1
|
Schuhmann A, Scheiner R. Mixture of neonicotinoid and fungicide affects foraging activity of honeybees. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2024; 113:104613. [PMID: 39674529 DOI: 10.1016/j.etap.2024.104613] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/29/2024] [Revised: 12/06/2024] [Accepted: 12/12/2024] [Indexed: 12/16/2024]
Abstract
The use of plant protection products (PPPs) is a major factor contributing to global insect decline. We here use the honeybee (Apis mellifera) as a model to study combined effects of the last neonicotinoid in the EU (acetamiprid) and different fungicides on live-long foraging flights using radio frequency identification. The mixture of the sterol-biosynthesis-inhibiting fungicide difenoconazole and the insecticide acetamiprid significantly reduced the number of foraging trips per day compared to the control and each PPP alone, while a mixture of the insecticide with the non-sterol-biosynthesis inhibiting fungicide boscalid/dimoxystrobin did not affect behaviour. This potential synergistic effect of the fungicide/insecticide mixture supports the notion that some fungicides can enhance the effect of insecticides, which did not lead to significant changes in behaviour when applied on their own. Our results emphasize the need for more studies on the interaction of different PPPs.
Collapse
Affiliation(s)
- Antonia Schuhmann
- Biocenter, Behavioral Physiology and Sociobiology, University of Würzburg, Am Hubland, Würzburg 97074, Germany
| | - Ricarda Scheiner
- Biocenter, Behavioral Physiology and Sociobiology, University of Würzburg, Am Hubland, Würzburg 97074, Germany.
| |
Collapse
|
2
|
Riddick EW. Evaluating the Effects of Flavonoids on Insects: Implications for Managing Pests Without Harming Beneficials. INSECTS 2024; 15:956. [PMID: 39769558 PMCID: PMC11678172 DOI: 10.3390/insects15120956] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2024] [Revised: 11/26/2024] [Accepted: 11/29/2024] [Indexed: 01/11/2025]
Abstract
Flavonoids have multiple functions, including host-plant defense against attacks from herbivorous insects. This manuscript reviewed and analyzed the scientific literature to test the hypothesis that flavonoids can be utilized to manage pests without causing significant harm to beneficials. The methodology involved using recognized literature databases, e.g., Web of Science, Scopus, and CAB Abstracts, via the USDA-ARS, National Agricultural Library, DigiTop literature retrieval system. Data were compiled in tables and subjected to statistical analysis, when appropriate. Flavonoids were generally harmful to true bugs and true flies but harmless to honey bees. Flavonoid glycosides showed a tendency to harm true bugs (Heteroptera) and true flies (Diptera). Flavonoid glycosides were harmless to sawflies. Flavonoids and flavonoid glycosides produced a mixture of harmful and harmless outcomes to herbivorous beetles, depending on the species. Flavonoid glycosides were harmless to butterflies. In conclusion, specific flavonoids could function as feeding stimulants or deterrents, oviposition stimulants or deterrents, chemical protectants from pesticides, mating attractants, less-toxic insecticides, and other functions. Flavonoids could manage some insect pests without causing significant harm to beneficials (e.g., honey bees). Flavonoid-based insecticides could serve as environmentally benign alternatives to broad-spectrum insecticides against some pests, but field testing is necessary.
Collapse
Affiliation(s)
- Eric Wellington Riddick
- Biological Control of Pests Research Unit, Agricultural Research Service, United States Department of Agriculture, Stoneville, MS 38776, USA
| |
Collapse
|
3
|
Keodara A, Jeker L, Straub L, Grossar D, Müller J, Christen V. Novel fungicide and neonicotinoid insecticide impair flight behavior in pollen foraging honey bees, Apis mellifera. Sci Rep 2024; 14:22865. [PMID: 39354118 PMCID: PMC11445536 DOI: 10.1038/s41598-024-73235-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Accepted: 09/16/2024] [Indexed: 10/03/2024] Open
Abstract
Bees are often exposed to pesticides affecting physiological functions and molecular mechanisms. Studies showed a potential link between altered expression of energy metabolism related transcripts and increased homing flight time of foragers exposed to pesticides. In this study, we investigated the effects of thiamethoxam and pyraclostrobin on longevity, flight behavior, and expression of transcripts involved in endocrine regulation (hbg-3, buffy, vitellogenin) and energy metabolism (cox5a, cox5b, cox17) using radio frequency identification (RFID) technology and quantitative polymerase chain reaction. Parallel, a laboratory study was conducted investigating whether pesticide exposure alone without the influence of flight activity caused similar expression patterns as in the RFID experiment. No significant effect on survival, homing flight duration, or return rate of exposed bees was detected. The overall time foragers spent outside the hive was significantly reduced post-exposure. Irrespective of the treatment group, a correlation was observed between cox5a, cox5b, cox17 and hbg-3 expression and prolonged homing flight duration. Our results suggest that flight behavior can impact gene expression and exposure to pesticides adversely affects the expression of genes that are important for maintaining optimal flight capacity. Our laboratory-based experiment showed significantly altered expression levels of cox5a, cox6c, and cox17. However, further work is needed to identify transcriptional profiles responsible for prolonged homing flight duration.
Collapse
Affiliation(s)
- Anna Keodara
- School of Life Sciences, University of Applied Sciences and Arts Northwestern Switzerland, Muttenz, Switzerland
| | - Lukas Jeker
- Agroscope, Swiss Bee Research Center, Schwarzenburgstrasse 161, Bern, Switzerland
| | - Lars Straub
- Institute of Bee Health, Vetsuisse Faculty, University of Bern, Bern, Switzerland
- Faculty of Science, Energy and Environment, King Mongkut's University of Technology, North Bangkok, Rayong Campus, Rayong, Thailand
- Centre for Ecology, Evolution, and Behaviour, Department of Biological Sciences, Royal Holloway University of London, Egham, UK
| | - Daniela Grossar
- Agroscope, Swiss Bee Research Center, Schwarzenburgstrasse 161, Bern, Switzerland
| | - Jan Müller
- Federal Office of Information Technology, Systems and Telecommunication, Bern, Switzerland
| | - Verena Christen
- School of Life Sciences, University of Applied Sciences and Arts Northwestern Switzerland, Muttenz, Switzerland.
| |
Collapse
|
4
|
Gomes DS, Miranda FR, Fernandes KM, Farder-Gomes CF, Bastos DSS, Bernardes RC, Serrão JE. Acute exposure to fungicide fluazinam induces cell death in the midgut, oxidative stress and alters behavior of the stingless bee Partamona helleri (Hymenoptera: Apidae). ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 282:116677. [PMID: 38971098 DOI: 10.1016/j.ecoenv.2024.116677] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Revised: 06/26/2024] [Accepted: 06/30/2024] [Indexed: 07/08/2024]
Abstract
Stingless bees (Hymenoptera: Meliponini) are pollinators of both cultivated and wild crop plants in the Neotropical region. However, they are susceptible to pesticide exposure during foraging activities. The fungicide fluazinam is commonly applied in bean and sunflower cultivation during the flowering period, posing a potential risk to the stingless bee Partamona helleri, which serves as a pollinator for these crops. In this study, we investigated the impact of acute oral exposure (24 h) fluazinam on the survival, morphology and cell death signaling pathways in the midgut, oxidative stress and behavior of P. helleri worker bees. Worker bees were exposed for 24 h to fluazinam (field concentrations 0.5, 1.5 and 2.5 mg a.i. mL-1), diluted in 50 % honey aqueous solution. After oral exposure, fluazinam did not harm the survival of worker bees. However, sublethal effects were revealed using the highest concentration of fluazinam (2.5 mg a.i. mL-1), particularly a reduction in food consumption, damage in the midgut epithelium, characterized by degeneration of the brush border, an increase in the number and size of cytoplasm vacuoles, condensation of nuclear chromatin, and an increase in the release of cell fragments into the gut lumen. Bees exposed to fluazinam exhibited an increase in cells undergoing autophagy and apoptosis, indicating cell death in the midgut epithelium. Furthermore, the fungicide induced oxidative stress as evidenced by an increase in total antioxidant and catalase enzyme activities, along with a decrease in glutathione S-transferase activity. And finally, fluazinam altered the walking behavior of bees, which could potentially impede their foraging activities. In conclusion, our findings indicate that fluazinam at field concentrations is not lethal for workers P. helleri. Nevertheless, it has side effects on midgut integrity, oxidative stress and worker bee behavior, pointing to potential risks for this pollinator.
Collapse
Affiliation(s)
- Davy Soares Gomes
- Departamento de Biologia Geral, Universidade Federal de Viçosa, Viçosa, Minas Gerais 36570-900, Brazil
| | - Franciane Rosa Miranda
- Departamento de Biologia Geral, Universidade Federal de Viçosa, Viçosa, Minas Gerais 36570-900, Brazil
| | - Kenner Morais Fernandes
- Departamento de Biologia Geral, Universidade Federal de Viçosa, Viçosa, Minas Gerais 36570-900, Brazil
| | - Cliver Fernandes Farder-Gomes
- Departamento de Ciências Naturais, Matemática e Educação, Universidade Federal de São Carlos, Campus Araras, Araras, São Paulo 13.600-970, Brazil
| | - Daniel Silva Sena Bastos
- Departamento de Biologia Geral, Universidade Federal de Viçosa, Viçosa, Minas Gerais 36570-900, Brazil
| | | | - José Eduardo Serrão
- Departamento de Biologia Geral, Universidade Federal de Viçosa, Viçosa, Minas Gerais 36570-900, Brazil.
| |
Collapse
|
5
|
Liao LH, Wu WY, Berenbaum MR. Variation in Pesticide Toxicity in the Western Honey Bee (Apis mellifera) Associated with Consuming Phytochemically Different Monofloral Honeys. J Chem Ecol 2024; 50:397-408. [PMID: 38760625 PMCID: PMC11399171 DOI: 10.1007/s10886-024-01495-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Revised: 04/05/2024] [Accepted: 04/12/2024] [Indexed: 05/19/2024]
Abstract
Insecticide toxicity to insect herbivores has long been known to vary across different host plants; this phenomenon has been widely documented in both foliage-feeders and sap-feeders. Species-specific phytochemical content of hostplant tissues is assumed to determine the pattern of induction of insect enzymes that detoxify insecticides, but specific phytochemicals have rarely been linked to host plant-associated variation in pesticide toxicity. Moreover, no studies to date have examined the effects of nectar source identity and phytochemical composition on the toxicity of insecticides to pollinators. In this study, we compared LD50 values for the insecticide bifenthrin, a frequent contaminant of nectar and pollen in agroecosystems, in the western honey bee, Apis mellifera, consuming three phytochemically different monofloral honeys: Nyssa ogeche (tupelo), Robinia pseudoacacia (black locust), and Fagopyrum esculentum (buckwheat). We found that bifenthrin toxicity (LD50) values for honey bees across different honey diets is linked to their species-specific phytochemical content. The profiles of phenolic acids and flavonoids of buckwheat and locust honeys are richer than is the profile of tupelo honey, with buckwheat honey containing the highest total content of phytochemicals and associated with the highest bifenthrin LD50 in honey bees. The vector fitting in the ordination analysis revealed positive correlations between LD50 values and two honey phytochemical richness estimates, Chao1 and Abundance-based Coverage Estimator (ACE). These findings suggest unequal effects among different phytochemicals, consistent with the interpretation that certain compounds, including ones that are rare, may have a more pronounced effect in mitigating pesticide toxicity.
Collapse
Affiliation(s)
- Ling-Hsiu Liao
- Department of Entomology, University of Illinois Urbana-Champaign, Urbana, IL, USA.
| | - Wen-Yen Wu
- Department of Entomology, University of Illinois Urbana-Champaign, Urbana, IL, USA
| | - May R Berenbaum
- Department of Entomology, University of Illinois Urbana-Champaign, Urbana, IL, USA
| |
Collapse
|
6
|
Rondeau S, Raine NE. Size-dependent responses of colony-founding bumblebee (Bombus impatiens) queens to exposure to pesticide residues in soil during hibernation. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 948:174852. [PMID: 39029756 DOI: 10.1016/j.scitotenv.2024.174852] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Revised: 06/19/2024] [Accepted: 07/15/2024] [Indexed: 07/21/2024]
Abstract
Bumblebees and other key pollinators are experiencing global declines, a phenomenon driven by multiple environmental stressors, including pesticide exposure. While bumblebee queens spend most of their life hibernating underground, no study to date has examined how exposure to pesticide-contaminated soils might affect bumblebee queens during this solitary phase of their lifecycle. We exposed Bombus impatiens queens (n = 303) to soil treated with field-realistic concentrations of two diamide insecticides (chlorantraniliprole and cyantraniliprole) and two fungicides (boscalid and difenoconazole), alone or combined, during a 30-week hibernation period. We found that exposure to boscalid residues in soil doubled the likelihood of queens surviving through the colony initiation period (after successful hibernation) and laying eggs. Our data also revealed complex interactions between pesticide exposure and queen body mass on aspects of colony founding. Among others, exposure to cyantraniliprole led to lethal and sublethal post-hibernation effects that were dependent on queen size, with larger queens showing higher mortality rates, delayed emergence of their first brood, and producing smaller workers. Our results show that effects of pesticide exposure depend on intrinsic traits of bumblebee queen physiology and challenge our understanding of how bees respond to pesticides under environmentally realistic exposure scenarios.
Collapse
Affiliation(s)
- Sabrina Rondeau
- School of Environmental Sciences, University of Guelph, Guelph, Ontario, Canada.
| | - Nigel E Raine
- School of Environmental Sciences, University of Guelph, Guelph, Ontario, Canada
| |
Collapse
|
7
|
Kato AY, Freitas TAL, Gomes CRA, Alves TRR, Ferraz YMM, Trivellato MF, De Jong D, Biller JD, Nicodemo D. Bixafen, Prothioconazole, and Trifloxystrobin Alone or in Combination Have a Greater Effect on Health Related Gene Expression in Honey Bees from Nutritionally Deprived than from Protein Supplemented Colonies. INSECTS 2024; 15:523. [PMID: 39057256 PMCID: PMC11277445 DOI: 10.3390/insects15070523] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 06/25/2024] [Accepted: 06/27/2024] [Indexed: 07/28/2024]
Abstract
The aim of this study was to evaluate whether alterations in food availability compromise the metabolic homeostasis of honey bees exposed to three fungicides alone or together. Ten honey bee colonies were used, with half receiving carbohydrate-protein supplementation for 15 weeks while another five colonies had their protein supply reduced with pollen traps. Subsequently, forager bees were collected and exposed by contact to 1 or 7 µg of bixafen, prothioconazole, or trifloxystrobin, either individually or in combination. After 48 h, bee abdomens without the intestine were used for the analysis of expression of antioxidant genes (SOD-1, CAT, and GPX-1), detoxification genes (GST-1 and CYP306A1), the storage protein gene vitellogenin, and immune system antimicrobial peptide genes (defensin-1, abaecin, hymenoptaecin, and apidaecin), through real-time PCR. All fungicide treatments induced changes in gene expression, with bixafen showing the most prominent upregulation. Exposure to 1 µg of each of the three pesticides resulted in upregulation of genes associated with detoxification and nutrition processes, and downregulation of immune system genes. When the three pesticides were combined at a dose of 7 µg each, there was a pronounced downregulation of all genes. Food availability in the colonies affected the impact of fungicides on the expression of the studied genes in forager bees.
Collapse
Affiliation(s)
- Aline Y. Kato
- Post Graduate Program in Animal Science, School of Agricultural and Veterinarian Sciences, São Paulo State University (Unesp), Jaboticabal 14884-900, SP, Brazil
| | - Tainá A. L. Freitas
- Post Graduate Program in Animal Science, School of Agricultural and Veterinarian Sciences, São Paulo State University (Unesp), Jaboticabal 14884-900, SP, Brazil
| | - Cássia R. A. Gomes
- Post Graduate Program in Animal Science, School of Agricultural and Veterinarian Sciences, São Paulo State University (Unesp), Jaboticabal 14884-900, SP, Brazil
| | - Thais R. R. Alves
- Post Graduate Program in Animal Science, School of Agricultural and Veterinarian Sciences, São Paulo State University (Unesp), Jaboticabal 14884-900, SP, Brazil
| | - Yara M. M. Ferraz
- Post Graduate Program in Animal Science, School of Agricultural and Veterinarian Sciences, São Paulo State University (Unesp), Jaboticabal 14884-900, SP, Brazil
| | - Matheus F. Trivellato
- Post Graduate Program in Animal Science, School of Agricultural and Veterinarian Sciences, São Paulo State University (Unesp), Jaboticabal 14884-900, SP, Brazil
| | - David De Jong
- Genetics Department, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto 14049-900, SP, Brazil
| | - Jaqueline D. Biller
- Department of Animal Science, College of Agricultural and Technology Sciences, São Paulo State University (Unesp), Dracena 17915-899, SP, Brazil
| | - Daniel Nicodemo
- Department of Animal Science, School of Agricultural and Veterinarian Sciences, São Paulo State University (Unesp), Jaboticabal 14884-900, SP, Brazil
| |
Collapse
|
8
|
Castillo DC, Sinpoo C, Phokasem P, Yongsawas R, Sansupa C, Attasopa K, Suwannarach N, Inwongwan S, Noirungsee N, Disayathanoowat T. Distinct fungal microbiomes of two Thai commercial stingless bee species, Lepidotrigona terminata and Tetragonula pagdeni suggest a possible niche separation in a shared habitat. Front Cell Infect Microbiol 2024; 14:1367010. [PMID: 38469352 PMCID: PMC10925696 DOI: 10.3389/fcimb.2024.1367010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Accepted: 02/07/2024] [Indexed: 03/13/2024] Open
Abstract
Stingless bees, a social corbiculate bee member, play a crucial role in providing pollination services. Despite their importance, the structure of their microbiome, particularly the fungal communities, remains poorly understood. This study presents an initial characterization of the fungal community associated with two Thai commercial stingless bee species, Lepidotrigona terminata (Smith) and Tetragonula pagdeni (Schwarz) from Chiang Mai, Thailand. Utilizing ITS amplicon sequencing, we identified distinct fungal microbiomes in these two species. Notably, fungi from the phyla Ascomycota, Basidiomycota, Mucoromycota, Mortierellomycota, and Rozellomycota were present. The most dominant genera, which varied significantly between species, included Candida and Starmerella. Additionally, several key enzymes associated with energy metabolism, structural strength, and host defense reactions, such as adenosine triphosphatase, alcohol dehydrogenase, β-glucosidase, chitinase, and peptidylprolyl isomerase, were predicted. Our findings not only augment the limited knowledge of the fungal microbiome in Thai commercial stingless bees but also provide insights for their sustainable management through understanding their microbiome.
Collapse
Affiliation(s)
- Diana C. Castillo
- Department of Biology, Faculty of Science, Chiang Mai University, Chiang Mai, Thailand
- Department of Biological Sciences, College of Science, Central Luzon State University, Science City of Muñoz, Nueva Ecija, Philippines
- Research Center of Deep Technology in Beekeeping and Bee Products for Sustainable Development Goals (SMART BEE SDGs), Chiang Mai University, Chiang Mai, Thailand
| | - Chainarong Sinpoo
- Department of Biology, Faculty of Science, Chiang Mai University, Chiang Mai, Thailand
- Research Center of Deep Technology in Beekeeping and Bee Products for Sustainable Development Goals (SMART BEE SDGs), Chiang Mai University, Chiang Mai, Thailand
- Office of Research Administration, Chiang Mai University, Chiang Mai, Thailand
| | - Patcharin Phokasem
- Department of Biology, Faculty of Science, Chiang Mai University, Chiang Mai, Thailand
- Research Center of Deep Technology in Beekeeping and Bee Products for Sustainable Development Goals (SMART BEE SDGs), Chiang Mai University, Chiang Mai, Thailand
- Office of Research Administration, Chiang Mai University, Chiang Mai, Thailand
| | - Rujipas Yongsawas
- Department of Biology, Faculty of Science, Chiang Mai University, Chiang Mai, Thailand
- Research Center of Deep Technology in Beekeeping and Bee Products for Sustainable Development Goals (SMART BEE SDGs), Chiang Mai University, Chiang Mai, Thailand
| | - Chakriya Sansupa
- Department of Biology, Faculty of Science, Chiang Mai University, Chiang Mai, Thailand
| | - Korrawat Attasopa
- Research Center of Deep Technology in Beekeeping and Bee Products for Sustainable Development Goals (SMART BEE SDGs), Chiang Mai University, Chiang Mai, Thailand
- Department of Entomology and Plant Pathology, Faculty of Agriculture, Chiang Mai University, Chiang Mai, Thailand
- Center of Excellence in Microbial Diversity and Sustainable Utilization, Faculty of Science, Chiang Mai University, Chiang Mai, Thailand
| | - Nakarin Suwannarach
- Research Center of Deep Technology in Beekeeping and Bee Products for Sustainable Development Goals (SMART BEE SDGs), Chiang Mai University, Chiang Mai, Thailand
- Office of Research Administration, Chiang Mai University, Chiang Mai, Thailand
- Center of Excellence in Microbial Diversity and Sustainable Utilization, Faculty of Science, Chiang Mai University, Chiang Mai, Thailand
| | - Sahutchai Inwongwan
- Department of Biology, Faculty of Science, Chiang Mai University, Chiang Mai, Thailand
- Research Center of Deep Technology in Beekeeping and Bee Products for Sustainable Development Goals (SMART BEE SDGs), Chiang Mai University, Chiang Mai, Thailand
- Center of Excellence in Microbial Diversity and Sustainable Utilization, Faculty of Science, Chiang Mai University, Chiang Mai, Thailand
| | - Nuttapol Noirungsee
- Department of Biology, Faculty of Science, Chiang Mai University, Chiang Mai, Thailand
- Research Center of Deep Technology in Beekeeping and Bee Products for Sustainable Development Goals (SMART BEE SDGs), Chiang Mai University, Chiang Mai, Thailand
- Center of Excellence in Microbial Diversity and Sustainable Utilization, Faculty of Science, Chiang Mai University, Chiang Mai, Thailand
| | - Terd Disayathanoowat
- Department of Biology, Faculty of Science, Chiang Mai University, Chiang Mai, Thailand
- Research Center of Deep Technology in Beekeeping and Bee Products for Sustainable Development Goals (SMART BEE SDGs), Chiang Mai University, Chiang Mai, Thailand
- Center of Excellence in Microbial Diversity and Sustainable Utilization, Faculty of Science, Chiang Mai University, Chiang Mai, Thailand
| |
Collapse
|
9
|
Chaves A, Faita MR, Nodari RO. Effects of fungicides on the ultrastructure of the hypopharyngeal glands and the strength of the hives of Apis mellifera Linnaeus, 1758 (Hymenoptera: Apidae). Toxicol Appl Pharmacol 2023; 459:116340. [PMID: 36509231 DOI: 10.1016/j.taap.2022.116340] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Revised: 11/12/2022] [Accepted: 12/02/2022] [Indexed: 12/13/2022]
Abstract
Several crops of agronomic interest depend on bees' pollination, and Apis mellifera L (Hymanoptera: Apidae) is the most studied direct pollinator. Nevertheless, the use of pesticides in agricultural environments is common, including fungicides. Studies that seek to evaluate the effects of fungicides on the hypopharyngeal glands of bees, the site of royal jelly synthesis, are lacking. Thus, this work aimed to evaluate the effect of field doses of fungicides (Captan SC® and Zignal®), alone or in mixture, on the hypopharyngeal glands and their subsequent effect on the strength of hives. The evaluations were carried out under field conditions in three hives per treatment. For a period of one month, bee hives received feed containing sugar syrup, pollen and 1.2 mL of Zignal® and 3 mL of Captan SC® in the isolated treatments and 4.2 mL in the mixture. The action of fungicides on the hypopharyngeal glands was determined by transmission electron microscopy analysis in bees 7 and 15 days old, collected in the hives one month after exposure to fungicides. The strength of the hives was evaluated for six months based on the number of frames with adult bees, open and closed brood, and stored food. The results indicate that fungicides promote early degeneration of the rough endoplasmic reticulum and morphological and structural changes in mitochondria. In addition, a reduction in adult population, open and closed breeding and food stock was observed. More pronounced damage occurred when bees were exposed to the mixture of fungicides. Overall, it can be concluded that the presence of fungicides in bee diets promotes harm accentuated over time and compromises the survival of hives. It will be worth estimating the fungicide effects of the queen development and on the colony heath.
Collapse
Affiliation(s)
- Adriana Chaves
- Universidade Federal de Santa Catarina - UFSC, Programa de Pós-graduação em Recursos Genéticos Vegetais - PPGRGV, Rodovia Admar Gonzaga, 1346 - Bairro Itacorubi, 88034-001 Florianópolis, Santa Catarina, Brazil
| | - Márcia Regina Faita
- Universidade Federal de Santa Catarina - UFSC, Programa de Pós-graduação em Recursos Genéticos Vegetais - PPGRGV, Rodovia Admar Gonzaga, 1346 - Bairro Itacorubi, 88034-001 Florianópolis, Santa Catarina, Brazil
| | - Rubens Onofre Nodari
- Universidade Federal de Santa Catarina - UFSC, Programa de Pós-graduação em Recursos Genéticos Vegetais - PPGRGV, Rodovia Admar Gonzaga, 1346 - Bairro Itacorubi, 88034-001 Florianópolis, Santa Catarina, Brazil.
| |
Collapse
|
10
|
Barascou L, Brunet JL, Belzunces L, Decourtye A, Henry M, Fourrier J, Le Conte Y, Alaux C. Pesticide risk assessment in honeybees: Toward the use of behavioral and reproductive performances as assessment endpoints. CHEMOSPHERE 2021; 276:130134. [PMID: 33690036 DOI: 10.1016/j.chemosphere.2021.130134] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/09/2020] [Revised: 02/18/2021] [Accepted: 02/23/2021] [Indexed: 06/12/2023]
Abstract
The growing gap between new evidence of pesticide toxicity in honeybees and conventional toxicological assays recommended by regulatory test guidelines emphasizes the need to complement current lethal endpoints with sublethal endpoints. In this context, behavioral and reproductive performances have received growing interest since the 2000s, likely due to their ecological relevance and/or the emergence of new technologies. We review the biological interests and methodological measurements of these predominantly studied endpoints and discuss their possible use in the pesticide risk assessment procedure based on their standardization level, simplicity and ecological relevance. It appears that homing flights and reproduction have great potential for pesticide risk assessment, mainly due to their ecological relevance. If exploratory research studies in ecotoxicology have paved the way toward a better understanding of pesticide toxicity in honeybees, the next objective will then be to translate the most relevant behavioral and reproductive endpoints into regulatory test methods. This will require more comparative studies and improving their ecological relevance. This latter goal may be facilitated by the use of population dynamics models for scaling up the consequences of adverse behavioral and reproductive effects from individuals to colonies.
Collapse
Affiliation(s)
- Lena Barascou
- INRAE, Abeilles et Environnement, Avignon, France; UMT PrADE, Avignon, France.
| | - Jean-Luc Brunet
- INRAE, Abeilles et Environnement, Avignon, France; UMT PrADE, Avignon, France
| | - Luc Belzunces
- INRAE, Abeilles et Environnement, Avignon, France; UMT PrADE, Avignon, France
| | - Axel Decourtye
- UMT PrADE, Avignon, France; ITSAP-Institut de L'abeille, Avignon, France
| | - Mickael Henry
- INRAE, Abeilles et Environnement, Avignon, France; UMT PrADE, Avignon, France
| | - Julie Fourrier
- UMT PrADE, Avignon, France; ITSAP-Institut de L'abeille, Avignon, France
| | - Yves Le Conte
- INRAE, Abeilles et Environnement, Avignon, France; UMT PrADE, Avignon, France
| | - Cedric Alaux
- INRAE, Abeilles et Environnement, Avignon, France; UMT PrADE, Avignon, France.
| |
Collapse
|
11
|
Glass JR, Fisher A, Fewell JH, DeGrandi-Hoffman G, Ozturk C, Harrison JF. Consumption of field-realistic doses of a widely used mito-toxic fungicide reduces thorax mass but does not negatively impact flight capacities of the honey bee (Apis mellifera). ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2021; 274:116533. [PMID: 33529906 DOI: 10.1016/j.envpol.2021.116533] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/15/2020] [Revised: 01/14/2021] [Accepted: 01/15/2021] [Indexed: 06/12/2023]
Abstract
Commercial beekeepers in many locations are experiencing increased annual colony losses of honey bees (Apis mellifera), but the causes, including the role of agrochemicals in colony losses, remain unclear. In this study, we investigated the effects of chronic consumption of pollen containing a widely-used fungicide (Pristine®), known to inhibit bee mitochondria in vitro, which has recently been shown to reduce honey bee worker lifespan when field-colonies are provided with pollen containing field-realistic levels of Pristine®. We fed field colonies pollen with a field-realistic concentration of Pristine® (2.3 ppm) and a concentration two orders of magnitude higher (230 ppm). To challenge flight behavior and elicit near-maximal metabolic rate, we measured flight quality and metabolic rates of bees in two lower-than-normal air densities. Chronic consumption of 230 but not 2.3 ppm Pristine® reduced maximal flight performance and metabolic rates, suggesting that the observed decrease in lifespans of workers reared on field-realistic doses of Pristine®-laced pollen is not due to inhibition of flight muscle mitochondria. However, consumption of either the 230 or 2.3 ppm dose reduced thorax mass (but not body mass), providing the first evidence of morphological effects of Pristine®, and supporting the hypothesis that Pristine® reduces forager longevity by negatively impacting digestive or nutritional processes.
Collapse
Affiliation(s)
- Jordan R Glass
- School of Life Sciences, Arizona State University, 427 East Tyler Mall, Tempe, AZ, 85281, USA.
| | - Adrian Fisher
- School of Life Sciences, Arizona State University, 427 East Tyler Mall, Tempe, AZ, 85281, USA
| | - Jennifer H Fewell
- School of Life Sciences, Arizona State University, 427 East Tyler Mall, Tempe, AZ, 85281, USA
| | | | - Cahit Ozturk
- School of Life Sciences, Arizona State University, 427 East Tyler Mall, Tempe, AZ, 85281, USA
| | - Jon F Harrison
- School of Life Sciences, Arizona State University, 427 East Tyler Mall, Tempe, AZ, 85281, USA
| |
Collapse
|
12
|
Mantica G. Honeybees on treadmills uncover natural remedy for fungicide effects. J Exp Biol 2020. [DOI: 10.1242/jeb.211474] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
13
|
Liao LH, Wu WY, Dad A, Berenbaum MR. Fungicide suppression of flight performance in the honeybee ( Apis mellifera) and its amelioration by quercetin. Proc Biol Sci 2019; 286:20192041. [PMID: 31847772 DOI: 10.1098/rspb.2019.2041] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
As a managed agricultural pollinator, the western honeybee Apis mellifera frequently encounters agrochemicals as contaminants of nectar and pollen. One such contaminant, the fungicide boscalid, is applied at bloom in orchards for fungal floral pathogen control. As an inhibitor of complex II in the mitochondrial electron transport chain of fungi, boscalid can potentially interfere with high energy-demanding activities of bees, including flight. We designed an indoor flight treadmill to evaluate impacts of ingesting boscalid and/or quercetin, a ubiquitous phytochemical in bee food that also affects mitochondrial respiration. Boscalid reduced the wingbeat frequencies of foragers during flight but did not alter the duration of flight. At the colony level, boscalid ingestion may thereby affect overall health by reducing forager efficiency. The consumption of quercetin, by contrast, led to higher adenosine triphosphate levels in flight muscles and a higher wingbeat frequency. Consuming the two compounds together increased wingbeat frequency, demonstrating a hitherto unrecognized mechanism by which dietary phytochemicals may act to ameliorate toxic effects of pesticides to promote honeybee health. In carrying out this work, we also introduce two methodological improvements for use in testing for pesticide effects on flight capacity-a 'force-feeding' to standardize flight fuel supply and a novel indoor flight treadmill.
Collapse
Affiliation(s)
- Ling-Hsiu Liao
- Department of Entomology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Wen-Yen Wu
- Department of Entomology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Azra Dad
- Department of Crop Sciences, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA.,National Center for Toxicological Research, FDA, Jefferson, AR 72079, USA
| | - May R Berenbaum
- Department of Entomology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| |
Collapse
|