity of reproductive conflict interact to shape lifetime schedules of reproductive behaviour.
Collapse
Affiliation(s)
- Graham Birch
- Centre for Ecology & Conservation, Faculty of Environment, Science & Economy, University of Exeter, Penryn Campus, CornwallTR10 9FE, UK
| | - Hazel J. Nichols
- Department of Biosciences, Swansea University, Singleton Campus, SwanseaSA2 8PP, UK
| | - Francis Mwanguhya
- Banded Mongoose Research Project, Queen Elizabeth National Park, Kasese DistrictUganda
| | - Faye J. Thompson
- Centre for Ecology & Conservation, Faculty of Environment, Science & Economy, University of Exeter, Penryn Campus, CornwallTR10 9FE, UK
| | - Michael A. Cant
- Centre for Ecology & Conservation, Faculty of Environment, Science & Economy, University of Exeter, Penryn Campus, CornwallTR10 9FE, UK
| | - Jonathan D. Blount
- Centre for Ecology & Conservation, Faculty of Environment, Science & Economy, University of Exeter, Penryn Campus, CornwallTR10 9FE, UK
| |
Collapse
|
4
|
Chapman A, McAfee A, Tarpy DR, Fine J, Rempel Z, Peters K, Currie R, Foster LJ. Common viral infections inhibit egg laying in honey bee queens and are linked to premature supersedure. Sci Rep 2024; 14:17285. [PMID: 39068210 PMCID: PMC11283550 DOI: 10.1038/s41598-024-66286-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Accepted: 07/01/2024] [Indexed: 07/30/2024] Open
Abstract
With their long lives and extreme reproductive output, social insect queens have escaped the classic trade-off between fecundity and lifespan, but evidence for a trade-off between fecundity and immunity has been inconclusive. This is in part because pathogenic effects are seldom decoupled from effects of immune induction. We conducted parallel, blind virus infection experiments in the laboratory and in the field to interrogate the idea of a reproductive immunity trade-off in honey bee (Apis mellifera) queens and to better understand how these ubiquitous stressors affect honey bee queen health. We found that queens injected with infectious virus had smaller ovaries and were less likely to recommence egg-laying than controls, while queens injected with UV-inactivated virus displayed an intermediate phenotype. In the field, heavily infected queens had smaller ovaries and infection was a meaningful predictor of whether supersedure cells were observed in the colony. Immune responses in queens receiving live virus were similar to queens receiving inactivated virus, and several of the same immune proteins were negatively associated with ovary mass in the field. This work supports the hypothesized relationship between virus infection and symptoms associated with queen failure and suggests that a reproductive-immunity trade-off is partially, but not wholly responsible for these effects.
Collapse
Affiliation(s)
- Abigail Chapman
- Department of Biochemistry and Molecular Biology, Michael Smith Laboratories, University of British Columbia, Vancouver, Canada.
| | - Alison McAfee
- Department of Biochemistry and Molecular Biology, Michael Smith Laboratories, University of British Columbia, Vancouver, Canada
- Department of Applied Ecology, North Carolina State University, Raleigh, NC, USA
| | - David R Tarpy
- Department of Applied Ecology, North Carolina State University, Raleigh, NC, USA
| | - Julia Fine
- Invasive Species and Pollinator Health Research Unit, USDA-ARS, Davis, CA, USA
| | - Zoe Rempel
- Department of Entomology, University of Manitoba, Winnipeg, MB, Canada
| | - Kira Peters
- Department of Entomology, University of Manitoba, Winnipeg, MB, Canada
| | - Rob Currie
- Department of Entomology, University of Manitoba, Winnipeg, MB, Canada
| | - Leonard J Foster
- Department of Biochemistry and Molecular Biology, Michael Smith Laboratories, University of British Columbia, Vancouver, Canada
| |
Collapse
|
5
|
Zane F, MacMurray C, Guillermain C, Cansell C, Todd N, Rera M. Ageing as a two-phase process: theoretical framework. FRONTIERS IN AGING 2024; 5:1378351. [PMID: 38651031 PMCID: PMC11034523 DOI: 10.3389/fragi.2024.1378351] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Accepted: 02/26/2024] [Indexed: 04/25/2024]
Abstract
Human ageing, along with the ageing of conventional model organisms, is depicted as a continuous and progressive decline of biological capabilities accompanied by an exponentially increasing mortality risk. However, not all organisms experience ageing identically and our understanding of the phenomenon is coloured by human-centric views. Ageing is multifaceted and influences a diverse range of species in varying ways. Some undergo swift declines post-reproduction, while others exhibit insubstantial changes throughout their existence. This vast array renders defining universally applicable "ageing attributes" a daunting task. It is nonetheless essential to recognize that not all ageing features are organism-specific. These common attributes have paved the way for identifying "hallmarks of ageing," processes that are intertwined with age, amplified during accelerated ageing, and manipulations of which can potentially modulate or even reverse the ageing process. Yet, a glaring observation is that individuals within a single population age at varying rates. To address this, demographers have coined the term 'frailty'. Concurrently, scientific advancements have ushered in the era of molecular clocks. These innovations enable a distinction between an individual's chronological age (time since birth) and biological age (physiological status and mortality risk). In 2011, the "Smurf" phenotype was unveiled in Drosophila, delineating an age-linked escalation in intestinal permeability that presages imminent mortality. It not only acts as a predictor of natural death but identifies individuals exhibiting traits normally described as age-related. Subsequent studies have revealed the phenotype in organisms like nematodes, zebrafish, and mice, invariably acting as a death predictor. Collectively, these findings have steered our conception of ageing towards a framework where ageing is not linear and continuous but marked by two distinct, necessary phases, discernible in vivo, courtesy of the Smurf phenotype. This framework includes a mathematical enunciation of longevity trends based on three experimentally measurable parameters. It facilitates a fresh perspective on the evolution of ageing as a function. In this article, we aim to delineate and explore the foundational principles of this innovative framework, emphasising its potential to reshape our understanding of ageing, challenge its conventional definitions, and recalibrate our comprehension of its evolutionary trajectory.
Collapse
Affiliation(s)
- Flaminia Zane
- Université Paris Cité, INSERM UMR U1284, Paris, France
| | | | | | - Céline Cansell
- Université Paris-Saclay, AgroParisTech, INRAE, UMR PNCA, Palaiseau, France
| | - Nicolas Todd
- Eco-Anthropologie (EA), Muséum National d’Histoire Naturelle, CNRS, Université de Paris, Musée de l’Homme, Paris, France
| | - Michael Rera
- Université Paris Cité, Institut Jacques Monod, CNRS UMR 7592, Paris, France
| |
Collapse
|
6
|
McAfee A, Chapman A, Bao G, Tarpy DR, Foster LJ. Investigating trade-offs between ovary activation and immune protein expression in bumble bee ( Bombus impatiens) workers and queens. Proc Biol Sci 2024; 291:20232463. [PMID: 38264776 PMCID: PMC10806398 DOI: 10.1098/rspb.2023.2463] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Accepted: 12/20/2023] [Indexed: 01/25/2024] Open
Abstract
Evidence for a trade-off between reproduction and immunity has manifested in many animal species, including social insects. However, investigations in social insect queens present a conundrum: new gynes of many social hymenopterans, such as bumble bees and ants, must first mate, then transition from being solitary to social as they establish their nests, thus experiencing confounding shifts in environmental conditions. Worker bumble bees offer an opportunity to investigate patterns of immune protein expression associated with ovary activation while minimizing extraneous environmental factors and genetic differences. Here, we use proteomics to interrogate the patterns of immune protein expression of female bumble bees (Bombus impatiens) by (i) sampling queens at different stages of their life cycle, then (ii) by sampling workers with different degrees of ovary activation. Patterns of immune protein expression in the haemolymph of queens are consistent with a reproduction-immunity trade-off, but equivalent samples from workers are not. This brings into question whether queen bumble bees really experience a reproduction-immunity trade-off, or if patterns of immune protein expression may actually be due to the selective pressure of the different environmental conditions they are exposed to during their life cycle.
Collapse
Affiliation(s)
- Alison McAfee
- Department of Biochemistry and Molecular Biology, Michael Smith Laboratories, University of British Columbia, Vancouver, British Columbia, Canada V6T1Z4
- Department of Applied Ecology, North Carolina State University, Raleigh, NC 27695-7617, USA
| | - Abigail Chapman
- Department of Biochemistry and Molecular Biology, Michael Smith Laboratories, University of British Columbia, Vancouver, British Columbia, Canada V6T1Z4
| | - Grace Bao
- Department of Biochemistry and Molecular Biology, Michael Smith Laboratories, University of British Columbia, Vancouver, British Columbia, Canada V6T1Z4
| | - David R. Tarpy
- Department of Applied Ecology, North Carolina State University, Raleigh, NC 27695-7617, USA
| | - Leonard J. Foster
- Department of Biochemistry and Molecular Biology, Michael Smith Laboratories, University of British Columbia, Vancouver, British Columbia, Canada V6T1Z4
| |
Collapse
|
7
|
Collins DH, Prince DC, Donelan JL, Chapman T, Bourke AFG. Costs of reproduction are present but latent in eusocial bumblebee queens. BMC Biol 2023; 21:153. [PMID: 37430246 DOI: 10.1186/s12915-023-01648-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Accepted: 06/12/2023] [Indexed: 07/12/2023] Open
Abstract
BACKGROUND The standard evolutionary theory of ageing proposes that ageing occurs because of a trade-off between reproduction and longevity. Eusocial insect queens exhibit positive fecundity-longevity associations and so have been suggested to be counter-examples through not expressing costs of reproduction and through remodelling conserved genetic and endocrine networks regulating ageing and reproduction. If so, eusocial evolution from solitary ancestors with negative fecundity-longevity associations must have involved a stage at which costs of reproduction were suppressed and fecundity and longevity became positively associated. Using the bumblebee (Bombus terrestris), we experimentally tested whether queens in annual eusocial insects at an intermediate level of eusocial complexity experience costs of reproduction, and, using mRNA-seq, the extent to which they exhibit a remodelling of relevant genetic and endocrine networks. Specifically, we tested whether costs of reproduction are present but latent, or whether a remodelling of relevant genetic and endocrine networks has already occurred allowing queens to reproduce without costs. RESULTS We experimentally increased queens' costs of reproduction by removing their eggs, which caused queens to increase their egg-laying rate. Treatment queens had significantly reduced longevity relative to control queens whose egg-laying rate was not increased. Reduced longevity in treatment queens was not caused by increased worker-to-queen aggression or by increased overall activity in queens. In addition, treatment and control queens differed in age-related gene expression based on mRNA-seq in both their overall expression profiles and the expression of ageing-related genes. Remarkably, these differences appeared to occur principally with respect to relative age, not chronological age. CONCLUSIONS This study represents the first simultaneously phenotypic and transcriptomic experimental test for a longevity cost of reproduction in eusocial insect queens. The results support the occurrence of costs of reproduction in annual eusocial insects of intermediate social complexity and suggest that reproductive costs are present but latent in queens of such species, i.e. that these queens exhibit condition-dependent positive fecundity-longevity associations. They also raise the possibility that a partial remodelling of genetic and endocrine networks underpinning ageing may have occurred in intermediately eusocial species such that, in unmanipulated conditions, age-related gene expression depends more on chronological than relative age.
Collapse
Affiliation(s)
- David H Collins
- School of Biological Sciences, University of East Anglia, Norwich Research Park, Norwich, NR4 7TJ, UK.
| | - David C Prince
- School of Biological Sciences, University of East Anglia, Norwich Research Park, Norwich, NR4 7TJ, UK
| | - Jenny L Donelan
- School of Biological Sciences, University of East Anglia, Norwich Research Park, Norwich, NR4 7TJ, UK
| | - Tracey Chapman
- School of Biological Sciences, University of East Anglia, Norwich Research Park, Norwich, NR4 7TJ, UK
| | - Andrew F G Bourke
- School of Biological Sciences, University of East Anglia, Norwich Research Park, Norwich, NR4 7TJ, UK
| |
Collapse
|
8
|
Hammer TJ, Easton-Calabria A, Moran NA. Microbiome assembly and maintenance across the lifespan of bumble bee workers. Mol Ecol 2023; 32:724-740. [PMID: 36333950 PMCID: PMC9871002 DOI: 10.1111/mec.16769] [Citation(s) in RCA: 16] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2022] [Revised: 09/13/2022] [Accepted: 09/21/2022] [Indexed: 11/06/2022]
Abstract
How a host's microbiome changes over its lifespan can influence development and ageing. As these temporal patterns have only been described in detail for a handful of hosts, an important next step is to compare microbiome succession more broadly and investigate why it varies. Here we characterize the temporal dynamics and stability of the bumble bee worker gut microbiome. Bumble bees have simple and host-specific gut microbiomes, and their microbial dynamics may influence health and pollination services. We used 16S rRNA gene sequencing, quantitative PCR and metagenomics to characterize gut microbiomes over the lifespan of Bombus impatiens workers. We also sequenced gut transcriptomes to examine host factors that may control the microbiome. At the community level, microbiome assembly is highly predictable and similar to patterns of primary succession observed in the human gut. However, at the strain level, partitioning of bacterial variants among colonies suggests stochastic colonization events similar to those observed in flies and nematodes. We also find strong differences in temporal dynamics among symbiont species, suggesting ecological differences among microbiome members in colonization and persistence. Finally, we show that both the gut microbiome and host transcriptome-including expression of key immunity genes-stabilize, as opposed to senesce, with age. We suggest that in highly social groups such as bumble bees, maintenance of both microbiomes and immunity contribute to inclusive fitness, and thus remain under selection even in old age. Our findings provide a foundation for exploring the mechanisms and functional outcomes of bee microbiome succession.
Collapse
Affiliation(s)
- Tobin J. Hammer
- Department of Ecology and Evolutionary Biology, University of California, Irvine, Irvine, CA 92697,Department of Integrative Biology, University of Texas at Austin, Austin, TX 78703,Corresponding author:
| | | | - Nancy A. Moran
- Department of Integrative Biology, University of Texas at Austin, Austin, TX 78703
| |
Collapse
|
9
|
Meiborg AB, Faber NR, Taylor BA, Harpur BA, Gorjanc G. The suppressive potential of a gene drive in populations of invasive social wasps is currently limited. Sci Rep 2023; 13:1640. [PMID: 36717606 PMCID: PMC9886928 DOI: 10.1038/s41598-023-28867-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Accepted: 01/25/2023] [Indexed: 02/01/2023] Open
Abstract
Social insects are very successful invasive species, and the continued increase of global trade and transportation has exacerbated this problem. The yellow-legged hornet, Vespa velutina nigrithorax (henceforth Asian hornet), is drastically expanding its range in Western Europe. As an apex insect predator, this hornet poses a serious threat to the honey bee industry and endemic pollinators. Current suppression methods have proven too inefficient and expensive to limit its spread. Gene drives might be an effective tool to control this species, but their use has not yet been thoroughly investigated in social insects. Here, we built a model that matches the hornet's life history and modelled the effect of different gene drive scenarios on an established invasive population. To test the broader applicability and sensitivity of the model, we also incorporated the invasive European paper wasp Polistes dominula. We find that, due to the haplodiploidy of social hymenopterans, only a gene drive targeting female fertility is promising for population control. Our results show that although a gene drive can suppress a social wasp population, it can only do so under fairly stringent gene drive-specific conditions. This is due to a combination of two factors: first, the large number of surviving offspring that social wasp colonies produce make it possible that, even with very limited formation of resistance alleles, such alleles can quickly spread and rescue the population. Second, due to social wasp life history, infertile individuals do not compete with fertile ones, allowing fertile individuals to maintain a large population size even when drive alleles are widespread. Nevertheless, continued improvements in gene drive technology may make it a promising method for the control of invasive social insects in the future.
Collapse
Affiliation(s)
- Adriaan B Meiborg
- HighlanderLab, The Roslin Institute and Royal (Dick) School of Veterinary Studies, The University of Edinburgh, Easter Bush Campus, Midlothian, EH25 9RG, UK. .,Developmental Biology Unit, European Molecular Biology Laboratory, Meyerhofstraße 1, 69117, Heidelberg, Germany.
| | - Nicky R Faber
- HighlanderLab, The Roslin Institute and Royal (Dick) School of Veterinary Studies, The University of Edinburgh, Easter Bush Campus, Midlothian, EH25 9RG, UK.,Laboratory of Genetics, Department of Plant Sciences, Wageningen University & Research, Droevendaalsesteeg 1, 6708 PB, Wageningen, The Netherlands
| | - Benjamin A Taylor
- Department of Entomology, Purdue University, West Lafayette, IN, 47907, USA
| | - Brock A Harpur
- Department of Entomology, Purdue University, West Lafayette, IN, 47907, USA
| | - Gregor Gorjanc
- HighlanderLab, The Roslin Institute and Royal (Dick) School of Veterinary Studies, The University of Edinburgh, Easter Bush Campus, Midlothian, EH25 9RG, UK
| |
Collapse
|
10
|
Klüber P, Arous E, Zorn H, Rühl M. Protein- and Carbohydrate-Rich Supplements in Feeding Adult Black Soldier Flies ( Hermetia illucens) Affect Life History Traits and Egg Productivity. Life (Basel) 2023; 13:355. [PMID: 36836709 PMCID: PMC9966864 DOI: 10.3390/life13020355] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Revised: 01/25/2023] [Accepted: 01/26/2023] [Indexed: 01/31/2023] Open
Abstract
The black soldier fly, Hermetia illucens (BSF; Diptera: Stratiomyidae), has come into the focus of research over the past decade since its larvae are polyphagous feeders with an exceptional substrate range, making them a promising candidate for the bioconversion of various organic side streams into valuable insect protein. While larval nutritional requirements have been studied in detail, basic information on adult feeding is still lacking. The reproduction of adult flies is a bottleneck and key determinant in rearing BSF, which has extensive potential for improvement. In the present study, we examined the impact of different carbohydrate (honey and d-glucose) and protein sources (Spirulina and Chlorella powder) on a variety of life history traits using a highly standardized single pair approach. Feeding a 5% honey solution was shown to make females live 2.8 d longer, become more fecund (9 egg clutches per 10 females), lay more eggs (increasing 1.7-fold to 182.4 mg per 10 females), reduce the number of failed oviposition events 3-fold and increase multiple oviposition events from 2 to 15. Additionally, female longevity after oviposition improved 1.7-fold from 6.7 to 11.5 d. In order to further optimize adult feeding, mixtures of proteins and carbohydrates with varying ratios should be tested.
Collapse
Affiliation(s)
- Patrick Klüber
- Branch for Bioresources, Fraunhofer Institute for Molecular Biology and Applied Ecology (IME), 35392 Giessen, Germany
| | - Emna Arous
- Branch for Bioresources, Fraunhofer Institute for Molecular Biology and Applied Ecology (IME), 35392 Giessen, Germany
| | - Holger Zorn
- Branch for Bioresources, Fraunhofer Institute for Molecular Biology and Applied Ecology (IME), 35392 Giessen, Germany
- Institute of Food Chemistry and Food Biotechnology, Justus Liebig University, 35392 Giessen, Germany
| | - Martin Rühl
- Branch for Bioresources, Fraunhofer Institute for Molecular Biology and Applied Ecology (IME), 35392 Giessen, Germany
- Institute of Food Chemistry and Food Biotechnology, Justus Liebig University, 35392 Giessen, Germany
| |
Collapse
|
11
|
Choppin M, Schall M, Feldmeyer B, Foitzik S. Protein-rich diet decreases survival, but does not alter reproduction, in fertile ant workers. Front Ecol Evol 2023. [DOI: 10.3389/fevo.2022.1098245] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
Aging is associated with diverse molecular processes such as oxidative damage, decrease in immunocompetence, or increase in epigenetic abnormalities, mutations, and inflammations. Many of these processes are linked to nutrient-sensing signalling pathways, suggesting that diet plays a critical role in the aging process. In fact, the protein content in the diet can affect both longevity and fecundity, but often in opposite directions. In many solitary organisms, protein-rich diets dramatically shorten lifespan, but increase egg production. We used the ant Temnothorax rugatulus to investigate the effect of the protein to carbohydrate ratio in the diet on the survival and fecundity of fertile workers. We fed colonies either a moderately high-carbohydrate or high-protein diet (1:2 and 2:1 respectively) and monitored worker survival and egg production over 9 weeks. The protein-rich diet did not alter the ability of workers to lay eggs, but reduced worker survival, suggesting that consuming large amounts of protein may shorten lifespan in fertile ant workers without promoting reproduction. Our study shows for the first time that a protein-rich diet reduces the overall fitness of fertile workers.
Collapse
|
12
|
Quicray M, Wilhelm L, Enriquez T, He S, Scheifler M, Visser B. The Drosophila-parasitizing wasp Leptopilina heterotoma: A comprehensive model system in ecology and evolution. Ecol Evol 2023; 13:e9625. [PMID: 36703713 PMCID: PMC9871341 DOI: 10.1002/ece3.9625] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Revised: 11/22/2022] [Accepted: 11/24/2022] [Indexed: 01/25/2023] Open
Abstract
The parasitoid Leptopilina heterotoma has been used as a model system for more than 70 years, contributing greatly to diverse research areas in ecology and evolution. Here, we synthesized the large body of work on L. heterotoma with the aim to identify new research avenues that could be of interest also for researchers studying other parasitoids and insects. We start our review with a description of typical L. heterotoma characteristics, as well as that of the higher taxonomic groups to which this species belongs. We then continue discussing host suitability and immunity, foraging behaviors, as well as fat accumulation and life histories. We subsequently shift our focus towards parasitoid-parasitoid interactions, including L. heterotoma coexistence within the larger guild of Drosophila parasitoids, chemical communication, as well as mating and population structuring. We conclude our review by highlighting the assets of L. heterotoma as a model system, including its intermediate life history syndromes, the ease of observing and collecting natural hosts and wasps, as well as recent genomic advances.
Collapse
Affiliation(s)
- Maude Quicray
- Evolution and Ecophysiology Group, Department of Functional and Evolutionary EntomologyUniversity of Liège ‐ Gembloux Agro‐Bio TechGemblouxBelgium
| | - Léonore Wilhelm
- Evolution and Ecophysiology Group, Department of Functional and Evolutionary EntomologyUniversity of Liège ‐ Gembloux Agro‐Bio TechGemblouxBelgium
| | - Thomas Enriquez
- Evolution and Ecophysiology Group, Department of Functional and Evolutionary EntomologyUniversity of Liège ‐ Gembloux Agro‐Bio TechGemblouxBelgium
| | - Shulin He
- Evolution and Ecophysiology Group, Department of Functional and Evolutionary EntomologyUniversity of Liège ‐ Gembloux Agro‐Bio TechGemblouxBelgium
| | - Mathilde Scheifler
- Evolution and Ecophysiology Group, Department of Functional and Evolutionary EntomologyUniversity of Liège ‐ Gembloux Agro‐Bio TechGemblouxBelgium
| | - Bertanne Visser
- Evolution and Ecophysiology Group, Department of Functional and Evolutionary EntomologyUniversity of Liège ‐ Gembloux Agro‐Bio TechGemblouxBelgium
| |
Collapse
|
13
|
Wei X, Liu J, Zhang ZQ. Predation stress experienced as immature mites extends their lifespan. Biogerontology 2023; 24:67-79. [PMID: 36085209 PMCID: PMC9845153 DOI: 10.1007/s10522-022-09990-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Accepted: 08/30/2022] [Indexed: 01/21/2023]
Abstract
The early-life experience is important in modulating the late-life performance of individuals. It has been predicted that there were trade-offs between early-life fitness and late-life success. Most of the studies on senescence have focused on the trade-offs between the reproduction and lifespan, and the influences of diet, mating, and other factors. Because the negative, non-consumptive effects of predators could also modulate the behaviour and underlying mechanisms of the prey, this study aimed to examine the different effects of predator-induced stress experienced in the early life compared with later life of the prey. The prey (Tyrophagus putrescentiae) was exposed to predation stress from the predator (Neoseiulus cucumeris) during different periods of its life (immature, oviposition period, and post-oviposition period). The results showed that the predation stress experienced during immature stages delayed development by 7.3% and prolonged lifespan by 9.7%, while predation stress experienced in the adult stage (both oviposition and post-oviposition periods) decreased lifespans of T. putrescentiae (by 24.8% and 28.7%, respectively). Predation stress experienced during immature stages also reduced female fecundity by 7.3%, whereas that experienced during the oviposition period reduced fecundity of the prey by 50.7%. This study demonstrated for the first time lifespan extension by exposure to predation stress when young and highlighted the importance of early-life experience to aging and lifespan.
Collapse
Affiliation(s)
- Xiaoying Wei
- School of Biological Sciences, The University of Auckland, Auckland, New Zealand
| | - Jianfeng Liu
- Guizhou Provincial Key Laboratory for Agricultural Pest Management of the Mountainous Region, Scientific Observing and Experimental Station of Crop Pest in Guiyang, Ministry of Agriculture, People’s Republic of China, Institute of Entomology, Guizhou University, Guiyang, 550025 People’s Republic of China
| | - Zhi-Qiang Zhang
- School of Biological Sciences, The University of Auckland, Auckland, New Zealand. .,Manaaki Whenua - Landcare Research, 231 Morrin Road, St Johns, Auckland, New Zealand.
| |
Collapse
|
14
|
Bukkuri A, Gatenby RA, Brown JS. GLUT1 production in cancer cells: a tragedy of the commons. NPJ Syst Biol Appl 2022; 8:22. [PMID: 35768428 PMCID: PMC9243083 DOI: 10.1038/s41540-022-00229-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Accepted: 05/31/2022] [Indexed: 11/09/2022] Open
Abstract
The tragedy of the commons occurs when competition among individual members of a group leads to overexploitation of a shared resource to the detriment of the overall population. We hypothesize that cancer cells may engage in a tragedy of the commons when competing for a shared resource such as glucose. To formalize this notion, we create a game theoretic model of glucose uptake based on a cell’s investment in transporters relative to that of its neighboring cells. We show that production of transporters per cell increases as the number of competing cells in a microenvironment increases and nutrient uptake per cell decreases. Furthermore, the greater the resource availability, the more intense the tragedy of the commons at the ESS. Based on our simulations, cancer cells produce 2.2–2.7 times more glucose transporters than would produce optimal fitness for all group members. A tragedy of the commons affords novel therapeutic strategies. By simulating GLUT1 inhibitor and glucose deprivation treatments, we demonstrate a synergistic combination with standard-of-care therapies, while also displaying the existence of a trade-off between competition among cancer cells and depression of their gain function. Assuming cancer cell transporter production is heritable, we then show the potential for a sucker’s gambit therapy by exploiting this trade-off. By strategically changing environmental conditions, we can take advantage of cellular competition and gain function depression.
Collapse
Affiliation(s)
- Anuraag Bukkuri
- Cancer Biology and Evolution Program and Department of Integrated Mathematical Oncology, Moffitt Cancer Center, Tampa, FL, USA.
| | - Robert A Gatenby
- Cancer Biology and Evolution Program and Department of Integrated Mathematical Oncology, Moffitt Cancer Center, Tampa, FL, USA.,Department of Radiology, Moffitt Cancer Center, Tampa, FL, USA
| | - Joel S Brown
- Cancer Biology and Evolution Program and Department of Integrated Mathematical Oncology, Moffitt Cancer Center, Tampa, FL, USA
| |
Collapse
|
15
|
Price TN, Field J. Sisters doing it for themselves: extensive reproductive plasticity in workers of a primitively eusocial bee. Behav Ecol Sociobiol 2022. [DOI: 10.1007/s00265-022-03196-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Abstract
Plasticity is a key trait when an individual’s role in the social environment, and hence its optimum phenotype, fluctuates unpredictably. Plasticity is especially important in primitively eusocial insects where small colony sizes and little morphological caste differentiation mean that individuals may find themselves switching from non-reproductive to reproductive roles. To understand the scope of this plasticity, workers of the primitively eusocial sweat bee Lasioglossum malachurum were experimentally promoted to the reproductive role (worker-queens) and their performance compared with foundress-queens. We focussed on how their developmental trajectory as workers influenced three key traits: group productivity, monopolisation of reproduction, and social control of foraging nest-mates. No significant difference was found between the number of offspring produced by worker-queens and foundress-queens. Genotyping of larvae showed that worker-queens monopolised reproduction in their nests to the same extent as foundress queens. However, non-reproductives foraged less and produced a smaller total offspring biomass when the reproductive was a promoted worker: offspring of worker-queens were all males, which are the cheaper sex to produce. Greater investment in each offspring as the number of foragers increased suggests a limit to both worker-queen and foundress-queen offspring production when a greater quantity of pollen arrives at the nest. The data presented here suggest a remarkable level of plasticity and represent one of the first quantitative studies of worker reproductive plasticity in a non-model primitively eusocial species.
Significance statement
The ability of workers to take on a reproductive role and produce offspring is expected to relate strongly to the size of their colony. Workers in species with smaller colony sizes should have greater reproductive potential to insure against the death of the queen. We quantified the reproductive plasticity of workers in small colonies of sweat bees by removing the queen and allowing the workers to control the reproductive output of the nest. A single worker then took on the reproductive role and hence prevented her fellow workers from producing offspring of their own. These worker-queens produced as many offspring as control queens, demonstrating remarkable worker plasticity in a primitively eusocial species.
Collapse
|
16
|
Conflict and the evolution of viviparity in vertebrates. Behav Ecol Sociobiol 2022. [DOI: 10.1007/s00265-022-03171-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
|
17
|
Shell WA, Rehan SM. Social divergence: molecular pathways underlying castes and longevity in a facultatively eusocial small carpenter bee. Proc Biol Sci 2022; 289:20212663. [PMID: 35317677 PMCID: PMC8941392 DOI: 10.1098/rspb.2021.2663] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Unravelling the evolutionary origins of eusocial life is a longstanding endeavour in the field of evolutionary-developmental biology. Descended from solitary ancestors, eusocial insects such as honeybees have evolved ontogenetic division of labour in which short-lived workers perform age-associated tasks, while a long-lived queen produces brood. It is hypothesized that (i) eusocial caste systems evolved through the co-option of deeply conserved genes and (ii) longevity may be tied to oxidative damage mitigation capacity. To date, however, these hypotheses have been examined primarily among only obligately eusocial corbiculate bees. We present brain transcriptomic data from a Japanese small carpenter bee, Ceratina japonica (Apidae: Xylocopinae), which demonstrates both solitary and eusocial nesting in sympatry and lives 2 or more years in the wild. Our dataset captures gene expression patterns underlying first- and second-year solitary females, queens and workers, providing an unprecedented opportunity to explore the molecular mechanisms underlying caste-antecedent phenotypes in a long-lived and facultatively eusocial bee. We find that C. japonica's queens and workers are underpinned by divergent gene regulatory pathways, involving many differentially expressed genes well-conserved among other primitively eusocial bee lineages. We also find support for oxidative damage reduction as a proximate mechanism of longevity in C. japonica.
Collapse
Affiliation(s)
- Wyatt A. Shell
- Department of Biology, York University, 4700 Keele Street, Toronto, Ontario, Canada M3J 1P3
| | - Sandra M. Rehan
- Department of Biology, York University, 4700 Keele Street, Toronto, Ontario, Canada M3J 1P3
| |
Collapse
|
18
|
Metz BN, Tarpy DR. Reproductive and Morphological Quality of Commercial Honey Bee (Hymenoptera: Apidae) Drones in the United States. JOURNAL OF INSECT SCIENCE (ONLINE) 2021; 21:6414649. [PMID: 34723330 PMCID: PMC8559163 DOI: 10.1093/jisesa/ieab048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Indexed: 06/13/2023]
Abstract
Exploration into reproductive quality in honey bees (Apis mellifera Linneaus (Hymenoptera: Apidae) largely focuses on factors that affect queens, with drones primarily being considered insofar as they pass on effects of environmental stressors to the queen and subsequent offspring. In those studies that consider drone quality explicitly, a primary focus has been on the dimorphic nature of drones laid in worker cells (either through rare queen error or worker reproduction) as compared to drones laid by the queen in the slightly larger drone cells. The implication from these studies is that that there exists a bimodality of drone morphological quality that is related to reproductive quality and competitive ability during mating. Our study quantifies the presence of such small drones in commercial populations, finding that rates of 'low-quality' drones are far higher than theoretically predicted under optimum conditions. Observations from commercial colonies also show significant inter-colony variation among the size and fecundity of drones produced, prompting speculation as to the mechanisms inducing such variation and the potential use of drone-quality variation for the colony- or apiary-level exposure to nutrition, agrichemical, or parasitic stressors.
Collapse
Affiliation(s)
- Bradley N Metz
- Department of Entomology & Plant Pathology, NC State Apiculture, Campus Box 7613, North Carolina State University, Raleigh, NC 27695-7613, USA
| | - David R Tarpy
- Department of Entomology & Plant Pathology, NC State Apiculture, Campus Box 7613, North Carolina State University, Raleigh, NC 27695-7613, USA
- Biology Graduate Program—Ecology & Evolution, NC State Apiculture, Campus Box 7613, North Carolina State University, Raleigh, NC 27695-7613, USA
| |
Collapse
|
19
|
Bernadou A, Kramer BH, Korb J. Major Evolutionary Transitions in Social Insects, the Importance of Worker Sterility and Life History Trade-Offs. Front Ecol Evol 2021. [DOI: 10.3389/fevo.2021.732907] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
The evolution of eusociality in social insects, such as termites, ants, and some bees and wasps, has been regarded as a major evolutionary transition (MET). Yet, there is some debate whether all species qualify. Here, we argue that worker sterility is a decisive criterion to determine whether species have passed a MET (= superorganisms), or not. When workers are sterile, reproductive interests align among group members as individual fitness is transferred to the colony level. Division of labour among cooperating units is a major driver that favours the evolution of METs across all biological scales. Many METs are characterised by a differentiation into reproductive versus maintenance functions. In social insects, the queen specialises on reproduction while workers take over maintenance functions such as food provisioning. Such division of labour allows specialisation and it reshapes life history trade-offs among cooperating units. For instance, individuals within colonies of social insects can overcome the omnipresent fecundity/longevity trade-off, which limits reproductive success in organisms, when increased fecundity shortens lifespan. Social insect queens (particularly in superorganismal species) can reach adult lifespans of several decades and are among the most fecund terrestrial animals. The resulting enormous reproductive output may contribute to explain why some genera of social insects became so successful. Indeed, superorganismal ant lineages have more species than those that have not passed a MET. We conclude that the release from life history constraints at the individual level is a important, yet understudied, factor across METs to explain their evolutionary success.
Collapse
|
20
|
Horrocks KJ, Avila GA, Holwell GI, Suckling DM. Irradiation-induced sterility in an egg parasitoid and possible implications for the use of biological control in insect eradication. Sci Rep 2021; 11:12326. [PMID: 34112932 PMCID: PMC8192755 DOI: 10.1038/s41598-021-91935-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Accepted: 05/31/2021] [Indexed: 02/05/2023] Open
Abstract
Classical biological control is a pest control tool involving the release of imported natural enemies. The Sterile Insect Technique (SIT) comprises releasing sexually sterile insects of a pest into the wild population for suppression or eradication. Both these approaches are environmentally friendly and their combination can result in a synergistic impact on pest populations and improve eradication. However, stringent regulation surrounding the introduction of biological control agents limits their use in eradication owing to the perceived risk of effects on non-target organisms. We investigated the irradiation biology of the egg parasitoid Trissolcus basalis to ascertain whether sterile parasitoids could mitigate the risk of potential sustained non-target impacts. Mated female T. basalis were gamma-irradiated at doses between 120 and 150 Gy and exposed to egg masses of their host Nezara viridula throughout their lifespans. This resulted in host mortality, despite a substantial reduction in developing parasitoid offspring, which followed a negative dose-response. There was no emergence of parasitoid offspring at 140 Gy and above. Irradiation did not affect oviposition behaviour but caused an increase in longevity. Consequently, sterile parasitoids could possibly alleviate concerns regarding the irreversibility of biological control release, which promotes further investigation of their potential role in eradication.
Collapse
Affiliation(s)
- Kiran Jonathan Horrocks
- grid.9654.e0000 0004 0372 3343School of Biological Sciences, Auckland Mail Centre, University of Auckland, Private Bag 92019, Auckland, 1142 New Zealand
| | - Gonzalo Andres Avila
- grid.27859.31The New Zealand Institute for Plant and Food Research Limited, Auckland Mail Centre, Private Bag 92169, Auckland, 1025 New Zealand ,Better Border Biosecurity, Auckland, New Zealand
| | - Gregory Ian Holwell
- grid.9654.e0000 0004 0372 3343School of Biological Sciences, Auckland Mail Centre, University of Auckland, Private Bag 92019, Auckland, 1142 New Zealand
| | - David Maxwell Suckling
- grid.9654.e0000 0004 0372 3343School of Biological Sciences, Auckland Mail Centre, University of Auckland, Private Bag 92019, Auckland, 1142 New Zealand ,The New Zealand Institute for Plant and Food Research Limited, Christchurch Mail Centre, Private Bag 4704, Christchurch, 8140 New Zealand ,Better Border Biosecurity, Auckland, New Zealand
| |
Collapse
|
21
|
Cardoso-Júnior CAM, Oldroyd BP, Ronai I. Vitellogenin expression in the ovaries of adult honeybee workers provides insights into the evolution of reproductive and social traits. INSECT MOLECULAR BIOLOGY 2021; 30:277-286. [PMID: 33427366 DOI: 10.1111/imb.12694] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/23/2020] [Revised: 12/10/2020] [Accepted: 01/06/2021] [Indexed: 06/12/2023]
Abstract
Social insects are notable for having two female castes that exhibit extreme differences in their reproductive capacity. The molecular basis of these differences is largely unknown. Vitellogenin (Vg) is a powerful antioxidant and insulin-signalling regulator used in oocyte development. Here we investigate how Royal Jelly (the major food of honeybee queens) and queen mandibular pheromone (a major regulator of worker fertility), affect the longevity and reproductive status of honey bee workers, the expression of Vg, its receptor VgR and associated regulatory proteins. We find that Vg is expressed in the ovaries of workers and that workers fed a queen diet of Royal Jelly have increased Vg expression in the ovaries. Surprisingly, we find that expression of Vg is not associated with ovary activation in workers, suggesting that this gene has potentially acquired non-reproductive functions. Therefore, Vg expression in the ovaries of honeybee workers provides further support for the Ovarian Ground Plan Hypothesis, which argues that genes implicated in the regulation of reproduction have been co-opted to regulate behavioural differences between queens and workers.
Collapse
Affiliation(s)
- C A M Cardoso-Júnior
- Departamento de Biologia Celular e Bioagentes Patogênicos, Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, Brazil
- Behaviour and Genetics of Social Insects Laboratory, Ecology and Evolution, School of Life and Environmental Sciences A12, University of Sydney, Sydney, New South Wales, Australia
| | - B P Oldroyd
- Behaviour and Genetics of Social Insects Laboratory, Ecology and Evolution, School of Life and Environmental Sciences A12, University of Sydney, Sydney, New South Wales, Australia
| | - I Ronai
- Behaviour and Genetics of Social Insects Laboratory, Ecology and Evolution, School of Life and Environmental Sciences A12, University of Sydney, Sydney, New South Wales, Australia
| |
Collapse
|
22
|
Santos AA, Wanderley-Teixeira V, dos Santos Cruz G, de Andrade Dutra K, do Amaral Ferraz Navarro DM, de Oliveira JV, Lapa-Neto CJC, e Silva Barbosa DR, Teixeira ÁAC. Essential oil toxicity on biological and reproductive parameters of Alabama argillacea (Hübner) (Lepidoptera: Erebidae). Acta Histochem 2021; 123:151714. [PMID: 33857700 DOI: 10.1016/j.acthis.2021.151714] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2020] [Revised: 03/31/2021] [Accepted: 04/06/2021] [Indexed: 11/26/2022]
Abstract
Several studies have demonstrated the effects of essential oils on insect pests. These effects vary and affect fundamental parameters for the survival of these organisms. However, there is a scarcity of research on the effect of these substances on Alabama argillacea (Hübner) (Lepidoptera: Erebidae), the main defoliating pest of cotton (Gossypium hirsutum L.). Thus, the present study aimed to evaluate the activity of essential oils from Litsea cubeba (Lour.) Pers., Melaleuca alternifolia Cheel, Juniperus virginiana L., and Mentha spicata L., on the biological and reproductive parameters of A. argillacea and the consequent effects on the gonads of both males and females of this pest. All essential oils presented toxicity by contact in third instar larvae of A. argillacea, causing a reduction in the weight of larvae and pupae, as well as affecting the number and viability of eggs. These essential oils changed the histochemistry of the testicles, and M. alternifolia, J. virginiana, and M. spicata also affected their morphology. The histochemistry of the ovarioles was altered by the essential oils from M. alternifolia, J. virginiana, and L. cubeba. Thus, the essential oils tested in the present work are promising for the control of A. argillacea, as they are toxic and affect the development and reproduction of this key pest of cotton.
Collapse
|
23
|
Majoe M, Libbrecht R, Foitzik S, Nehring V. Queen loss increases worker survival in leaf-cutting ants under paraquat-induced oxidative stress. Philos Trans R Soc Lond B Biol Sci 2021; 376:20190735. [PMID: 33678018 PMCID: PMC7938173 DOI: 10.1098/rstb.2019.0735] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/19/2020] [Indexed: 01/18/2023] Open
Abstract
Longevity is traded off with fecundity in most solitary species, but the two traits are positively linked in social insects. In ants, the most fecund individuals (queens and kings) live longer than the non-reproductive individuals, the workers. In many species, workers may become fertile following queen loss, and recent evidence suggests that worker fecundity extends worker lifespan. We postulated that this effect is in part owing to improved resilience to oxidative stress, and tested this hypothesis in three Myrmicine ants: Temnothorax rugatulus, and the leaf-cutting ants Atta colombica and Acromyrmex echinatior. We removed the queen from colonies to induce worker reproduction and subjected workers to oxidative stress. Oxidative stress drastically reduced survival, but this effect was less pronounced in leaf-cutting ant workers from queenless nests. We also found that, irrespective of oxidative stress, outside workers died earlier than inside workers did, likely because they were older. Since At. colombica workers cannot produce fertile offspring, our results indicate that direct reproduction is not necessary to extend the lives of queenless workers. Our findings suggest that workers are less resilient to oxidative stress in the presence of the queen, and raise questions on the proximate and ultimate mechanisms underlying socially mediated variation in worker lifespan. This article is part of the theme issue 'Ageing and sociality: why, when and how does sociality change ageing patterns?'
Collapse
Affiliation(s)
- Megha Majoe
- Institute of Organismic and Molecular Evolution, Johannes Gutenberg University Mainz, Hanns Dieter Hüsch Weg 15, 55128 Mainz, Germany
- Institute for Biology I (Zoology), University of Freiburg, Hauptstrasse 1, D-79104 Freiburg, Germany
| | - Romain Libbrecht
- Institute of Organismic and Molecular Evolution, Johannes Gutenberg University Mainz, Hanns Dieter Hüsch Weg 15, 55128 Mainz, Germany
| | - Susanne Foitzik
- Institute of Organismic and Molecular Evolution, Johannes Gutenberg University Mainz, Hanns Dieter Hüsch Weg 15, 55128 Mainz, Germany
| | - Volker Nehring
- Institute for Biology I (Zoology), University of Freiburg, Hauptstrasse 1, D-79104 Freiburg, Germany
| |
Collapse
|
24
|
Korb J, Heinze J. Ageing and sociality: why, when and how does sociality change ageing patterns? Philos Trans R Soc Lond B Biol Sci 2021; 376:20190727. [PMID: 33678019 PMCID: PMC7938171 DOI: 10.1098/rstb.2019.0727] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/04/2021] [Indexed: 02/07/2023] Open
Abstract
Individual lifespans vary tremendously between and also within species, but the proximate and ultimate causes of different ageing speeds are still not well understood. Sociality appears to be associated with the evolution of greater longevity and probably also with a larger plasticity of the shape and pace of ageing. For example, reproductives of several termites and ants reach lifespans that surpass those of their non-reproductive nestmates by one or two decades. In this issue, 15 papers explore the interrelations between sociality and individual longevity in both, group-living vertebrates and social insects. Here, we briefly give an overview of the contents of the various contributions, including theoretical and comparative studies, and we explore the similarities and dissimilarities in proximate mechanisms underlying ageing among taxa, with particular emphasis on nutrient-sensing pathways and, in insects, juvenile hormone. These studies point to an underestimated role of more downstream processes. We highlight the need for reliable transcriptomic markers of ageing and a comprehensive ageing theory of social animals, which includes the reproductive potential of workers, and considers the fact that social insect queens reach maturity only after a prolonged period of producing non-reproductive workers. This article is part of the theme issue 'Ageing and sociality: why, when and how does sociality change ageing patterns?'
Collapse
Affiliation(s)
- Judith Korb
- Department of Evolutionary Biology and Ecology, University of Freiburg, Hauptstrasse 1, 79104 Freiburg, Germany
| | - Jürgen Heinze
- Department of Zoology/Evolutionary Biology, University of Regensburg, Universitätsstraße, 93040 Regensburg, Germany
| |
Collapse
|
25
|
Heinze J, Giehr J. The plasticity of lifespan in social insects. Philos Trans R Soc Lond B Biol Sci 2021; 376:20190734. [PMID: 33678025 PMCID: PMC7938164 DOI: 10.1098/rstb.2019.0734] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/29/2020] [Indexed: 01/11/2023] Open
Abstract
One of the central questions of ageing research is why lifespans of organisms differ so tremendously among related taxa and, even more surprising, among members of the same species. Social insects provide a particularly pronounced example for this. Here, we review previously published information on lifespan plasticity in social insects and provide new data on worker lifespan in the ant Cardiocondyla obscurior, which because of its relatively short lifespan is a convenient model to study ageing. We show that individual lifespan may vary within species with several reproductive and social traits, such as egg-laying rate, queen number, task, colony size and colony composition. For example, in Cardiocondyla, highly fecund queens live longer than reproductively less active queens, and workers tend to live longer when transferred into a novel social environment or, as we show with new data, into small colonies. We hypothesize that this plasticity of lifespan serves to maximize the reproductive output of the colony as a whole and thus the inclusive fitness of all individuals. The underlying mechanisms that link the social environment or reproductive status with lifespan are currently unresolved. Several studies in honeybees and ants indicate an involvement of nutrient-sensing pathways, but the details appear to differ among species. This article is part of the theme issue 'Ageing and sociality: why, when and how does sociality change ageing patterns?'
Collapse
Affiliation(s)
- Jürgen Heinze
- Zoology/Evolutionary Biology, University of Regensburg, Regensburg 93040 Germany
| | - Julia Giehr
- Zoology/Evolutionary Biology, University of Regensburg, Regensburg 93040 Germany
| |
Collapse
|
26
|
Downing PA, Griffin AS, Cornwallis CK. Hard-working helpers contribute to long breeder lifespans in cooperative birds. Philos Trans R Soc Lond B Biol Sci 2021; 376:20190742. [PMID: 33678023 DOI: 10.1098/rstb.2019.0742] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
In many species that raise young in cooperative groups, breeders live an exceptionally long time despite high investment in offspring production. How is this possible given the expected trade-off between survival and reproduction? One possibility is that breeders extend their lifespans by outsourcing parental care to non-reproductive group members. Having help lightens breeder workloads and the energy that is saved can be allocated to survival instead. We tested this hypothesis using phylogenetic meta-analysis across 23 cooperatively breeding bird species. We found that breeders with helpers had higher rates of annual survival than those without helpers (8% on average). Increased breeder survival was correlated with reduced investment in feeding offspring, which in turn depended on the proportion of feeding provided by helpers. Helpers had similar effects on female and male breeder survival. Our results indicate that one of the secrets to a long life is reduced investment in parental care. This appears to be a unique feature of cooperative societies with hard-working helpers. This article is part of the theme issue 'Ageing and sociality: why, when and how does sociality change ageing patterns?'
Collapse
|
27
|
Kennedy A, Herman J, Rueppell O. Reproductive activation in honeybee ( Apis mellifera) workers protects against abiotic and biotic stress. Philos Trans R Soc Lond B Biol Sci 2021; 376:20190737. [PMID: 33678021 DOI: 10.1098/rstb.2019.0737] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
Social insect reproductives exhibit exceptional longevity instead of the classic trade-off between somatic maintenance and reproduction. Even normally sterile workers experience a significant increase in life expectancy when they assume a reproductive role. The mechanisms that enable the positive relation between the antagonistic demands of reproduction and somatic maintenance are unclear. To isolate the effect of reproductive activation, honeybee workers were induced to activate their ovaries. These reproductively activated workers were compared to controls for survival and gene expression patterns after exposure to Israeli Acute Paralysis Virus or the oxidative stressor paraquat. Reproductive activation increased survival, indicating better immunity and oxidative stress resistance. After qPCR analysis confirmed our experimental treatments at the physiological level, whole transcriptome analysis revealed that paraquat treatment significantly changed the expression of 1277 genes in the control workers but only two genes in reproductively activated workers, indicating that reproductive activation preemptively protects against oxidative stress. Significant overlap between genes that were upregulated by reproductive activation and in response to paraquat included prominent members of signalling pathways and anti-oxidants known to affect ageing. Thus, while our results confirm a central role of vitellogenin, they also point to other mechanisms to explain the molecular basis of the lack of a cost of reproduction and the exceptional longevity of social insect reproductives. Thus, socially induced reproductive activation preemptively protects honeybee workers against stressors, explaining their longevity. This article is part of the theme issue 'Ageing and sociality: why, when and how does sociality change ageing patterns?'
Collapse
Affiliation(s)
- Anissa Kennedy
- Department of Biology, University of North Carolina Greensboro, 321 McIver Street, Greensboro, NC 27403, USA
| | - Jacob Herman
- Department of Biology, University of North Carolina Greensboro, 321 McIver Street, Greensboro, NC 27403, USA
| | - Olav Rueppell
- Department of Biology, University of North Carolina Greensboro, 321 McIver Street, Greensboro, NC 27403, USA
| |
Collapse
|
28
|
Sokolova I. Bioenergetics in environmental adaptation and stress tolerance of aquatic ectotherms: linking physiology and ecology in a multi-stressor landscape. J Exp Biol 2021; 224:224/Suppl_1/jeb236802. [PMID: 33627464 DOI: 10.1242/jeb.236802] [Citation(s) in RCA: 59] [Impact Index Per Article: 19.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Energy metabolism (encompassing energy assimilation, conversion and utilization) plays a central role in all life processes and serves as a link between the organismal physiology, behavior and ecology. Metabolic rates define the physiological and life-history performance of an organism, have direct implications for Darwinian fitness, and affect ecologically relevant traits such as the trophic relationships, productivity and ecosystem engineering functions. Natural environmental variability and anthropogenic changes expose aquatic ectotherms to multiple stressors that can strongly affect their energy metabolism and thereby modify the energy fluxes within an organism and in the ecosystem. This Review focuses on the role of bioenergetic disturbances and metabolic adjustments in responses to multiple stressors (especially the general cellular stress response), provides examples of the effects of multiple stressors on energy intake, assimilation, conversion and expenditure, and discusses the conceptual and quantitative approaches to identify and mechanistically explain the energy trade-offs in multiple stressor scenarios, and link the cellular and organismal bioenergetics with fitness, productivity and/or ecological functions of aquatic ectotherms.
Collapse
Affiliation(s)
- Inna Sokolova
- Marine Biology Department, Institute of Biological Sciences, University of Rostock, 18059 Rostock, Germany .,Department of Maritime Systems, Interdisciplinary Faculty, University of Rostock, 18059 Rostock, Germany
| |
Collapse
|
29
|
Raines KE, Whitehorn PR, Copplestone D, Tinsley MC. Chernobyl-level radiation exposure damages bumblebee reproduction: a laboratory experiment. Proc Biol Sci 2020; 287:20201638. [PMID: 33081610 PMCID: PMC7661291 DOI: 10.1098/rspb.2020.1638] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2020] [Accepted: 09/30/2020] [Indexed: 12/16/2022] Open
Abstract
The consequences for wildlife of living in radiologically contaminated environments are uncertain. Previous laboratory studies suggest insects are relatively radiation-resistant; however, some field studies from the Chernobyl Exclusion Zone report severe adverse effects at substantially lower radiation dose rates than expected. Here, we present the first laboratory investigation to study how environmentally relevant radiation exposure affects bumblebee life history, assessing the shape of the relationship between radiation exposure and fitness loss. Dose rates comparable to the Chernobyl Exclusion Zone (50-400 µGy h-1) impaired bumblebee reproduction and delayed colony growth but did not affect colony weight or longevity. Our best-fitting model for the effect of radiation dose rate on colony queen production had a strongly nonlinear concave relationship: exposure to only 100 µGy h-1 impaired reproduction by 30-45%, while further dose rate increases caused more modest additional reproductive impairment. Our data indicate that the practice of estimating effects of environmentally relevant low-dose rate exposure by extrapolating from high-dose rates may have considerably underestimated the effects of radiation. If our data can be generalized, they suggest insects suffer significant negative consequences at dose rates previously thought safe; we therefore advocate relevant revisions to the international framework for radiological protection of the environment.
Collapse
Affiliation(s)
| | - Penelope R. Whitehorn
- Karlsruhe Institute of Technology KIT, Institute of Meteorology and Climate Research Atmospheric Environmental Research (IMK-IFU), Kreuzeckbahnstraße 19, 82467 Garmisch-Partenkirchen, Germany
| | - David Copplestone
- Faculty of Natural Sciences, University of Stirling, Stirling FK9 4LA, UK
| | - Matthew C. Tinsley
- Faculty of Natural Sciences, University of Stirling, Stirling FK9 4LA, UK
| |
Collapse
|
30
|
Shandilya A, Singh P, Mishra G, Omkar O. Cost of mating in male
Menochilus sexmaculatus
(Fabricius) (Coleoptera: Coccinellidae). Ethology 2020. [DOI: 10.1111/eth.13099] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Affiliation(s)
- Apoorva Shandilya
- Ladybird Research Laboratory Department of Zoology University of Lucknow Lucknow India
| | - Priya Singh
- Ladybird Research Laboratory Department of Zoology University of Lucknow Lucknow India
| | - Geetanjali Mishra
- Ladybird Research Laboratory Department of Zoology University of Lucknow Lucknow India
| | - Omkar Omkar
- Ladybird Research Laboratory Department of Zoology University of Lucknow Lucknow India
| |
Collapse
|
31
|
de Oliveira VM, Mendes BB, Roque M, Campos PR. Extinction-colonization dynamics upon a survival-dispersal trade-off. ECOLOGICAL COMPLEXITY 2020. [DOI: 10.1016/j.ecocom.2020.100856] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
32
|
Gervais A, Fournier V, Bélisle M. Agricultural landscape composition affects the development and life expectancy of colonies of
Bombus impatiens. Ecosphere 2020. [DOI: 10.1002/ecs2.3142] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
Affiliation(s)
- A. Gervais
- Centre de recherche et d’innovation sur les végétaux (CRIV) et Département de phytologie Université Laval 2480 Boulevard Hochelaga Quebec City Québec G1V 0A6 Canada
| | - V. Fournier
- Centre de recherche et d’innovation sur les végétaux (CRIV) et Département de phytologie Université Laval 2480 Boulevard Hochelaga Quebec City Québec G1V 0A6 Canada
| | - M. Bélisle
- Centre d’étude de la forêt (CEF) et Département de biologie Université de Sherbrooke 2500 Boulevard de l'Université Sherbrooke Québec J1K 2R1 Canada
| |
Collapse
|
33
|
Treanore ED, Kiner JM, Kerner ME, Amsalem E. Shift in worker physiology and gene expression pattern from reproductive to diapause-like with colony age in the bumble bee Bombus impatiens. J Exp Biol 2020; 223:jeb218768. [PMID: 32205359 DOI: 10.1242/jeb.218768] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2019] [Accepted: 03/17/2020] [Indexed: 08/26/2023]
Abstract
Insects maximize their fitness by exhibiting predictable and adaptive seasonal patterns in response to changing environmental conditions. These seasonal patterns are often expressed even when insects are kept in captivity, suggesting they are functionally and evolutionarily important. In this study, we examined whether workers of the eusocial bumble bee Bombus impatiens maintained a seasonal signature when kept in captivity. We used an integrative approach and compared worker egg laying, ovarian activation, body size and mass, lipid content in the fat body, cold tolerance and expression of genes related to cold tolerance, metabolism and stress throughout colony development. We found that bumble bee worker physiology and gene expression patterns shift from reproductive-like to diapause-like as the colony ages. Workers eclosing early in the colony cycle had increased egg laying and ovarian activation, and reduced cold tolerance, body size, mass and lipid content in the fat body, in line with a reproductive-like profile, while late-eclosing workers exhibited the opposite characteristics. Furthermore, expression patterns of genes associated with reproduction and diapause differed between early- and late-eclosing workers, partially following the physiological patterns. We suggest that a seasonal signature, innate to individual workers, the queen or the colony, is used by workers as a social cue determining the phenology of the colony and discuss possible implications for understanding reproductive division of labor in bumble bee colonies and the evolutionary divergence of female castes in the genus Bombus.
Collapse
Affiliation(s)
- Erin D Treanore
- Department of Entomology, Center for Chemical Ecology, Center for Pollinator Research, Huck Institutes of the Life Sciences, Pennsylvania State University, University Park, PA 16802, USA
| | - Jacklyn M Kiner
- Department of Entomology, Center for Chemical Ecology, Center for Pollinator Research, Huck Institutes of the Life Sciences, Pennsylvania State University, University Park, PA 16802, USA
| | - Mackenzie E Kerner
- Department of Entomology, Center for Chemical Ecology, Center for Pollinator Research, Huck Institutes of the Life Sciences, Pennsylvania State University, University Park, PA 16802, USA
| | - Etya Amsalem
- Department of Entomology, Center for Chemical Ecology, Center for Pollinator Research, Huck Institutes of the Life Sciences, Pennsylvania State University, University Park, PA 16802, USA
| |
Collapse
|
34
|
dos Santos Conceição Lopes B, Campbell AJ, Contrera FAL. Queen loss changes behavior and increases longevity in a stingless bee. Behav Ecol Sociobiol 2020. [DOI: 10.1007/s00265-020-2811-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
35
|
Quque M, Benhaim-Delarbre M, Deneubourg JL, Sueur C, Criscuolo F, Bertile F. Division of labour in the black garden ant (Lasius niger) leads to three distinct proteomes. JOURNAL OF INSECT PHYSIOLOGY 2019; 117:103907. [PMID: 31255645 DOI: 10.1016/j.jinsphys.2019.103907] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/03/2019] [Revised: 06/26/2019] [Accepted: 06/26/2019] [Indexed: 06/09/2023]
Abstract
Task specialization in social insects leads to striking intra-specific differences in behaviour, morphology, physiology and longevity, but the underlying mechanisms remain not yet fully understood. Adult colonies of black garden ants (Lasius niger) have a single queen fertilized by one or a small number of males. The inter-individual genetic variability is thus relatively low, making it easier to focus on the individual molecular differences linked to the division of labour. Mass spectrometry-based proteomics enabled us to highlight which biological functions create the difference between queens, foragers and nest-workers. The proteome of each caste reflected nicely their social role: e.g., reproduction for queens, pesticide resistance for foragers - that are the most exposed to environmental risk factors - and, interestingly, digestion for nest-workers, thus highlighting proteomic profiles differences even among workers. Furthermore, our exploratory approach suggests energy trade-off mechanisms - in connection with the theory of social immunity - that might explain the difference in longevity between queens and workers. This study brings evidence that proteomics is able to highlight the subtle mechanisms of molecular regulation induced by social organization.
Collapse
Affiliation(s)
- Martin Quque
- Université de Strasbourg, CNRS, IPHC UMR 7178, F-67000 Strasbourg, France.
| | | | - Jean-Louis Deneubourg
- Université Libre de Bruxelles, CPBT, CP231, Av. F. Roosevelt 50, 1050 Bruxelles, Belgium
| | - Cédric Sueur
- Université de Strasbourg, CNRS, IPHC UMR 7178, F-67000 Strasbourg, France
| | - François Criscuolo
- Université de Strasbourg, CNRS, IPHC UMR 7178, F-67000 Strasbourg, France
| | - Fabrice Bertile
- Université de Strasbourg, CNRS, IPHC UMR 7178, F-67000 Strasbourg, France
| |
Collapse
|
36
|
Taylor BA, Reuter M, Sumner S. Patterns of reproductive differentiation and reproductive plasticity in the major evolutionary transition to superorganismality. CURRENT OPINION IN INSECT SCIENCE 2019; 34:40-47. [PMID: 31247416 DOI: 10.1016/j.cois.2019.02.007] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/17/2018] [Revised: 02/05/2019] [Accepted: 02/21/2019] [Indexed: 06/09/2023]
Abstract
Major evolutionary transitions in individuality are characterised by the formation of new levels of biological complexity from the cooperation of previously independent lower-level units. The evolution of superorganismality in insects is one such major transition, and is characterised by an extreme division of reproductive labour between ancestrally autonomous units, in the form of queen and worker castes. Here, we discuss the nature of plasticity in the emergence of castes across the major transition to superorganismality in insects. We identify key changes in plasticity which act at different levels of selection: a loss of reproductivity plasticity at the individual level is matched by a gain in plasticity at the colony level. Taking multi-level selection into consideration has important implications for formulating testable hypotheses regarding the nature of plasticity in a major transition from a lower to a higher level of biological complexity.
Collapse
Affiliation(s)
- Benjamin A Taylor
- Centre for Biodiversity & Environment Research, Department of Genetics, Evolution & Environment, University College London, Gower Street, London WC1E 6BT, United Kingdom
| | - Max Reuter
- Department of Genetics, Evolution & Environment, University College London, Gower Street, London WC1E 6BT, United Kingdom
| | - Seirian Sumner
- Centre for Biodiversity & Environment Research, Department of Genetics, Evolution & Environment, University College London, Gower Street, London WC1E 6BT, United Kingdom.
| |
Collapse
|
37
|
Abstract
The demonstration of life span plasticity in natural populations would provide a powerful test of evolutionary theories of senescence. Plastic senescence is not easily explained by mutation accumulation or antagonistic pleiotropy but is a corollary of the disposable soma theory. The life span differences among castes of the eusocial Hymenoptera are potentially some of the most striking and extreme examples of life span plasticity. Although these differences are often assumed to be plastic, this has never been demonstrated conclusively because differences in life span may be caused by the proximate effects of different levels of environmental hazard experienced by castes. Here age-dependent and age-independent components of instantaneous mortality rates of the honey bee (Apis mellifera) were estimated from published life tables for natural and seminatural populations to determine whether differences in life span between queens and workers and between different types of workers are indeed plastic. These differences in life span were found to be due to differences in the rate of actuarial senescence, which correlate positively with the rate of extrinsic mortality, in accordance with the central prediction of evolutionary theories of senescence. Although all three evolutionary theories of senescence could in principle explain such plastic senescence, given differential gene expression between castes or life stages, only the disposable soma theory adequately explains the adaptive regulation of somatic maintenance in response to different environmental conditions that appears to underlie life span plasticity.
Collapse
|
38
|
Couchoux C, Field J. Parental manipulation of offspring size in social groups: a test using paper wasps. Behav Ecol Sociobiol 2019; 73:36. [PMID: 30880867 PMCID: PMC6394940 DOI: 10.1007/s00265-019-2646-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2018] [Revised: 02/13/2019] [Accepted: 02/14/2019] [Indexed: 12/03/2022]
Abstract
Abstract Maternal effects should be especially likely when mothers actively provision offspring with resources that influence offspring phenotype. In cooperatively breeding and eusocial taxa, there is potential for parents to strategically manipulate offspring phenotype in their own interests. Social insect queens are nearly always larger than their worker offspring, and queens could benefit by producing small daughter workers in several ways. If queens use aggression to dominate or coerce workers, a queen producing small workers might minimize potential conflict or competition from her offspring. In addition, because of the trade-off between the number of workers she is able to produce and their individual size, a queen may produce small workers to optimize colony work effort. In this study, we investigate why queens of the primitively eusocial paper wasp Polistes gallicus limit the size of their workers. We created queen–worker size mismatches by cross-fostering queens between nests. We then tested whether the queen–worker size difference affects worker foraging and reproductive effort, or the amount of aggression in the group. Some of our results were consistent with the idea that queens limit worker size strategically: small workers were no less successful foragers, so that producing a larger number of smaller workers may overall increase queen fitness. We found that queens were less likely to attack large workers, perhaps because attempting to coerce large workers is riskier. However, larger workers did not forage less, did not invest more in ovarian development, and were not more aggressive themselves. There was therefore little evidence overall that queens limit conflict by producing smaller workers. Significance statement In social animals, parents might manipulate phenotypic traits of their offspring in their own interests. In paper wasps (Polistes), the first offspring produced are smaller than the queen and become workers: instead of founding their own nests, they stay and help their mother to rear new queens and males. We investigated whether P. gallicus queens could benefit by producing small daughter workers by using cross-fostering to create size mismatches between queens and their offspring. We then recorded foraging activity, reproductive effort, and aggression on nests. Queens were less likely to attack larger workers, but overall, there was limited evidence of size-based queen–worker conflict. However, because small workers were no less successful foragers, producing a larger number of smaller workers may optimize colony work effort.
Collapse
Affiliation(s)
- Christelle Couchoux
- Centre for Ecology & Conservation, University of Exeter, Penryn campus, Penryn, Cornwall, TR10 9FE UK
| | - Jeremy Field
- Centre for Ecology & Conservation, University of Exeter, Penryn campus, Penryn, Cornwall, TR10 9FE UK
| |
Collapse
|
39
|
Monroy Kuhn JM, Meusemann K, Korb J. Long live the queen, the king and the commoner? Transcript expression differences between old and young in the termite Cryptotermes secundus. PLoS One 2019; 14:e0210371. [PMID: 30759161 PMCID: PMC6373952 DOI: 10.1371/journal.pone.0210371] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2018] [Accepted: 12/20/2018] [Indexed: 01/09/2023] Open
Abstract
Social insects provide promising new avenues for aging research. Within a colony, individuals that share the same genetic background can differ in lifespan by up to two orders of magnitude. Reproducing queens (and in termites also kings) can live for more than 20 years, extraordinary lifespans for insects. We studied aging in a termite species, Cryptotermes secundus, which lives in less socially complex societies with a few hundred colony members. Reproductives develop from workers which are totipotent immatures. Comparing transcriptomes of young and old individuals, we found evidence for aging in reproductives that was especially associated with DNA and protein damage and the activity of transposable elements. By contrast, workers seemed to be better protected against aging. Thus our results differed from those obtained for social insects that live in more complex societies. Yet, they are in agreement with lifespan estimates for the study species. Our data are also in line with expectations from evolutionary theory. For individuals that are able to reproduce, it predicts that aging should only start after reaching maturity. As C. secundus workers are immatures with full reproductive options we expect them to invest into anti-aging processes. Our study illustrates that the degree of aging can differ between social insects and that it may be associated with caste-specific opportunities for reproduction.
Collapse
Affiliation(s)
- José Manuel Monroy Kuhn
- Evolutionary Biology and Ecology, Albert-Ludwigs-Universität Freiburg, Freiburg, Baden-Württemberg, Germany
- * E-mail: (JMMK); (JK)
| | - Karen Meusemann
- Evolutionary Biology and Ecology, Albert-Ludwigs-Universität Freiburg, Freiburg, Baden-Württemberg, Germany
| | - Judith Korb
- Evolutionary Biology and Ecology, Albert-Ludwigs-Universität Freiburg, Freiburg, Baden-Württemberg, Germany
- * E-mail: (JMMK); (JK)
| |
Collapse
|
40
|
Koppik M, Ruhmann H, Fricke C. The effect of mating history on male reproductive ageing in Drosophila melanogaster. JOURNAL OF INSECT PHYSIOLOGY 2018; 111:16-24. [PMID: 30312587 DOI: 10.1016/j.jinsphys.2018.10.003] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/14/2018] [Revised: 10/06/2018] [Accepted: 10/08/2018] [Indexed: 06/08/2023]
Abstract
Mating bears costs, but how these costs affect the senescence of reproductive traits in males has received relatively little attention. Males of many species show reduced benefits from pre- and post-copulatory reproductive traits during ageing. Senescence of post-copulatory reproductive traits is often linked to a reduction in sperm quantity and quality, but can also be a consequence of changes in seminal fluid proteins that are transferred alongside sperm during mating. Here we investigated how mating history affects male reproductive ageing, especially at the post-copulatory level, using Drosophila melanogaster, a species in which links between seminal fluid proteins and male reproductive traits are well established. Besides a male cohort kept virgin until the start of the experiment we also included a cohort of males kept together with females allowing for ample mating opportunities. With these males we conducted a series of behavioral experiments covering several aspects of male reproductive success with males ranging in age from 4 days to 6 weeks after eclosion. Additionally, we investigated the storage capacity of male accessory glands (AG), the production site of the majority of seminal fluid proteins. We found male reproductive success to decline with increasing male age and, most importantly, males with prior matings showed a reduced performance in pre-copulatory success. However, our data suggest a constant short-term cost of mating rather than an accelerated senescence of pre-copulatory traits. In contrast, senescence of post-copulatory reproductive traits differed between mated and virgin males, hinting at mating costs in males altering the ageing process. We could not find any differences in the capacity of the AG to store seminal fluid proteins, however, our data suggest that old males transfer fewer seminal fluid proteins in a single mating. We conclude that a variety of traits is affected by male reproductive ageing in D. melanogaster with the cost of mating varying in its impact on senescence in these traits.
Collapse
Affiliation(s)
- Mareike Koppik
- Institute for Evolution and Biodiversity, University of Muenster, Huefferstr. 1, D-48149 Muenster, Germany.
| | - Hanna Ruhmann
- Institute for Evolution and Biodiversity, University of Muenster, Huefferstr. 1, D-48149 Muenster, Germany; Muenster Graduate School of Evolution, University of Muenster, Huefferstr. 1a, D-48149 Muenster, Germany.
| | - Claudia Fricke
- Institute for Evolution and Biodiversity, University of Muenster, Huefferstr. 1, D-48149 Muenster, Germany.
| |
Collapse
|
41
|
Gillies RJ, Brown JS, Anderson ARA, Gatenby RA. Eco-evolutionary causes and consequences of temporal changes in intratumoural blood flow. Nat Rev Cancer 2018; 18:576-585. [PMID: 29891961 PMCID: PMC6441333 DOI: 10.1038/s41568-018-0030-7] [Citation(s) in RCA: 94] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Temporal changes in blood flow are commonly observed in malignant tumours, but the evolutionary causes and consequences are rarely considered. We propose that stochastic temporal variations in blood flow and microenvironmental conditions arise from the eco-evolutionary dynamics of tumour angiogenesis in which cancer cells, as individual units of selection, can influence and respond only to local environmental conditions. This leads to new vessels arising from the closest available vascular structure regardless of the size or capacity of this parental vessel. These dynamics produce unstable vascular networks with unpredictable spatial and temporal variations in blood flow and microenvironmental conditions. Adaptations of evolving populations to temporally varying environments in nature include increased diversity, greater motility and invasiveness, and highly plastic phenotypes, allowing for broad metabolic adaptability and rapid shifts to high rates of proliferation and profound quiescence. These adaptive strategies, when adopted in cancer cells, promote many commonly observed phenotypic properties including those found in the stem phenotype and in epithelial-to-mesenchymal transition. Temporal variations in intratumoural blood flow, which occur through the promotion of cancer cell phenotypes that facilitate both metastatic spread and resistance to therapy, may have substantial clinical consequences.
Collapse
Affiliation(s)
- Robert J Gillies
- Cancer Biology and Evolution Program, Moffitt Cancer Center, Tampa, FL, USA
| | - Joel S Brown
- Cancer Biology and Evolution Program, Moffitt Cancer Center, Tampa, FL, USA
| | | | - Robert A Gatenby
- Cancer Biology and Evolution Program, Moffitt Cancer Center, Tampa, FL, USA.
| |
Collapse
|
42
|
Abstract
Between the 1930s and 50s, evolutionary biologists developed a successful theory of why organisms age, firmly rooted in population genetic principles. By the 1980s the evolution of aging had a secure experimental basis. Since the force of selection declines with age, aging evolves due to mutation accumulation or a benefit to fitness early in life. Here we review major insights and challenges that have emerged over the last 35 years: selection does not always necessarily decline with age; higher extrinsic (i.e., environmentally caused) mortality does not always accelerate aging; conserved pathways control aging rate; senescence patterns are more diverse than previously thought; aging is not universal; trade-offs involving lifespan can be 'broken'; aging might be 'druggable'; and human life expectancy continues to rise but compressing late-life morbidity remains a pressing challenge.
Collapse
Affiliation(s)
- Thomas Flatt
- Department of Biology, University of Fribourg, Chemin du Musée 10, CH-1700, Fribourg, Switzerland
| | - Linda Partridge
- Max Planck Institute for Biology of Aging, Joseph-Stelzmann-Strasse 9b, D-50931, Cologne, Germany.
- Institute for Healthy Aging and GEE, University College London, Darwin Building, Gower Street, London, WC1E6BT, UK.
| |
Collapse
|
43
|
Janoušková E, Berec L. Host-pathogen dynamics under sterilizing pathogens and fecundity-longevity trade-off in hosts. J Theor Biol 2018; 450:76-85. [PMID: 29654855 DOI: 10.1016/j.jtbi.2018.04.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2017] [Revised: 02/28/2018] [Accepted: 04/09/2018] [Indexed: 10/17/2022]
Abstract
Infectious diseases are known to regulate population dynamics, an observation that underlies the use of pathogens as control agents of unwanted populations. Sterilizing rather than lethal pathogens are often suggested so as to avoid unnecessary suffering of the infected hosts. Until recently, models used to assess plausibility of pathogens as potential pest control agents have not included a possibility that reduced fecundity of the infected individuals may save their energy expenditure on reproduction and thus increase their longevity relative to the susceptible ones. Here, we develop a model of host-pathogen interaction that builds on this idea. We analyze the model for a variety of infection transmission functions, revealing that the indirect effect of sterilizing pathogens on mortality of the infected hosts, mediated by a fecundity-longevity trade-off, may cause hosts at endemic equilibria to attain densities higher than when there is no effect of pathogens on host mortality. On the other hand, an opposite outcome occurs when the fecundity-longevity trade-off is concave or when the degree of fecundity reduction by the pathogen is high enough. This points to a possibility that using sterilizing pathogens as agents of pest control may actually be less effective than previously thought, the more so since we also suggest that if sexual selection acts on the host species then the presence of sterilizing pathogens may even enhance host densities above the levels achieved without infection.
Collapse
Affiliation(s)
- Eva Janoušková
- Faculty of Science, Department of Mathematics and Statistics, Masaryk University, Kotlářská 2, Brno 61137, Czech Republic.
| | - Luděk Berec
- Department of Ecology, Czech Academy of Sciences, Biology Centre, Institute of Entomology, Branišovská 31, České Budějovice 37005, Czech Republic; Faculty of Science, Institute of Mathematics and Biomathematics, University of South Bohemia, Branišovská 1760, České Budějovice 37005, Czech Republic.
| |
Collapse
|
44
|
Blacher P, Huggins TJ, Bourke AFG. Evolution of ageing, costs of reproduction and the fecundity-longevity trade-off in eusocial insects. Proc Biol Sci 2018; 284:rspb.2017.0380. [PMID: 28701554 PMCID: PMC5524490 DOI: 10.1098/rspb.2017.0380] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2017] [Accepted: 06/07/2017] [Indexed: 01/04/2023] Open
Abstract
Eusocial insects provide special opportunities to elucidate the evolution of ageing as queens have apparently evaded costs of reproduction and reversed the fecundity–longevity trade-off generally observed in non-social organisms. But how reproduction affects longevity in eusocial insects has rarely been tested experimentally. In this study, we took advantage of the reproductive plasticity of workers to test the causal role of reproduction in determining longevity in eusocial insects. Using the eusocial bumblebee Bombus terrestris, we found that, in whole colonies, in which workers could freely ‘choose’ whether to become reproductive, workers' level of ovarian activation was significantly positively associated with longevity and ovary-active workers significantly outlived ovary-inactive workers. By contrast, when reproductivity was experimentally induced in randomly selected workers, thereby decoupling it from other traits, workers' level of ovarian activation was significantly negatively associated with longevity and ovary-active workers were significantly less long-lived than ovary-inactive workers. These findings show that workers experience costs of reproduction and suggest that intrinsically high-quality individuals can overcome these costs. They also raise the possibility that eusocial insect queens exhibit condition-dependent longevity and hence call into question whether eusociality entails a truly reversed fecundity–longevity trade-off involving a fundamental remodelling of conserved genetic and endocrine networks underpinning ageing.
Collapse
Affiliation(s)
- Pierre Blacher
- School of Biological Sciences, University of East Anglia, Norwich Research Park, Norwich NR4 7TJ, UK
| | - Timothy J Huggins
- School of Biological Sciences, University of East Anglia, Norwich Research Park, Norwich NR4 7TJ, UK
| | - Andrew F G Bourke
- School of Biological Sciences, University of East Anglia, Norwich Research Park, Norwich NR4 7TJ, UK
| |
Collapse
|
45
|
Birnbaum SSL, Rinker DC, Gerardo NM, Abbot P. Transcriptional profile and differential fitness in a specialist milkweed insect across host plants varying in toxicity. Mol Ecol 2017; 26:6742-6761. [PMID: 29110382 DOI: 10.1111/mec.14401] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2017] [Accepted: 10/18/2017] [Indexed: 01/03/2023]
Abstract
Interactions between plants and herbivorous insects have been models for theories of specialization and co-evolution for over a century. Phytochemicals govern many aspects of these interactions and have fostered the evolution of adaptations by insects to tolerate or even specialize on plant defensive chemistry. While genomic approaches are providing new insights into the genes and mechanisms insect specialists employ to tolerate plant secondary metabolites, open questions remain about the evolution and conservation of insect counterdefences, how insects respond to the diversity defences mounted by their host plants, and the costs and benefits of resistance and tolerance to plant defences in natural ecological communities. Using a milkweed-specialist aphid (Aphis nerii) model, we test the effects of host plant species with increased toxicity, likely driven primarily by increased secondary metabolites, on aphid life history traits and whole-body gene expression. We show that more toxic plant species have a negative effect on aphid development and lifetime fecundity. When feeding on more toxic host plants with higher levels of secondary metabolites, aphids regulate a narrow, targeted set of genes, including those involved in canonical detoxification processes (e.g., cytochrome P450s, hydrolases, UDP-glucuronosyltransferases and ABC transporters). These results indicate that A. nerii marshal a variety of metabolic detoxification mechanisms to circumvent milkweed toxicity and facilitate host plant specialization, yet, despite these detoxification mechanisms, aphids experience reduced fitness when feeding on more toxic host plants. Disentangling how specialist insects respond to challenging host plants is a pivotal step in understanding the evolution of specialized diet breadths.
Collapse
Affiliation(s)
| | - David C Rinker
- Department of Biological Sciences, Vanderbilt University, Nashville, TN, USA
| | - Nicole M Gerardo
- Department of Biology, O. Wayne Rollins Research Center, Emory University, Atlanta, GA, USA
| | - Patrick Abbot
- Department of Biological Sciences, Vanderbilt University, Nashville, TN, USA
| |
Collapse
|
46
|
Kuszewska K, Miler K, Rojek W, Woyciechowski M. Honeybee workers with higher reproductive potential live longer lives. Exp Gerontol 2017; 98:8-12. [PMID: 28821428 DOI: 10.1016/j.exger.2017.08.022] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2017] [Revised: 08/09/2017] [Accepted: 08/15/2017] [Indexed: 12/12/2022]
Abstract
Social insects, especially honeybees, have received much attention in comparative gerontology because of their peculiar and flexible ageing patterns that differ across genetically similar individuals. The longevity of honeybee individuals varies and depends on patterns of gene expression during development; females developing into reproductive individuals (queens) live longer than facultatively sterile workers. Here, we show that rebel workers, which develop under queenless conditions after swarming and have high reproductive potential, live approximately 4days longer in hives and approximately 3days longer in cages than individuals that develop in queenright colonies and have lower reproductive potential; this difference in longevity occurs in both free-flying and caged workers. Moreover, we show that both rebel and normal workers live longer when their ovaries contain more ovarioles. Longer-living rebel workers can benefit the colony because they can fill the generation gap that emerges between workers after queen exchange during swarming. Our findings provide novel evidence that the fecundity of workers in a social insect colony impacts their intrinsic longevity.
Collapse
Affiliation(s)
- Karolina Kuszewska
- Institute of Environmental Sciences, Jagiellonian University, Krakow, Poland.
| | - Krzysztof Miler
- Institute of Environmental Sciences, Jagiellonian University, Krakow, Poland
| | - Wiktoria Rojek
- Institute of Environmental Sciences, Jagiellonian University, Krakow, Poland
| | | |
Collapse
|