1
|
Thomas KM, Spitzer N. Silver nanoparticles induce formation of multi-protein aggregates that contain cadherin but do not colocalize with nanoparticles. Toxicol In Vitro 2024; 98:105837. [PMID: 38692336 DOI: 10.1016/j.tiv.2024.105837] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Revised: 04/24/2024] [Accepted: 04/28/2024] [Indexed: 05/03/2024]
Abstract
Silver nanoparticles (AgNPs) are increasingly incorporated in diverse products to confer antimicrobial properties. They are released into the environment during manufacture, after disposal, and from the products during use. Because AgNPs bioaccumulate in brain, it is important to understand how they interact with neural cell physiology. We found that the focal adhesion (FA)-associated protein cadherin aggregated in a dose-dependent response to AgNP exposure in differentiating cultured B35 neuroblastoma cells. These aggregates tended to colocalize with F-actin inclusions that form in response to AgNP and also contain β-catenin. However, using hyperspectral microscopy, we demonstrate that these multi-protein aggregates did not colocalize with the AgNPs themselves. Furthermore, expression and organization of the FA protein vinculin did not change in cells exposed to AgNP. Our findings suggest that AgNPs activate an intermediate mechanism which leads to formation of aggregates via specific protein-protein interactions. Finally, we detail the changes in hyperspectral profiles of AgNPs during different stages of cell culture and immunocytochemistry processing. AgNPs in citrate-stabilized solution present mostly blue with some rainbow spectra and these are maintained upon mounting in Prolong Gold. Exposure to tissue culture medium results in a uniform green spectral shift that is not further altered by fixation and protein block steps of immunocytochemistry.
Collapse
Affiliation(s)
- Kaden M Thomas
- Department of Biological Sciences, Marshall University, One John Marshall Dr., Huntington, WV, USA
| | - Nadja Spitzer
- Department of Biological Sciences, Marshall University, One John Marshall Dr., Huntington, WV, USA.
| |
Collapse
|
2
|
Baraldi JH, Martyn GV, Shurin GV, Shurin MR. Tumor Innervation: History, Methodologies, and Significance. Cancers (Basel) 2022; 14:1979. [PMID: 35454883 PMCID: PMC9029781 DOI: 10.3390/cancers14081979] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Revised: 04/01/2022] [Accepted: 04/08/2022] [Indexed: 12/11/2022] Open
Abstract
The role of the nervous system in cancer development and progression has been under experimental and clinical investigation since nineteenth-century observations in solid tumor anatomy and histology. For the first half of the twentieth century, methodological limitations and opaque mechanistic concepts resulted in ambiguous evidence of tumor innervation. Differential spatial distribution of viable or disintegrated nerve tissue colocalized with neoplastic tissue led investigators to conclude that solid tumors either are or are not innervated. Subsequent work in electrophysiology, immunohistochemistry, pathway enrichment analysis, neuroimmunology, and neuroimmunooncology have bolstered the conclusion that solid tumors are innervated. Regulatory mechanisms for cancer-related neurogenesis, as well as specific operational definitions of perineural invasion and axonogenesis, have helped to explain the consensus observation of nerves at the periphery of the tumor signifying a functional role of nerves, neurons, neurites, and glia in tumor development.
Collapse
Affiliation(s)
- James H. Baraldi
- Department of Neuroscience, University of Pittsburgh, Pittsburgh, PA 15260, USA;
| | - German V. Martyn
- Biomedical Studies Program, Chatham University, Pittsburgh, PA 15232, USA;
| | - Galina V. Shurin
- Department of Pathology, University of Pittsburgh, Pittsburgh, PA 15213, USA;
| | - Michael R. Shurin
- Department of Pathology and Immunology, Division of Clinical Immunopathology, University of Pittsburgh Medical Center, Pittsburgh, PA 15213, USA
| |
Collapse
|
3
|
Zhang C, Cui L, He W, Zhang X, Liu H. Dl-3-n-butylphthalide promotes neurite outgrowth of primary cortical neurons by Sonic Hedgehog signaling via upregulating Gap43. Exp Cell Res 2020; 398:112420. [PMID: 33296663 DOI: 10.1016/j.yexcr.2020.112420] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2020] [Revised: 11/17/2020] [Accepted: 11/26/2020] [Indexed: 10/22/2022]
Abstract
Neurite outgrowth is the basis for wiring during the development of the nervous system. Dl-3-n-butylphthalide (NBP) has been recognized as a promising treatment to improve behavioral, neurological and cognitive outcomes in ischemic stroke. However, little is known about the effect and mechanism of NBP on the neurite outgrowth. In this study, we used different methods to investigate the potential effects of NBP on the neurite extension and plasticity of immature and mature primary cortical neurons and explored the underlying mechanisms. Our results demonstrated that in immature and mature cortical neurons, NBP promoted the neurite length and intersections, increased neuritic arborization, elevated numbers of neurite branch and terminal points and improved neurite complexity and plasticity of neuronal development processes. Besides, our data revealed that NBP promoted neurite extension and branching partly by activating Shh signaling pathway via increasing Gap43 expression both in immature and mature primary cortical neurons. The present study provided new insights into the contribution of NBP in neuronal plasticity and unveiled a novel pathway to induce Gap43 expression in primary cortical neurons.
Collapse
Affiliation(s)
- Cong Zhang
- Department of Radiology, Second Hospital of Hebei Medical University, Shijiazhuang, Hebei, China; Hebei Key Laboratory of Vascular Homeostasis and Hebei Collaborative Innovation Center for Cardio-cerebrovascular Disease, Shijiazhuang, Hebei, China
| | - Lili Cui
- Department of Neurology, Second Hospital of Hebei Medical University; Shijiazhuang, Hebei, China; Hebei Key Laboratory of Vascular Homeostasis and Hebei Collaborative Innovation Center for Cardio-cerebrovascular Disease, Shijiazhuang, Hebei, China
| | - Weiliang He
- Department of Neurology, Hebei General Hospital, Shijiazhuang, Hebei, China
| | - Xiangjian Zhang
- Department of Neurology, Second Hospital of Hebei Medical University; Shijiazhuang, Hebei, China; Hebei Key Laboratory of Vascular Homeostasis and Hebei Collaborative Innovation Center for Cardio-cerebrovascular Disease, Shijiazhuang, Hebei, China
| | - Huaijun Liu
- Department of Radiology, Second Hospital of Hebei Medical University, Shijiazhuang, Hebei, China.
| |
Collapse
|
4
|
Bing T, Zhang N, Shangguan D. Cell-SELEX, an Effective Way to the Discovery of Biomarkers and Unexpected Molecular Events. ACTA ACUST UNITED AC 2019; 3:e1900193. [PMID: 32648677 DOI: 10.1002/adbi.201900193] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2019] [Revised: 09/26/2019] [Indexed: 12/15/2022]
Abstract
Cell-SELEX can not only generate aptamers for specific cell isolation/detection, diagnosis, and therapy, but also lead to the discovery of biomarkers and unexpected molecular events. However, most cell-SELEX research is concentrated on aptamer generation and applications. In this progress report, recent research progress with cell-SELEX in terms of the discovery of biomarkers and unexpected molecular events is highlighted. In particular, the key technical challenges for cell-SELEX-based biomarker discovery, namely, the methods for identification and validation of target proteins of aptamers, are discussed in detail. Finally, the prospects of the applications of cell-SELEX in this field now and in the near future are described. It is expected that this report will attract attention to the benefit of cell-SELEX and provide a practical reference for biomedical researchers.
Collapse
Affiliation(s)
- Tao Bing
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Analytical Chemistry for Living Biosystems, CAS Research/Education Center for Excellence in Molecular Sciences Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Nan Zhang
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Analytical Chemistry for Living Biosystems, CAS Research/Education Center for Excellence in Molecular Sciences Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Dihua Shangguan
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Analytical Chemistry for Living Biosystems, CAS Research/Education Center for Excellence in Molecular Sciences Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| |
Collapse
|
5
|
Wang L, Bing T, Liu Y, Zhang N, Shen L, Liu X, Wang J, Shangguan D. Imaging of Neurite Network with an Anti-L1CAM Aptamer Generated by Neurite-SELEX. J Am Chem Soc 2018; 140:18066-18073. [PMID: 30485743 DOI: 10.1021/jacs.8b10783] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Neurite outgrowth is the critical step of nervous development. Molecular probes against neurites are essential for evaluation of the nervous system development, compound neurotoxicity, and drug efficacy on nerve regeneration. To obtain a neurite probe, we developed a neurite-SELEX strategy and generated a DNA aptamer, yly12, that strongly binds neurites. The molecular target of yly12 was identified to be neural cell adhesion molecule L1 (L1CAM), a surface antigen expressed in normal nervous system and various cancers. Here, yly12 was successfully applied to image the three-dimensional network of neurites between live cells, as well as the neurite fibers on normal brain tissue section. This aptamer was also found to have an inhibitory effect on neurite outgrowth between cells. Given the advantages of aptamers, yly12 hold great potential as a molecular tool in the field of neuroscientific research. The high efficiency of neurite-SELEX suggests that SELEX against a subcellular structure instead of the whole cells is more effective in obtaining the desired aptamers.
Collapse
Affiliation(s)
- Linlin Wang
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Analytical Chemistry for Living Biosystems, CAS Research/Education Center for Excellence in Molecular Sciences , Institute of Chemistry, Chinese Academy of Sciences , Beijing 100190 , China.,University of the Chinese Academy of Sciences , Beijing 100049 , China
| | - Tao Bing
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Analytical Chemistry for Living Biosystems, CAS Research/Education Center for Excellence in Molecular Sciences , Institute of Chemistry, Chinese Academy of Sciences , Beijing 100190 , China.,University of the Chinese Academy of Sciences , Beijing 100049 , China
| | - Ying Liu
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Analytical Chemistry for Living Biosystems, CAS Research/Education Center for Excellence in Molecular Sciences , Institute of Chemistry, Chinese Academy of Sciences , Beijing 100190 , China.,University of the Chinese Academy of Sciences , Beijing 100049 , China
| | - Nan Zhang
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Analytical Chemistry for Living Biosystems, CAS Research/Education Center for Excellence in Molecular Sciences , Institute of Chemistry, Chinese Academy of Sciences , Beijing 100190 , China.,University of the Chinese Academy of Sciences , Beijing 100049 , China
| | - Luyao Shen
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Analytical Chemistry for Living Biosystems, CAS Research/Education Center for Excellence in Molecular Sciences , Institute of Chemistry, Chinese Academy of Sciences , Beijing 100190 , China.,University of the Chinese Academy of Sciences , Beijing 100049 , China
| | - Xiangjun Liu
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Analytical Chemistry for Living Biosystems, CAS Research/Education Center for Excellence in Molecular Sciences , Institute of Chemistry, Chinese Academy of Sciences , Beijing 100190 , China.,University of the Chinese Academy of Sciences , Beijing 100049 , China
| | - Junyan Wang
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Analytical Chemistry for Living Biosystems, CAS Research/Education Center for Excellence in Molecular Sciences , Institute of Chemistry, Chinese Academy of Sciences , Beijing 100190 , China.,University of the Chinese Academy of Sciences , Beijing 100049 , China
| | - Dihua Shangguan
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Analytical Chemistry for Living Biosystems, CAS Research/Education Center for Excellence in Molecular Sciences , Institute of Chemistry, Chinese Academy of Sciences , Beijing 100190 , China.,University of the Chinese Academy of Sciences , Beijing 100049 , China
| |
Collapse
|
6
|
Pemberton K, Mersman B, Xu F. Using ImageJ to Assess Neurite Outgrowth in Mammalian Cell Cultures: Research Data Quantification Exercises in Undergraduate Neuroscience Lab. JOURNAL OF UNDERGRADUATE NEUROSCIENCE EDUCATION : JUNE : A PUBLICATION OF FUN, FACULTY FOR UNDERGRADUATE NEUROSCIENCE 2018; 16:A186-A194. [PMID: 30057501 PMCID: PMC6057772] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 12/04/2017] [Revised: 04/23/2018] [Accepted: 04/28/2018] [Indexed: 06/08/2023]
Abstract
Brain functions rely critically upon the proper development of neuronal processes (axons and dendrites) and the formation of functional networks. Any genetic factors or environmental compounds that alter the morphological features of neurons may render the nervous system dysfunctional and result in neuronal disorders. In vitro cell culture is an important technique in assessing the effect of chemicals on neurite formation and growth of individual neurons in desired brain regions and has been fundamental in advancing our understanding of the nervous system development and functioning. Despite others offering excellent techniques in cell cultures (Catlin et al., 2016), there is a lack of available resources for teaching students how to analyze neurite outgrowth and run proper statistics on their data. Here, we first briefly discuss culturing cryopreserved mammalian neurons. We then give detailed options to aid upper level undergraduate neurobiology students to quantify neurite outgrowth using NeuronJ, a plugin in the free ImageJ package, Fiji, on both phase contrast and immunofluorescent images. This laboratory exercise provides students the opportunity to culture live neurons, quantify neuronal growth, experiment with the effects of common chemicals on neural development, and conduct statistical data analysis. Previous students expressed their great appreciation for the opportunity to work with live neurons and conduct data quantification and analysis like a true scientist. The ability to accurately measure and calculate the overall growth of neurons using the software ImageJ greatly enhanced students' confidence in presenting their results both in oral and written format.
Collapse
Affiliation(s)
- Kyle Pemberton
- Department of Biology, Saint Louis University, St. Louis, MO 63103
| | - Brittany Mersman
- Department of Biology, Saint Louis University, St. Louis, MO 63103
| | - Fenglian Xu
- Department of Biology, Saint Louis University, St. Louis, MO 63103
| |
Collapse
|
7
|
Mercati O, Danckaert A, André-Leroux G, Bellinzoni M, Gouder L, Watanabe K, Shimoda Y, Grailhe R, De Chaumont F, Bourgeron T, Cloëz-Tayarani I. Contactin 4, -5 and -6 differentially regulate neuritogenesis while they display identical PTPRG binding sites. Biol Open 2013; 2:324-34. [PMID: 23519440 PMCID: PMC3603414 DOI: 10.1242/bio.20133343] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2012] [Accepted: 11/28/2012] [Indexed: 12/22/2022] Open
Abstract
The neural cell-adhesion molecules contactin 4, contactin 5 and contactin 6 are involved in brain development, and disruptions in contactin genes may confer increased risk for autism spectrum disorders (ASD). We describe a co-culture of rat cortical neurons and HEK293 cells overexpressing and delivering the secreted forms of rat contactin 4-6. We quantified their effects on the length and branching of neurites. Contactin 4-6 effects were different depending on the contactin member and duration of co-culture. At 4 days in culture, contactin 4 and -6 increased the length of neurites, while contactin 5 increased the number of roots. Up to 8 days in culture, contactin 6 progressively increased the length of neurites while contactin 5 was more efficient on neurite branching. We studied the molecular sites of interaction between human contactin 4, -5 or -6 and the human Protein Tyrosine Phosphatase Receptor Gamma (PTPRG), a contactin partner, by modeling their 3D structures. As compared to contactin 4, we observed differences in the Ig2 and Ig3 domains of contactin 5 and -6 with the appearance of an omega loop that could adopt three distinct conformations. However, interactive residues between human contactin 4-6 and PTPRG were strictly conserved. We did not observe any differences in PTPRG binding on contactin 5 and -6 either. Our data suggest that the differential contactin effects on neurite outgrowth do not result from distinct interactions with PTPRG. A better understanding of the contactin cellular properties should help elucidate their roles in ASD.
Collapse
Affiliation(s)
- Oriane Mercati
- Human Genetics and Cognitive Functions, Institut Pasteur , 75015 Paris , France ; CNRS URA 2182 'Genes, synapses and cognition', Institut Pasteur , 75015 Paris , France ; Université Paris Diderot, Sorbonne Paris Cité, Human Genetics and Cognitive Functions , 75013 Paris , France
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
8
|
Valtorta F, Pozzi D, Benfenati F, Fornasiero EF. The synapsins: multitask modulators of neuronal development. Semin Cell Dev Biol 2011; 22:378-86. [PMID: 21798361 DOI: 10.1016/j.semcdb.2011.07.008] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2011] [Accepted: 07/13/2011] [Indexed: 01/10/2023]
Abstract
Neurons are examples of specialized cells that evolved the extraordinary ability to transmit electrochemical information in complex networks of interconnected cells. During their development, neurons undergo precisely regulated processes that define their lineage, positioning, morphogenesis and pattern of activity. The events leading to the establishment of functional neuronal networks follow a number of key steps, including asymmetric cell division from neuronal precursors, migration, establishment of polarity, neurite outgrowth and synaptogenesis. Synapsins are a family of abundant neuronal phosphoproteins that have been extensively studied for their role in the regulation of neurotransmission in presynaptic terminals. Beside their implication in the homeostasis of adult cells, synapsins influence the development of young neurons, interacting with cytoskeletal and vesicular components and regulating their dynamics. Although the exact molecular mechanisms determining synapsin function in neuronal development are still largely unknown, in this review we summarize the most important literature on the subject, providing a conceptual framework for the progress of present and future research.
Collapse
Affiliation(s)
- Flavia Valtorta
- San Raffaele Scientific Institute and Vita-Salute University, Via Olgettina 58, Milano, Italy.
| | | | | | | |
Collapse
|
9
|
Laketa V, Simpson JC, Bechtel S, Wiemann S, Pepperkok R. High-content microscopy identifies new neurite outgrowth regulators. Mol Biol Cell 2006; 18:242-52. [PMID: 17093056 PMCID: PMC1751310 DOI: 10.1091/mbc.e06-08-0666] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
Neurons, with their long axons and elaborate dendritic arbour, establish the complex circuitry that is essential for the proper functioning of the nervous system. Whereas a catalogue of structural, molecular, and functional differences between axons and dendrites is accumulating, the mechanisms involved in early events of neuronal differentiation, such as neurite initiation and elongation, are less well understood, mainly because the key molecules involved remain elusive. Here we describe the establishment and application of a microscopy-based approach designed to identify novel proteins involved in neurite initiation and/or elongation. We identified 21 proteins that affected neurite outgrowth when ectopically expressed in cells. Complementary time-lapse microscopy allowed us to discriminate between early and late effector proteins. Localization experiments with GFP-tagged proteins in fixed and living cells revealed a further 14 proteins that associated with neurite tips either early or late during neurite outgrowth. Coexpression experiments of the new effector proteins provide a first glimpse on a possible functional relationship of these proteins during neurite outgrowth. Altogether, we demonstrate the potential of the systematic microscope-based screening approaches described here to tackle the complex biological process of neurite outgrowth regulation.
Collapse
Affiliation(s)
- Vibor Laketa
- Cell Biology and Biophysics Unit, European Molecular Biology Laboratory-Heidelberg, 69117 Heidelberg, Germany.
| | | | | | | | | |
Collapse
|
10
|
Sklan EH, Berson A, Birikh KR, Gutnick A, Shahar O, Shoham S, Soreq H. Acetylcholinesterase modulates stress-induced motor responses through catalytic and noncatalytic properties. Biol Psychiatry 2006; 60:741-51. [PMID: 16904653 DOI: 10.1016/j.biopsych.2006.03.080] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/03/2005] [Revised: 03/23/2006] [Accepted: 03/23/2006] [Indexed: 11/16/2022]
Abstract
BACKGROUND Cholinergic neurotransmission notably participates in stress-induced motor responses. Here we report the contribution of alternative splicing of acetylcholinesterase (AChE) pre-mRNA to modulate these responses. More specifically, we induced stress-associated hypofunction of dopaminergic, mainly D2 dopamine receptor-mediated neurotransmission by haloperidol and explored stress induced hyperlocomotion and catalepsy, an extreme form of immobility, induced in mice with AChE deficiencies. METHODS Conditional transgenic (Tet/AS) mice were created with tetracycline-induced antisense suppression of AChE gene expression. Locomotion and catalepsy times were measured in Tet/AS and strain-matched control mice, under open-field exposure threat and under home-cage safety. RESULTS In vitro, NGF-treated PC12 cells failed to extend neurites upon Tet/AS suppression. In vivo, Tet/AS but not control mice showed stress-associated hippocampal deposits of heat-shock protein 70 and GRP78 (BiP), predicting posttranscriptional changes in neuronal reactions. Supporting this notion, their striatal cholinergic neurons demonstrated facilitated capacity for neurite extension, attributing these in vivo changes in neurite extension to network interactions. Tet/AS mice presented stress-induced hyperlocomotion. Moreover, the dopamine antagonist haloperidol induced longer catalepsy in threatened Tet/AS than in control mice. When returned to home-cage safety, Tet/AS mice showed retarded release from catalepsy. CONCLUSIONS Acetylcholinesterase modulates stress-induced motor responses and facilitates resumption of normal motor behavior following stress through both catalytic and noncatalytic features.
Collapse
Affiliation(s)
- Ella H Sklan
- Department of Biological Chemistry, Institute of Life Sciences, Hebrew University of Jerusalem, Givat Ram, Jerusalem, Israel
| | | | | | | | | | | | | |
Collapse
|
11
|
Sannerud R, Marie M, Nizak C, Dale HA, Pernet-Gallay K, Perez F, Goud B, Saraste J. Rab1 defines a novel pathway connecting the pre-Golgi intermediate compartment with the cell periphery. Mol Biol Cell 2006; 17:1514-26. [PMID: 16421253 PMCID: PMC1415313 DOI: 10.1091/mbc.e05-08-0792] [Citation(s) in RCA: 90] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
The function of the pre-Golgi intermediate compartment (IC) and its relationship with the endoplasmic reticulum (ER) and Golgi remain only partially understood. Here, we report striking segregation of IC domains in polarized PC12 cells that develop neurite-like processes. Differentiation involves expansion of the IC and movement of Rab1-containing tubules to the growth cones of the neurites, whereas p58- and COPI-positive IC elements, like rough ER and Golgi, remain in the cell body. Exclusion of Rab1 effectors p115 and GM130 from the neurites further indicated that the centrifugal, Rab1-mediated pathway has functions that are not directly related to ER-to-Golgi trafficking. Disassembly of COPI coats did not affect this pathway but resulted in missorting of p58 to the neurites. Live cell imaging showed that green fluorescent protein (GFP)-Rab1A-containing IC elements move bidirectionally both within the neurites and cell bodies, interconnecting different ER exit sites and the cis-Golgi region. Moreover, in nonpolarized cells GFP-Rab1A-positive tubules moved centrifugally towards the cell cortex. Hydroxymethylglutaryl-CoA reductase, the key enzyme of cholesterol biosynthesis, colocalized with slowly sedimenting, Rab1-enriched membranes when the IC subdomains were separated by velocity sedimentation. These results reveal a novel pathway directly connecting the IC with the cell periphery and suggest that this Rab1-mediated pathway is linked to the dynamics of smooth ER.
Collapse
Affiliation(s)
- Ragna Sannerud
- Section of Anatomy and Cell Biology, Department of Biomedicine, University of Bergen, N-5009 Bergen, Norway
| | | | | | | | | | | | | | | |
Collapse
|
12
|
Castellini M, Wolf LV, Chauhan BK, Galileo DS, Kilimann MW, Cvekl A, Duncan MK. Palm is expressed in both developing and adult mouse lens and retina. BMC Ophthalmol 2005; 5:14. [PMID: 15969763 PMCID: PMC1183217 DOI: 10.1186/1471-2415-5-14] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2005] [Accepted: 06/21/2005] [Indexed: 11/30/2022] Open
Abstract
Background Paralemmin (Palm) is a prenyl-palmitoyl anchored membrane protein that can drive membrane and process formation in neurons. Earlier studies have shown brain preferred Palm expression, although this protein is a major water insoluble protein in chicken lens fiber cells and the Palm gene may be regulated by Pax6. Methods The expression profile of Palm protein in the embryonic, newborn and adult mouse eye as well as dissociated retinal neurons was determined by confocal immunofluorescence. The relative mRNA levels of Palm, Palmdelphin (PalmD) and paralemmin2 (Palm2) in the lens and retina were determined by real time rt-PCR. Results In the lens, Palm is already expressed at 9.5 dpc in the lens placode, and this expression is maintained in the lens vesicle throughout the formation of the adult lens. Palm is largely absent from the optic vesicle but is detectable at 10.5 dpc in the optic cup. In the developing retina, Palm expression transiently upregulates during the formation of optic nerve as well as in the formation of both the inner and outer plexiform layers. In short term dissociated chick retinal cultures, Palm protein is easily detectable, but the levels appear to reduce sharply as the cultures age. Palm mRNA was found at much higher levels relative to Palm2 or PalmD in both the retina and lens. Conclusion Palm is the major paralemmin family member expressed in the retina and lens and its expression in the retina transiently upregulates during active neurite outgrowth. The expression pattern of Palm in the eye is consistent with it being a Pax6 responsive gene. Since Palm is known to be able to drive membrane formation in brain neurons, it is possible that this molecule is crucial for the increase in membrane formation during lens fiber cell differentiation.
Collapse
Affiliation(s)
- Meryl Castellini
- Department of Biological Sciences, University of Delaware, Newark, DE 19716 USA
- Department of Pathology, Anatomy, and Cell Biology, Thomas Jefferson University, Philadelphia, PA 19107 USA
| | - Louise V Wolf
- Depts. of Ophthalmology and Visual Sciences and Molecular Genetics, Albert Einstein College of Medicine, Bronx, NY 10461 USA
| | - Bharesh K Chauhan
- Depts. of Ophthalmology and Visual Sciences and Molecular Genetics, Albert Einstein College of Medicine, Bronx, NY 10461 USA
- Developmental Biology Division and Department of Ophthalmology, Children's Hospital Research Foundation, 3333 Burnet Avenue, Cincinnati, OH 45229 USA
| | - Deni S Galileo
- Department of Biological Sciences, University of Delaware, Newark, DE 19716 USA
| | - Manfred W Kilimann
- Department of Cell and Molecular Biology, Uppsala University, S-75124 Uppsala Sweden
| | - Ales Cvekl
- Depts. of Ophthalmology and Visual Sciences and Molecular Genetics, Albert Einstein College of Medicine, Bronx, NY 10461 USA
| | - Melinda K Duncan
- Department of Biological Sciences, University of Delaware, Newark, DE 19716 USA
| |
Collapse
|
13
|
Bonanomi D, Pennuto M, Rigoni M, Rossetto O, Montecucco C, Valtorta F. Taipoxin Induces Synaptic Vesicle Exocytosis and Disrupts the Interaction of Synaptophysin I with VAMP2. Mol Pharmacol 2005; 67:1901-8. [PMID: 15695624 DOI: 10.1124/mol.104.005678] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The application of the snake neurotoxin taipoxin to hippocampal neurons in culture induced Ca(2+)-dependent synaptic vesicle (SV) exocytosis, with swelling of nerve terminals and redistribution of SV proteins to the axolemma. Using digital imaging videomicroscopy to measure fluorescence resonance energy transfer in live neurons, we also found that taipoxin modulates the machinery for neurosecretion by causing dissociation of the SV proteins synaptobrevin 2 and synaptophysin I at a stage preceding taipoxin-induced facilitation of SV fusion. These early effects of the toxin are followed by severe impairment of SV exo-endocytosis, which might underlie the prevention of neurotransmitter release reported after intoxication by taipoxin.
Collapse
Affiliation(s)
- Dario Bonanomi
- Department of Neuroscience, San Raffaele Scientific Institute, via Olgettina 58, 20132 Milan, Italy
| | | | | | | | | | | |
Collapse
|
14
|
Lindsley TA, Kerlin AM, Rising LJ. Time-lapse analysis of ethanol's effects on axon growth in vitro. BRAIN RESEARCH. DEVELOPMENTAL BRAIN RESEARCH 2003; 147:191-9. [PMID: 15068009 DOI: 10.1016/j.devbrainres.2003.10.015] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
The cortical abnormalities found in animal models of fetal alcohol syndrome (FAS) suggest a disruption of axon growth. After emerging from the cell body, axons exhibit saltatory growth, cycling between periods of extension and periods of retraction. The timing of neuronal process outgrowth an the balance between extension and retraction together determine the net rate of axon elongation, and may be independently regulated. In this study, we used time-lapse digital microscopy and custom-designed analytic software to assess the effects of ethanol on the growth of axons from embryonic rat hippocampal pyramidal neurons in culture during 24 h of development, beginning approximately 7 h after plating. We recorded the amount of time elapsed before axons emerged, the relative amount of time spent in periods of growth and nongrowth, and the rate and direction of change in axon length during both periods of growth and nongrowth. The initiation of axonal outgrowth was significantly delayed by ethanol in a dose-dependent fashion at concentrations in the medium at or above 100 mg/dl. However, once established, axons exhibited accelerated growth in the presence of ethanol. This increase in overall growth rate was primarily due to a significant decrease in axon retraction during nongrowth periods. Ethanol did not affect the duration or frequency of growth and nongrowth periods. We propose, therefore, that mechanisms underlying ethanol-mediated changes in axon growth are linked to signaling events that differentially regulate outgrowth and retraction.
Collapse
Affiliation(s)
- Tara A Lindsley
- Center for Neuropharmacology and Neuroscience, Albany Medical College, NY 12208, USA.
| | | | | |
Collapse
|
15
|
Pennuto M, Bonanomi D, Benfenati F, Valtorta F. Synaptophysin I controls the targeting of VAMP2/synaptobrevin II to synaptic vesicles. Mol Biol Cell 2003; 14:4909-19. [PMID: 14528015 PMCID: PMC284794 DOI: 10.1091/mbc.e03-06-0380] [Citation(s) in RCA: 94] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
Synaptic vesicle (SV) proteins are synthesized at the level of the cell body and transported down the axon in membrane precursors of SVs. To investigate the mechanisms underlying sorting of proteins to SVs, fluorescent chimeras of vesicle-associated membrane protein (VAMP) 2, its highly homologous isoform VAMP1 and synaptotagmin I (SytI) were expressed in hippocampal neurons in culture. Interestingly, the proteins displayed a diffuse component of distribution along the axon. In addition, VAMP2 was found to travel in vesicles that constitutively fuse with the plasma membrane. Coexpression of VAMP2 with synaptophysin I (SypI), a major resident of SVs, restored the correct sorting of VAMP2 to SVs. The effect of SypI on VAMP2 sorting was dose dependent, being reversed by increasing VAMP2 expression levels, and highly specific, because the sorting of the SV proteins VAMP1 and SytI was not affected by SypI. The cytoplasmic domain of VAMP2 was found to be necessary for both the formation of VAMP2-SypI hetero-dimers and for VAMP2 sorting to SVs. These data support a role for SypI in directing the correct sorting of VAMP2 in neurons and demonstrate that a direct interaction between the two proteins is required for SypI in order to exert its effect.
Collapse
Affiliation(s)
- Maria Pennuto
- Department of Neuroscience, San Raffaele Scientific Institute and Vita-Salute University, 20132 Milano, Italy
| | | | | | | |
Collapse
|
16
|
Pennuto M, Dunlap D, Contestabile A, Benfenati F, Valtorta F. Fluorescence resonance energy transfer detection of synaptophysin I and vesicle-associated membrane protein 2 interactions during exocytosis from single live synapses. Mol Biol Cell 2002; 13:2706-17. [PMID: 12181340 PMCID: PMC117936 DOI: 10.1091/mbc.e02-01-0036] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
To investigate the molecular interactions of synaptophysin I and vesicle-associated membrane protein 2 (VAMP2)/synaptobrevin II during exocytosis, we have used time-lapse videomicroscopy to measure fluorescence resonance energy transfer in live neurons. For this purpose, fluorescent protein variants fused to synaptophysin I or VAMP2 were expressed in rat hippocampal neurons. We show that synaptophysin I and VAMP2 form both homo- and hetero-oligomers on the synaptic vesicle membrane. When exocytosis is stimulated with alpha-latrotoxin, VAMP2 dissociates from synaptophysin I even in the absence of appreciable exocytosis, whereas synaptophysin I oligomers disassemble only upon incorporation of the vesicle with the plasma membrane. We propose that synaptophysin I has multiple roles in neurotransmitter release, regulating VAMP2 availability for the soluble N-ethylmaleimide-sensitive factor attachment protein receptor complex and possibly participating in the late steps of exocytosis.
Collapse
Affiliation(s)
- Maria Pennuto
- Department of Neuroscience, S. Raffaele Scientific Institute and Vita-Salute University, Milan, Italy
| | | | | | | | | |
Collapse
|
17
|
Wei Y, Harris T, Childs G. Global gene expression patterns during neural differentiation of P19 embryonic carcinoma cells. Differentiation 2002; 70:204-19. [PMID: 12147139 DOI: 10.1046/j.1432-0436.2002.700409.x] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The nervous system is composed of many different types of neurons and glia cells. Differentiation of these cell types is regulated by various intrinsic transcriptional programs as well as extrinsic signals. Studies of neural differentiation have been focused on the roles of individual factors. Here we profiled global gene expression patterns during neural differentiation of P19 embryonic carcinoma cells. Grouping of the genes induced during P19 neural differentiation into functional categories reveals a set of important transcription factors and extracellular signaling pathways, many of which are also involved in neural development in vivo. In addition, clustering of the induced genes according to their temporal expression pattern reveals 6 groups of genes, each with distinct kinetics, suggesting the existence of different phases in P19 neural differentiation. Our studies provide a temporal array of global pictures of the gene expression patterns used during neural differentiation. The results of this study provide the framework for subsequent analysis of the effects of various intrinsic and extrinsic factors on neural differentiation.
Collapse
Affiliation(s)
- Yi Wei
- Department of Molecular Genetics, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | | | | |
Collapse
|
18
|
Wang SS, Good TA. Effect of culture in a rotating wall bioreactor on the physiology of differentiated neuron-like PC12 and SH-SY5Y cells. J Cell Biochem 2002; 83:574-84. [PMID: 11746501 DOI: 10.1002/jcb.1252] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
A variety of evidence suggests that nervous system function is altered during microgravity, however, assessing changes in neuronal physiology during space flight is a non-trivial task. We have used a rotating wall bioreactor with a high aspect ratio vessel (HARV), which simulates the microgravity environment, to investigate the how the viability, neurite extension, and signaling of differentiated neuron-like cells changes in different culture environments. We show that culture of differentiated PC12 and SH-SY5Y cells in the simulated microgravity HARV bioreactor resulted in high cell viability, moderate neurite extension, and cell aggregation accompanied by NO production. Neurite extension was less than that seen in static cultures, suggesting that less than optimal differentiation occurs in simulated microgravity relative to normal gravity. Cells grown in a mixed vessel under normal gravity (a spinner flask) had low viability, low neurite extension, and high glutamate release. This work demonstrates the feasibility of using a rotating wall bioreactor to explore the effects of simulated microgravity on differentiation and physiology of neuron-like cells.
Collapse
Affiliation(s)
- S S Wang
- Department of Chemical Engineering, Texas A&M University, College Station, TX 77843-3122, USA
| | | |
Collapse
|
19
|
Hendriks EF, Robinson DR, Hinkins M, Matthews KR. A novel CCCH protein which modulates differentiation of Trypanosoma brucei to its procyclic form. EMBO J 2001; 20:6700-11. [PMID: 11726506 PMCID: PMC125759 DOI: 10.1093/emboj/20.23.6700] [Citation(s) in RCA: 80] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2001] [Revised: 10/05/2001] [Accepted: 10/11/2001] [Indexed: 12/23/2022] Open
Abstract
Cell differentiation in Trypanosoma brucei involves highly regulated changes in morphology, proliferation and metabolism. However, the controls of these developmental processes are unknown. We have identified two novel proteins from the rare CCCH zinc finger family, each <140 amino acids in length and implicated in life cycle regulation. TbZFP1 is transiently enriched during differentiation from the bloodstream to procyclic form, whereas tbZFP2, when ablated in bloodstream forms by RNA interference, inhibits this developmental step. Moreover, expressing an ectopic copy of tbZFP2 results in a dramatic procyclic stage-specific remodelling of the trypanosome cytoskeleton similar to the morphogenic events of differentiation. This phenotype, we term 'nozzle', involves polar extension of microtubules at the posterior end of the cell and is dependent upon a motif hitherto restricted to E3 ubiquitin ligases. TbZFP1 and tbZFP2 represent the first molecules implicated in the control of trypanosome differentiation to the procyclic form.
Collapse
Affiliation(s)
- Edward F. Hendriks
- School of Biological Sciences, 2.205 Stopford Building, University of Manchester, Oxford Road, Manchester M13 9PT, UK and Laboratoire de Parasitologie Moleculaire, Batiment 3A Premier Etage, UMR-CNRS 5016, Université Victor Ségalen–Bordeaux 2, 146, Rue Léo Saignat, 33076 Bordeaux Cedex, France Corresponding author e-mail:
| | - Derrick R. Robinson
- School of Biological Sciences, 2.205 Stopford Building, University of Manchester, Oxford Road, Manchester M13 9PT, UK and Laboratoire de Parasitologie Moleculaire, Batiment 3A Premier Etage, UMR-CNRS 5016, Université Victor Ségalen–Bordeaux 2, 146, Rue Léo Saignat, 33076 Bordeaux Cedex, France Corresponding author e-mail:
| | - Matthew Hinkins
- School of Biological Sciences, 2.205 Stopford Building, University of Manchester, Oxford Road, Manchester M13 9PT, UK and Laboratoire de Parasitologie Moleculaire, Batiment 3A Premier Etage, UMR-CNRS 5016, Université Victor Ségalen–Bordeaux 2, 146, Rue Léo Saignat, 33076 Bordeaux Cedex, France Corresponding author e-mail:
| | - Keith R. Matthews
- School of Biological Sciences, 2.205 Stopford Building, University of Manchester, Oxford Road, Manchester M13 9PT, UK and Laboratoire de Parasitologie Moleculaire, Batiment 3A Premier Etage, UMR-CNRS 5016, Université Victor Ségalen–Bordeaux 2, 146, Rue Léo Saignat, 33076 Bordeaux Cedex, France Corresponding author e-mail:
| |
Collapse
|
20
|
Dedov VN, Armati PJ, Roufogalis BD. Three-dimensional organisation of mitochondrial clusters in regenerating dorsal root ganglion (DRG) neurons from neonatal rats: evidence for mobile mitochondrial pools. J Peripher Nerv Syst 2000; 5:3-10. [PMID: 10780677 DOI: 10.1046/j.1529-8027.2000.00153.x] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
We report for the first time the rearrangement of mitochondrial arrays in developing dorsal root ganglion (DRG) neurons isolated from neonatal rats in culture. Neurons were loaded with the mitochondria-specific fluorescent dye JC-1, and three-dimensional (3D) reconstruction of mitochondrial fluorescence was performed by confocal laser sectioning in fresh neurons and neurons kept in culture up to a week. We found that after 24 hours the mitochondria become reorganised to form clusters in the axonal hillocks. Axonal extension and neuronal network formation coincided with a redistribution of the mitochondrial clusters. In the extended axons the mitochondria become spaced along the axonal length; however, they formed clusters in the branch points and growth cones. We conclude that the initial clusters of mitochondria may be storage pools of mobile mitochondria able to be mobilised to provide energy for axonal transport during neuronal regeneration and neuronal outgrowth. These findings may have relevance to the rate of axonal regeneration and axonal transport in adult DRG neurons, and neuronal polarisation and axonal outgrowth regulation in developing DRG neurons.
Collapse
Affiliation(s)
- V N Dedov
- Department of Pharmacy, School of Biological Sciences, University of Sydney, NSW, Australia
| | | | | |
Collapse
|
21
|
Abstract
Neurons have unique structural and functional polarity. In general, information flows from the short dendrites to the long axon, and each neuron has multiple dendrites but only one axon. A detailed description of the cellular events leading to the establishment of axonal-dendritic polarity has been given from an in vitro hippocampal culture model system. Little is known, however, about the nature of the underlying molecular events. New data strongly suggest that actin depolymerization at a growth cone is crucial for axon fate determination. We hypothesize that an autocatalytic positive feedback loop at all growth cones locally regulates actin dynamics and other cellular events required for axon formation. Meanwhile, a negative feedback signal, produced by the positive feedback loop, propagates from all growth cones throughout the neuron and counteracts the positive feedback loops. Such feedback regulation provides a robust mechanism for spontaneous symmetry breaking and the formation of only one axon, even in a symmetric in vitro environment. Based on data from studies of cell migration, axon guidance, vesicle exocytosis, and the regulation of actin and microtubule polymerization, we propose a molecular scheme for the positive feedback loop and discuss possible negative feedback signals. BioEssays 22:172-179, 2000.
Collapse
Affiliation(s)
- S S Andersen
- University of California San Diego, Department of Biology, La Jolla, CA 92093-0357, USA.
| | | |
Collapse
|
22
|
Leoni C, Menegon A, Benfenati F, Toniolo D, Pennuto M, Valtorta F. Neurite extension occurs in the absence of regulated exocytosis in PC12 subclones. Mol Biol Cell 1999; 10:2919-31. [PMID: 10473636 PMCID: PMC25531 DOI: 10.1091/mbc.10.9.2919] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
We have investigated the process leading to differentiation of PC12 cells. This process is known to include extension of neurites and changes in the expression of subsets of proteins involved in cytoskeletal rearrangements or in neurosecretion. To this aim, we have studied a PC12 clone (trk-PC12) stably transfected with the nerve growth factor receptor TrkA. These cells are able to undergo both spontaneous and neurotrophin-induced morphological differentiation. However, both undifferentiated and nerve growth factor-differentiated trk-PC12 cells appear to be completely defective in the expression of proteins of the secretory apparatus, including proteins of synaptic vesicles and large dense-core granules, neurotransmitter transporters, and neurotransmitter-synthesizing enzymes. These results indicate that neurite extension can occur independently of the presence of the neurosecretory machinery, including the proteins that constitute the fusion machine, suggesting the existence of differential activation pathways for the two processes during neuronal differentiation. These findings have been confirmed in independent clones obtained from PC12-27, a previously characterized PC12 variant clone globally incompetent for regulated secretion. In contrast, the integrity of the Rab cycle appears to be necessary for neurite extension, because antisense oligonucleotides against the neurospecific isoform of Rab-guanosine diphosphate-dissociation inhibitor significantly interfere with process formation.
Collapse
Affiliation(s)
- C Leoni
- San Raffaele Scientific Institute, Consiglio Nazionale delle Richerche Center for Cellular and Molecular Pharmacology and B. Ceccarelli Center for Neurobiology, University of Milan, Milan, Italy
| | | | | | | | | | | |
Collapse
|