1
|
Zahoor F, Nisar A, Bature UI, Abbas H, Bashir F, Chattopadhyay A, Kaushik BK, Alzahrani A, Hussin FA. An overview of critical applications of resistive random access memory. NANOSCALE ADVANCES 2024:d4na00158c. [PMID: 39263252 PMCID: PMC11382421 DOI: 10.1039/d4na00158c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Accepted: 08/10/2024] [Indexed: 09/13/2024]
Abstract
The rapid advancement of new technologies has resulted in a surge of data, while conventional computers are nearing their computational limits. The prevalent von Neumann architecture, where processing and storage units operate independently, faces challenges such as data migration through buses, leading to decreased computing speed and increased energy loss. Ongoing research aims to enhance computing capabilities through the development of innovative chips and the adoption of new system architectures. One noteworthy advancement is Resistive Random Access Memory (RRAM), an emerging memory technology. RRAM can alter its resistance through electrical signals at both ends, retaining its state even after power-down. This technology holds promise in various areas, including logic computing, neural networks, brain-like computing, and integrated technologies combining sensing, storage, and computing. These cutting-edge technologies offer the potential to overcome the performance limitations of traditional architectures, significantly boosting computing power. This discussion explores the physical mechanisms, device structure, performance characteristics, and applications of RRAM devices. Additionally, we delve into the potential future adoption of these technologies at an industrial scale, along with prospects and upcoming research directions.
Collapse
Affiliation(s)
- Furqan Zahoor
- Department of Computer Engineering, College of Computer Sciences and Information Technology, King Faisal University Saudi Arabia
| | - Arshid Nisar
- Department of Electronics and Communication Engineering, Indian Institute of Technology Roorkee India
| | - Usman Isyaku Bature
- Department of Electrical and Electronics Engineering, Universiti Teknologi Petronas Malaysia
| | - Haider Abbas
- Department of Nanotechnology and Advanced Materials Engineering, Sejong University Seoul 143-747 Republic of Korea
| | - Faisal Bashir
- Department of Computer Engineering, College of Computer Sciences and Information Technology, King Faisal University Saudi Arabia
| | - Anupam Chattopadhyay
- College of Computing and Data Science, Nanyang Technological University 639798 Singapore
| | - Brajesh Kumar Kaushik
- Department of Electronics and Communication Engineering, Indian Institute of Technology Roorkee India
| | - Ali Alzahrani
- Department of Computer Engineering, College of Computer Sciences and Information Technology, King Faisal University Saudi Arabia
| | - Fawnizu Azmadi Hussin
- Department of Electrical and Electronics Engineering, Universiti Teknologi Petronas Malaysia
| |
Collapse
|
2
|
Liu X, Sun C, Ye X, Zhu X, Hu C, Tan H, He S, Shao M, Li RW. Neuromorphic Nanoionics for Human-Machine Interaction: From Materials to Applications. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2311472. [PMID: 38421081 DOI: 10.1002/adma.202311472] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 02/06/2024] [Indexed: 03/02/2024]
Abstract
Human-machine interaction (HMI) technology has undergone significant advancements in recent years, enabling seamless communication between humans and machines. Its expansion has extended into various emerging domains, including human healthcare, machine perception, and biointerfaces, thereby magnifying the demand for advanced intelligent technologies. Neuromorphic computing, a paradigm rooted in nanoionic devices that emulate the operations and architecture of the human brain, has emerged as a powerful tool for highly efficient information processing. This paper delivers a comprehensive review of recent developments in nanoionic device-based neuromorphic computing technologies and their pivotal role in shaping the next-generation of HMI. Through a detailed examination of fundamental mechanisms and behaviors, the paper explores the ability of nanoionic memristors and ion-gated transistors to emulate the intricate functions of neurons and synapses. Crucial performance metrics, such as reliability, energy efficiency, flexibility, and biocompatibility, are rigorously evaluated. Potential applications, challenges, and opportunities of using the neuromorphic computing technologies in emerging HMI technologies, are discussed and outlooked, shedding light on the fusion of humans with machines.
Collapse
Affiliation(s)
- Xuerong Liu
- CAS Key Laboratory of Magnetic Materials and Devices, and Zhejiang Province Key Laboratory of Magnetic Materials and Application Technology, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315201, China
- Zhejiang Province Key Laboratory of Magnetic Materials and Application Technology, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315201, China
- College of Materials Sciences and Opto-Electronic Technology, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Cui Sun
- CAS Key Laboratory of Magnetic Materials and Devices, and Zhejiang Province Key Laboratory of Magnetic Materials and Application Technology, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315201, China
- Zhejiang Province Key Laboratory of Magnetic Materials and Application Technology, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315201, China
| | - Xiaoyu Ye
- CAS Key Laboratory of Magnetic Materials and Devices, and Zhejiang Province Key Laboratory of Magnetic Materials and Application Technology, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315201, China
- Zhejiang Province Key Laboratory of Magnetic Materials and Application Technology, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315201, China
| | - Xiaojian Zhu
- CAS Key Laboratory of Magnetic Materials and Devices, and Zhejiang Province Key Laboratory of Magnetic Materials and Application Technology, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315201, China
- Zhejiang Province Key Laboratory of Magnetic Materials and Application Technology, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315201, China
| | - Cong Hu
- CAS Key Laboratory of Magnetic Materials and Devices, and Zhejiang Province Key Laboratory of Magnetic Materials and Application Technology, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315201, China
- Zhejiang Province Key Laboratory of Magnetic Materials and Application Technology, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315201, China
| | - Hongwei Tan
- Department of Applied Physics, Aalto University, Aalto, FI-00076, Finland
| | - Shang He
- CAS Key Laboratory of Magnetic Materials and Devices, and Zhejiang Province Key Laboratory of Magnetic Materials and Application Technology, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315201, China
- Zhejiang Province Key Laboratory of Magnetic Materials and Application Technology, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315201, China
| | - Mengjie Shao
- CAS Key Laboratory of Magnetic Materials and Devices, and Zhejiang Province Key Laboratory of Magnetic Materials and Application Technology, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315201, China
- Zhejiang Province Key Laboratory of Magnetic Materials and Application Technology, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315201, China
| | - Run-Wei Li
- CAS Key Laboratory of Magnetic Materials and Devices, and Zhejiang Province Key Laboratory of Magnetic Materials and Application Technology, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315201, China
- Zhejiang Province Key Laboratory of Magnetic Materials and Application Technology, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315201, China
| |
Collapse
|
3
|
Chen L, Karilanova S, Chaki S, Wen C, Wang L, Winblad B, Zhang SL, Özçelikkale A, Zhang ZB. Spike timing-based coding in neuromimetic tactile system enables dynamic object classification. Science 2024; 384:660-665. [PMID: 38723082 DOI: 10.1126/science.adf3708] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Accepted: 03/13/2024] [Indexed: 05/31/2024]
Abstract
Rapid processing of tactile information is essential to human haptic exploration and dexterous object manipulation. Conventional electronic skins generate frames of tactile signals upon interaction with objects. Unfortunately, they are generally ill-suited for efficient coding of temporal information and rapid feature extraction. In this work, we report a neuromorphic tactile system that uses spike timing, especially the first-spike timing, to code dynamic tactile information about touch and grasp. This strategy enables the system to seamlessly code highly dynamic information with millisecond temporal resolution on par with the biological nervous system, yielding dynamic extraction of tactile features. Upon interaction with objects, the system rapidly classifies them in the initial phase of touch and grasp, thus paving the way to fast tactile feedback desired for neuro-robotics and neuro-prosthetics.
Collapse
Affiliation(s)
- Libo Chen
- Division of Solid-State Electronics, Department of Electrical Engineering, Uppsala University, Uppsala 75121, Sweden
| | - Sanja Karilanova
- Division of Signals and Systems, Department of Electrical Engineering, Uppsala University, Uppsala 75121, Sweden
| | - Soumi Chaki
- Division of Signals and Systems, Department of Electrical Engineering, Uppsala University, Uppsala 75121, Sweden
| | - Chenyu Wen
- Division of Solid-State Electronics, Department of Electrical Engineering, Uppsala University, Uppsala 75121, Sweden
| | - Lisha Wang
- Department of Neurobiology, Care Sciences and Society, Division of Neurogeriatrics, Karolinska Institutet, Solna 17164, Sweden
| | - Bengt Winblad
- Department of Neurobiology, Care Sciences and Society, Division of Neurogeriatrics, Karolinska Institutet, Solna 17164, Sweden
- Theme Inflammation and Aging, Karolinska University Hospital, Huddinge 14186, Sweden
| | - Shi-Li Zhang
- Division of Solid-State Electronics, Department of Electrical Engineering, Uppsala University, Uppsala 75121, Sweden
| | - Ayça Özçelikkale
- Division of Signals and Systems, Department of Electrical Engineering, Uppsala University, Uppsala 75121, Sweden
| | - Zhi-Bin Zhang
- Division of Solid-State Electronics, Department of Electrical Engineering, Uppsala University, Uppsala 75121, Sweden
| |
Collapse
|
4
|
Dai S, Liu X, Liu Y, Xu Y, Zhang J, Wu Y, Cheng P, Xiong L, Huang J. Emerging Iontronic Neural Devices for Neuromorphic Sensory Computing. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2300329. [PMID: 36891745 DOI: 10.1002/adma.202300329] [Citation(s) in RCA: 16] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Revised: 02/22/2023] [Indexed: 06/18/2023]
Abstract
Living organisms have a very mysterious and powerful sensory computing system based on ion activity. Interestingly, studies on iontronic devices in the past few years have proposed a promising platform for simulating the sensing and computing functions of living organisms, because: 1) iontronic devices can generate, store, and transmit a variety of signals by adjusting the concentration and spatiotemporal distribution of ions, which analogs to how the brain performs intelligent functions by alternating ion flux and polarization; 2) through ionic-electronic coupling, iontronic devices can bridge the biosystem with electronics and offer profound implications for soft electronics; 3) with the diversity of ions, iontronic devices can be designed to recognize specific ions or molecules by customizing the charge selectivity, and the ionic conductivity and capacitance can be adjusted to respond to external stimuli for a variety of sensing schemes, which can be more difficult for electron-based devices. This review provides a comprehensive overview of emerging neuromorphic sensory computing by iontronic devices, highlighting representative concepts of both low-level and high-level sensory computing and introducing important material and device breakthroughs. Moreover, iontronic devices as a means of neuromorphic sensing and computing are discussed regarding the pending challenges and future directions.
Collapse
Affiliation(s)
- Shilei Dai
- Shanghai Key Laboratory of Anesthesiology and Brain Functional Modulation, Translational Research Institute of Brain and Brain-Like Intelligence, Shanghai Fourth People's Hospital, Tongji University, Shanghai, 200434, P. R. China
- Interdisciplinary Materials Research Center, School of Materials Science and Engineering, Tongji University, Shanghai, 201804, P. R. China
- Department of Electrical and Electronic Engineering, The University of Hong Kong, Pokfulam, Hong Kong, 999077, China
| | - Xu Liu
- Interdisciplinary Materials Research Center, School of Materials Science and Engineering, Tongji University, Shanghai, 201804, P. R. China
| | - Youdi Liu
- Department of Engineering Science and Mechanics, Pennsylvania State University, University Park, State College, PA, 16802, USA
| | - Yutong Xu
- Interdisciplinary Materials Research Center, School of Materials Science and Engineering, Tongji University, Shanghai, 201804, P. R. China
| | - Junyao Zhang
- Interdisciplinary Materials Research Center, School of Materials Science and Engineering, Tongji University, Shanghai, 201804, P. R. China
| | - Yue Wu
- Interdisciplinary Materials Research Center, School of Materials Science and Engineering, Tongji University, Shanghai, 201804, P. R. China
| | - Ping Cheng
- Pritzker School of Molecular Engineering, The University of Chicago, Chicago, IL, 60637, USA
| | - Lize Xiong
- Shanghai Key Laboratory of Anesthesiology and Brain Functional Modulation, Translational Research Institute of Brain and Brain-Like Intelligence, Shanghai Fourth People's Hospital, Tongji University, Shanghai, 200434, P. R. China
| | - Jia Huang
- Shanghai Key Laboratory of Anesthesiology and Brain Functional Modulation, Translational Research Institute of Brain and Brain-Like Intelligence, Shanghai Fourth People's Hospital, Tongji University, Shanghai, 200434, P. R. China
- Interdisciplinary Materials Research Center, School of Materials Science and Engineering, Tongji University, Shanghai, 201804, P. R. China
| |
Collapse
|
5
|
Basith SA, Chandrasekhar A. COVID-19 clinical waste reuse: A triboelectric touch sensor for IoT-cloud supported smart hand sanitizer dispenser. NANO ENERGY 2023; 108:108183. [PMID: 36643902 PMCID: PMC9822840 DOI: 10.1016/j.nanoen.2023.108183] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Revised: 12/23/2022] [Accepted: 01/06/2023] [Indexed: 06/17/2023]
Abstract
Earth's plastic pollution has increased due to the COVID-19 pandemic, and the world is on the doorstep of an enormous waste pandemic. The extensive use of mandatory personal protectives like masks, gloves, and PPE kits and the lack of proper waste management systems lead to a rise in the plastic pollution content of the earth. Such disposable and non-biodegradable personal protectives are thrown out to the environment after use. These distributed wastes pollute land, soil, and water bodies and effects their ecosystems. This research work establishes the concept of a waste-to-energy conversion approach to reuse COVID-19 scraps for green and sustainable development. Three-layered surgical masks and nitrile gloves were reused in this work after sterilization for energy harvesting and sensing applications by fabricating a 3D-printed contact-separation-based triboelectric nanogenerator. A piece of three-layered mask and nitrile gloves were placed inside the 3D structure as the top negative and bottom positive triboelectric materials with copper and aluminum as corresponding electrodes (MG-CS TENG). It can convert external mechanical motions into electrical energy. The maximum voltage, current, and power density obtained from the device are 50.7 V, 4.8 µA, and 6.39 µW/cm2, respectively, for a mechanical force of 9 N. The harvested energy was sufficient to power small-scale electronic devices like digital tally counters, wristwatches, lumex displays, and series connected 25 LEDs. MG-CS TENG was also performed as a pedal-operated touch sensor to dispense hand sanitizer. MG-CS TENG was pedal pressed to trigger a microcontroller and control the solenoid valve's opening and closing to regulate sanitizer flow. The setup was integrated using the internet of things (IoT) and Blynk cloud services for the remote monitoring and controlling of the sanitizer dispenser using a smartphone. This work contributes a substantial role in disaster management to suppress microplastic environmental pollution by reusing pandemic wastes for energy harvesting and sensing applications and preventing the spread of coronavirus through proper hand sanitization.
Collapse
Affiliation(s)
- Sayyid Abdul Basith
- Nanosensors and Nanoenergy Lab, Sensor Systems Lab, Department of Sensors and Biomedical Technology, School of Electronics Engineering, Vellore Institute of Technology, Vellore, 632014, Tamil Nadu, India
| | - Arunkumar Chandrasekhar
- Nanosensors and Nanoenergy Lab, Sensor Systems Lab, Department of Sensors and Biomedical Technology, School of Electronics Engineering, Vellore Institute of Technology, Vellore, 632014, Tamil Nadu, India
| |
Collapse
|
6
|
Li Z, Tang W, Zhang B, Yang R, Miao X. Emerging memristive neurons for neuromorphic computing and sensing. SCIENCE AND TECHNOLOGY OF ADVANCED MATERIALS 2023; 24:2188878. [PMID: 37090846 PMCID: PMC10120469 DOI: 10.1080/14686996.2023.2188878] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
Inspired by the principles of the biological nervous system, neuromorphic engineering has brought a promising alternative approach to intelligence computing with high energy efficiency and low consumption. As pivotal components of neuromorphic system, artificial spiking neurons are powerful information processing units and can achieve highly complex nonlinear computations. By leveraging the switching dynamic characteristics of memristive device, memristive neurons show rich spiking behaviors with simple circuit. This report reviews the memristive neurons and their applications in neuromorphic sensing and computing systems. The switching mechanisms that endow memristive devices with rich dynamics and nonlinearity are highlighted, and subsequently various nonlinear spiking neuron behaviors emulated in these memristive devices are reviewed. Then, recent development is introduced on neuromorphic system with memristive neurons for sensing and computing. Finally, we discuss challenges and outlooks of the memristive neurons toward high-performance neuromorphic hardware systems and provide an insightful perspective for the development of interactive neuromorphic electronic systems.
Collapse
Affiliation(s)
- Zhiyuan Li
- School of Integrated Circuits, School of Optical and Electronic Information, Huazhong University of Science and Technology, Wuhan, China
- Hubei Yangtze Memory Laboratories, Wuhan, China
| | - Wei Tang
- School of Integrated Circuits, School of Optical and Electronic Information, Huazhong University of Science and Technology, Wuhan, China
- Hubei Yangtze Memory Laboratories, Wuhan, China
| | - Beining Zhang
- School of Integrated Circuits, School of Optical and Electronic Information, Huazhong University of Science and Technology, Wuhan, China
- Hubei Yangtze Memory Laboratories, Wuhan, China
| | - Rui Yang
- School of Integrated Circuits, School of Optical and Electronic Information, Huazhong University of Science and Technology, Wuhan, China
- Hubei Yangtze Memory Laboratories, Wuhan, China
- CONTACT Rui Yang School of Integrated Circuits, Huazhong University of Science and Technology, Wuhan430074, China; Hubei Yangtze Memory Laboratories, Wuhan 430205, China
| | - Xiangshui Miao
- School of Integrated Circuits, School of Optical and Electronic Information, Huazhong University of Science and Technology, Wuhan, China
- Hubei Yangtze Memory Laboratories, Wuhan, China
| |
Collapse
|
7
|
Neto J, Chirila R, Dahiya AS, Christou A, Shakthivel D, Dahiya R. Skin-Inspired Thermoreceptors-Based Electronic Skin for Biomimicking Thermal Pain Reflexes. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2022; 9:e2201525. [PMID: 35876394 PMCID: PMC9507360 DOI: 10.1002/advs.202201525] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Revised: 06/28/2022] [Indexed: 05/27/2023]
Abstract
Electronic systems possessing skin-like morphology and functionalities (electronic skins [e-skins]) have attracted considerable attention in recent years to provide sensory or haptic feedback in growing areas such as robotics, prosthetics, and interactive systems. However, the main focus thus far has been on the distributed pressure or force sensors. Herein a thermoreceptive e-skin with biological systems like functionality is presented. The soft, distributed, and highly sensitive miniaturized (≈700 µm2 ) artificial thermoreceptors (ATRs) in the e-skin are developed using an innovative fabrication route that involves dielectrophoretic assembly of oriented vanadium pentoxide nanowires at defined locations and high-resolution electrohydrodynamic printing. Inspired from the skin morphology, the ATRs are embedded in a thermally insulating soft nanosilica/epoxy polymeric layer and yet they exhibit excellent thermal sensitivity (-1.1 ± 0.3% °C-1 ), fast response (≈1s), exceptional stability (negligible hysteresis for >5 h operation), and mechanical durability (up to 10 000 bending and twisting loading cycles). Finally, the developed e-skin is integrated on the fingertip of a robotic hand and a biological system like reflex is demonstrated in response to temperature stimuli via localized learning at the hardware level.
Collapse
Affiliation(s)
- João Neto
- Bendable Electronics and Sensing Technologies (BEST) GroupUniversity of GlasgowGlasgowG12 8QQUK
| | - Radu Chirila
- Bendable Electronics and Sensing Technologies (BEST) GroupUniversity of GlasgowGlasgowG12 8QQUK
| | - Abhishek Singh Dahiya
- Bendable Electronics and Sensing Technologies (BEST) GroupUniversity of GlasgowGlasgowG12 8QQUK
| | - Adamos Christou
- Bendable Electronics and Sensing Technologies (BEST) GroupUniversity of GlasgowGlasgowG12 8QQUK
| | - Dhayalan Shakthivel
- Bendable Electronics and Sensing Technologies (BEST) GroupUniversity of GlasgowGlasgowG12 8QQUK
| | - Ravinder Dahiya
- Bendable Electronics and Sensing Technologies (BEST) GroupUniversity of GlasgowGlasgowG12 8QQUK
| |
Collapse
|
8
|
Yu H, Zhu Y, Zhu L, Lin X, Wan Q. Recent Advances in Transistor-Based Bionic Perceptual Devices for Artificial Sensory Systems. FRONTIERS IN NANOTECHNOLOGY 2022. [DOI: 10.3389/fnano.2022.954165] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
The sensory nervous system serves as the window for human beings to perceive the outside world by converting external stimuli into distinctive spiking trains. The sensory neurons in this system can process multimodal sensory signals with extremely low power consumption. Therefore, new-concept devices inspired by the sensory neuron are promising candidates to address energy issues in nowadays’ robotics, prosthetics and even computing systems. Recent years have witnessed rapid development in transistor-based bionic perceptual devices, and it is urgent to summarize the research and development of these devices. In this review, the latest progress of transistor-based bionic perceptual devices for artificial sense is reviewed and summarized in five aspects, i.e., vision, touch, hearing, smell, and pain. Finally, the opportunities and challenges related to these areas are also discussed. It would have bright prospects in the fields of artificial intelligence, prosthetics, brain-computer interface, robotics, and medical testing.
Collapse
|
9
|
Liu F, Deswal S, Christou A, Sandamirskaya Y, Kaboli M, Dahiya R. Neuro-inspired electronic skin for robots. Sci Robot 2022; 7:eabl7344. [PMID: 35675450 DOI: 10.1126/scirobotics.abl7344] [Citation(s) in RCA: 48] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Touch is a complex sensing modality owing to large number of receptors (mechano, thermal, pain) nonuniformly embedded in the soft skin all over the body. These receptors can gather and encode the large tactile data, allowing us to feel and perceive the real world. This efficient somatosensation far outperforms the touch-sensing capability of most of the state-of-the-art robots today and suggests the need for neural-like hardware for electronic skin (e-skin). This could be attained through either innovative schemes for developing distributed electronics or repurposing the neuromorphic circuits developed for other sensory modalities such as vision and audio. This Review highlights the hardware implementations of various computational building blocks for e-skin and the ways they can be integrated to potentially realize human skin-like or peripheral nervous system-like functionalities. The neural-like sensing and data processing are discussed along with various algorithms and hardware architectures. The integration of ultrathin neuromorphic chips for local computation and the printed electronics on soft substrate used for the development of e-skin over large areas are expected to advance robotic interaction as well as open new avenues for research in medical instrumentation, wearables, electronics, and neuroprosthetics.
Collapse
Affiliation(s)
- Fengyuan Liu
- Bendable Electronics and Sensing Technologies (BEST) Group, James Watt School of Engineering, University of Glasgow, G12 8QQ Glasgow, UK
| | - Sweety Deswal
- Bendable Electronics and Sensing Technologies (BEST) Group, James Watt School of Engineering, University of Glasgow, G12 8QQ Glasgow, UK
| | - Adamos Christou
- Bendable Electronics and Sensing Technologies (BEST) Group, James Watt School of Engineering, University of Glasgow, G12 8QQ Glasgow, UK
| | | | - Mohsen Kaboli
- Department of Research, New Technologies, Innovation, BMW Group, Parkring 19, 85748 Garching bei Munchen, Germany.,Cognitive Robotics and Tactile Intelligence Group, Donders Institute for Brain, Cognition, and Behaviour, Radboud University, Nijmegen, Netherlands
| | - Ravinder Dahiya
- Bendable Electronics and Sensing Technologies (BEST) Group, James Watt School of Engineering, University of Glasgow, G12 8QQ Glasgow, UK
| |
Collapse
|
10
|
Liu F, Deswal S, Christou A, Shojaei Baghini M, Chirila R, Shakthivel D, Chakraborty M, Dahiya R. Printed synaptic transistor-based electronic skin for robots to feel and learn. Sci Robot 2022; 7:eabl7286. [PMID: 35648845 DOI: 10.1126/scirobotics.abl7286] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
An electronic skin (e-skin) for the next generation of robots is expected to have biological skin-like multimodal sensing, signal encoding, and preprocessing. To this end, it is imperative to have high-quality, uniformly responding electronic devices distributed over large areas and capable of delivering synaptic behavior with long- and short-term memory. Here, we present an approach to realize synaptic transistors (12-by-14 array) using ZnO nanowires printed on flexible substrate with 100% yield and high uniformity. The presented devices show synaptic behavior under pulse stimuli, exhibiting excitatory (inhibitory) post-synaptic current, spiking rate-dependent plasticity, and short-term to long-term memory transition. The as-realized transistors demonstrate excellent bio-like synaptic behavior and show great potential for in-hardware learning. This is demonstrated through a prototype computational e-skin, comprising event-driven sensors, synaptic transistors, and spiking neurons that bestow biological skin-like haptic sensations to a robotic hand. With associative learning, the presented computational e-skin could gradually acquire a human body-like pain reflex. The learnt behavior could be strengthened through practice. Such a peripheral nervous system-like localized learning could substantially reduce the data latency and decrease the cognitive load on the robotic platform.
Collapse
Affiliation(s)
- Fengyuan Liu
- Bendable Electronics and Sensing Technologies (BEST) group, James Watt School of Engineering, University of Glasgow, G12 8QQ Glasgow, UK
| | - Sweety Deswal
- Bendable Electronics and Sensing Technologies (BEST) group, James Watt School of Engineering, University of Glasgow, G12 8QQ Glasgow, UK
| | - Adamos Christou
- Bendable Electronics and Sensing Technologies (BEST) group, James Watt School of Engineering, University of Glasgow, G12 8QQ Glasgow, UK
| | - Mahdieh Shojaei Baghini
- Bendable Electronics and Sensing Technologies (BEST) group, James Watt School of Engineering, University of Glasgow, G12 8QQ Glasgow, UK
| | - Radu Chirila
- Bendable Electronics and Sensing Technologies (BEST) group, James Watt School of Engineering, University of Glasgow, G12 8QQ Glasgow, UK
| | - Dhayalan Shakthivel
- Bendable Electronics and Sensing Technologies (BEST) group, James Watt School of Engineering, University of Glasgow, G12 8QQ Glasgow, UK
| | - Moupali Chakraborty
- Bendable Electronics and Sensing Technologies (BEST) group, James Watt School of Engineering, University of Glasgow, G12 8QQ Glasgow, UK
| | - Ravinder Dahiya
- Bendable Electronics and Sensing Technologies (BEST) group, James Watt School of Engineering, University of Glasgow, G12 8QQ Glasgow, UK
| |
Collapse
|
11
|
Chiolerio A, Dehshibi MM, Manfredi D, Adamatzky A. Living wearables: Bacterial reactive glove. Biosystems 2022; 218:104691. [PMID: 35595195 DOI: 10.1016/j.biosystems.2022.104691] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Revised: 04/27/2022] [Accepted: 04/27/2022] [Indexed: 11/25/2022]
Abstract
A reactive bacterial glove is a cotton glove colonised by Acetobacter aceti, an example of biofabrication of a living electronic sensing device. The bacterial colony, supported by a cellulose-based hydrogel, forms a several millimetres-thick living coating on the surface of the glove. This paper proposes a novel method for analysing the complex electrical activity of trains of spikes generated by a living colony. The proposed method, which primarily focuses on dynamic entropy analysis, shows that the bacterial glove responds to mechanical triaxial stimuli by producing travelling patterns of electrical activity. Kolmogorov complexity further supports our investigation into the evolution of dynamic patterns of such waves in the hydrogel and shows how stimuli initiate electrical activity waves across the glove. These waves are diffractive and ultimately are suppressed by depression. Our experiments demonstrate that living substrates could be used to enable reactive sensing wearable by means of living colonies of bacteria, once the paradigm of excitation wave propagation and reflection is implemented.
Collapse
Affiliation(s)
- Alessandro Chiolerio
- Center for Converging Technologies, Bioinspired Soft Robotics, Istituto Italiano di Tecnologia, Via Morego 30, 10163 Genova, Italy; Unconventional Computing Laboratory, University of the West England, Bristol, UK.
| | - Mohammad Mahdi Dehshibi
- Department of Computer Science, Universidad Carlos III de Madrid, Madrid, Spain; Unconventional Computing Laboratory, University of the West England, Bristol, UK
| | - Diego Manfredi
- Applied Science and Technology Department, Politecnico di Torino, Torino, Italy
| | - Andrew Adamatzky
- Unconventional Computing Laboratory, University of the West England, Bristol, UK
| |
Collapse
|
12
|
Adamatzky A, Ayres P, Beasley AE, Chiolerio A, Dehshibi MM, Gandia A, Albergati E, Mayne R, Nikolaidou A, Roberts N, Tegelaar M, Tsompanas MA, Phillips N, Wösten HAB. Fungal electronics. Biosystems 2021; 212:104588. [PMID: 34979157 DOI: 10.1016/j.biosystems.2021.104588] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2021] [Revised: 11/30/2021] [Accepted: 12/03/2021] [Indexed: 12/31/2022]
Abstract
Fungal electronics is a family of living electronic devices made of mycelium bound composites or pure mycelium. Fungal electronic devices are capable of changing their impedance and generating spikes of electrical potential in response to external control parameters. Fungal electronics can be embedded into fungal materials and wearables or used as stand alone sensing and computing devices.
Collapse
Affiliation(s)
| | - Phil Ayres
- The Centre for Information Technology and Architecture, Royal Danish Academy, Copenhagen, Denmark
| | | | - Alessandro Chiolerio
- Unconventional Computing Laboratory, UWE, Bristol, UK; Center for Bioinspired Soft Robotics, Istituto Italiano di Tecnologia, Via Morego 30, 10163 Genova, Italy
| | - Mohammad M Dehshibi
- Department of Computer Science, Multimedia and Telecommunications, Universitat Oberta de Catalunya, Barcelona, Spain
| | - Antoni Gandia
- Institute for Plant Molecular and Cell Biology, CSIC-UPV, Valencia, Spain
| | - Elena Albergati
- Department of Design, Politecnico di Milano, Milan, Italy; MOGU S.r.l., Inarzo, Italy
| | - Richard Mayne
- Unconventional Computing Laboratory, UWE, Bristol, UK
| | | | - Nic Roberts
- Unconventional Computing Laboratory, UWE, Bristol, UK
| | - Martin Tegelaar
- Microbiology, Department of Biology, University of Utrecht, Utrecht, The Netherlands
| | | | - Neil Phillips
- Unconventional Computing Laboratory, UWE, Bristol, UK
| | - Han A B Wösten
- Microbiology, Department of Biology, University of Utrecht, Utrecht, The Netherlands
| |
Collapse
|
13
|
|
14
|
Pyo S, Lee J, Bae K, Sim S, Kim J. Recent Progress in Flexible Tactile Sensors for Human-Interactive Systems: From Sensors to Advanced Applications. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2021; 33:e2005902. [PMID: 33887803 DOI: 10.1002/adma.202005902] [Citation(s) in RCA: 106] [Impact Index Per Article: 35.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2020] [Revised: 11/07/2020] [Indexed: 05/27/2023]
Abstract
Flexible tactile sensors capable of measuring mechanical stimuli via physical contact have attracted significant attention in the field of human-interactive systems. The utilization of tactile information can complement vision and/or sound interaction and provide new functionalities. Recent advancements in micro/nanotechnology, material science, and information technology have resulted in the development of high-performance tactile sensors that reach and even surpass the tactile sensing ability of human skin. Here, important advances in flexible tactile sensors over recent years are summarized, from sensor designs to system-level applications. This review focuses on the representative strategies based on design and material configurations for improving key performance parameters including sensitivity, detection range/linearity, response time/hysteresis, spatial resolution/crosstalk, multidirectional force detection, and insensitivity to other stimuli. System-level integration for practical applications beyond conceptual prototypes and promising applications, such as artificial electronic skin for robotics and prosthetics, wearable controllers for electronics, and bidirectional communication tools, are also discussed. Finally, perspectives on issues regarding further advances are provided.
Collapse
Affiliation(s)
- Soonjae Pyo
- Department of Mechanical System Design Engineering, Seoul National University of Science and Technology, 232 Gongneung-ro, Nowon-gu, Seoul, 01811, Republic of Korea
| | - Jaeyong Lee
- School of Mechanical Engineering, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul, 03722, Republic of Korea
| | - Kyubin Bae
- School of Mechanical Engineering, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul, 03722, Republic of Korea
| | - Sangjun Sim
- School of Mechanical Engineering, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul, 03722, Republic of Korea
| | - Jongbaeg Kim
- School of Mechanical Engineering, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul, 03722, Republic of Korea
| |
Collapse
|
15
|
Pullanchiyodan A, Manjakkal L, Ntagios M, Dahiya R. MnO x-Electrodeposited Fabric-Based Stretchable Supercapacitors with Intrinsic Strain Sensing. ACS APPLIED MATERIALS & INTERFACES 2021; 13:47581-47592. [PMID: 34592809 DOI: 10.1021/acsami.1c12526] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
The increasing number of devices needed by wearable systems to bring radical advances in healthcare, robotics, and human-machine interfaces is a threat to their growth if the integration and energy-related challenges are not managed. A natural solution is to reduce the number of devices while retaining the functionality or simply using multifunctional devices, as demonstrated here through a stretchable supercapacitor (SSC) with intrinsic strain sensing. The presented SSC was obtained by electrodeposition of nanoflower MnOx on fabric (as a pseudocapacitive electrode) and three-dimensional conductive wrapping of poly(3,4-ethylenedioxythiophene):poly(styrene sulfonate) (PEDOT:PSS) to boost the performance. Among fabricated devices, the stretchable PEDOT:PSS/MnOx/PEDOT:PSS supercapacitor (SPMP-SC) showed the best performance (specific capacitance of 580 mF·cm-2 (108.1 F·g-1); energy density of 51.4 μWh·cm-2 at 0.5 mA). The stretchability (0-100%; 1000 cycles) analysis of SPMP-SC with Ecoflex encapsulation showed high capacitance retention (>90% for 40% stretch). The intrinsic strain sensing of the SSC was confirmed by the linear variation of capacitance (sensitivity -0.4%) during stretching. Finally, as a proof-of-concept, the application of SSC with intrinsic sensing was demonstrated for health monitoring through volumetric expansion of a manikin during ventilator operation and in robotics and by measuring the joint angle of a robotic hand.
Collapse
Affiliation(s)
- Abhilash Pullanchiyodan
- Bendable Electronics and Sensing Technologies (BEST) Group, School of Engineering, University of Glasgow, Glasgow G12 8QQ, U.K
| | - Libu Manjakkal
- Bendable Electronics and Sensing Technologies (BEST) Group, School of Engineering, University of Glasgow, Glasgow G12 8QQ, U.K
| | - Markellos Ntagios
- Bendable Electronics and Sensing Technologies (BEST) Group, School of Engineering, University of Glasgow, Glasgow G12 8QQ, U.K
| | - Ravinder Dahiya
- Bendable Electronics and Sensing Technologies (BEST) Group, School of Engineering, University of Glasgow, Glasgow G12 8QQ, U.K
| |
Collapse
|
16
|
Chen X, Zeng Q, Shao J, Li S, Li X, Tian H, Liu G, Nie B, Luo Y. Channel-Crack-Designed Suspended Sensing Membrane as a Fully Flexible Vibration Sensor with High Sensitivity and Dynamic Range. ACS APPLIED MATERIALS & INTERFACES 2021; 13:34637-34647. [PMID: 34269049 DOI: 10.1021/acsami.1c09963] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/07/2023]
Abstract
Vibration sensors are essential for signal acquisition, motion measuring, and structural health evaluations in civil and industrial applications. However, the mechanical brittleness and complicated installation process of micro-electromechanical system vibration sensors block their applications in wearable devices and human-machine interaction. The development of flexible vibration sensors satisfying the requirements of good flexibility, high sensitivity, and the ability to attach conformably on curved critical components is highly demanded but still remains a challenge. Here, we demonstrate a highly sensitive and fully flexible vibration sensor with a channel-crack-designed suspended sensing membrane for high dynamic vibration and acceleration monitoring. The flexible sensor is designed as a suspended vibration membrane structure by bonding a channel-crack-sensing membrane on a cavity substrate, of which the suspended sensing membrane can freely vibrate out of plane under external vibration. By inducing the cracks to be generated in the embedded multiwalled carbon nanotube channels and fully cracked across the conducting routes, the suspended vibration membrane shows high sensitivity, good reproducibility, and robust sensing stability. The resultant vibration sensor demonstrates an ultrawide frequency vibration response range from 0.1 to 20,000 Hz and exhibits the ability to respond to acceleration vibration with a broad response of 0.24-100 m/s2. The high sensitivity, wide bandwidth, and fully flexible format of the vibration sensor enable it to be directly attached on human bodies and curvilinear surfaces to conduct in situ vibration sensing, which was demonstrated by motion detection, voice identification, and the vibration monitoring of mechanical equipment.
Collapse
Affiliation(s)
- Xiaoliang Chen
- State Key Laboratory for Manufacturing Systems Engineering, Xi'an Jiaotong University, Xi'an, Shaanxi 710049, China
| | - Qian Zeng
- State Key Laboratory for Manufacturing Systems Engineering, Xi'an Jiaotong University, Xi'an, Shaanxi 710049, China
| | - Jinyou Shao
- State Key Laboratory for Manufacturing Systems Engineering, Xi'an Jiaotong University, Xi'an, Shaanxi 710049, China
| | - Sheng Li
- State Key Laboratory for Manufacturing Systems Engineering, Xi'an Jiaotong University, Xi'an, Shaanxi 710049, China
| | - Xiangming Li
- State Key Laboratory for Manufacturing Systems Engineering, Xi'an Jiaotong University, Xi'an, Shaanxi 710049, China
| | - Hongmiao Tian
- State Key Laboratory for Manufacturing Systems Engineering, Xi'an Jiaotong University, Xi'an, Shaanxi 710049, China
| | - Guifang Liu
- State Key Laboratory for Manufacturing Systems Engineering, Xi'an Jiaotong University, Xi'an, Shaanxi 710049, China
| | - Bangbang Nie
- State Key Laboratory for Manufacturing Systems Engineering, Xi'an Jiaotong University, Xi'an, Shaanxi 710049, China
| | - Yongsong Luo
- State Key Laboratory for Manufacturing Systems Engineering, Xi'an Jiaotong University, Xi'an, Shaanxi 710049, China
| |
Collapse
|
17
|
Adamatzky A, Gandia A, Chiolerio A. Towards fungal sensing skin. Fungal Biol Biotechnol 2021; 8:6. [PMID: 33980304 PMCID: PMC8117569 DOI: 10.1186/s40694-021-00113-8] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2020] [Accepted: 03/10/2021] [Indexed: 02/06/2023] Open
Abstract
A fungal skin is a thin flexible sheet of a living homogeneous mycelium made by a filamentous fungus. The skin could be used in future living architectures of adaptive buildings and as a sensing living skin for soft self-growing/adaptive robots. In experimental laboratory studies we demonstrate that the fungal skin is capable for recognising mechanical and optical stimulation. The skin reacts differently to loading of a weight, removal of the weight, and switching illumination on and off. These are the first experimental evidences that fungal materials can be used not only as mechanical 'skeletons' in architecture and robotics but also as intelligent skins capable for recognition of external stimuli and sensorial fusion.
Collapse
Affiliation(s)
| | | | - Alessandro Chiolerio
- Unconventional Computing Laboratory, UWE, Bristol, UK
- Center for Sustainable Future Technologies, Istituto Italiano di Tecnologia, Torino, Italy
| |
Collapse
|
18
|
Wang M, Luo Y, Wang T, Wan C, Pan L, Pan S, He K, Neo A, Chen X. Artificial Skin Perception. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2021; 33:e2003014. [PMID: 32930454 DOI: 10.1002/adma.202003014] [Citation(s) in RCA: 116] [Impact Index Per Article: 38.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/04/2020] [Revised: 06/03/2020] [Indexed: 05/23/2023]
Abstract
Skin is the largest organ, with the functionalities of protection, regulation, and sensation. The emulation of human skin via flexible and stretchable electronics gives rise to electronic skin (e-skin), which has realized artificial sensation and other functions that cannot be achieved by conventional electronics. To date, tremendous progress has been made in data acquisition and transmission for e-skin systems, while the implementation of perception within systems, that is, sensory data processing, is still in its infancy. Integrating the perception functionality into a flexible and stretchable sensing system, namely artificial skin perception, is critical to endow current e-skin systems with higher intelligence. Here, recent progress in the design and fabrication of artificial skin perception devices and systems is summarized, and challenges and prospects are discussed. The strategies for implementing artificial skin perception utilize either conventional silicon-based circuits or novel flexible computing devices such as memristive devices and synaptic transistors, which enable artificial skin to surpass human skin, with a distributed, low-latency, and energy-efficient information-processing ability. In future, artificial skin perception would be a new enabling technology to construct next-generation intelligent electronic devices and systems for advanced applications, such as robotic surgery, rehabilitation, and prosthetics.
Collapse
Affiliation(s)
- Ming Wang
- Innovative Center for Flexible Devices, Max Planck - NTU Joint Lab for Artificial Senses, School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore, 639798, Singapore
| | - Yifei Luo
- Innovative Center for Flexible Devices, Max Planck - NTU Joint Lab for Artificial Senses, School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore, 639798, Singapore
| | - Ting Wang
- Innovative Center for Flexible Devices, Max Planck - NTU Joint Lab for Artificial Senses, School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore, 639798, Singapore
| | - Changjin Wan
- Innovative Center for Flexible Devices, Max Planck - NTU Joint Lab for Artificial Senses, School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore, 639798, Singapore
| | - Liang Pan
- Innovative Center for Flexible Devices, Max Planck - NTU Joint Lab for Artificial Senses, School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore, 639798, Singapore
| | - Shaowu Pan
- Innovative Center for Flexible Devices, Max Planck - NTU Joint Lab for Artificial Senses, School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore, 639798, Singapore
| | - Ke He
- Innovative Center for Flexible Devices, Max Planck - NTU Joint Lab for Artificial Senses, School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore, 639798, Singapore
| | - Aden Neo
- Innovative Center for Flexible Devices, Max Planck - NTU Joint Lab for Artificial Senses, School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore, 639798, Singapore
| | - Xiaodong Chen
- Innovative Center for Flexible Devices, Max Planck - NTU Joint Lab for Artificial Senses, School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore, 639798, Singapore
| |
Collapse
|
19
|
Chiolerio A, Adamatzky A. Acetobacter Biofilm: Electronic Characterization and Reactive Transduction of Pressure. ACS Biomater Sci Eng 2021; 7:1651-1662. [PMID: 33780232 PMCID: PMC8153400 DOI: 10.1021/acsbiomaterials.0c01804] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Accepted: 03/17/2021] [Indexed: 11/28/2022]
Abstract
The bacterial skin studied here is a several centimeter-wide colony of Acetobacter aceti living on a cellulose-based hydrogel. We demonstrate that the colony exhibits trains of spikes of extracellular electrical potential, with amplitudes of the spikes varying from 1 to 17 mV. The bacterial pad responds to mechanical stimulation with distinctive changes in its electrical activity. While studying the passive electrical properties of the bacterial pad, we found that the pad provides an open-circuit voltage drop (between 7 and 25 mV) and a small short-circuit current (1.5-4 nA). We also observed by pulsed tomography and spatially resolved impedance spectroscopy that the conduction occurs along preferential paths, with the peculiar side-effect of having a higher resistance between closer electrodes. We speculate that the Acetobacter biofilms could be utilized in the development of living skin for soft robots: such skin will act as an electrochemical battery and a reactive tactile sensor. It could even be used for wearable devices.
Collapse
Affiliation(s)
- Alessandro Chiolerio
- Center
for Sustainable Future Technologies, Istituto
Italiano di Tecnologia, Via Livorno 60, Torino 10144, Italy
- Unconventional
Computing Laboratory, University of the
West of England, Coldharbour
Lane, Bristol BS16 1QY, United Kingdom
| | - Andrew Adamatzky
- Unconventional
Computing Laboratory, University of the
West of England, Coldharbour
Lane, Bristol BS16 1QY, United Kingdom
| |
Collapse
|
20
|
Van Duong L, Ho VA. Large-Scale Vision-Based Tactile Sensing for Robot Links: Design, Modeling, and Evaluation. IEEE T ROBOT 2021. [DOI: 10.1109/tro.2020.3031251] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
21
|
Sun F, Lu Q, Feng S, Zhang T. Flexible Artificial Sensory Systems Based on Neuromorphic Devices. ACS NANO 2021; 15:3875-3899. [PMID: 33507725 DOI: 10.1021/acsnano.0c10049] [Citation(s) in RCA: 66] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
Emerging flexible artificial sensory systems using neuromorphic electronics have been considered as a promising solution for processing massive data with low power consumption. The construction of artificial sensory systems with synaptic devices and sensing elements to mimic complicated sensing and processing in biological systems is a prerequisite for the realization. To realize high-efficiency neuromorphic sensory systems, the development of artificial flexible synapses with low power consumption and high-density integration is essential. Furthermore, the realization of efficient coupling between the sensing element and the synaptic device is crucial. This Review presents recent progress in the area of neuromorphic electronics for flexible artificial sensory systems. We focus on both the recent advances of artificial synapses, including device structures, mechanisms, and functions, and the design of intelligent, flexible perception systems based on synaptic devices. Additionally, key challenges and opportunities related to flexible artificial perception systems are examined, and potential solutions and suggestions are provided.
Collapse
Affiliation(s)
- Fuqin Sun
- i -Lab, Key Laboratory of Multifunctional Nanomaterials and Smart Systems, Suzhou Institute of Nano-Tech and Nano-Bionics (SINANO), Chinese Academy of Sciences (CAS), 398 Ruoshui Road, Suzhou 215123, P. R. China
- School of Nano Technology and Nano Bionics, University of Science and Technology of China, 96 Jinzhai Road, Hefei, Anhui 230026, P. R. China
| | - Qifeng Lu
- i -Lab, Key Laboratory of Multifunctional Nanomaterials and Smart Systems, Suzhou Institute of Nano-Tech and Nano-Bionics (SINANO), Chinese Academy of Sciences (CAS), 398 Ruoshui Road, Suzhou 215123, P. R. China
| | - Simin Feng
- i -Lab, Key Laboratory of Multifunctional Nanomaterials and Smart Systems, Suzhou Institute of Nano-Tech and Nano-Bionics (SINANO), Chinese Academy of Sciences (CAS), 398 Ruoshui Road, Suzhou 215123, P. R. China
| | - Ting Zhang
- i -Lab, Key Laboratory of Multifunctional Nanomaterials and Smart Systems, Suzhou Institute of Nano-Tech and Nano-Bionics (SINANO), Chinese Academy of Sciences (CAS), 398 Ruoshui Road, Suzhou 215123, P. R. China
- School of Nano Technology and Nano Bionics, University of Science and Technology of China, 96 Jinzhai Road, Hefei, Anhui 230026, P. R. China
- Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai 200031, China
| |
Collapse
|
22
|
Adamatzky A, Gandia A, Chiolerio A. Fungal sensing skin. Fungal Biol Biotechnol 2021; 8:3. [PMID: 33731205 PMCID: PMC7972235 DOI: 10.1186/s40694-021-00110-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2020] [Accepted: 03/10/2021] [Indexed: 11/21/2022] Open
Abstract
BACKGROUND A fungal skin is a thin flexible sheet of a living homogeneous mycelium made by a filamentous fungus. The skin could be used in future living architectures of adaptive buildings and as a sensing living skin for soft self-growing/adaptive robots. RESULTS In experimental laboratory studies we demonstrate that the fungal skin is capable for recognising mechanical and optical stimulation. The skin reacts differently to loading of a weight, removal of the weight, and switching illumination on and off. CONCLUSION These are the first experimental evidences that fungal materials can be used not only as mechanical 'skeletons' in architecture and robotics but also as intelligent skins capable for recognition of external stimuli and sensorial fusion.
Collapse
Affiliation(s)
| | | | - Alessandro Chiolerio
- Unconventional Computing Laboratory, UWE, Bristol, UK
- Center for Sustainable Future Technologies, Istituto Italiano di Tecnologia, Torino, Italy
| |
Collapse
|
23
|
Mousa MA, Soliman M, Saleh MA, Radwan AG. Tactile sensing biohybrid soft E-skin based on bioimpedance using aloe vera pulp tissues. Sci Rep 2021; 11:3054. [PMID: 33542318 PMCID: PMC7862233 DOI: 10.1038/s41598-021-82549-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2020] [Accepted: 12/28/2020] [Indexed: 11/12/2022] Open
Abstract
Soft and flexible E-skin advances are a subset of soft robotics field where the soft morphology of human skin is mimicked. The number of prototypes that conformed the use of biological tissues within the structure of soft robots—to develop “Biohybrid Soft Robots”—has increased in the last decade. However, no research was conducted to realize Biohybrid E-skin. In this paper, a novel biohybrid E-skin that provides tactile sensing is developed. The biohybrid E-skin highly mimics the human skin softness and morphology and can sense forces as low as 0.01 newton . The tactile sensing feature is augmented through the use of Aloe Vera pulp, embedded in underlying channel, where the change in its bioimpedance is related to the amount of force exerted on the E-skin surface. The biohybrid E-skin employs high biomimicry as the sensorial output is an oscillating signal similar to signals sent from the human sensing neurons to the brain. After investigating different channel geometries, types of filling tissues, and usage of two silicone materials, their frequency-force behaviour is modelled mathematically. Finally, a functional multichannel prototype “ImpEdded Skin” is developed. This prototype could efficiently detect the position of a tactile touch. This work employs the development of discrete sensing system that exhibits morphological computation that consequently enhances performance.
Collapse
Affiliation(s)
- Mostafa A Mousa
- Nanoelectronics Integrated Systems Center (NISC), Nile University, Sheikh Zayed City, 12588, Egypt.
| | - MennaAllah Soliman
- Mechanical Engineering Program, School of Engineering and Applied Sciences, Nile University, Sheikh Zayed City, 12588, Egypt
| | - Mahmood A Saleh
- Mechanical Engineering Program, School of Engineering and Applied Sciences, Nile University, Sheikh Zayed City, 12588, Egypt
| | - Ahmed G Radwan
- Department of Engineering Mathematics and Physics, Cairo University, Giza, 12613, Egypt.,School of Engineering and Applied Sciences, Nile University, Sheikh Zayed City, 12588, Egypt
| |
Collapse
|
24
|
Hosseini E, Dervin S, Ganguly P, Dahiya R. Biodegradable Materials for Sustainable Health Monitoring Devices. ACS APPLIED BIO MATERIALS 2021; 4:163-194. [PMID: 33842859 PMCID: PMC8022537 DOI: 10.1021/acsabm.0c01139] [Citation(s) in RCA: 63] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2020] [Accepted: 12/20/2020] [Indexed: 12/12/2022]
Abstract
The recent advent of biodegradable materials has offered huge opportunity to transform healthcare technologies by enabling sensors that degrade naturally after use. The implantable electronic systems made from such materials eliminate the need for extraction or reoperation, minimize chronic inflammatory responses, and hence offer attractive propositions for future biomedical technology. The eco-friendly sensor systems developed from degradable materials could also help mitigate some of the major environmental issues by reducing the volume of electronic or medical waste produced and, in turn, the carbon footprint. With this background, herein we present a comprehensive overview of the structural and functional biodegradable materials that have been used for various biodegradable or bioresorbable electronic devices. The discussion focuses on the dissolution rates and degradation mechanisms of materials such as natural and synthetic polymers, organic or inorganic semiconductors, and hydrolyzable metals. The recent trend and examples of biodegradable or bioresorbable materials-based sensors for body monitoring, diagnostic, and medical therapeutic applications are also presented. Lastly, key technological challenges are discussed for clinical application of biodegradable sensors, particularly for implantable devices with wireless data and power transfer. Promising perspectives for the advancement of future generation of biodegradable sensor systems are also presented.
Collapse
Affiliation(s)
- Ensieh
S. Hosseini
- Bendable Electronics and
Sensing Technologies (BEST) Group, James Watt School of Engineering, University of Glasgow, G12 8QQ Glasgow, U.K.
| | - Saoirse Dervin
- Bendable Electronics and
Sensing Technologies (BEST) Group, James Watt School of Engineering, University of Glasgow, G12 8QQ Glasgow, U.K.
| | - Priyanka Ganguly
- Bendable Electronics and
Sensing Technologies (BEST) Group, James Watt School of Engineering, University of Glasgow, G12 8QQ Glasgow, U.K.
| | - Ravinder Dahiya
- Bendable Electronics and
Sensing Technologies (BEST) Group, James Watt School of Engineering, University of Glasgow, G12 8QQ Glasgow, U.K.
| |
Collapse
|
25
|
Birkoben T, Winterfeld H, Fichtner S, Petraru A, Kohlstedt H. A spiking and adapting tactile sensor for neuromorphic applications. Sci Rep 2020; 10:17260. [PMID: 33057032 PMCID: PMC7560658 DOI: 10.1038/s41598-020-74219-1] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2019] [Accepted: 09/29/2020] [Indexed: 11/23/2022] Open
Abstract
The ongoing research on and development of increasingly intelligent artificial systems propels the need for bio inspired pressure sensitive spiking circuits. Here we present an adapting and spiking tactile sensor, based on a neuronal model and a piezoelectric field-effect transistor (PiezoFET). The piezoelectric sensor device consists of a metal-oxide semiconductor field-effect transistor comprising a piezoelectric aluminium-scandium-nitride (AlxSc1-xN) layer inside of the gate stack. The so augmented device is sensitive to mechanical stress. In combination with an analogue circuit, this sensor unit is capable of encoding the mechanical quantity into a series of spikes with an ongoing adaptation of the output frequency. This allows for a broad application in the context of robotic and neuromorphic systems, since it enables said systems to receive information from the surrounding environment and provide encoded spike trains for neuromorphic hardware. We present numerical and experimental results on this spiking and adapting tactile sensor.
Collapse
Affiliation(s)
- Tom Birkoben
- Nanoelektronik, Technische Fakultät, Christian-Albrechts-Universität zu Kiel, 24143, Kiel, Germany.
| | - Henning Winterfeld
- Nanoelektronik, Technische Fakultät, Christian-Albrechts-Universität zu Kiel, 24143, Kiel, Germany
| | - Simon Fichtner
- Materials and Processes for Nanosystem Technologies, Technische Fakultät, Christian-Albrechts-Universität zu Kiel, 24143, Kiel, Germany
| | - Adrian Petraru
- Nanoelektronik, Technische Fakultät, Christian-Albrechts-Universität zu Kiel, 24143, Kiel, Germany
| | - Hermann Kohlstedt
- Nanoelektronik, Technische Fakultät, Christian-Albrechts-Universität zu Kiel, 24143, Kiel, Germany.
| |
Collapse
|
26
|
Dahiya AS, Shakthivel D, Kumaresan Y, Zumeit A, Christou A, Dahiya R. High-performance printed electronics based on inorganic semiconducting nano to chip scale structures. NANO CONVERGENCE 2020; 7:33. [PMID: 33034776 PMCID: PMC7547062 DOI: 10.1186/s40580-020-00243-6] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/13/2020] [Accepted: 09/15/2020] [Indexed: 05/05/2023]
Abstract
The Printed Electronics (PE) is expected to revolutionise the way electronics will be manufactured in the future. Building on the achievements of the traditional printing industry, and the recent advances in flexible electronics and digital technologies, PE may even substitute the conventional silicon-based electronics if the performance of printed devices and circuits can be at par with silicon-based devices. In this regard, the inorganic semiconducting materials-based approaches have opened new avenues as printed nano (e.g. nanowires (NWs), nanoribbons (NRs) etc.), micro (e.g. microwires (MWs)) and chip (e.g. ultra-thin chips (UTCs)) scale structures from these materials have been shown to have performances at par with silicon-based electronics. This paper reviews the developments related to inorganic semiconducting materials based high-performance large area PE, particularly using the two routes i.e. Contact Printing (CP) and Transfer Printing (TP). The detailed survey of these technologies for large area PE onto various unconventional substrates (e.g. plastic, paper etc.) is presented along with some examples of electronic devices and circuit developed with printed NWs, NRs and UTCs. Finally, we discuss the opportunities offered by PE, and the technical challenges and viable solutions for the integration of inorganic functional materials into large areas, 3D layouts for high throughput, and industrial-scale manufacturing using printing technologies.
Collapse
Affiliation(s)
- Abhishek Singh Dahiya
- Bendable Electronics and Sensing Technologies (BEST) Group, University of Glasgow, Glasgow, G12 8QQ, UK
| | - Dhayalan Shakthivel
- Bendable Electronics and Sensing Technologies (BEST) Group, University of Glasgow, Glasgow, G12 8QQ, UK
| | - Yogeenth Kumaresan
- Bendable Electronics and Sensing Technologies (BEST) Group, University of Glasgow, Glasgow, G12 8QQ, UK
| | - Ayoub Zumeit
- Bendable Electronics and Sensing Technologies (BEST) Group, University of Glasgow, Glasgow, G12 8QQ, UK
| | - Adamos Christou
- Bendable Electronics and Sensing Technologies (BEST) Group, University of Glasgow, Glasgow, G12 8QQ, UK
| | - Ravinder Dahiya
- Bendable Electronics and Sensing Technologies (BEST) Group, University of Glasgow, Glasgow, G12 8QQ, UK.
| |
Collapse
|
27
|
Ozioko O, Navaraj W, Hersh M, Dahiya R. Tacsac: A Wearable Haptic Device with Capacitive Touch-Sensing Capability for Tactile Display. SENSORS 2020; 20:s20174780. [PMID: 32847139 PMCID: PMC7506622 DOI: 10.3390/s20174780] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Revised: 08/18/2020] [Accepted: 08/21/2020] [Indexed: 11/16/2022]
Abstract
This paper presents a dual-function wearable device (Tacsac) with capacitive tactile sensing and integrated tactile feedback capability to enable communication among deafblind people. Tacsac has a skin contactor which enhances localized vibrotactile stimulation of the skin as a means of feedback to the user. It comprises two main modules—the touch-sensing module and the vibrotactile module; both stacked and integrated as a single device. The vibrotactile module is an electromagnetic actuator that employs a flexible coil and a permanent magnet assembled in soft poly (dimethylsiloxane) (PDMS), while the touch-sensing module is a planar capacitive metal-insulator-metal (MIM) structure. The flexible coil was fabricated on a 50 µm polyimide (PI) sheet using Lithographie Galvanoformung Abformung (LIGA) micromoulding technique. The Tacsac device has been tested for independent sensing and actuation as well as dual sensing-actuation mode. The measured vibration profiles of the actuator showed a synchronous response to external stimulus for a wide range of frequencies (10 Hz to 200 Hz) within the perceivable tactile frequency thresholds of the human hand. The resonance vibration frequency of the actuator is in the range of 60–70 Hz with an observed maximum off-plane displacement of 0.377 mm at coil current of 180 mA. The capacitive touch-sensitive layer was able to respond to touch with minimal noise both when actuator vibration is ON and OFF. A mobile application was also developed to demonstrate the application of Tacsac for communication between deafblind person wearing the device and a mobile phone user who is not deafblind. This advances existing tactile displays by providing efficient two-way communication through the use of a single device for both localized haptic feedback and touch-sensing.
Collapse
Affiliation(s)
- Oliver Ozioko
- Bendable Electronics and Sensing Technologies (BEST) Group, University of Glasgow, Glasgow G12 8QQ, UK;
| | - William Navaraj
- Department of Engineering, Nottingham Trent University, Clifton Campus, Nottingham NG11 8NS, UK;
| | - Marion Hersh
- Biomedical Engineering, University of Glasgow, Glasgow G12 8LP, UK;
| | - Ravinder Dahiya
- Bendable Electronics and Sensing Technologies (BEST) Group, University of Glasgow, Glasgow G12 8QQ, UK;
- Correspondence:
| |
Collapse
|
28
|
Mirigliano M, Decastri D, Pullia A, Dellasega D, Casu A, Falqui A, Milani P. Complex electrical spiking activity in resistive switching nanostructured Au two-terminal devices. NANOTECHNOLOGY 2020; 31:234001. [PMID: 32202254 DOI: 10.1088/1361-6528/ab76ec] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Networks of nanoscale objects are the subject of increasing interest as resistive switching systems for the fabrication of neuromorphic computing architectures. Nanostructured films of bare gold clusters produced in gas phase with thickness well beyond the electrical percolation threshold, show a non-ohmic electrical behavior and resistive switching, resulting in groups of current spikes with irregular temporal organization. Here we report the systematic characterization of the temporal correlations between single spikes and spiking rate power spectrum of nanostructured Au two-terminal devices consisting of a cluster-assembled film deposited between two planar electrodes. By varying the nanostructured film thickness we fabricated two different classes of devices with high and low initial resistance respectively. We show that the switching dynamics can be described by a power law distribution in low resistance devices whereas a bi-exponential behavior is observed in the high resistance ones. The measured resistance of cluster-assembled films shows a [Formula: see text] scaling behavior in the range of analyzed frequencies. Our results suggest the possibility of using cluster-assembled Au films as components for neuromorphic systems where a certain degree of stochasticity is required.
Collapse
Affiliation(s)
- M Mirigliano
- CIMAINA and Department of Physics, Università degli Studi di Milano, via Celoria 16, I-20133, Milano, Italy
| | | | | | | | | | | | | |
Collapse
|