1
|
Penha VADS, Manica LT, Barrand ZA, Hepp CM, McGraw KJ. Correlates of Co-Infection with Coccidiosis and Avian Malaria in House Finches (Haemorhous mexicanus). J Wildl Dis 2024; 60:634-646. [PMID: 38741368 DOI: 10.7589/jwd-d-23-00175] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Accepted: 03/11/2024] [Indexed: 05/16/2024]
Abstract
Pathogens have traditionally been studied in isolation within host systems; yet in natural settings they frequently coexist. This raises questions about the dynamics of co-infections and how host life-history traits might predict co-infection versus single infection. To address these questions, we investigated the presence of two parasites, a gut parasite (Isospora coccidians) and a blood parasite (Plasmodium spp.), in House Finches (Haemorhous mexicanus), a common passerine bird in North America. We then correlated these parasitic infections with various health and condition metrics, including hematological parameters, plasma carotenoids, lipid-soluble vitamins, blood glucose concentration, body condition, and prior disease history. Our study, based on 48 birds captured in Tempe, Arizona, US, in October 2021, revealed that co-infected birds exhibited elevated circulating lutein levels and a higher heterophil:lymphocyte ratio (H/L ratio) compared to those solely infected with coccidia Isospora spp. This suggests that co-infected birds experience heightened stress and may use lutein to bolster immunity against both pathogens, and that there are potentially toxic effects of lutein in co-infected birds compared to those infected solely with coccidia Isospora sp. Our findings underscore the synergistic impact of coparasitism, emphasizing the need for more co-infection studies to enhance our understanding of disease dynamics in nature, as well as its implications for wildlife health and conservation efforts.
Collapse
Affiliation(s)
- Victor Aguiar de Souza Penha
- Programa de Pós-Graduação em Ecologia e Conservação, Universidade Federal do Paraná, Setor de Ciências Biológicas, 100 Cel. Francisco H. dos Santos Avenue, Curitiba, Paraná 81531-980, Brazil
- School of Life Sciences, Arizona State University, ASU Life Sciences Building E, 400 E Tyler Mal, Tempe, Arizona 85287, USA
- Organismal and Evolutionary Research Programme, University of Helsinki, Biokeskus 3, PL 65 (Viikinkaari 1), Helsinki 00014, Finland
| | - Lilian Tonelli Manica
- Departamento de Zoologia, Setor de Ciências Biológicas, Universidade Federal do Paraná, Avenida Cel. Francisco H. dos Santos Avenue, 100, Curitiba, Paraná 81531-980, Brazil
| | - Zachary A Barrand
- Pathogen and Microbiome Institute, Northern Arizona University, Building 56, 1395 South Knoles Drive, Flagstaff, Arizona 86011, USA
- Translational Genomics Research Institute, 3051 West Shamrell Boulevard, Flagstaff, Arizona 86001, USA
| | - Crystal M Hepp
- Pathogen and Microbiome Institute, Northern Arizona University, Building 56, 1395 South Knoles Drive, Flagstaff, Arizona 86011, USA
- School of Informatics, Computing, and Cyber Systems, Northern Arizona University, Building 90, 1295 South Knoles Drive, Flagstaff, Arizona 86011, USA
| | - Kevin J McGraw
- School of Life Sciences, Arizona State University, ASU Life Sciences Building E, 400 E Tyler Mal, Tempe, Arizona 85287, USA
| |
Collapse
|
2
|
Evans MJ, Corripio-Miyar Y, Hayward A, Kenyon F, McNeilly TN, Nussey DH. Antagonism between co-infecting gastrointestinal nematodes: A meta-analysis of experimental infections in Sheep. Vet Parasitol 2023; 323:110053. [PMID: 37879240 DOI: 10.1016/j.vetpar.2023.110053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Revised: 10/08/2023] [Accepted: 10/11/2023] [Indexed: 10/27/2023]
Abstract
Gastrointestinal nematodes (GIN) have enormous global impacts in humans, wildlife and grazing livestock. Within grazing livestock, sheep are of particular global importance and the economics and sustainability of sheep production are greatly constrained by GIN infections. Natural infections are composed of co-infections with multiple species, and while some past work suggests species can interact negatively with one another within the same host, there is wide variation in reported patterns. Here, we undertook a systematic literature search and meta-analysis of experimental GIN co-infections of sheep to determine whether these experimental studies support the hypothesis of antagonistic interactions between different co-infecting GIN, and test whether aspects of parasite biology or experimental design influence the observed effects. A systematic search of the literature yielded 4848 studies, within which, we identified 19 experimental sheep studies comparing post-mortem worm counts across two co-infecting GIN species. Meta-analysis of 67 effects obtained from these studies provides strong evidence for interactions between GIN species. There was wide variation in the strength and direction of these interactions, but the global effect was significantly antagonistic. On average, there was a decrease in the number of worms of one species when a co-infecting species was also present, relative to a mono-infection with that species alone. This effect was dependent on the infectious dose and was rapidly lost after anthelmintic treatment, suggesting that live worms are required for the effect to occur. Individual parasite species varied in the extent to which they both exerted, and were subject to, these interspecies interactions, and these differences are more complex than simply co-localisation within the gastrointestinal tract. Antagonistic interactions between co-infecting GIN may feedback into their epidemiology as well as potentially affecting the clinical impacts of infection. Furthermore, the consequences of these interactions may be heightened when clinical interventions affect only one species within the co-infecting network. Whilst it was not possible to identify the causes of variation between GIN species in the impact of co-infection, these findings point to new avenues for epidemiological, clinical and mechanistic research on GIN co-infections.
Collapse
Affiliation(s)
- M J Evans
- Royal (Dick) School of Veterinary Studies, University of Edinburgh, Roslin, UK; Department for Disease Control, Moredun Research Institute, Penicuik, UK; Institute for Ecology and Evolution, University of Edinburgh, Edinburgh, UK.
| | - Y Corripio-Miyar
- Department for Disease Control, Moredun Research Institute, Penicuik, UK
| | - A Hayward
- Department for Disease Control, Moredun Research Institute, Penicuik, UK
| | - F Kenyon
- Department for Disease Control, Moredun Research Institute, Penicuik, UK
| | - T N McNeilly
- Department for Disease Control, Moredun Research Institute, Penicuik, UK
| | - D H Nussey
- Institute for Ecology and Evolution, University of Edinburgh, Edinburgh, UK
| |
Collapse
|
3
|
Gouveia-Eufrasio L, de Freitas GJC, Costa MC, Peres-Emidio EC, Carmo PHF, Rodrigues JGM, de Rezende MC, Rodrigues VF, de Brito CB, Miranda GS, de Lima PA, da Silva LMV, Oliveira JBS, da Paixão TA, da Glória de Souza D, Fagundes CT, Peres NTDA, Negrão-Correa DA, Santos DA. The Th2 Response and Alternative Activation of Macrophages Triggered by Strongyloides venezuelensis Is Linked to Increased Morbidity and Mortality Due to Cryptococcosis in Mice. J Fungi (Basel) 2023; 9:968. [PMID: 37888224 PMCID: PMC10607621 DOI: 10.3390/jof9100968] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Revised: 09/21/2023] [Accepted: 09/22/2023] [Indexed: 10/28/2023] Open
Abstract
Cryptococcosis is a systemic mycosis that causes pneumonia and meningoencephalitis. Strongyloidiasis is a chronic gastrointestinal infection caused by parasites of the genus Strongyloides. Cryptococcosis and strongyloidiasis affect the lungs and are more prevalent in the same world regions, i.e., Africa and tropical countries such as Brazil. It is undeniable that those coincidences may lead to the occurrence of coinfections. However, there are no studies focused on the interaction between Cryptococcus spp. and Strongyloides spp. In this work, we aimed to investigate the interaction between Strongyloides venezuelensis (Sv) and Cryptococcus gattii (Cg) in a murine coinfection model. Murine macrophage exposure to Sv antigens reduced their ability to engulf Cg and produce reactive oxygen species, increasing the ability of fungal growth intracellularly. We then infected mice with both pathogens. Sv infection skewed the host's response to fungal infection, increasing lethality in a murine coinfection model. In addition to increased NO levels and arginase activity, coinfected mice presented a classic Th2 anti-Sv response: eosinophilia, higher levels of alternate activated macrophages (M2), increased concentrations of CCL24 and IL-4, and lower levels of IL-1β. This milieu favored fungal growth in the lungs with prominent translocation to the brain, increasing the host's tissue damage. In conclusion, our data shows that primary Sv infection promotes Th2 bias of the pulmonary response to Cg-infection and worsens its pathological outcomes.
Collapse
Affiliation(s)
- Ludmila Gouveia-Eufrasio
- Departamento de Microbiologia, Laboratório de Micologia, Universidade Federal de Minas Gerais, Belo Horizonte 31270-901, Brazil; (L.G.-E.); (N.T.d.A.P.)
| | - Gustavo José Cota de Freitas
- Departamento de Microbiologia, Laboratório de Micologia, Universidade Federal de Minas Gerais, Belo Horizonte 31270-901, Brazil; (L.G.-E.); (N.T.d.A.P.)
| | - Marliete Carvalho Costa
- Departamento de Microbiologia, Laboratório de Micologia, Universidade Federal de Minas Gerais, Belo Horizonte 31270-901, Brazil; (L.G.-E.); (N.T.d.A.P.)
| | - Eluzia Castro Peres-Emidio
- Departamento de Microbiologia, Laboratório de Micologia, Universidade Federal de Minas Gerais, Belo Horizonte 31270-901, Brazil; (L.G.-E.); (N.T.d.A.P.)
| | - Paulo Henrique Fonseca Carmo
- Departamento de Microbiologia, Laboratório de Micologia, Universidade Federal de Minas Gerais, Belo Horizonte 31270-901, Brazil; (L.G.-E.); (N.T.d.A.P.)
| | - João Gustavo Mendes Rodrigues
- Departamento de Parasitologia, Laboratório de Esquistossomose, Universidade Federal de Minas Gerais, Belo Horizonte 31270-901, Brazil (D.A.N.-C.)
| | - Michelle Carvalho de Rezende
- Departamento de Parasitologia, Laboratório de Esquistossomose, Universidade Federal de Minas Gerais, Belo Horizonte 31270-901, Brazil (D.A.N.-C.)
| | - Vanessa Fernandes Rodrigues
- Departamento de Parasitologia, Laboratório de Esquistossomose, Universidade Federal de Minas Gerais, Belo Horizonte 31270-901, Brazil (D.A.N.-C.)
| | - Camila Bernardo de Brito
- Departamento de Microbiologia, Laboratório de Interação Microrganismo-Hospedeiro, Universidade Federal de Minas Gerais, Belo Horizonte 31270-901, Brazil (D.d.G.d.S.); (C.T.F.)
| | - Guilherme Silva Miranda
- Departamento de Parasitologia, Laboratório de Esquistossomose, Universidade Federal de Minas Gerais, Belo Horizonte 31270-901, Brazil (D.A.N.-C.)
| | - Pâmela Aparecida de Lima
- Departamento de Patologia, Laboratório de Patologia Celular e Molecular, Universidade Federal de Minas Gerais, Belo Horizonte 31270-901, Brazil (T.A.d.P.)
| | - Lívia Mara Vitorino da Silva
- Departamento de Microbiologia, Laboratório de Micologia, Universidade Federal de Minas Gerais, Belo Horizonte 31270-901, Brazil; (L.G.-E.); (N.T.d.A.P.)
| | - Jefferson Bruno Soares Oliveira
- Departamento de Patologia, Laboratório de Patologia Celular e Molecular, Universidade Federal de Minas Gerais, Belo Horizonte 31270-901, Brazil (T.A.d.P.)
| | - Tatiane Alves da Paixão
- Departamento de Patologia, Laboratório de Patologia Celular e Molecular, Universidade Federal de Minas Gerais, Belo Horizonte 31270-901, Brazil (T.A.d.P.)
| | - Daniele da Glória de Souza
- Departamento de Microbiologia, Laboratório de Interação Microrganismo-Hospedeiro, Universidade Federal de Minas Gerais, Belo Horizonte 31270-901, Brazil (D.d.G.d.S.); (C.T.F.)
| | - Caio Tavares Fagundes
- Departamento de Microbiologia, Laboratório de Interação Microrganismo-Hospedeiro, Universidade Federal de Minas Gerais, Belo Horizonte 31270-901, Brazil (D.d.G.d.S.); (C.T.F.)
| | - Nalu Teixeira de Aguiar Peres
- Departamento de Microbiologia, Laboratório de Micologia, Universidade Federal de Minas Gerais, Belo Horizonte 31270-901, Brazil; (L.G.-E.); (N.T.d.A.P.)
| | - Deborah Aparecida Negrão-Correa
- Departamento de Parasitologia, Laboratório de Esquistossomose, Universidade Federal de Minas Gerais, Belo Horizonte 31270-901, Brazil (D.A.N.-C.)
| | - Daniel Assis Santos
- Departamento de Microbiologia, Laboratório de Micologia, Universidade Federal de Minas Gerais, Belo Horizonte 31270-901, Brazil; (L.G.-E.); (N.T.d.A.P.)
| |
Collapse
|
4
|
Imrie RM, Walsh SK, Roberts KE, Lello J, Longdon B. Investigating the outcomes of virus coinfection within and across host species. PLoS Pathog 2023; 19:e1011044. [PMID: 37216391 DOI: 10.1371/journal.ppat.1011044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Accepted: 05/02/2023] [Indexed: 05/24/2023] Open
Abstract
Interactions between coinfecting pathogens have the potential to alter the course of infection and can act as a source of phenotypic variation in susceptibility between hosts. This phenotypic variation may influence the evolution of host-pathogen interactions within host species and interfere with patterns in the outcomes of infection across host species. Here, we examine experimental coinfections of two Cripaviruses-Cricket Paralysis Virus (CrPV), and Drosophila C Virus (DCV)-across a panel of 25 Drosophila melanogaster inbred lines and 47 Drosophilidae host species. We find that interactions between these viruses alter viral loads across D. melanogaster genotypes, with a ~3 fold increase in the viral load of DCV and a ~2.5 fold decrease in CrPV in coinfection compared to single infection, but we find little evidence of a host genetic basis for these effects. Across host species, we find no evidence of systematic changes in susceptibility during coinfection, with no interaction between DCV and CrPV detected in the majority of host species. These results suggest that phenotypic variation in coinfection interactions within host species can occur independently of natural host genetic variation in susceptibility, and that patterns of susceptibility across host species to single infections can be robust to the added complexity of coinfection.
Collapse
Affiliation(s)
- Ryan M Imrie
- Centre for Ecology & Conservation, Faculty of Environment, Science, and Economy, Biosciences, University of Exeter, Penryn Campus, Penryn, United Kingdom
| | - Sarah K Walsh
- Centre for Ecology & Conservation, Faculty of Environment, Science, and Economy, Biosciences, University of Exeter, Penryn Campus, Penryn, United Kingdom
| | - Katherine E Roberts
- Centre for Ecology & Conservation, Faculty of Environment, Science, and Economy, Biosciences, University of Exeter, Penryn Campus, Penryn, United Kingdom
| | - Joanne Lello
- School of Biosciences, Cardiff University, Cardiff, United Kingdom
| | - Ben Longdon
- Centre for Ecology & Conservation, Faculty of Environment, Science, and Economy, Biosciences, University of Exeter, Penryn Campus, Penryn, United Kingdom
| |
Collapse
|
5
|
Wood CL, Vanhove MPM. Is the world wormier than it used to be? We'll never know without natural history collections. J Anim Ecol 2023; 92:250-262. [PMID: 35959636 DOI: 10.1111/1365-2656.13794] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2022] [Accepted: 07/25/2022] [Indexed: 11/28/2022]
Abstract
Many disease ecologists and conservation biologists believe that the world is wormier than it used to be-that is, that parasites are increasing in abundance through time. This argument is intuitively appealing. Ecologists typically see parasitic infections, through their association with disease, as a negative endpoint, and are accustomed to attributing negative outcomes to human interference in the environment, so it slots neatly into our worldview that habitat destruction, biodiversity loss and climate change should have the collateral consequence of causing outbreaks of parasites. But surprisingly, the hypothesis that parasites are increasing in abundance through time remains entirely untested for the vast majority of wildlife parasite species. Historical data on parasites are nearly impossible to find, which leaves no baseline against which to compare contemporary parasite burdens. If we want to know whether the world is wormier than it used to be, there is only one major research avenue that will lead to an answer: parasitological examination of specimens preserved in natural history collections. Recent advances demonstrate that, for many specimen types, it is possible to extract reliable data on parasite presence and abundance. There are millions of suitable specimens that exist in collections around the world. When paired with contemporaneous environmental data, these parasitological data could even point to potential drivers of change in parasite abundance, including climate, pollution or host density change. We explain how to use preserved specimens to address pressing questions in parasite ecology, give a few key examples of how collections-based parasite ecology can resolve these questions, identify some pitfalls and workarounds, and suggest promising areas for research. Natural history specimens are 'parasite time capsules' that give ecologists the opportunity to test whether infectious disease is on the rise and to identify what forces might be driving these changes over time. This approach will facilitate major advances in a new sub-discipline: the historical ecology of parasitism.
Collapse
Affiliation(s)
- Chelsea L Wood
- School of Aquatic and Fishery Sciences, University of Washington, Seattle, WA, USA
| | - Maarten P M Vanhove
- Centre for Environmental Sciences, Research Group Zoology: Biodiversity & Toxicology, Hasselt University, Diepenbeek, Belgium
| |
Collapse
|
6
|
Hananeh WM, Radhi A, Mukbel RM, Ismail ZB. Effects of parasites coinfection with other pathogens on animal host: A literature review. Vet World 2022; 15:2414-2424. [DOI: 10.14202/vetworld.2022.2414-2424] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Accepted: 08/29/2022] [Indexed: 11/16/2022] Open
Abstract
A parasite-host relationship is complicated and largely remained poorly understood, especially when mixed infections involving pathogenic bacteria and viruses are present in the same host. It has been found that most parasites are able to manipulate the host's immune responses to evade or overcome its defense systems. Several mechanisms have been postulated that may explain this phenomenon in different animal species. Recent evidence suggests that coinfections involving many parasitic species alter the host's vulnerability to other microorganisms, hinder diagnostic accuracy, and may negatively impact vaccination by altering the host's immune responsiveness. The objective of this review was to provide a comprehensive summary of the current understanding of how parasites interact with other pathogens in different animal species. A better understanding of this complex relationship will aid in the improvement efforts of disease diagnosis, treatment, and control measures such as novel and effective vaccines and therapeutics for infectious diseases.
Collapse
Affiliation(s)
- Wael M. Hananeh
- Department of Veterinary Pathology and Public Health, Faculty of Veterinary Medicine, Jordan University of Science and Technology, P.O. Box, 3030, Irbid 22110, Jordan
| | - Asya Radhi
- Department of Veterinary Pathology and Public Health, Faculty of Veterinary Medicine, Jordan University of Science and Technology, P.O. Box, 3030, Irbid 22110, Jordan
| | - Rami M. Mukbel
- Department of Basic Veterinary Medical Sciences, Faculty of Veterinary Medicine, Jordan University of Science and Technology, P.O. Box 3030, Irbid 22110, Jordan
| | - Zuhair Bani Ismail
- Department of Clinical Veterinary Medical Sciences, Faculty of Veterinary Medicine, Jordan University of Science and Technology, P.O. Box 3030, Irbid 22110, Jordan
| |
Collapse
|
7
|
Brown TL, Airs PM, Porter S, Caplat P, Morgan ER. Understanding the role of wild ruminants in anthelmintic resistance in livestock. Biol Lett 2022; 18:20220057. [PMID: 35506237 PMCID: PMC9065971 DOI: 10.1098/rsbl.2022.0057] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2022] [Accepted: 04/08/2022] [Indexed: 01/21/2023] Open
Abstract
Wild ruminants are susceptible to infection from generalist helminth species, which can also infect domestic ruminants. A better understanding is required of the conditions under which wild ruminants can act as a source of helminths (including anthelmintic-resistant genotypes) for domestic ruminants, and vice versa, with the added possibility that wildlife could act as refugia for drug-susceptible genotypes and hence buffer the spread and development of resistance. Helminth infections cause significant productivity losses in domestic ruminants and a growing resistance to all classes of anthelmintic drug escalates concerns around helminth infection in the livestock industry. Previous research demonstrates that drug-resistant strains of the pathogenic nematode Haemonchus contortus can be transmitted between wild and domestic ruminants, and that gastro-intestinal nematode infections are more intense in wild ruminants within areas of high livestock density. In this article, the factors likely to influence the role of wild ruminants in helminth infections and anthelmintic resistance in livestock are considered, including host population movement across heterogeneous landscapes, and the effects of climate and environment on parasite dynamics. Methods of predicting and validating suspected drivers of helminth transmission in this context are considered based on advances in predictive modelling and molecular tools.
Collapse
Affiliation(s)
- Tony L. Brown
- School of Biological Sciences, Queen's University Belfast, Belfast, UK
- Veterinary Sciences Division, Agri-food and Biosciences Institute, Belfast, UK
| | - Paul M. Airs
- School of Biological Sciences, Queen's University Belfast, Belfast, UK
| | - Siobhán Porter
- Veterinary Sciences Division, Agri-food and Biosciences Institute, Belfast, UK
| | - Paul Caplat
- School of Biological Sciences, Queen's University Belfast, Belfast, UK
- Institute for Global Food Security, Queen's University Belfast, Belfast, UK
| | - Eric R. Morgan
- School of Biological Sciences, Queen's University Belfast, Belfast, UK
- Institute for Global Food Security, Queen's University Belfast, Belfast, UK
| |
Collapse
|
8
|
Morgan ER, Lanusse C, Rinaldi L, Charlier J, Vercruysse J. Confounding factors affecting faecal egg count reduction as a measure of anthelmintic efficacy. Parasite 2022; 29:20. [PMID: 35389336 PMCID: PMC8988865 DOI: 10.1051/parasite/2022017] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Accepted: 03/07/2022] [Indexed: 11/29/2022] Open
Abstract
Increasing anthelmintic resistance (AR) in livestock has stimulated growing efforts to monitor anthelmintic effectiveness (AE) on livestock farms. On-farm assessment of AE relies on measuring the reduction in faecal egg count (FEC) following treatment; and if conducted rigorously, qualifies as a formal FEC reduction test (FECRT) for AR. Substantial research effort has been devoted to designing robust protocols for the FECRT and its statistical interpretation; however, a wide range of factors other than AR can affect FEC reduction on farms. These are not always possible to control, and can affect the outcome and repeatability of AE measurements and confound the on-farm classification of AR using FECRT. This review considers confounders of FEC reduction, focusing on gastrointestinal nematodes of ruminants, including host and parasite physiology and demography; pharmacokinetic variation between drugs, parasites and hosts; and technical performance. Drug formulation and delivery, host condition and diet, and seasonal variation in parasite species composition, can all affect AE and hence observed FEC reduction. Causes of variation in FEC reduction should be attenuated, but this is not always possible. Regular monitoring of AE can indicate a need to improve anthelmintic administration practices, and detect AR early in its progression. Careful interpretation of FEC reduction, however, taking into account possible confounders, is essential before attributing reduced FEC reduction to AR. Understanding of confounders of FEC reduction will complement advances in FECRT design and interpretation to provide measures of anthelmintic efficacy that are both rigorous and accessible.
Collapse
Affiliation(s)
- Eric R Morgan
- School of Biological Sciences, Queen's University Belfast, 19, Chlorine Gardens, BT9 5DL Belfast, United Kingdom
| | - Carlos Lanusse
- Laboratorio de Farmacología, Centro de Investigación Veterinaria de Tandil (CIVETAN) (UNCPBA-CICPBA-CONICET), Facultad de Ciencias Veterinarias, UNCPBA, 7000 Tandil, Argentina
| | - Laura Rinaldi
- Department of Veterinary Medicine and Animal Production, University of Naples Federico II, Via Delpino, 1, 80137 Naples, Italy
| | | | - Jozef Vercruysse
- Faculty of Veterinary Medicine, University of Gent, Salisburylaan 133, 9820 Merelbeke, Belgium
| |
Collapse
|
9
|
Filip-Hutsch K, Czopowicz M, Barc A, Demiaszkiewicz AW. Gastrointestinal Helminths of a European Moose Population in Poland. Pathogens 2021; 10:456. [PMID: 33920333 PMCID: PMC8070461 DOI: 10.3390/pathogens10040456] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Revised: 03/26/2021] [Accepted: 04/08/2021] [Indexed: 12/01/2022] Open
Abstract
Parasitic infections have a negative impact on the fecundity and survival of wild ruminants, particularly moose; however, despite being more susceptible to parasitic diseases than other wild cervids, they remain poorly examined in this regard. Therefore, the aim of the present study was to identify gastrointestinal and liver helminth species of the moose population in central Europe, assess the factors contributing to infection intensities and examine their impact on moose health. Abomasum, small intestine, caecum and liver samples were collected from 46 moose in Poland and evaluated for helminth parasite fauna and histopathological changes. Additionally, 289 moose fecal samples were analyzed for the presence of eggs, oocysts and larvae of parasites. In total, 19 parasite taxa were identified. The most prevalent were Mazamastrongylus dagestanica and Ostertagia antipini, which are typical nematodes of moose, together with Spiculopteragia boehmi and O. leptospicularis, characteristic also of other cervids. Parasite species diversity and abomasal parasitic infection intensity were higher in adult moose than in yearlings and calves. The numbers of histopathological lesions depended on the intensity of parasitic infections, and were most severe in the livers of moose infected with Parafasciolopsis fasciolaemorpha. The analysis of fecal samples revealed several regional differences in the levels of parasite eggs, oocysts and larvae shedding. Our findings indicate an accumulation of parasite infections over time in moose, which may be related to high environmental parasite pressure, possibly connected with high moose density and the presence of wetlands; they also serve as the most comprehensive study of moose parasites in central Europe to date.
Collapse
Affiliation(s)
| | - Michał Czopowicz
- Division of Veterinary Epidemiology and Economics, Institute of Veterinary Medicine, Warsaw University of Life Sciences–SGGW, Nowoursynowska 159c, 02-776 Warsaw, Poland;
| | - Agnieszka Barc
- Veterinary Diagnostic Laboratory ALAB bioscience, Krucza 13, 05-090 Rybie, Poland;
| | | |
Collapse
|
10
|
Cortez MH, Duffy MA. Comparing the Indirect Effects between Exploiters in Predator-Prey and Host-Pathogen Systems. Am Nat 2020; 196:E144-E159. [PMID: 33211567 DOI: 10.1086/711345] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
AbstractIn multipredator and multipathogen systems, exploiters interact indirectly via shared victim species. Interspecific prey competition and the degree of predator specialization are known to influence whether predators have competitive (i.e., (-,-)) or noncompetitive (i.e., (-,+) or (+,+)) indirect interactions. Much less is known about the population-level indirect interactions between pathogens that infect the same populations of host species. In this study, we use two-predator-two-prey and two-host-two-pathogen models to compare the indirect effects between predators with the indirect effects between pathogens. We focus on how the indirect interactions between pathogens are affected by the competitive abilities of susceptible and infected hosts, whether the pathogens are specialists or generalists, and the transmission pathway (direct vs. environmental transmission). In many cases, indirect effects between pathogens and predators follow similar patterns, for example, more positive indirect effects with increased interspecific competition between victim species. However, the indirect effects between pathogens can qualitatively differ, for example, more negative indirect effects with increased interspecific host competition. These contrasting patterns show that an important mechanistic difference between predatory and parasitic interactions (specifically, whether interactions are immediately lethal) can have important population-level effects on the indirect interactions between exploiters.
Collapse
|
11
|
Berrilli F, Montalbano Di Filippo M, De Liberato C, Marani I, Lanfranchi P, Ferrari N, Trogu T, Formenti N, Ferretti F, Rossi L, D'Amelio S, Giangaspero A. Diversity of Eimeria Species in Wild Chamois Rupicapra spp.: A Statistical Approach in Morphological Taxonomy. Front Vet Sci 2020; 7:577196. [PMID: 33173795 PMCID: PMC7591455 DOI: 10.3389/fvets.2020.577196] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2020] [Accepted: 09/04/2020] [Indexed: 11/17/2022] Open
Abstract
Wildlife is frequently infected by intestinal protozoa, which may threaten their fitness and health. A diverse community of Eimeria species is known to occur in the digestive tract of mountain-dwelling ungulates, including chamois (genus Rupicapra). However, available data on Eimeria diversity in these taxa is at times inconsistent and mostly dated. In the present study, we aimed to revisit the occurrence of Eimeria spp. in the Alpine subspecies of the Northern chamois (Rupicapra rupicapra rupicapra) and the Apennine subspecies of the Southern chamois (Rupicapra pyrenaica ornata) in Italy, using an integrated approach based on a hierarchical cluster analysis (HCPC) applied to oocyst morphology and morphometry. A total of 352 fecal samples were collected from R. r. rupicapra (n = 262) and R. p. ornata (n = 90). Overall, 85.3% (300/352) of the animals tested microscopically positive to Eimeria spp. Based on morphological analysis, we identified all the eimerian species described in chamois. Through the HCPC method, five clusters were generated, corresponding to E. suppereri, E. yakimoffmatschoulskyi, E. riedmuelleri (two different clusters), and E. rupicaprae morphotypes. The well-defined clusters within E. riedmuelleri support the existence of two distinct morphological groups, possibly referable to different taxonomic units. This study suggests that combining a morphometrical approach with a powerful statistical method may be helpful to disentangle uncertainties in the morphology of Eimeria oocysts and to address taxonomic studies of eimeriid protozoa at a specific host taxon level.
Collapse
Affiliation(s)
- Federica Berrilli
- Department of Clinical Sciences and Translational Medicine, Tor Vergata University, Rome, Italy
| | | | - Claudio De Liberato
- Istituto Zooprofilattico Sperimentale del Lazio e della Toscana "M. Aleandri", Rome, Italy
| | - Ilaria Marani
- Department of Clinical Sciences and Translational Medicine, Tor Vergata University, Rome, Italy
| | - Paolo Lanfranchi
- Department of Veterinary Medicine, Università degli Studi di Milano, Milan, Italy
| | - Nicola Ferrari
- Department of Veterinary Medicine, Università degli Studi di Milano, Milan, Italy
| | - Tiziana Trogu
- Istituto Zooprofilattico Sperimentale della Lombardia e dell'Emilia Romagna "Bruno Ubertini", Brescia, Italy
| | - Nicoletta Formenti
- Istituto Zooprofilattico Sperimentale della Lombardia e dell'Emilia Romagna "Bruno Ubertini", Brescia, Italy
| | | | - Luca Rossi
- Department of Veterinary Sciences, University of Turin, Grugliasco, Italy
| | - Stefano D'Amelio
- Department of Public Health and Infectious Diseases, Sapienza University of Rome, Rome, Italy
| | - Annunziata Giangaspero
- Department of Science of Agriculture, Food and Environment, University of Foggia, Foggia, Italy
| |
Collapse
|
12
|
Park AW, Ezenwa VO. Characterising interactions between co-infecting parasites using age-intensity profiles. Int J Parasitol 2019; 50:23-26. [PMID: 31846621 DOI: 10.1016/j.ijpara.2019.11.001] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2019] [Revised: 10/28/2019] [Accepted: 11/08/2019] [Indexed: 11/26/2022]
Abstract
Interactions between co-infecting parasite species can impact transmission. Whether co-infection is beneficial or detrimental to a target parasite, and whether the mechanism involves changes in host susceptibility or parasite clearance, can be difficult to assess. We demonstrate the potential for host age-parasite intensity curves to allow assessment of these factors. A model is developed to generate predictions and test these predictions using helminth parasites of white-tailed deer (Odocoileus virginianus). We identify three beneficial interactions involving five helminth species, including susceptibility and clearance-based mechanisms. Our results suggest that analysis of age-intensity data represents a new tool for assessing the nature and strength of co-infecting parasite interactions.
Collapse
Affiliation(s)
- Andrew W Park
- Odum School of Ecology, Dept. of Infectious Diseases, College of Veterinary Medicine, and Center for the Ecology of Infectious Diseases, University of Georgia, Athens, GA 30602, United States.
| | - Vanessa O Ezenwa
- Odum School of Ecology, Dept. of Infectious Diseases, College of Veterinary Medicine, and Center for the Ecology of Infectious Diseases, University of Georgia, Athens, GA 30602, United States
| |
Collapse
|
13
|
Egbe-Nwiyi TN, Paul BT, Cornelius AC. Coprological detection of equine nematodes among slaughtered donkeys ( Equus asinus) in Kaltungo, Nigeria. Vet World 2019; 12:1911-1915. [PMID: 32095040 PMCID: PMC6989321 DOI: 10.14202/vetworld.2019.1911-1915] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2019] [Accepted: 10/17/2019] [Indexed: 12/27/2022] Open
Abstract
Aim: This study aimed to investigate the prevalence and intensity of nematode infection among slaughtered donkeys in Kaltungo, Nigeria. Materials and Methods: A total of 72 fecal samples were examined by salt flotation and the modified McMaster fecal egg count technique to morphologically identify nematodes eggs and determine their egg per gram (EPG) outputs. Results: Out of a total of 72 (100%) donkeys sampled, 36 (50%) tested positive, but the prevalence of nematodes was independent of the age, sex, and breed of donkeys (p>0.05). Among the four species of nematodes identified in single and mixed infections, Strongylus spp. (27.8%) and Dictyocaulus arnfieldi (13.9%) were the most prevalent followed by Strongyloides westeri (5.6%) and Trichonema spp. (5.6%). Infected donkeys had moderate overall mean EPG (801.39±611.3) with no statistical differences between age groups and sexes (p>0.05), but means of EPG were significantly higher (p<0.05) in Duni (1026.92±719.55) than Idabari (673.91±514.75). Light EPG count was recorded among 63.9% of infected donkeys, while 16.7% and 19.4% had moderate and severe infections, respectively. Conclusion: The prevalence and importance of equine nematodes were discussed in connection to their epidemiology and control. Furthermore, the preponderance of light infection may suggest that donkeys in this environment developed resistance to nematode infection and are potential reservoirs for other equines.
Collapse
Affiliation(s)
- Tobias Nnia Egbe-Nwiyi
- Department of Veterinary Pathology, Faculty of Veterinary Medicine, University of Maiduguri, Bama Road, Maiduguri 600230, Nigeria
| | - Bura Thlama Paul
- Veterinary Teaching Hospital, Faculty of Veterinary Medicine, University of Maiduguri, Bama Road, Maiduguri 600230, Nigeria
| | - Ajuji Chungsyn Cornelius
- Department of Veterinary Pathology, Faculty of Veterinary Medicine, University of Maiduguri, Bama Road, Maiduguri 600230, Nigeria
| |
Collapse
|
14
|
Dallas TA, Laine AL, Ovaskainen O. Detecting parasite associations within multi-species host and parasite communities. Proc Biol Sci 2019; 286:20191109. [PMID: 31575371 PMCID: PMC6790755 DOI: 10.1098/rspb.2019.1109] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2019] [Accepted: 09/11/2019] [Indexed: 01/23/2023] Open
Abstract
Understanding the role of biotic interactions in shaping natural communities is a long-standing challenge in ecology. It is particularly pertinent to parasite communities sharing the same host communities and individuals, as the interactions among parasites-both competition and facilitation-may have far-reaching implications for parasite transmission and evolution. Aggregated parasite burdens may suggest that infected host individuals are either more prone to infection, or that infection by a parasite species facilitates another, leading to a positive parasite-parasite interaction. However, parasite species may also compete for host resources, leading to the prediction that parasite-parasite associations would be generally negative, especially when parasite species infect the same host tissue, competing for both resources and space. We examine the presence and strength of parasite associations using hierarchical joint species distribution models fitted to data on resident parasite communities sampled on over 1300 small mammal individuals across 22 species and their resident parasite communities. On average, we detected more positive associations between infecting parasite species than negative, with the most negative associations occurring when two parasite species infected the same host tissue, suggesting that parasite species associations may be quantifiable from observational data. Overall, our findings suggest that parasite community prediction at the level of the individual host is possible, and that parasite species associations may be detectable in complex multi-species communities, generating many hypotheses concerning the effect of host community changes on parasite community composition, parasite competition within infected hosts, and the drivers of parasite community assembly and structure.
Collapse
Affiliation(s)
- Tad A. Dallas
- Organismal and Evolutionary Biology Research Programme, University of Helsinki, PO Box 65, Helsinki 00014, Finland
- Department of Biological Sciences, Louisiana State University, Baton Rouge, LA, USA
| | - Anna-Liisa Laine
- Organismal and Evolutionary Biology Research Programme, University of Helsinki, PO Box 65, Helsinki 00014, Finland
- Department of Evolutionary Biology and Environmental Studies, University of Zürich, Zürich 8057, Switzerland
| | - Otso Ovaskainen
- Organismal and Evolutionary Biology Research Programme, University of Helsinki, PO Box 65, Helsinki 00014, Finland
- Centre for Biodiversity Dynamics, Department of Biology, Norwegian University of Science and Technology, Trondheim 7491, Norway
| |
Collapse
|
15
|
Beechler BR, Boersma KS, Buss PE, Coon CAC, Gorsich EE, Henrichs BS, Siepielski AM, Spaan JM, Spaan RS, Ezenwa VO, Jolles AE. Bovine tuberculosis disturbs parasite functional trait composition in African buffalo. Proc Natl Acad Sci U S A 2019; 116:14645-14650. [PMID: 31262813 PMCID: PMC6642339 DOI: 10.1073/pnas.1903674116] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Novel parasites can have wide-ranging impacts, not only on host populations, but also on the resident parasite community. Historically, impacts of novel parasites have been assessed by examining pairwise interactions between parasite species. However, parasite communities are complex networks of interacting species. Here we used multivariate taxonomic and trait-based approaches to determine how parasite community composition changed when African buffalo (Syncerus caffer) acquired an emerging disease, bovine tuberculosis (BTB). Both taxonomic and functional parasite richness increased significantly in animals that acquired BTB than in those that did not. Thus, the presence of BTB seems to catalyze extraordinary shifts in community composition. There were no differences in overall parasite taxonomic composition between infected and uninfected individuals, however. The trait-based analysis revealed an increase in direct-transmitted, quickly replicating parasites following BTB infection. This study demonstrates that trait-based approaches provide insight into parasite community dynamics in the context of emerging infections.
Collapse
Affiliation(s)
- Brianna R Beechler
- Carlson College of Veterinary Medicine, Oregon State University, Corvallis, OR 97331;
| | - Kate S Boersma
- Department of Biology, University of San Diego, San Diego, CA 92110
| | - Peter E Buss
- Veterinary Wildlife Services, South African National Parks, Kruger National Park, Skukuza 1350, South Africa
| | - Courtney A C Coon
- Carlson College of Veterinary Medicine, Oregon State University, Corvallis, OR 97331
- Felidae Conservation Fund, Mill Valley, CA 94941
| | - Erin E Gorsich
- Department of Integrative Biology, Oregon State University, Corvallis, OR 97331
- Zeeman Institute: Systems Biology and Infectious Disease Epidemiology Research, University of Warwick, Coventry CV4 7AL, United Kingdom
- School of Life Sciences, University of Warwick, Coventry CV4 7AL, United Kingdom
| | - Brian S Henrichs
- Department of Integrative Biology, Oregon State University, Corvallis, OR 97331
| | - Adam M Siepielski
- Department of Biological Sciences, University of Arkansas, Fayetteville, AR 72701
| | - Johannie M Spaan
- Department of Integrative Biology, Oregon State University, Corvallis, OR 97331
| | - Robert S Spaan
- Department of Fisheries and Wildlife, Oregon State University, Corvallis, OR 97331
| | - Vanessa O Ezenwa
- Odum School of Ecology & Department of Infectious Diseases, College of Veterinary Medicine, University of Georgia, Athens, GA 30602
| | - Anna E Jolles
- Carlson College of Veterinary Medicine, Oregon State University, Corvallis, OR 97331
- Department of Integrative Biology, Oregon State University, Corvallis, OR 97331
| |
Collapse
|
16
|
Hogan G, Walker S, Turnbull F, Curiao T, Morrison AA, Flores Y, Andrews L, Claesson MJ, Tangney M, Bartley DJ. Microbiome analysis as a platform R&D tool for parasitic nematode disease management. ISME JOURNAL 2019; 13:2664-2680. [PMID: 31239540 DOI: 10.1038/s41396-019-0462-4] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/08/2019] [Revised: 05/06/2019] [Accepted: 06/06/2019] [Indexed: 12/16/2022]
Abstract
The relationship between bacterial communities and their host is being extensively investigated for the potential to improve the host's health. Little is known about the interplay between the microbiota of parasites and the health of the infected host. Using nematode co-infection of lambs as a proof-of-concept model, the aim of this study was to characterise the microbiomes of nematodes and that of their host, enabling identification of candidate nematode-specific microbiota member(s) that could be exploited as drug development tools or for targeted therapy. Deep sequencing techniques were used to elucidate the microbiomes of different life stages of two parasitic nematodes of ruminants, Haemonchus contortus and Teladorsagia circumcincta, as well as that of the co-infected ovine hosts, pre- and post infection. Bioinformatic analyses demonstrated significant differences between the composition of the nematode and ovine microbiomes. The two nematode species also differed significantly. The data indicated a shift in the constitution of the larval nematode microbiome after exposure to the ovine microbiome, and in the ovine intestinal microbial community over time as a result of helminth co-infection. Several bacterial species were identified in nematodes that were absent from their surrounding abomasal environment, the most significant of which included Escherichia coli/Shigella. The ability to purposefully infect nematode species with engineered E. coli was demonstrated in vitro, validating the concept of using this bacterium as a nematode-specific drug development tool and/or drug delivery vehicle. To our knowledge, this is the first description of the concept of exploiting a parasite's microbiome for drug development and treatment purposes.
Collapse
Affiliation(s)
- Glenn Hogan
- SynBioCentre, University College Cork, Cork, Ireland.,Cancer Research@UCC, University College Cork, Cork, Ireland
| | - Sidney Walker
- SynBioCentre, University College Cork, Cork, Ireland.,Cancer Research@UCC, University College Cork, Cork, Ireland.,APC Microbiome Ireland, University College Cork, Cork, Ireland.,Department of Microbiology, University College Cork, Cork, Ireland
| | - Frank Turnbull
- Moredun Research Institute, Pentlands Science Park, Penicuik, EH26 0PZ, UK
| | - Tania Curiao
- SynBioCentre, University College Cork, Cork, Ireland.,Cancer Research@UCC, University College Cork, Cork, Ireland
| | - Alison A Morrison
- Moredun Research Institute, Pentlands Science Park, Penicuik, EH26 0PZ, UK
| | - Yensi Flores
- SynBioCentre, University College Cork, Cork, Ireland.,Cancer Research@UCC, University College Cork, Cork, Ireland.,APC Microbiome Ireland, University College Cork, Cork, Ireland
| | - Leigh Andrews
- Moredun Research Institute, Pentlands Science Park, Penicuik, EH26 0PZ, UK
| | - Marcus J Claesson
- APC Microbiome Ireland, University College Cork, Cork, Ireland.,Department of Microbiology, University College Cork, Cork, Ireland
| | - Mark Tangney
- SynBioCentre, University College Cork, Cork, Ireland. .,Cancer Research@UCC, University College Cork, Cork, Ireland. .,APC Microbiome Ireland, University College Cork, Cork, Ireland.
| | - Dave J Bartley
- Moredun Research Institute, Pentlands Science Park, Penicuik, EH26 0PZ, UK.
| |
Collapse
|
17
|
Shen SS, Qu XY, Zhang WZ, Li J, Lv ZY. Infection against infection: parasite antagonism against parasites, viruses and bacteria. Infect Dis Poverty 2019; 8:49. [PMID: 31200765 PMCID: PMC6570864 DOI: 10.1186/s40249-019-0560-6] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2018] [Accepted: 05/28/2019] [Indexed: 12/21/2022] Open
Abstract
Background Infectious diseases encompass a large spectrum of diseases that threaten human health, and coinfection is of particular importance because pathogen species can interact within the host. Currently, the antagonistic relationship between different pathogens during concurrent coinfections is defined as one in which one pathogen either manages to inhibit the invasion, development and reproduction of the other pathogen or biologically modulates the vector density. In this review, we provide an overview of the phenomenon and mechanisms of antagonism of coinfecting pathogens involving parasites. Main body This review summarizes the antagonistic interaction between parasites and parasites, parasites and viruses, and parasites and bacteria. At present, relatively clear mechanisms explaining polyparasitism include apparent competition, exploitation competition, interference competition, biological control of intermediate hosts or vectors and suppressive effect on transmission. In particular, immunomodulation, including the suppression of dendritic cell (DC) responses, activation of basophils and mononuclear macrophages and adjuvant effects of the complement system, is described in detail. Conclusions In this review, we summarize antagonistic concurrent infections involving parasites and provide a functional framework for in-depth studies of the underlying mechanisms of coinfection with different microorganisms, which will hasten the development of promising antimicrobial alternatives, such as novel antibacterial vaccines or biological methods of controlling infectious diseases, thus relieving the overwhelming burden of ever-increasing antimicrobial resistance. Electronic supplementary material The online version of this article (10.1186/s40249-019-0560-6) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Shi-Shi Shen
- Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, 510080, China.,Key Laboratory of Tropical Disease Control, Ministry of Education, Sun Yat-sen University, Guangzhou, China.,Provincial Engineering Technology Research Center for Biological Vector Control, Guangzhou, China
| | - Xiao-Yan Qu
- Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, 510080, China.,Key Laboratory of Tropical Disease Control, Ministry of Education, Sun Yat-sen University, Guangzhou, China.,Provincial Engineering Technology Research Center for Biological Vector Control, Guangzhou, China
| | - Wei-Zhe Zhang
- Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, 510080, China.,Key Laboratory of Tropical Disease Control, Ministry of Education, Sun Yat-sen University, Guangzhou, China.,Provincial Engineering Technology Research Center for Biological Vector Control, Guangzhou, China
| | - Jian Li
- Fifth Affiliated Hospital, Zhongshan School of Medicine, Sun Yat-sen University, ZhuHai, Guangdong, China
| | - Zhi-Yue Lv
- Fifth Affiliated Hospital, Zhongshan School of Medicine, Sun Yat-sen University, ZhuHai, Guangdong, China. .,Key Laboratory of Tropical Disease Control, Ministry of Education, Sun Yat-sen University, Guangzhou, China. .,Provincial Engineering Technology Research Center for Biological Vector Control, Guangzhou, China.
| |
Collapse
|
18
|
Lello J, McClure SJ, Tyrrell K, Viney ME. Predicting the effects of parasite co-infection across species boundaries. Proc Biol Sci 2019. [PMID: 29540516 PMCID: PMC5879626 DOI: 10.1098/rspb.2017.2610] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
It is normal for hosts to be co-infected by parasites. Interactions among co-infecting species can have profound consequences, including changing parasite transmission dynamics, altering disease severity and confounding attempts at parasite control. Despite the importance of co-infection, there is currently no way to predict how different parasite species may interact with one another, nor the consequences of those interactions. Here, we demonstrate a method that enables such prediction by identifying two nematode parasite groups based on taxonomy and characteristics of the parasitological niche. From an understanding of the interactions between the two defined groups in one host system (wild rabbits), we predict how two different nematode species, from the same defined groups, will interact in co-infections in a different host system (sheep), and then we test this experimentally. We show that, as predicted, in co-infections, the blood-feeding nematode Haemonchus contortus suppresses aspects of the sheep immune response, thereby facilitating the establishment and/or survival of the nematode Trichostrongylus colubriformis; and that the T. colubriformis-induced immune response negatively affects H. contortus This work is, to our knowledge, the first to use empirical data from one host system to successfully predict the specific outcome of a different co-infection in a second host species. The study therefore takes the first step in defining a practical framework for predicting interspecific parasite interactions in other animal systems.
Collapse
Affiliation(s)
- Joanne Lello
- School of Biosciences, Cardiff University, Cardiff CF10 3AX, UK .,Department of Biodiversity and Molecular Ecology, Research and Innovation Centre, Fondazione Edmund Mach, S. Michele all'Adige, Trentino 38010, Italy.,Division of Animal, Food and Health Sciences, CSIRO, Armidale, New South Wales 2350, Australia
| | - Susan J McClure
- Division of Animal, Food and Health Sciences, CSIRO, Armidale, New South Wales 2350, Australia
| | - Kerri Tyrrell
- Division of Animal, Food and Health Sciences, CSIRO, Armidale, New South Wales 2350, Australia
| | - Mark E Viney
- School of Biological Sciences, University of Bristol, Bristol BS8 1TQ, UK
| |
Collapse
|
19
|
Eprinomectin pour-on: Prevention of gastrointestinal and pulmonary nematode infections in sheep. Vet Parasitol 2018; 264:42-46. [DOI: 10.1016/j.vetpar.2018.11.002] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2018] [Revised: 11/05/2018] [Accepted: 11/07/2018] [Indexed: 11/19/2022]
|