1
|
Hu B, Han S, He H. Effect of epidemic diseases on wild animal conservation. Integr Zool 2023; 18:963-980. [PMID: 37202360 DOI: 10.1111/1749-4877.12720] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Under the background of global species extinction, the impact of epidemic diseases on wild animal protection is increasingly prominent. Here, we review and synthesize the literature on this topic, and discuss the relationship between diseases and biodiversity. Diseases usually reduce species diversity by decreasing or extinction of species populations, but also accelerate species evolution and promote species diversity. At the same time, species diversity can regulate disease outbreaks through dilution or amplification effects. The synergistic effect of human activities and global change is emphasized, which further aggravates the complex relationship between biodiversity and diseases. Finally, we emphasize the importance of active surveillance of wild animal diseases, which can protect wild animals from potential diseases, maintain population size and genetic variation, and reduce the damage of diseases to the balance of the whole ecosystem and human health. Therefore, we suggest that a background survey of wild animal populations and their pathogens should be carried out to assess the impact of potential outbreaks on the population or species level. The mechanism of dilution and amplification effect between species diversity and diseases of wild animals should be further studied to provide a theoretical basis and technical support for human intervention measures to change biodiversity. Most importantly, we should closely combine the protection of wild animals with the establishment of an active surveillance, prevention, and control system for wild animal epidemics, in an effort to achieve a win-win situation between wild animal protection and disease control.
Collapse
Affiliation(s)
- Bin Hu
- National Research Center for Wildlife-Borne Diseases, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Shuyi Han
- National Research Center for Wildlife-Borne Diseases, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Hongxuan He
- National Research Center for Wildlife-Borne Diseases, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
2
|
Lopez LK, Cortez MH, DeBlieux TS, Menel IA, O'Brien B, Cáceres CE, Hall SR, Duffy MA. A healthy but depleted herd: Predators decrease prey disease and density. Ecology 2023:e4063. [PMID: 37186234 DOI: 10.1002/ecy.4063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Revised: 03/21/2023] [Accepted: 04/06/2023] [Indexed: 05/17/2023]
Abstract
The healthy herds hypothesis proposes that predators can reduce parasite prevalence and thereby increase density of their prey. However, evidence for such predator-driven reductions in prevalence in prey remains mixed. Furthermore, even less evidence supports increases in prey density during epidemics. Here, we used a planktonic predator-prey-parasite system to experimentally test the healthy herds hypothesis. We manipulated density of a predator (the phantom midge, Chaoborus punctipennis) and parasitism (the virulent fungus Metschnikowia bicuspidata) in experimental assemblages. Because we know natural populations of the prey (Daphnia dentifera) vary in susceptibility to both predator and parasite, we stocked experimental populations with nine genotypes spanning a broad range of susceptibility to both enemies. Predation significantly reduced infection prevalence, eliminating infection at the highest predation level. However, lower parasitism did not increase densities of prey; instead, prey density decreased substantially at the highest predation levels (a major density cost of healthy herds predation). This density result was predicted by a model parameterized for this system. The model specifies three conditions for predation to increase prey density during epidemics: (i) predators selectively feed on infected prey, (ii) consumed infected prey release fewer infectious propagules than unconsumed prey, and (iii) sufficiently low infection prevalence. While the system satisfied the first two conditions, prevalence remained too high to see an increase in prey density with predation. Low prey densities caused by high predation drove increases in algal resources of the prey, fueling greater reproduction, indicating that consumer-resource interactions can complicate predator-prey-parasite dynamics. Overall, in our experiment, predation reduced prevalence of a virulent parasite but, at the highest levels, also reduced prey density. Hence, while healthy herds predation is possible under some conditions, our empirical results make it clear that manipulation of predators to reduce parasite prevalence may harm prey density. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Laura K Lopez
- Department of Ecology & Evolutionary Biology, University of Michigan, Ann Arbor, MI, USA
| | - Michael H Cortez
- Department of Biological Science, Florida State University, Tallahassee, FL, USA
| | | | - Ilona A Menel
- School of Integrative Biology, University of Illinois Urbana-Champaign, Urbana, IL, USA
| | - Bruce O'Brien
- Department of Ecology & Evolutionary Biology, University of Michigan, Ann Arbor, MI, USA
| | - Carla E Cáceres
- School of Integrative Biology, University of Illinois Urbana-Champaign, Urbana, IL, USA
| | - Spencer R Hall
- Department of Biology, Indiana University, Bloomington, IN, USA
| | - Meghan A Duffy
- Department of Ecology & Evolutionary Biology, University of Michigan, Ann Arbor, MI, USA
| |
Collapse
|
3
|
A paradox of parasite resistance: disease-driven trophic cascades increase the cost of resistance, selecting for lower resistance with parasites than without them. Evol Ecol 2022. [DOI: 10.1007/s10682-022-10203-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
|
4
|
McLean KD, Gowler CD, Dziuba MK, Zamani H, Hall SR, Duffy MA. Sexual recombination and temporal gene flow maintain host resistance and genetic diversity. Evol Ecol 2022. [DOI: 10.1007/s10682-022-10193-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
5
|
Bensch HM, O'Connor EA, Cornwallis CK. Living with relatives offsets the harm caused by pathogens in natural populations. eLife 2021; 10:e66649. [PMID: 34309511 PMCID: PMC8313236 DOI: 10.7554/elife.66649] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Accepted: 06/19/2021] [Indexed: 01/23/2023] Open
Abstract
Living with relatives can be highly beneficial, enhancing reproduction and survival. High relatedness can, however, increase susceptibility to pathogens. Here, we examine whether the benefits of living with relatives offset the harm caused by pathogens, and if this depends on whether species typically live with kin. Using comparative meta-analysis of plants, animals, and a bacterium (nspecies = 56), we show that high within-group relatedness increases mortality when pathogens are present. In contrast, mortality decreased with relatedness when pathogens were rare, particularly in species that live with kin. Furthermore, across groups variation in mortality was lower when relatedness was high, but abundances of pathogens were more variable. The effects of within-group relatedness were only evident when pathogens were experimentally manipulated, suggesting that the harm caused by pathogens is masked by the benefits of living with relatives in nature. These results highlight the importance of kin selection for understanding disease spread in natural populations.
Collapse
|
6
|
Ameline C, Bourgeois Y, Vögtli F, Savola E, Andras J, Engelstädter J, Ebert D. A Two-Locus System with Strong Epistasis Underlies Rapid Parasite-Mediated Evolution of Host Resistance. Mol Biol Evol 2021; 38:1512-1528. [PMID: 33258959 PMCID: PMC8042741 DOI: 10.1093/molbev/msaa311] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Parasites are a major evolutionary force, driving adaptive responses in host populations. Although the link between phenotypic response to parasite-mediated natural selection and the underlying genetic architecture often remains obscure, this link is crucial for understanding the evolution of resistance and predicting associated allele frequency changes in the population. To close this gap, we monitored the response to selection during epidemics of a virulent bacterial pathogen, Pasteuria ramosa, in a natural host population of Daphnia magna. Across two epidemics, we observed a strong increase in the proportion of resistant phenotypes as the epidemics progressed. Field and laboratory experiments confirmed that this increase in resistance was caused by selection from the local parasite. Using a genome-wide association study, we built a genetic model in which two genomic regions with dominance and epistasis control resistance polymorphism in the host. We verified this model by selfing host genotypes with different resistance phenotypes and scoring their F1 for segregation of resistance and associated genetic markers. Such epistatic effects with strong fitness consequences in host–parasite coevolution are believed to be crucial in the Red Queen model for the evolution of genetic recombination.
Collapse
Affiliation(s)
- Camille Ameline
- Department of Environmental Sciences, Zoology, University of Basel, Basel, Switzerland
| | - Yann Bourgeois
- Department of Environmental Sciences, Zoology, University of Basel, Basel, Switzerland.,School of Biological Sciences, University of Portsmouth, Portsmouth, United Kingdom
| | - Felix Vögtli
- Department of Environmental Sciences, Zoology, University of Basel, Basel, Switzerland
| | - Eevi Savola
- Department of Environmental Sciences, Zoology, University of Basel, Basel, Switzerland.,Institute of Evolutionary Biology, Ashworth Laboratories, University of Edinburgh, Edinburgh, United Kingdom
| | - Jason Andras
- Department of Environmental Sciences, Zoology, University of Basel, Basel, Switzerland.,Department of Biological Sciences, Clapp Laboratory, Mount Holyoke College, South Hadley, MA, USA
| | - Jan Engelstädter
- School of Biological Sciences, The University of Queensland, Brisbane, QLD, Australia
| | - Dieter Ebert
- Department of Environmental Sciences, Zoology, University of Basel, Basel, Switzerland
| |
Collapse
|
7
|
Searle CL, Christie MR. Evolutionary rescue in host-pathogen systems. Evolution 2021; 75:2948-2958. [PMID: 34018610 DOI: 10.1111/evo.14269] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2020] [Revised: 05/07/2021] [Accepted: 05/12/2021] [Indexed: 11/28/2022]
Abstract
Natural populations encounter a variety of threats that can increase their risk of extinction. Populations can avoid extinction through evolutionary rescue (ER), which occurs when an adaptive, genetic response to selection allows a population to recover from an environmental change that would otherwise cause extinction. While the traditional framework for ER was developed with abiotic risk factors in mind, ER may also occur in response to a biotic source of demographic change, such as the introduction of a novel pathogen. We first describe how ER in response to a pathogen differs from the traditional ER framework; density-dependent transmission, pathogen evolution, and pathogen extinction can change the strength of selection imposed by a pathogen and make host population persistence more likely. We also discuss several variables that affect traditional ER (abundance, genetic diversity, population connectivity, and community composition) that also directly affect disease risk resulting in diverse outcomes for ER in host-pathogen systems. Thus, generalizations developed in studies of traditional ER may not be relevant for ER in response to the introduction of a pathogen. Incorporating pathogens into the framework of ER will lead to a better understanding of how and when populations can avoid extinction in response to novel pathogens.
Collapse
Affiliation(s)
- Catherine L Searle
- Department of Biological Sciences, Purdue University, West Lafayette, Indiana, 47907
| | - Mark R Christie
- Department of Biological Sciences, Purdue University, West Lafayette, Indiana, 47907.,Department of Forestry and Natural Resources, Purdue University, West Lafayette, Indiana, 47907
| |
Collapse
|
8
|
Gibson AK, Nguyen AE. Does genetic diversity protect host populations from parasites? A meta-analysis across natural and agricultural systems. Evol Lett 2020; 5:16-32. [PMID: 33552533 PMCID: PMC7857278 DOI: 10.1002/evl3.206] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2020] [Revised: 10/23/2020] [Accepted: 10/27/2020] [Indexed: 11/24/2022] Open
Abstract
If parasites transmit more readily between closely related hosts, then parasite burdens should decrease with increased genetic diversity of host populations. This important hypothesis is often accepted at face value—notorious epidemics of crop monocultures testify to the vulnerability of host populations that have been purged of diversity. Yet the relationship between genetic diversity and parasitism likely varies across contexts, differing between crop and noncrop hosts and between experimental and natural host populations. Here, we used a meta‐analytic approach to ask if host diversity confers protection against parasites over the range of contexts in which it has been tested. We synthesized the results of 102 studies, comprising 2004 effect sizes representing a diversity of approaches and host‐parasite systems. Our results validate a protective effect of genetic diversity, while revealing significant variation in its strength across biological and empirical contexts. In experimental host populations, genetic diversity reduces parasitism by ∼20% for noncrop hosts and by ∼50% for crop hosts. In contrast, observational studies of natural host populations show no consistent relationship between genetic diversity and parasitism, with both strong negative and positive correlations reported. This result supports the idea that, if parasites preferentially attack close relatives, the correlation of genetic diversity with parasitism could be positive or negative depending upon the potential for host populations to evolve in response to parasite selection. Taken together, these results reinforce genetic diversity as a priority for both conservation and agriculture and emphasize the challenges inherent to drawing comparisons between controlled experimental populations and dynamic natural populations.
Collapse
Affiliation(s)
- Amanda Kyle Gibson
- Department of Biology University of Virginia Charlottesville Virginia 22904
| | - Anna E Nguyen
- Department of Biology University of Virginia Charlottesville Virginia 22904
| |
Collapse
|
9
|
Hite JL, Pfenning‐Butterworth AC, Vetter RE, Cressler CE. A high-throughput method to quantify feeding rates in aquatic organisms: A case study with Daphnia. Ecol Evol 2020; 10:6239-6245. [PMID: 32724510 PMCID: PMC7381556 DOI: 10.1002/ece3.6352] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2020] [Revised: 04/13/2020] [Accepted: 04/14/2020] [Indexed: 11/17/2022] Open
Abstract
Food ingestion is one of the most basic features of all organisms. However, obtaining precise-and high-throughput-estimates of feeding rates remains challenging, particularly for small, aquatic herbivores such as zooplankton, snails, and tadpoles. These animals typically consume low volumes of food that are time-consuming to accurately measure.We extend a standard high-throughput fluorometry technique, which uses a microplate reader and 96-well plates, as a practical tool for studies in ecology, evolution, and disease biology. We outline technical and methodological details to optimize quantification of individual feeding rates, improve accuracy, and minimize sampling error.This high-throughput assay offers several advantages over previous methods, including i) substantially reduced time allotments per sample to facilitate larger, more efficient experiments; ii) technical replicates; and iii) conversion of in vivo measurements to units (mL-1 hr-1 ind-1) which enables broad-scale comparisons across an array of taxa and studies.To evaluate the accuracy and feasibility of our approach, we use the zooplankton, Daphnia dentifera, as a case study. Our results indicate that this procedure accurately quantifies feeding rates and highlights differences among seven genotypes.The method detailed here has broad applicability to a diverse array of aquatic taxa, their resources, environmental contaminants (e.g., plastics), and infectious agents. We discuss simple extensions to quantify epidemiologically relevant traits, such as pathogen exposure and transmission rates, for infectious agents with oral or trophic transmission.
Collapse
Affiliation(s)
- Jessica L. Hite
- School of Biological SciencesUniversity of NebraskaLincolnNebraskaUSA
| | | | - Rachel E. Vetter
- School of Biological SciencesUniversity of NebraskaLincolnNebraskaUSA
| | | |
Collapse
|
10
|
Tsuchiya MTN, Dikow RB, Cassin-Sackett L. First Genome Sequence of the Gunnison's Prairie Dog (Cynomys gunnisoni), a Keystone Species and Player in the Transmission of Sylvatic Plague. Genome Biol Evol 2020; 12:618-625. [PMID: 32277812 PMCID: PMC7250503 DOI: 10.1093/gbe/evaa069] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/05/2020] [Indexed: 12/30/2022] Open
Abstract
Prairie dogs (genus Cynomys) are a charismatic symbol of the American West. Their large social aggregations and complex vocalizations have been the subject of scientific and popular interest for decades. A large body of literature has documented their role as keystone species of western North America's grasslands: They generate habitat for other vertebrates, increase nutrient availability for plants, and act as a food source for mammalian, squamate, and avian predators. An additional keystone role lies in their extreme susceptibility to sylvatic plague (caused by Yersinia pestis), which results in periodic population extinctions, thereby generating spatiotemporal heterogeneity in both biotic communities and ecological processes. Here, we report the first Cynomys genome for a Gunnison's prairie dog (C. gunnisoni gunnisoni) from Telluride, Colorado (USA). The genome was constructed using a hybrid assembly of PacBio and Illumina reads and assembled with MaSuRCA and PBJelly, which resulted in a scaffold N50 of 824 kb. Total genome size was 2.67 Gb, with 32.46% of the bases occurring in repeat regions. We recovered 94.9% (91% complete) of the single copy orthologs using the mammalian Benchmarking Universal Single-Copy Orthologs database and detected 49,377 gene models (332,141 coding regions). Pairwise Sequentially Markovian Coalescent showed support for long-term stable population size followed by a steady decline beginning near the end of the Pleistocene, as well as a recent population reduction. The genome will aid in studies of mammalian evolution, disease resistance, and the genomic basis of life history traits in ground squirrels.
Collapse
Affiliation(s)
- Mirian T N Tsuchiya
- Data Science Lab, Office of the Chief Information Officer, Smithsonian Institution, Washington, District of Columbia
| | - Rebecca B Dikow
- Data Science Lab, Office of the Chief Information Officer, Smithsonian Institution, Washington, District of Columbia
| | | |
Collapse
|
11
|
Strauss AT, Hite JL, Civitello DJ, Shocket MS, Cáceres CE, Hall SR. Genotypic variation in parasite avoidance behaviour and other mechanistic, nonlinear components of transmission. Proc Biol Sci 2019; 286:20192164. [PMID: 31744438 DOI: 10.1098/rspb.2019.2164] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Traditional epidemiological models assume that transmission increases proportionally to the density of parasites. However, empirical data frequently contradict this assumption. General yet mechanistic models can explain why transmission depends nonlinearly on parasite density and thereby identify potential defensive strategies of hosts. For example, hosts could decrease their exposure rates at higher parasite densities (via behavioural avoidance) or decrease their per-parasite susceptibility when encountering more parasites (e.g. via stronger immune responses). To illustrate, we fitted mechanistic transmission models to 19 genotypes of Daphnia dentifera hosts over gradients of the trophically acquired parasite, Metschnikowia bicuspidata. Exposure rate (foraging, F) frequently decreased with parasite density (Z), and per-parasite susceptibility (U) frequently decreased with parasite encounters (F × Z). Consequently, infection rates (F × U × Z) often peaked at intermediate parasite densities. Moreover, host genotypes varied substantially in these responses. Exposure rates remained constant for some genotypes but decreased sensitively with parasite density for others (up to 78%). Furthermore, genotypes with more sensitive foraging/exposure also foraged faster in the absence of parasites (suggesting 'fast and sensitive' versus 'slow and steady' strategies). These relationships suggest that high densities of parasites can inhibit transmission by decreasing exposure rates and/or per-parasite susceptibility, and identify several intriguing axes for the evolution of host defence.
Collapse
Affiliation(s)
| | - Jessica L Hite
- Department of Biology, Indiana University, Bloomington, IN 47401, USA
| | | | - Marta S Shocket
- Department of Biology, Indiana University, Bloomington, IN 47401, USA
| | - Carla E Cáceres
- School of Integrative Biology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Spencer R Hall
- Department of Biology, Indiana University, Bloomington, IN 47401, USA
| |
Collapse
|
12
|
Ekroth AKE, Rafaluk-Mohr C, King KC. Host genetic diversity limits parasite success beyond agricultural systems: a meta-analysis. Proc Biol Sci 2019; 286:20191811. [PMID: 31551053 DOI: 10.1098/rspb.2019.1811] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
There is evidence that human activities are reducing the population genetic diversity of species worldwide. Given the prediction that parasites better exploit genetically homogeneous host populations, many species could be vulnerable to disease outbreaks. While agricultural studies have shown the devastating effects of infectious disease in crop monocultures, the widespread nature of this diversity-disease relationship remains unclear in natural systems. Here, we provide broad support that high population genetic diversity can protect against infectious disease by conducting a meta-analysis of 23 studies, with a total of 67 effect sizes. We found that parasite functional group (micro- or macroparasite) affects the presence of the effect and study setting (field or laboratory-based environment) influences the magnitude. Our study also suggests that host genetic diversity is overall a robust defence against infection regardless of host reproduction, parasite host range, parasite diversity, virulence and the method by which parasite success was recorded. Combined, these results highlight the importance of monitoring declines of host population genetic diversity as shifts in parasite distributions could have devastating effects on at-risk populations in nature.
Collapse
Affiliation(s)
| | | | - Kayla C King
- Department of Zoology, University of Oxford, Oxford OX1 3PS, UK
| |
Collapse
|
13
|
Strauss AT, Hite JL, Shocket MS, Cáceres CE, Duffy MA, Hall SR. Rapid evolution rescues hosts from competition and disease but-despite a dilution effect-increases the density of infected hosts. Proc Biol Sci 2018; 284:rspb.2017.1970. [PMID: 29212726 DOI: 10.1098/rspb.2017.1970] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2017] [Accepted: 11/02/2017] [Indexed: 11/12/2022] Open
Abstract
Virulent parasites can depress the densities of their hosts. Taxa that reduce disease via dilution effects might alleviate this burden. However, 'diluter' taxa can also depress host densities through competition for shared resources. The combination of disease and interspecific competition could even drive hosts extinct. Then again, genetically variable host populations can evolve in response to both competitors and parasites. Can rapid evolution rescue host density from the harm caused by these ecological enemies? How might such evolution influence dilution effects or the size of epidemics? In a mesocosm experiment with planktonic hosts, we illustrate the joint harm of competition and disease: hosts with constrained evolutionary ability (limited phenotypic variation) suffered greatly from both. However, populations starting with broader phenotypic variation evolved stronger competitive ability during epidemics. In turn, enhanced competitive ability-driven especially by parasites-rescued host densities from the negative impacts of competition, disease, and especially their combination. Interspecific competitors reduced disease (supporting dilution effects) even when hosts rapidly evolved. However, this evolutionary response also elicited a potential problem. Populations that evolved enhanced competitive ability and maintained robust total densities also supported higher densities of infections. Thus, rapid evolution rescued host densities but also unleashed larger epidemics.
Collapse
Affiliation(s)
| | - Jessica L Hite
- Department of Biology, Indiana University, Bloomington, IN 47401, USA
| | - Marta S Shocket
- Department of Biology, Indiana University, Bloomington, IN 47401, USA
| | - Carla E Cáceres
- School of Integrative Biology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Meghan A Duffy
- Department of Ecology and Evolutionary Biology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Spencer R Hall
- Department of Biology, Indiana University, Bloomington, IN 47401, USA
| |
Collapse
|
14
|
Linking host traits, interactions with competitors and disease: Mechanistic foundations for disease dilution. Funct Ecol 2018. [DOI: 10.1111/1365-2435.13066] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|