1
|
Dhaliwal SS, Sharma V, Shukla AK, Verma V, Kaur M, Alsuhaibani AM, Gaber A, Singh P, Laing AM, Hossain A. Minerals and chelated-based manganese fertilization influences the productivity, uptake, and mobilization of manganese in wheat ( Triticum aestivum L.) in sandy loam soils. FRONTIERS IN PLANT SCIENCE 2023; 14:1163528. [PMID: 37360703 PMCID: PMC10285095 DOI: 10.3389/fpls.2023.1163528] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Accepted: 05/22/2023] [Indexed: 06/28/2023]
Abstract
Manganese (Mn) is an essential micronutrient in plants, and it is necessary for hydrolysis in photosystem II, chlorophyll biosynthesis, and also chloroplast breakdown. Limited Mn availability in light soil resulted in interveinal chlorosis, poor root development, and the development of fewer tillers, particularly staple cereals including wheat, while foliar Mn fertilizers were found efficient in improving crop yield as well as Mn use efficiency. In the above context, a study was conducted in consecutive two wheat growing seasons for screening of the most effective and economical Mn treatment for improving the yield and Mn uptake in wheat and to compare the relative effectiveness of MnCO3 against the recommended dose of MnSO4 for wheat. To fulfill the aims of the study, three manganese products, namely, 1) manganese carbonate MnCO3 (26% Mn w/w and 3.3% N w/w), 2) 0.5% MnSO4·H2O (30.5% Mn), and 3) Mn-EDTA solution (12% Mn), were used as experimental treatments. Treatments and their combinations were as follows: two levels of MnCO3 (26% Mn) @ 750 and 1,250 ml ha-1 were applied at the two stages (i.e., 25-30 and 35-40 days after sowing) of wheat, and three sprays each of 0.5% MnSO4 (30.5% Mn) and Mn-EDTA (12% Mn) solution were applied in other plots. The 2-year study showed that Mn application significantly increased the plant height, productive tillers plant-1, and 1,000 grain weight irrespective of fertilizer source. The results of MnSO4 for grain yield wheat as well as uptake of Mn were statistically at par with both levels (750 and 1,250 ml ha-1) of MnCO3 with two sprays at two stages of wheat. However, the application of Mn in the form of 0.5% MnSO4·H2O (30.5% Mn) was found more economical than MnCO3, while the mobilization efficiency index (1.56) was found maximum when Mn was applied in MnCO3 with two sprays (750 and 1,250 ml ha-1) in the two stages of wheat. Thus, the present study revealed that MnCO3 can be used as an alternative to MnSO4 to enhance the yield and Mn uptake of wheat.
Collapse
Affiliation(s)
| | - Vivek Sharma
- Department of Soil Science, Punjab Agricultural University, Ludhiana, India
| | - Arvind Kumar Shukla
- Indian Council of Agricultural Research (ICAR), Indian Institute of Soil Science, Berasia Rd, Navi Bagh, Bhopal, Madhya Pradesh, India
| | - Vibha Verma
- Department of Chemistry, Punjab Agricultural University, Ludhiana, India
| | - Manmeet Kaur
- Department of Chemistry, Punjab Agricultural University, Ludhiana, India
| | - Amnah Mohammed Alsuhaibani
- Department of Physical Sport Science, College of Education, Princess Nourah bint Abdulrahman University, Riyadh, Saudi Arabia
| | - Ahmed Gaber
- Department of Biology, College of Science, Taif University, Taif, Saudi Arabia
| | - Prabhjot Singh
- Department of Soil Science, Punjab Agricultural University, Ludhiana, India
| | - Alison M. Laing
- Agriculture & Food, Commonwealth Scientific and Industrial Research Organisation (CSIRO), Brisbane, QLD, Australia
| | - Akbar Hossain
- Division of Soil Science, Bangladesh Wheat and Maize Research Institute, Dinajpur, Bangladesh
| |
Collapse
|
2
|
Jacques C, Girodet S, Leroy F, Pluchon S, Salon C, Prudent M. Memory or acclimation of water stress in pea rely on root system's plasticity and plant's ionome modulation. FRONTIERS IN PLANT SCIENCE 2023; 13:1089720. [PMID: 36762182 PMCID: PMC9905705 DOI: 10.3389/fpls.2022.1089720] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Accepted: 12/20/2022] [Indexed: 06/18/2023]
Abstract
INTRODUCTION Peas, as legume crops, could play a major role in the future of food security in the context of worldwide human nutrient deficiencies coupled with the growing need to reduce consumption of animal products. However, pea yields, in terms of quantity and quality (i.e. grain content), are both susceptible to climate change, and more specifically to water deficits, which nowadays occur more frequently during crop growth cycles and tend to last longer. The impact of soil water stress on plant development and plant growth is complex, as its impact varies depending on soil water availability (through the modulation of elements available in the soil), and by the plant's ability to acclimate to continuous stress or to memorize previous stress events. METHOD To identify the strategies underlying these plant responses to water stress events, pea plants were grown in controlled conditions under optimal water treatment and different types of water stress; transient (during vegetative or reproductive periods), recurrent, and continuous (throughout the plant growth cycle). Traits related to water, carbon, and ionome uptake and uses were measured and allowed the identification typical plant strategies to cope with water stress. CONCLUSION Our results highlighted (i) the common responses to the three types of water stress in shoots, involving manganese (Mn) in particular, (ii) the potential implications of boron (B) for root architecture modification under continuous stress, and (iii) the establishment of an "ecophysiological imprint" in the root system via an increase in nodule numbers during the recovery period.
Collapse
Affiliation(s)
- Cécile Jacques
- Agroécologie, INRAE, Institut Agro, Univ. Bourgogne, Univ. Bourgogne Franche-Comté, Dijon, France
| | - Sylvie Girodet
- Agroécologie, INRAE, Institut Agro, Univ. Bourgogne, Univ. Bourgogne Franche-Comté, Dijon, France
| | - Fanny Leroy
- Plateforme PLATIN’, US EMerode, Normandie Université, Unicaen, Caen, France
| | - Sylvain Pluchon
- Laboratoire de Nutrition Végétale, Centre Mondial de l’Innovation Roullier, TIMAC AGRO, Saint Malo, France
| | - Christophe Salon
- Agroécologie, INRAE, Institut Agro, Univ. Bourgogne, Univ. Bourgogne Franche-Comté, Dijon, France
| | - Marion Prudent
- Agroécologie, INRAE, Institut Agro, Univ. Bourgogne, Univ. Bourgogne Franche-Comté, Dijon, France
| |
Collapse
|
3
|
Zhu Q, Yang Y, Xiao Y, Han W, Li X, Wang W, Kuang T, Shen JR, Han G. Effects of mutations of D1-R323, D1-N322, D1-D319, D1-H304 on the functioning of photosystem II in Thermosynechococcus vulcanus. PHOTOSYNTHESIS RESEARCH 2022; 152:193-206. [PMID: 35503495 DOI: 10.1007/s11120-022-00920-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/07/2022] [Accepted: 04/11/2022] [Indexed: 06/14/2023]
Abstract
Photosystem II (PSII) has a number of hydrogen-bonding networks connecting the manganese cluster with the lumenal bulk solution. The structure of PSII from Thermosynechococcus vulcanus (T. vulcanus) showed that D1-R323, D1-N322, D1-D319 and D1-H304 are involved in one of these hydrogen-bonding networks located in the interfaces between the D1, CP43 and PsbV subunits. In order to investigate the functions of these residues in PSII, we generated seven site-directed mutants D1-R323A, D1-R323E, D1-N322R, D1-D319L, D1-D319R, D1-D319Y and D1-H304D of T. vulcanus and examined the effects of these mutations on the growth and functions of the oxygen-evolving complex. The photoautotrophic growth rates of these mutants were similar to that of the wild type, whereas the oxygen-evolving activities of the mutant cells were decreased differently to 63-91% of that of the wild type at pH 6.5. The mutant cells showed a higher relative activity at higher pH region than the wild type cells, suggesting that higher pH facilitated proton egress in the mutants. In addition, oxygen evolution of thylakoid membranes isolated from these mutants showed an apparent decrease compared to that of the cells. This is due to the loss of PsbU during purification of the thylakoid membranes. Moreover, PsbV was also lost in the PSII core complexes purified from the mutants. Taken together, D1-R323, D1-N322, D1-D319 and D1-H304 are vital for the optimal function of oxygen evolution and functional binding of extrinsic proteins to PSII core, and may be involved in the proton egress pathway mediated by YZ.
Collapse
Affiliation(s)
- Qingjun Zhu
- Photosynthesis Research Center, Key Laboratory of Photobiology, Institute of Botany, Chinese Academy of Sciences, No. 20, Nanxincun, Xiangshan, Beijing, 100093, China
- University of Chinese Academy of Sciences, Yuquan Rd, Shijingshan District, Beijing, 100049, China
| | - Yanyan Yang
- Photosynthesis Research Center, Key Laboratory of Photobiology, Institute of Botany, Chinese Academy of Sciences, No. 20, Nanxincun, Xiangshan, Beijing, 100093, China
| | - Yanan Xiao
- Photosynthesis Research Center, Key Laboratory of Photobiology, Institute of Botany, Chinese Academy of Sciences, No. 20, Nanxincun, Xiangshan, Beijing, 100093, China
- University of Chinese Academy of Sciences, Yuquan Rd, Shijingshan District, Beijing, 100049, China
| | - Wenhui Han
- Photosynthesis Research Center, Key Laboratory of Photobiology, Institute of Botany, Chinese Academy of Sciences, No. 20, Nanxincun, Xiangshan, Beijing, 100093, China
- University of Chinese Academy of Sciences, Yuquan Rd, Shijingshan District, Beijing, 100049, China
| | - Xingyue Li
- Photosynthesis Research Center, Key Laboratory of Photobiology, Institute of Botany, Chinese Academy of Sciences, No. 20, Nanxincun, Xiangshan, Beijing, 100093, China
- University of Chinese Academy of Sciences, Yuquan Rd, Shijingshan District, Beijing, 100049, China
| | - Wenda Wang
- Photosynthesis Research Center, Key Laboratory of Photobiology, Institute of Botany, Chinese Academy of Sciences, No. 20, Nanxincun, Xiangshan, Beijing, 100093, China
| | - Tingyun Kuang
- Photosynthesis Research Center, Key Laboratory of Photobiology, Institute of Botany, Chinese Academy of Sciences, No. 20, Nanxincun, Xiangshan, Beijing, 100093, China
| | - Jian-Ren Shen
- Photosynthesis Research Center, Key Laboratory of Photobiology, Institute of Botany, Chinese Academy of Sciences, No. 20, Nanxincun, Xiangshan, Beijing, 100093, China.
- The Innovative Academy of Seed Design, Chinese Academy of Sciences, No.1 Beichen West Rd., Beijing, 100101, China.
- Institute for Interdisciplinary Science, Graduate School of Natural Science and Technology, Okayama University, Tsushima Naka 3-1-1, Okayama, 700-8530, Japan.
| | - Guangye Han
- Photosynthesis Research Center, Key Laboratory of Photobiology, Institute of Botany, Chinese Academy of Sciences, No. 20, Nanxincun, Xiangshan, Beijing, 100093, China.
| |
Collapse
|
4
|
Ceballos-Laita L, Takahashi D, Uemura M, Abadía J, López-Millán AF, Rodríguez-Celma J. Effects of Fe and Mn Deficiencies on the Root Protein Profiles of Tomato ( Solanum lycopersicum) Using Two-Dimensional Electrophoresis and Label-Free Shotgun Analyses. Int J Mol Sci 2022; 23:ijms23073719. [PMID: 35409079 PMCID: PMC8998858 DOI: 10.3390/ijms23073719] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Revised: 03/23/2022] [Accepted: 03/26/2022] [Indexed: 12/04/2022] Open
Abstract
Iron (Fe) and manganese (Mn) are two essential elements for plants that compete for the same uptake transporters and show conflicting interactions at the regulatory level. In order to understand the differential response to both metal deficiencies in plants, two proteomic techniques (two-dimensional gel electrophoresis and label-free shotgun) were used to study the proteome profiles of roots from tomato plants grown under Fe or Mn deficiency. A total of 119 proteins changing in relative abundance were confidently quantified and identified, including 35 and 91 in the cases of Fe deficiency and Mn deficiency, respectively, with 7 of them changing in both deficiencies. The identified proteins were categorized according to function, and GO-enrichment analysis was performed. Data showed that both deficiencies provoked a common and intense cell wall remodelling. However, the response observed for Fe and Mn deficiencies differed greatly in relation to oxidative stress, coumarin production, protein, nitrogen, and energy metabolism.
Collapse
Affiliation(s)
- Laura Ceballos-Laita
- Plant Stress Physiology Group, Plant Nutrition Department, Aula Dei Experimental Station, CSIC, 50059 Zaragoza, Spain; (L.C.-L.); (J.A.); (A.F.L.-M.)
| | - Daisuke Takahashi
- United Graduate School of Agricultural Sciences, Iwate University, Morioka 020-8550, Japan; (D.T.); (M.U.)
- Department of Plant-Bioscience, Faculty of Agriculture, Iwate University, Morioka 020-8550, Japan
| | - Matsuo Uemura
- United Graduate School of Agricultural Sciences, Iwate University, Morioka 020-8550, Japan; (D.T.); (M.U.)
- Department of Plant-Bioscience, Faculty of Agriculture, Iwate University, Morioka 020-8550, Japan
| | - Javier Abadía
- Plant Stress Physiology Group, Plant Nutrition Department, Aula Dei Experimental Station, CSIC, 50059 Zaragoza, Spain; (L.C.-L.); (J.A.); (A.F.L.-M.)
| | - Ana Flor López-Millán
- Plant Stress Physiology Group, Plant Nutrition Department, Aula Dei Experimental Station, CSIC, 50059 Zaragoza, Spain; (L.C.-L.); (J.A.); (A.F.L.-M.)
| | - Jorge Rodríguez-Celma
- Plant Stress Physiology Group, Plant Nutrition Department, Aula Dei Experimental Station, CSIC, 50059 Zaragoza, Spain; (L.C.-L.); (J.A.); (A.F.L.-M.)
- Correspondence:
| |
Collapse
|
5
|
Zhang J, Zhang Z, Liu W, Li L, Han L, Xu L, Zhao Y. Transcriptome Analysis Revealed a Positive Role of Ethephon on Chlorophyll Metabolism of Zoysia japonica under Cold Stress. PLANTS (BASEL, SWITZERLAND) 2022; 11:plants11030442. [PMID: 35161421 PMCID: PMC8839986 DOI: 10.3390/plants11030442] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Revised: 01/30/2022] [Accepted: 02/03/2022] [Indexed: 05/18/2023]
Abstract
Zoysia japonica is a warm-season turfgrass with a good tolerance and minimal maintenance requirements. However, its use in Northern China is limited due to massive chlorophyll loss in early fall, which is the main factor affecting its distribution and utilization. Although ethephon treatment at specific concentrations has reportedly improved stress tolerance and extended the green period in turfgrass, the potential mechanisms underlying this effect are not clear. In this study, we evaluated and analyzed chlorophyll changes in the physiology and transcriptome of Z. japonica plants in response to cold stress (4 °C) with and without ethephon pretreatment. Based on the transcriptome and chlorophyll content analysis, ethephon pretreatment increased the leaf chlorophyll content under cold stress by affecting two processes: the stimulation of chlorophyll synthesis by upregulating ZjMgCH2 and ZjMgCH3 expression; and the suppression of chlorophyll degradation by downregulating ZjPAO, ZjRCCR, and ZjSGR expression. Furthermore, ethephon pretreatment increased the ratio of chlorophyll a to chlorophyll b in the leaves under cold stress, most likely by suppressing the conversion of chlorophyll a to chlorophyll b due to decreased chlorophyll b synthesis via downregulation of ZjCAO. Additionally, the inhibition of chlorophyll b synthesis may result in energy redistribution between photosystem II and photosystem I.
Collapse
Affiliation(s)
- Jiahang Zhang
- College of Grassland Science, Beijing Forestry University, Beijing 100083, China; (J.Z.); (Z.Z.); (W.L.); (L.L.); (L.H.)
| | - Zhiwei Zhang
- College of Grassland Science, Beijing Forestry University, Beijing 100083, China; (J.Z.); (Z.Z.); (W.L.); (L.L.); (L.H.)
- CCTEG Ecological Environment Technology Co., Ltd., Beijing 100013, China
| | - Wen Liu
- College of Grassland Science, Beijing Forestry University, Beijing 100083, China; (J.Z.); (Z.Z.); (W.L.); (L.L.); (L.H.)
| | - Lijing Li
- College of Grassland Science, Beijing Forestry University, Beijing 100083, China; (J.Z.); (Z.Z.); (W.L.); (L.L.); (L.H.)
| | - Liebao Han
- College of Grassland Science, Beijing Forestry University, Beijing 100083, China; (J.Z.); (Z.Z.); (W.L.); (L.L.); (L.H.)
| | - Lixin Xu
- College of Grassland Science, Beijing Forestry University, Beijing 100083, China; (J.Z.); (Z.Z.); (W.L.); (L.L.); (L.H.)
- Correspondence: (L.X.); (Y.Z.)
| | - Yuhong Zhao
- Animal Science College, Tibet Agriculture & Animal Husbandry University, Nyingchi 860000, China
- Correspondence: (L.X.); (Y.Z.)
| |
Collapse
|
6
|
Xue Y, Chen J, Li X, Liu Y. Transcriptome analysis of soybean leaves response to manganese toxicity. BIOTECHNOL BIOTEC EQ 2021. [DOI: 10.1080/13102818.2021.1950566] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022] Open
Affiliation(s)
- Yingbin Xue
- Department of Resources and Environmental Sciences, College of Chemistry and Environment, Guangdong Ocean University, Zhanjiang, Guangdong, P.R. China
| | - Jingye Chen
- Department of Biotechnology, College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang, Guangdong, P.R. China
| | - Xiaohao Li
- Department of Biotechnology, College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang, Guangdong, P.R. China
| | - Ying Liu
- Department of Biotechnology, College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang, Guangdong, P.R. China
| |
Collapse
|
7
|
Campos C, Nobre T, Goss MJ, Faria J, Barrulas P, Carvalho M. Transcriptome Analysis of Wheat Roots Reveals a Differential Regulation of Stress Responses Related to Arbuscular Mycorrhizal Fungi and Soil Disturbance. BIOLOGY 2019; 8:biology8040093. [PMID: 31835704 PMCID: PMC6956056 DOI: 10.3390/biology8040093] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/06/2019] [Revised: 12/02/2019] [Accepted: 12/06/2019] [Indexed: 02/06/2023]
Abstract
Symbioses with soil microorganisms are central in shaping the diversity and productivity of land plants and provide protection against a diversity of stresses, including metal toxicity. Arbuscular mycorrhizal fungi (AMF) can form extensive extraradical mycelial networks (ERM), which are very efficient in colonizing a new host. We quantified the responses of transcriptomes of wheat and one AMF partner, Rhizoglomus irregulare, to soil disturbance (Undisturbed vs. Disturbed) and to two different preceding mycotrophic species (Ornithopus compressus and Lolium rigidum). Soil disturbance and preceding plant species engender different AMF communities in wheat roots, resulting in a differential tolerance to soil manganese (Mn) toxicity. Soil disturbance negatively impacted wheat growth under manganese toxicity, probably due to the disruption of the ERM, and activated a large number of stress and starvation-related genes. The O. compressus treatment, which induces a greater Mn protection in wheat than L. rigidum, activated processes related to cellular division and growth, and very few related to stress. The L. rigidum treatment mostly induced genes that were related to oxidative stress, disease protection, and metal ion binding. R. irregulare cell division and molecular exchange between nucleus and cytoplasm were increased by O. compressus. These findings are highly relevant for sustainable agricultural systems, when considering a fit-for-purpose symbiosis.
Collapse
Affiliation(s)
- Catarina Campos
- ICAAM—Instituto de Ciências Agrárias e Ambientais Mediterrânicas, Instituto de Investigação e Formação Avançada, Universidade de Évora. Pólo da Mitra, Ap. 94, 7006-554 Évora, Portugal; (T.N.); (J.F.); (M.C.)
- Correspondence: ; Tel.: +351-266-760-885
| | - Tânia Nobre
- ICAAM—Instituto de Ciências Agrárias e Ambientais Mediterrânicas, Instituto de Investigação e Formação Avançada, Universidade de Évora. Pólo da Mitra, Ap. 94, 7006-554 Évora, Portugal; (T.N.); (J.F.); (M.C.)
| | - Michael J. Goss
- School of Environmental Sciences, University of Guelph, Guelph, ON N1G 2W1, Canada;
| | - Jorge Faria
- ICAAM—Instituto de Ciências Agrárias e Ambientais Mediterrânicas, Instituto de Investigação e Formação Avançada, Universidade de Évora. Pólo da Mitra, Ap. 94, 7006-554 Évora, Portugal; (T.N.); (J.F.); (M.C.)
| | - Pedro Barrulas
- Laboratório HERCULES, Universidade de Évora, Largo Marquês de Marialva 8, 7000-809 Évora, Portugal;
| | - Mário Carvalho
- ICAAM—Instituto de Ciências Agrárias e Ambientais Mediterrânicas, Instituto de Investigação e Formação Avançada, Universidade de Évora. Pólo da Mitra, Ap. 94, 7006-554 Évora, Portugal; (T.N.); (J.F.); (M.C.)
| |
Collapse
|
8
|
Hussain A, Nazir F, Fariduddin Q. Polyamines (spermidine and putrescine) mitigate the adverse effects of manganese induced toxicity through improved antioxidant system and photosynthetic attributes in Brassica juncea. CHEMOSPHERE 2019; 236:124830. [PMID: 31549671 DOI: 10.1016/j.chemosphere.2019.124830] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/27/2019] [Revised: 09/05/2019] [Accepted: 09/09/2019] [Indexed: 05/09/2023]
Abstract
Polyamines (PAs) are recognized as plant growth regulators that are involved in the stress management in various crops. In the current study, mitigative roles of spermidine (Spd) and putrescine (Put) were assessed in manganese (Mn) stressed Brassica juncea plants. Spd or Put (1.0 mM) were applied to the foliage of Brassica juncea at 35 days after sowing (DAS) grown in the presence of Mn (30 or 150 mg kg-1 soil). The higher level of Mn (150 mg kg-1) diminished photosynthetic attributes and growth, enhanced the production of reactive oxygen species (ROS) like hydrogen peroxide (H2O2) and superoxide anion ( [Formula: see text] ) content, affected stomatal movement and increased the Mn concentration in roots and shoots of the plant at 45 DAS, whereas it enhanced the activities of various antioxidant enzymes and proline content in the foliage of Brassica juncea plants. On the other hand, treatment of PAs (Spd or Put) to Mn stressed as well as non-stressed plants resulted in a remarkable improvement in the stomatal behaviour, photosynthetic attributes, growth and biochemical traits, decreased the production of ROS (H2O2 and [Formula: see text] ) and concentration of Mn in different parts of plant. It is concluded that out of the two polyamines (Spd or Put), Spd proved more efficient and enhanced growth, photosynthesis, and metabolic state of the plants which bestowed tolerance and helped the plants to cope efficiently under Mn stress.
Collapse
Affiliation(s)
- Anjuman Hussain
- Plant Physiology and Biochemistry Section, Department of Botany, Faculty of Life Sciences, Aligarh Muslim University, Aligarh, 202 002, India
| | - Faroza Nazir
- Plant Physiology and Biochemistry Section, Department of Botany, Faculty of Life Sciences, Aligarh Muslim University, Aligarh, 202 002, India
| | - Qazi Fariduddin
- Plant Physiology and Biochemistry Section, Department of Botany, Faculty of Life Sciences, Aligarh Muslim University, Aligarh, 202 002, India.
| |
Collapse
|
9
|
Berríos GA, Luengo Escobar A, Alberdi MR, Nunes-Nesi A, Reyes-Díaz MM. Manganese toxicity amelioration by phosphorus supply in contrasting Mn resistant genotypes of ryegrass. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2019; 144:144-156. [PMID: 31563755 DOI: 10.1016/j.plaphy.2019.09.034] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2019] [Revised: 09/19/2019] [Accepted: 09/20/2019] [Indexed: 06/10/2023]
Abstract
We evaluated whether phosphorus (P) ameliorates manganese (Mn) excess harmful effects on photosynthetic performance, growth, oxidative stress, and antioxidants in ryegrass. Two perennial ryegrass genotypes, Banquet-II as Mn-resistant and One-50 as Mn-sensitive genotype, were growth under hydroponic conditions subjected to increased P (25, 50, 100, 200 and 400 μM), excess (750 μM) and sufficient Mn (2.4 μM) for 15 days. Growth rate, lipid peroxidation (LP), enzymatic and non-enzymatic antioxidants, photosynthetic parameters, and pigments were determined. Significant reduction of photosynthesis and growth in One-50 was observed under Mn-excess combined with low and adequate P, recovering under greater P-doses. The P concentration of both genotypes was enhanced towards increased P-supply, regardless of Mn treatments. Shoots Mn-concentration remained constant in both genotypes under Mn-excess, independently of P-levels; meanwhile, Banquet-II roots Mn-concentration increased 23% by P-supply. Furthermore, Banquet-II roots showed higher superoxide dismutase (SOD) activity than One-50, which increased towards the highest P dose under sufficient and excess of Mn. A high dose of phosphorus amendment alleviated Mn-toxicity in Mn-sensitive genotype (One-50). Besides, in the Mn-resistant genotype, enhanced plant performance is highlighted, explained by a high Mn-accumulation in roots and increased SOD activity, decreasing Mn translocation to shoots and therefore protecting the photosynthetic apparatus.
Collapse
Affiliation(s)
- Graciela A Berríos
- Center of Plant-Soil Interaction and Natural Resources Biotechnology, Scientific and Technological Bioresource Nucleus (BIOREN), Universidad de La Frontera, Temuco, Chile
| | - Ana Luengo Escobar
- Center of Plant-Soil Interaction and Natural Resources Biotechnology, Scientific and Technological Bioresource Nucleus (BIOREN), Universidad de La Frontera, Temuco, Chile
| | - Miren R Alberdi
- Center of Plant-Soil Interaction and Natural Resources Biotechnology, Scientific and Technological Bioresource Nucleus (BIOREN), Universidad de La Frontera, Temuco, Chile; Departamento de Ciencias Químicas y Recursos Naturales, Facultad de Ingeniería y Ciencias, Universidad de La Frontera, P.O. Box 54-D, Temuco, Chile
| | - Adriano Nunes-Nesi
- Departamento de Biologia Vegetal, Universidade Federal de Viçosa, 36570-900, Viçosa, Minas Gerais, Brazil
| | - Marjorie M Reyes-Díaz
- Center of Plant-Soil Interaction and Natural Resources Biotechnology, Scientific and Technological Bioresource Nucleus (BIOREN), Universidad de La Frontera, Temuco, Chile; Departamento de Ciencias Químicas y Recursos Naturales, Facultad de Ingeniería y Ciencias, Universidad de La Frontera, P.O. Box 54-D, Temuco, Chile.
| |
Collapse
|
10
|
Advances in the Mechanisms of Plant Tolerance to Manganese Toxicity. Int J Mol Sci 2019; 20:ijms20205096. [PMID: 31615142 PMCID: PMC6834138 DOI: 10.3390/ijms20205096] [Citation(s) in RCA: 76] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2019] [Revised: 10/12/2019] [Accepted: 10/12/2019] [Indexed: 12/17/2022] Open
Abstract
Manganese (Mn) is an essential element for plant growth due to its participation in a series of physiological and metabolic processes. Mn is also considered a heavy metal that causes phytotoxicity when present in excess, disrupting photosynthesis and enzyme activity in plants. Thus, Mn toxicity is a major constraint limiting plant growth and production, especially in acid soils. To cope with Mn toxicity, plants have evolved a wide range of adaptive strategies to improve their growth under this stress. Mn tolerance mechanisms include activation of the antioxidant system, regulation of Mn uptake and homeostasis, and compartmentalization of Mn into subcellular compartments (e.g., vacuoles, endoplasmic reticulum, Golgi apparatus, and cell walls). In this regard, numerous genes are involved in specific pathways controlling Mn detoxification. Here, we summarize the recent advances in the mechanisms of Mn toxicity tolerance in plants and highlight the roles of genes responsible for Mn uptake, translocation, and distribution, contributing to Mn detoxification. We hope this review will provide a comprehensive understanding of the adaptive strategies of plants to Mn toxicity through gene regulation, which will aid in breeding crop varieties with Mn tolerance via genetic improvement approaches, enhancing the yield and quality of crops.
Collapse
|
11
|
Hussain A, Nazir F, Fariduddin Q. 24-epibrassinolide and spermidine alleviate Mn stress via the modulation of root morphology, stomatal behavior, photosynthetic attributes and antioxidant defense in Brassica juncea. PHYSIOLOGY AND MOLECULAR BIOLOGY OF PLANTS : AN INTERNATIONAL JOURNAL OF FUNCTIONAL PLANT BIOLOGY 2019; 25:905-919. [PMID: 31404216 PMCID: PMC6656853 DOI: 10.1007/s12298-019-00672-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/08/2019] [Revised: 04/01/2019] [Accepted: 05/01/2019] [Indexed: 05/19/2023]
Abstract
Brassinosteroids and polyamines are generally used to surpass different abiotic stresses like heavy metal toxicity in plants. The current study was conducted with an aim that 24-epibrassinolide (EBL) and/or spermidine (Spd) could modify root morphology, movement of stomata, cell viability, photosynthetic effectiveness, carbonic anhydrase and antioxidant enzyme activities in Brassica juncea under manganese (Mn) stress (30 or 150 mg kg-1 soil). EBL (10-8 M) and/or Spd, (1.0 mM) were applied to the foliage of B. juncea plants at 35 days after sowing (DAS), grown in the presence of Mn (30 or 150 mg kg-1 soil). High Mn concentration (150 mg kg-1 soil) altered root morphology, affected stomatal movement, reduced the viability of cells and photosynthetic effectiveness and increased the production of reactive oxygen species (O2 ·- and H2O2) in the leaves and antioxidant defense system of B. juncea at 45 DAS. Furthermore, exogenous treatment of EBL and Spd under stress and stress- free conditions improved the aforesaid traits while decreased the O2 ·- and H2O2 production. Therefore, EBL and Spd could be applied to the foliage of B. juncea plants for the better growth under metal stress.
Collapse
Affiliation(s)
- Anjuman Hussain
- Plant Physiology and Biochemistry Section, Department of Botany, Faculty of Life Sciences, Aligarh Muslim University, Aligarh, 202002 India
| | - Faroza Nazir
- Plant Physiology and Biochemistry Section, Department of Botany, Faculty of Life Sciences, Aligarh Muslim University, Aligarh, 202002 India
| | - Qazi Fariduddin
- Plant Physiology and Biochemistry Section, Department of Botany, Faculty of Life Sciences, Aligarh Muslim University, Aligarh, 202002 India
| |
Collapse
|
12
|
Genome-wide association study to identify candidate loci and genes for Mn toxicity tolerance in rice. PLoS One 2018; 13:e0192116. [PMID: 29425206 PMCID: PMC5806864 DOI: 10.1371/journal.pone.0192116] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2017] [Accepted: 01/18/2018] [Indexed: 11/19/2022] Open
Abstract
Manganese (Mn) is an essential micro-nutrient for plants, but flooded rice fields can accumulate high levels of Mn2+ leading to Mn toxicity. Here, we present a genome-wide association study (GWAS) to identify candidate loci conferring Mn toxicity tolerance in rice (Oryza sativa L.). A diversity panel of 288 genotypes was grown in hydroponic solutions in a greenhouse under optimal and toxic Mn concentrations. We applied a Mn toxicity treatment (5 ppm Mn2+, 3 weeks) at twelve days after transplanting. Mn toxicity caused moderate damage in rice in terms of biomass loss and symptom formation despite extremely high shoot Mn concentrations ranging from 2.4 to 17.4 mg g-1. The tropical japonica subpopulation was more sensitive to Mn toxicity than other subpopulations. Leaf damage symptoms were significantly correlated with Mn uptake into shoots. Association mapping was conducted for seven traits using 416741 single nucleotide polymorphism (SNP) markers using a mixed linear model, and detected six significant associations for the traits shoot manganese concentration and relative shoot length. Candidate regions contained genes coding for a heavy metal transporter, peroxidase precursor and Mn2+ ion binding proteins. The significant marker SNP-2.22465867 caused an amino acid change in a gene (LOC_Os02g37170) with unknown function. This study demonstrated significant natural variation in rice for Mn toxicity tolerance and the possibility of using GWAS to unravel genetic factors responsible for such complex traits.
Collapse
|
13
|
Mills AJ, Milewski AV, Snyman D, Jordaan JJ. Effects of anabolic and catabolic nutrients on woody plant encroachment after long-term experimental fertilization in a South African savanna. PLoS One 2017; 12:e0179848. [PMID: 28662068 PMCID: PMC5491051 DOI: 10.1371/journal.pone.0179848] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2017] [Accepted: 06/04/2017] [Indexed: 11/18/2022] Open
Abstract
The causes of the worldwide problem of encroachment of woody plants into grassy vegetation are elusive. The effects of soil nutrients on competition between herbaceous and woody plants in various landscapes are particularly poorly understood. A long-term experiment of 60 plots in a South African savanna, comprising annual applications of ammonium sulphate (146-1166 kg ha-1 yr-1) and superphosphate (233-466 kg ha-1 yr-1) over three decades, and subsequent passive protection over another three decades, during which indigenous trees encroached on different plots to extremely variable degrees, provided an opportunity to investigate relationships between soil properties and woody encroachment. All topsoils were analysed for pH, acidity, EC, water-dispersible clay, Na, Mg, K, Ca, P, S, C, N, NH4, NO3, B, Mn, Cu and Zn. Applications of ammonium sulphate (AS), but not superphosphate (SP), greatly constrained tree abundance relative to control plots. Differences between control plots and plots that had received maximal AS application were particularly marked (16.3 ± 5.7 versus 1.2 ± 0.8 trees per plot). Soil properties most affected by AS applications included pH (H2O) (control to maximal AS application: 6.4 ± 0.1 to 5.1 ± 0.2), pH (KCl) (5.5 ± 0.2 to 4.0 ± 0.1), acidity (0.7 ± 0.1 to 2.6 ± 0.3 cmol kg-1), acid saturation (8 ± 2 to 40 ± 5%), Mg (386 ± 25 to 143 ± 15 mg kg-1), Ca (1022 ± 180 to 322 ± 14 mg kg-1), Mn (314 ± 11 to 118 ± 9 mg kg-1), Cu (3.6 ± 0.3 to 2.3 ± 0.2 mg kg-1) and Zn (6.6 ± 0.4 to 3.7 ± 0.4 mg kg-1). Magnesium, B, Mn and Cu were identified using principal component analysis, boundary line analysis and Kruskal-Wallis rank sum tests as the nutrients most likely to be affecting tree abundance. The ratio Mn/Cu was most related to tree abundance across the experiment, supporting the hypothesis that competition between herbaceous and woody plants depends on the availability of anabolic relative to catabolic nutrients. These findings, based on more than six decades of experimentation, may have global significance for the theoretical understanding of changes in vegetation structure and thus the practical control of invasive woody plants.
Collapse
Affiliation(s)
- Anthony J. Mills
- Department of Soil Science, Stellenbosch University, Matieland, South Africa
- * E-mail:
| | - Antoni V. Milewski
- Percy FitzPatrick Institute, DST/NRF Centre of Excellence, University of Cape Town, Rondebosch, South Africa
| | | | | |
Collapse
|
14
|
Paschenko VZ, Churin AA, Gorokhov VV, Grishanova NP, Korvatovskii BN, Maksimov EG, Mamedov MD. The efficiency of non-photochemical fluorescence quenching by cation radicals in photosystem II reaction centers. PHOTOSYNTHESIS RESEARCH 2016; 130:325-333. [PMID: 27075994 DOI: 10.1007/s11120-016-0260-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/15/2016] [Accepted: 04/04/2016] [Indexed: 06/05/2023]
Abstract
In a direct experiment, the rate constants of photochemical k p and non-photochemical k p+ quenching of the chlorophyll fluorescence have been determined in spinach photosystem II (PS II) membrane fragments, oxygen-evolving PS II core, as well as manganese-depleted PS II particles using pulse fluorimetry. In the dark-adapted reaction center(s) (RC), the fluorescence decay kinetics of the antenna were measured at low-intensity picosecond pulsed excitation. To create a "closed" P680+Q A- state, RCs were illuminated by high-intensity actinic flash 8 ns prior to the measuring flash. The obtained data were approximated by the sum of two decaying exponents. It was found that the antennae fluorescence quenching efficiency by the oxidized photoactive pigment of RC P680+ was about 1.5 times higher than that of the neutral P680 state. These results were confirmed by a single-photon counting technique, which allowed to resolve the additional slow component of the fluorescence decay. Slow component was assigned to the charge recombination of P680+Pheo- in PS II RC. Thus, for the first time, the ratio k p+ /k p ≅ 1.5 was found directly. The mechanism of the higher efficiency of non-photochemical quenching comparing to photochemical quenching is discussed.
Collapse
Affiliation(s)
- V Z Paschenko
- Biophysical Department, Faculty of Biology, M.V.Lomonosov Moscow State University, Leninskye Gory 1, Build. 12, Moscow, Russia, 119234.
| | - A A Churin
- Biophysical Department, Faculty of Biology, M.V.Lomonosov Moscow State University, Leninskye Gory 1, Build. 12, Moscow, Russia, 119234
| | - V V Gorokhov
- Biophysical Department, Faculty of Biology, M.V.Lomonosov Moscow State University, Leninskye Gory 1, Build. 12, Moscow, Russia, 119234
| | - N P Grishanova
- Biophysical Department, Faculty of Biology, M.V.Lomonosov Moscow State University, Leninskye Gory 1, Build. 12, Moscow, Russia, 119234
| | - B N Korvatovskii
- Biophysical Department, Faculty of Biology, M.V.Lomonosov Moscow State University, Leninskye Gory 1, Build. 12, Moscow, Russia, 119234
| | - E G Maksimov
- Biophysical Department, Faculty of Biology, M.V.Lomonosov Moscow State University, Leninskye Gory 1, Build. 12, Moscow, Russia, 119234
| | - M D Mamedov
- A.N.Belozersky Institute of Physico-Chemical Biology, Moscow State University, Leninskye Gory 1, Build. 40, Moscow, Russia, 119992
| |
Collapse
|
15
|
Zaltariov MF, Cazacu M, Sacarescu L, Vlad A, Novitchi G, Train C, Shova S, Arion VB. Oxime-Bridged Mn6 Clusters Inserted in One-Dimensional Coordination Polymer. Macromolecules 2016. [DOI: 10.1021/acs.macromol.6b01149] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
| | - Maria Cazacu
- “Petru
Poni” Institute of Macromolecular Chemistry, Aleea Gr. Ghica Voda 41A, 700487 Iasi, Romania
| | - Liviu Sacarescu
- “Petru
Poni” Institute of Macromolecular Chemistry, Aleea Gr. Ghica Voda 41A, 700487 Iasi, Romania
| | - Angelica Vlad
- “Petru
Poni” Institute of Macromolecular Chemistry, Aleea Gr. Ghica Voda 41A, 700487 Iasi, Romania
| | - Ghenadie Novitchi
- Laboratoire National des Champs Magnétiques Intenses, CNRSUPR 3228, Univ. Grenoble-Alpes, 25 Rue
des Martyrs, 38042 Grenoble, France
| | - Cyrille Train
- Laboratoire National des Champs Magnétiques Intenses, CNRSUPR 3228, Univ. Grenoble-Alpes, 25 Rue
des Martyrs, 38042 Grenoble, France
| | - Sergiu Shova
- “Petru
Poni” Institute of Macromolecular Chemistry, Aleea Gr. Ghica Voda 41A, 700487 Iasi, Romania
| | - Vladimir B. Arion
- Institute of Inorganic Chemistry, University of Vienna, Währinger Str. 42, 1090 Vienna, Austria
| |
Collapse
|
16
|
Wang C, Xu W, Jin H, Zhang T, Lai J, Zhou X, Zhang S, Liu S, Duan X, Wang H, Peng C, Yang C. A Putative Chloroplast-Localized Ca(2+)/H(+) Antiporter CCHA1 Is Involved in Calcium and pH Homeostasis and Required for PSII Function in Arabidopsis. MOLECULAR PLANT 2016; 9:1183-1196. [PMID: 27302341 DOI: 10.1016/j.molp.2016.05.015] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/05/2016] [Revised: 05/25/2016] [Accepted: 05/30/2016] [Indexed: 05/18/2023]
Abstract
Calcium is important for chloroplast, not only in its photosynthetic but also nonphotosynthetic functions. Multiple Ca(2+)/H(+) transporters and channels have been described and studied in the plasma membrane and organelle membranes of plant cells; however, the molecular identity and physiological roles of chloroplast Ca(2+)/H(+) antiporters have remained unknown. Here we report the identification and characterization of a member of the UPF0016 family, CCHA1 (a chloroplast-localized potential Ca(2+)/H(+) antiporter), in Arabidopsis thaliana. We observed that the ccha1 mutant plants developed pale green leaves and showed severely stunted growth along with impaired photosystem II (PSII) function. CCHA1 localizes to the chloroplasts, and the levels of the PSII core subunits and the oxygen-evolving complex were significantly decreased in the ccha1 mutants compared with the wild type. In high Ca(2+) concentrations, Arabidopsis CCHA1 partially rescued the growth defect of yeast gdt1Δ null mutant, which is defective in a Ca(2+)/H(+) antiporter. The ccha1 mutant plants also showed significant sensitivity to high concentrations of CaCl2 and MnCl2, as well as variation in pH. Taken these results together, we propose that CCHA1 might encode a putative chloroplast-localized Ca(2+)/H(+) antiporter with critical functions in the regulation of PSII and in chloroplast Ca(2+) and pH homeostasis in Arabidopsis.
Collapse
Affiliation(s)
- Chao Wang
- Guangdong Key Lab of Biotechnology for Plant Development, College of Life Science, South China Normal University, Guangzhou 510631, China
| | - Weitao Xu
- Guangdong Key Lab of Biotechnology for Plant Development, College of Life Science, South China Normal University, Guangzhou 510631, China
| | - Honglei Jin
- State Key Laboratory of Biocontrol and Guangdong Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, China
| | - Taijie Zhang
- Guangdong Key Lab of Biotechnology for Plant Development, College of Life Science, South China Normal University, Guangzhou 510631, China
| | - Jianbin Lai
- Guangdong Key Lab of Biotechnology for Plant Development, College of Life Science, South China Normal University, Guangzhou 510631, China
| | - Xuan Zhou
- Guangdong Key Lab of Biotechnology for Plant Development, College of Life Science, South China Normal University, Guangzhou 510631, China
| | - Shengchun Zhang
- Guangdong Key Lab of Biotechnology for Plant Development, College of Life Science, South China Normal University, Guangzhou 510631, China
| | - Shengjie Liu
- Guangdong Key Lab of Biotechnology for Plant Development, College of Life Science, South China Normal University, Guangzhou 510631, China
| | - Xuewu Duan
- Key Laboratory of Plant Resource Conservation and Sustainable Utilization, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, Guangdong Province 510650, China
| | - Hongbin Wang
- State Key Laboratory of Biocontrol and Guangdong Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, China
| | - Changlian Peng
- Guangdong Key Lab of Biotechnology for Plant Development, College of Life Science, South China Normal University, Guangzhou 510631, China
| | - Chengwei Yang
- Guangdong Key Lab of Biotechnology for Plant Development, College of Life Science, South China Normal University, Guangzhou 510631, China.
| |
Collapse
|
17
|
Chen Z, Yan W, Sun L, Tian J, Liao H. Proteomic analysis reveals growth inhibition of soybean roots by manganese toxicity is associated with alteration of cell wall structure and lignification. J Proteomics 2016; 143:151-160. [PMID: 27045940 DOI: 10.1016/j.jprot.2016.03.037] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2015] [Revised: 03/14/2016] [Accepted: 03/23/2016] [Indexed: 01/24/2023]
Abstract
UNLABELLED Plant roots, the hidden half of plants, play a vital role in manganese (Mn) toxicity tolerance. However, molecular mechanisms underlying root adaptation to Mn toxicity remain largely unknown. In this study, soybean (Glycine max) was used to investigate alterations of root morphology and protein profiles in response to Mn toxicity. Results showed that soybean root growth was significantly inhibited by Mn toxicity. Subsequent proteomic analysis revealed that 31 proteins were successfully identified via MALDI TOF/TOF MS analysis including 21 unique up-regulated and 6 unique down-regulated proteins, which are mainly related to cell wall metabolism, protein metabolism and signal transduction. qRT-PCR analysis revealed that corresponding gene transcription patterns were correlated with accumulation of 14 of 21 up-regulated proteins, but only 1 of 6 down-regulated proteins, suggesting that most excess Mn up-regulated proteins are controlled at the transcriptional levels, while down-regulated proteins are controlled at the post-transcriptional levels. Furthermore, changes in abundances of GTP-binding nuclear protein Ran-3, expansin-like B1-like protein, dirigent protein and peroxidase 5-like protein strongly suggested that alteration of root cell wall structure and lignification might be associated with inhibited root growth. Taken together, this study was helpful to further understandings of adaptive strategies of legume roots to Mn toxicity. SIGNIFICANCE This study highlighted the effects of Mn toxicity on soybean root growth and its proteome profiles. Excess Mn treatments inhibited root growth. Comparative proteomic analysis was performed to analyze the changes in protein profiles of soybean roots in response to Mn toxicity. A total of 31 root proteins with differential abundances were identified and predominantly associated with signal transduction and cell wall metabolism. Among them, the abundances of the GTP-binding nuclear protein Ran-3 and Ran-binding protein 1 were significantly increased, suggesting that the proteins could be involved in the signaling network in soybean roots responsive to Mn toxicity. Interestingly, three 14-3-3 proteins were decreased by excess Mn at protein but not mRNA levels, suggesting that these proteins could be regulated at post-transcriptional modification under Mn excess conditions. Furthermore, changes in abundances of expansin-like B1-like protein, peroxidase 5-like protein, dirigent protein 2-like protein and dirigent protein strongly suggested that Mn toxicity could influence root cell wall modification, and thus inhibit root growth. This study provided significant insights into the potential molecular mechanisms underlying soybean root adaptation to Mn toxicity, which was mainly through alteration of root cell wall structure and lignification.
Collapse
Affiliation(s)
- Zhijian Chen
- Root Biology Center, State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, South China Agricultural University, Guangzhou 510642, China; Institute of Tropical Crop Genetic Resources, Chinese Academy of Tropical Agriculture Sciences, Haikou 571101, China
| | - Wei Yan
- Root Biology Center, State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, South China Agricultural University, Guangzhou 510642, China; Institute of Tropical and Subtropical Cash Crops, Yunnan Academy of Agricultural Sciences, Baoshan 678000, China
| | - Lili Sun
- Root Biology Center, State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, South China Agricultural University, Guangzhou 510642, China; Root Biology Center, Haixia Institute of Science and Technology, Fujian Agriculture and Forestry University, Fuzhou 350000, China
| | - Jiang Tian
- Root Biology Center, State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, South China Agricultural University, Guangzhou 510642, China.
| | - Hong Liao
- Root Biology Center, State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, South China Agricultural University, Guangzhou 510642, China; Root Biology Center, Haixia Institute of Science and Technology, Fujian Agriculture and Forestry University, Fuzhou 350000, China.
| |
Collapse
|
18
|
Mamedov MD, Petrova IO, Yanykin DV, Zaspa AA, Semenov AY. Effect of trehalose on oxygen evolution and electron transfer in photosystem 2 complexes. BIOCHEMISTRY (MOSCOW) 2015; 80:61-6. [DOI: 10.1134/s0006297915010071] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
19
|
Chen Z, Sun L, Liu P, Liu G, Tian J, Liao H. Malate synthesis and secretion mediated by a manganese-enhanced malate dehydrogenase confers superior manganese tolerance in Stylosanthes guianensis. PLANT PHYSIOLOGY 2015; 167:176-88. [PMID: 25378694 PMCID: PMC4281010 DOI: 10.1104/pp.114.251017] [Citation(s) in RCA: 63] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/23/2014] [Accepted: 10/31/2014] [Indexed: 05/20/2023]
Abstract
Manganese (Mn) toxicity is a major constraint limiting plant growth on acidic soils. Superior Mn tolerance in Stylosanthes spp. has been well documented, but its molecular mechanisms remain largely unknown. In this study, superior Mn tolerance in Stylosanthes guianensis was confirmed, as reflected by a high Mn toxicity threshold. Furthermore, genetic variation of Mn tolerance was evaluated using two S. guianensis genotypes, which revealed that the Fine-stem genotype had higher Mn tolerance than the TPRC2001-1 genotype, as exhibited through less reduction in dry weight under excess Mn, and accompanied by lower internal Mn concentrations. Interestingly, Mn-stimulated increases in malate concentrations and exudation rates were observed only in the Fine-stem genotype. Proteomic analysis of Fine-stem roots revealed that S. guianensis Malate Dehydrogenase1 (SgMDH1) accumulated in response to Mn toxicity. Western-blot and quantitative PCR analyses showed that Mn toxicity resulted in increased SgMDH1 accumulation only in Fine-stem roots, but not in TPRC2001-1. The function of SgMDH1-mediated malate synthesis was verified through in vitro biochemical analysis of SgMDH1 activities against oxaloacetate, as well as in vivo increased malate concentrations in yeast (Saccharomyces cerevisiae), soybean (Glycine max) hairy roots, and Arabidopsis (Arabidopsis thaliana) with SgMDH1 overexpression. Furthermore, SgMDH1 overexpression conferred Mn tolerance in Arabidopsis, which was accompanied by increased malate exudation and reduced plant Mn concentrations, suggesting that secreted malate could alleviate Mn toxicity in plants. Taken together, we conclude that the superior Mn tolerance of S. guianensis is achieved by coordination of internal and external Mn detoxification through malate synthesis and exudation, which is regulated by SgMDH1 at both transcription and protein levels.
Collapse
Affiliation(s)
- Zhijian Chen
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Root Biology Center, South China Agricultural University, Guangzhou 510642, China (Z.C., L.S., P.L., J.T., H.L.); andInstitute of Tropical Crop Genetic Resources, Chinese Academy of Tropical Agriculture Sciences, College of Agriculture, Hainan University, Haikou 571101, China (L.S., P.L., G.L.)
| | - Lili Sun
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Root Biology Center, South China Agricultural University, Guangzhou 510642, China (Z.C., L.S., P.L., J.T., H.L.); andInstitute of Tropical Crop Genetic Resources, Chinese Academy of Tropical Agriculture Sciences, College of Agriculture, Hainan University, Haikou 571101, China (L.S., P.L., G.L.)
| | - Pandao Liu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Root Biology Center, South China Agricultural University, Guangzhou 510642, China (Z.C., L.S., P.L., J.T., H.L.); andInstitute of Tropical Crop Genetic Resources, Chinese Academy of Tropical Agriculture Sciences, College of Agriculture, Hainan University, Haikou 571101, China (L.S., P.L., G.L.)
| | - Guodao Liu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Root Biology Center, South China Agricultural University, Guangzhou 510642, China (Z.C., L.S., P.L., J.T., H.L.); andInstitute of Tropical Crop Genetic Resources, Chinese Academy of Tropical Agriculture Sciences, College of Agriculture, Hainan University, Haikou 571101, China (L.S., P.L., G.L.)
| | - Jiang Tian
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Root Biology Center, South China Agricultural University, Guangzhou 510642, China (Z.C., L.S., P.L., J.T., H.L.); andInstitute of Tropical Crop Genetic Resources, Chinese Academy of Tropical Agriculture Sciences, College of Agriculture, Hainan University, Haikou 571101, China (L.S., P.L., G.L.)
| | - Hong Liao
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Root Biology Center, South China Agricultural University, Guangzhou 510642, China (Z.C., L.S., P.L., J.T., H.L.); andInstitute of Tropical Crop Genetic Resources, Chinese Academy of Tropical Agriculture Sciences, College of Agriculture, Hainan University, Haikou 571101, China (L.S., P.L., G.L.)
| |
Collapse
|
20
|
|
21
|
Liu J, Chakraborty S, Hosseinzadeh P, Yu Y, Tian S, Petrik I, Bhagi A, Lu Y. Metalloproteins containing cytochrome, iron-sulfur, or copper redox centers. Chem Rev 2014; 114:4366-469. [PMID: 24758379 PMCID: PMC4002152 DOI: 10.1021/cr400479b] [Citation(s) in RCA: 574] [Impact Index Per Article: 57.4] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2013] [Indexed: 02/07/2023]
Affiliation(s)
- Jing Liu
- Department of Chemistry, Department of Biochemistry, and Center for Biophysics
and Computational
Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
| | - Saumen Chakraborty
- Department of Chemistry, Department of Biochemistry, and Center for Biophysics
and Computational
Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
| | - Parisa Hosseinzadeh
- Department of Chemistry, Department of Biochemistry, and Center for Biophysics
and Computational
Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
| | - Yang Yu
- Department of Chemistry, Department of Biochemistry, and Center for Biophysics
and Computational
Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
| | - Shiliang Tian
- Department of Chemistry, Department of Biochemistry, and Center for Biophysics
and Computational
Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
| | - Igor Petrik
- Department of Chemistry, Department of Biochemistry, and Center for Biophysics
and Computational
Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
| | - Ambika Bhagi
- Department of Chemistry, Department of Biochemistry, and Center for Biophysics
and Computational
Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
| | - Yi Lu
- Department of Chemistry, Department of Biochemistry, and Center for Biophysics
and Computational
Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
| |
Collapse
|
22
|
Bityutskii N, Pavlovic J, Yakkonen K, Maksimović V, Nikolic M. Contrasting effect of silicon on iron, zinc and manganese status and accumulation of metal-mobilizing compounds in micronutrient-deficient cucumber. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2014; 74:205-11. [PMID: 24316009 DOI: 10.1016/j.plaphy.2013.11.015] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2013] [Accepted: 11/13/2013] [Indexed: 05/06/2023]
Abstract
Although the beneficial role of silicon (Si) in alleviation of abiotic stress is well established, little is known of the relevance of Si nutrition under microelement deficiency. The aim of our work was to investigate the physiological role of Si in relation to micronutrient (Fe, Zn and Mn) deficiencies in cucumber (Cucumis sativus L.). Cucumber (cv. Semkross) plants were grown hydroponically in a complete nutrient solution (control) and in nutrient solutions free from Fe, Zn or Mn, with or without Si supply. Plant tissue concentrations of microelements, organic acids and phenolics were measured. Si supply effectively mitigated the symptoms of Fe deficiency, but only in part, the symptoms of Zn- or Mn deficiency. Leaf Fe concentration significantly increased in plants deprived of Fe but treated with Si, whereas the concentrations of other microelements were not affected by Si supply. The effects of Si supply in increasing accumulation of both organic acids and phenolic compounds in cucumber tissues were exclusively related to Fe nutrition. Enhancement of Fe distribution towards apical shoot parts, along with the tissue accumulation of Fe-mobilizing compounds such as citrate (in leaves and roots) or cathechin (in roots) appears to be the major alleviating effect of Si. Si nutrition, however, was without effect on the mobility and tissue distribution of either Zn or Mn.
Collapse
Affiliation(s)
- Nikolai Bityutskii
- Department of Agricultural Chemistry, Saint Petersburg State University, 16th linia 29, V.O. Saint Petersburg 199178, Russia
| | - Jelena Pavlovic
- Institute for Multidisciplinary Research (IMSI), University of Belgrade, Kneza Višeslava 1, 11030 Belgrade, Serbia
| | - Kirill Yakkonen
- Department of Agricultural Chemistry, Saint Petersburg State University, 16th linia 29, V.O. Saint Petersburg 199178, Russia
| | - Vuk Maksimović
- Institute for Multidisciplinary Research (IMSI), University of Belgrade, Kneza Višeslava 1, 11030 Belgrade, Serbia
| | - Miroslav Nikolic
- Institute for Multidisciplinary Research (IMSI), University of Belgrade, Kneza Višeslava 1, 11030 Belgrade, Serbia.
| |
Collapse
|
23
|
Socha AL, Guerinot ML. Mn-euvering manganese: the role of transporter gene family members in manganese uptake and mobilization in plants. FRONTIERS IN PLANT SCIENCE 2014; 5:106. [PMID: 24744764 PMCID: PMC3978347 DOI: 10.3389/fpls.2014.00106] [Citation(s) in RCA: 132] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2013] [Accepted: 03/05/2014] [Indexed: 05/18/2023]
Abstract
Manganese (Mn), an essential trace element, is important for plant health. In plants, Mn serves as a cofactor in essential processes such as photosynthesis, lipid biosynthesis and oxidative stress. Mn deficient plants exhibit decreased growth and yield and are more susceptible to pathogens and damage at freezing temperatures. Mn deficiency is most prominent on alkaline soils with approximately one third of the world's soils being too alkaline for optimal crop production. Despite the importance of Mn in plant development, relatively little is known about how it traffics between plant tissues and into and out of organelles. Several gene transporter families have been implicated in Mn transport in plants. These transporter families include NRAMP (natural resistance associated macrophage protein), YSL (yellow stripe-like), ZIP (zinc regulated transporter/iron-regulated transporter [ZRT/IRT1]-related protein), CAX (cation exchanger), CCX (calcium cation exchangers), CDF/MTP (cation diffusion facilitator/metal tolerance protein), P-type ATPases and VIT (vacuolar iron transporter). A combination of techniques including mutant analysis and Synchrotron X-ray Fluorescence Spectroscopy can assist in identifying essential transporters of Mn. Such knowledge would vastly improve our understanding of plant Mn homeostasis.
Collapse
Affiliation(s)
- Amanda L. Socha
- *Correspondence: Amanda L. Socha, Department of Biological Sciences, Dartmouth College, 78 College Street, Hanover, NH 03766, USA e-mail:
| | | |
Collapse
|
24
|
Drop B, Webber-Birungi M, Yadav SK, Filipowicz-Szymanska A, Fusetti F, Boekema EJ, Croce R. Light-harvesting complex II (LHCII) and its supramolecular organization in Chlamydomonas reinhardtii. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2014; 1837:63-72. [DOI: 10.1016/j.bbabio.2013.07.012] [Citation(s) in RCA: 115] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/29/2013] [Revised: 07/23/2013] [Accepted: 07/30/2013] [Indexed: 11/25/2022]
|
25
|
Bao H, Dilbeck PL, Burnap RL. Proton transport facilitating water-oxidation: the role of second sphere ligands surrounding the catalytic metal cluster. PHOTOSYNTHESIS RESEARCH 2013; 116:215-229. [PMID: 23975203 DOI: 10.1007/s11120-013-9907-1] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2013] [Accepted: 08/03/2013] [Indexed: 06/02/2023]
Abstract
The ability of PSII to extract electrons from water, with molecular oxygen as a by-product, is a remarkable biochemical and evolutionary innovation. From an evolutionary perspective, the invention of PSII approximately 2.7 Ga led to the accelerated accumulation of biomass in the biosphere and the accumulation of oxygen in the atmosphere, a combination that allowed for the evolution of a much more complex and extensive biosphere than would otherwise have been possible. From the biochemical and enzymatic perspective, PSII is remarkable because of the thermodynamic and kinetic obstacles that needed to have been overcome to oxidize water as the ultimate photosynthetic electron donor. This article focuses on how proton release is an integral part of how these kinetic and thermodynamic obstacles have been overcome: the sequential removal of protons from the active site of H2O-oxidation facilitates the multistep oxidation of the substrate water at the Mn4CaOx, the catalytic heart of the H2O-oxidation reaction. As noted previously, the facilitated deprotonation of the Mn4CaOx cluster exerts a redox-leveling function preventing the accumulation of excess positive charge on the cluster, which might otherwise hinder the already energetically difficult oxidation of water. Using recent results, including the characteristics of site-directed mutants, the role of the second sphere of amino acid ligands and the associated network of water molecules surrounding the Mn4CaOx is discussed in relation to proton transport in other systems. In addition to the redox-leveling function, a trapping function is assigned to the proton release step occurring immediately prior to the dioxygen chemistry. This trapping appears to involve a yet-to-be clarified gating mechanism that facilitates to coordinated release of a proton from the neighborhood of the active site thereby insuring that the backward charge-recombination reaction does not out-compete the forward reaction of dioxygen chemistry during this final step of H2O-oxidation.
Collapse
Affiliation(s)
- Han Bao
- Department of Microbiology and Molecular Genetics, Oklahoma State University, 307 Life Sciences East, Stillwater, OK, 74078, USA
| | | | | |
Collapse
|
26
|
Wang Y, Zhang C, Wang L, Zhao J. Assignment of the μ4-O5 atom in catalytic center for water oxidation in photosystem II. ACTA ACUST UNITED AC 2013. [DOI: 10.1007/s11434-013-5973-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
27
|
Sjöholm J, Chen G, Ho F, Mamedov F, Styring S. Split electron paramagnetic resonance signal induction in Photosystem II suggests two binding sites in the S2 state for the substrate analogue methanol. Biochemistry 2013; 52:3669-77. [PMID: 23621812 DOI: 10.1021/bi400144e] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Illuminating a photosystem II sample at low temperatures (here 5-10 K) yields so-called split signals detectable with continuous wave-electron paramagnetic resonance (CW-EPR). These signals reflect the oxidized, deprotonated radical of D1-Tyr161 (YZ(•)) in a magnetic interaction with the CaMn4 cluster in a particular S state. The intensity of the split EPR signals are affected by the addition of the water substrate analogue methanol. This was previously shown by the induction of split EPR signals from the S1, S3, and S0 states [Su, J.-H. et al. (2006) Biochemistry 45, 7617-7627.]. Here, we use two split EPR signals induced from photosystem II trapped in the S2 state to further probe the binding of methanol in an S state dependent manner. The signals are induced with either visible or near-infrared light illumination provided at 5-10 K where methanol cannot bind or unbind from its site. The results imply that the binding of methanol not only changes the magnetic properties of the CaMn4 cluster but also the hydrogen bond network in the oxygen evolving complex (OEC), thereby affecting the relative charge of the S2 state. The induction mechanisms for the two split EPR signals are different resulting in two different redox states, S2YZ(•) and S1YZ(•) respectively. The two states show different methanol dependence for their induction. This indicates the existence of two binding sites for methanol in the CaMn4 cluster. It is proposed that methanol binds to MnA with high affinity and to MnD with lower affinity. The molecular nature and S-state dependence of the methanol binding to each respective site are discussed.
Collapse
Affiliation(s)
- Johannes Sjöholm
- Molecular Biomimetics, Department of Chemistry, Ångström Laboratory, Uppsala University , P. O. Box 523, SE-751 20 Uppsala, Sweden
| | | | | | | | | |
Collapse
|
28
|
Validation of binuclear descriptor for mixed transition metal oxide supported electrocatalytic water oxidation. Catal Today 2013. [DOI: 10.1016/j.cattod.2012.04.060] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
29
|
Dilbeck PL, Hwang HJ, Zaharieva I, Gerencser L, Dau H, Burnap RL. The D1-D61N Mutation in Synechocystis sp. PCC 6803 Allows the Observation of pH-Sensitive Intermediates in the Formation and Release of O2 from Photosystem II. Biochemistry 2012; 51:1079-91. [DOI: 10.1021/bi201659f] [Citation(s) in RCA: 70] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Affiliation(s)
- Preston L. Dilbeck
- Department of Microbiology and
Molecular Genetics, Oklahoma State University, Stillwater, Oklahoma 74078-4034, United States
| | - Hong Jin Hwang
- Department of Microbiology and
Molecular Genetics, Oklahoma State University, Stillwater, Oklahoma 74078-4034, United States
| | | | | | - Holger Dau
- Department of Physics, Free University Berlin, Berlin, Germany
| | - Robert L. Burnap
- Department of Microbiology and
Molecular Genetics, Oklahoma State University, Stillwater, Oklahoma 74078-4034, United States
| |
Collapse
|
30
|
Yamanaka S, Kanda K, Saito T, Umena Y, Kawakami K, Shen JR, Kamiya N, Okumura M, Nakamura H, Yamaguchi K. Electronic and Spin Structures of the CaMn4O5(H2O)4 Cluster in OEC of PSII Refined to 1.9Å X-ray Resolution. ADVANCES IN QUANTUM CHEMISTRY 2012. [DOI: 10.1016/b978-0-12-396498-4.00016-8] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/03/2022]
|
31
|
Grasse N, Mamedov F, Becker K, Styring S, Rögner M, Nowaczyk MM. Role of novel dimeric Photosystem II (PSII)-Psb27 protein complex in PSII repair. J Biol Chem 2011; 286:29548-55. [PMID: 21737447 DOI: 10.1074/jbc.m111.238394] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
The multisubunit membrane protein complex Photosystem II (PSII) catalyzes one of the key reactions in photosynthesis: the light-driven oxidation of water. Here, we focus on the role of the Psb27 assembly factor, which is involved in biogenesis and repair after light-induced damage of the complex. We show that Psb27 is essential for the survival of cyanobacterial cells grown under stress conditions. The combination of cold stress (30 °C) and high light stress (1000 μmol of photons × m(-2) × s(-1)) led to complete inhibition of growth in a Δpsb27 mutant strain of the thermophilic cyanobacterium Thermosynechococcus elongatus, whereas wild-type cells continued to grow. Moreover, Psb27-containing PSII complexes became the predominant PSII species in preparations from wild-type cells grown under cold stress. Two different PSII-Psb27 complexes were isolated and characterized in this study. The first complex represents the known monomeric PSII-Psb27 species, which is involved in the assembly of PSII. Additionally, a novel dimeric PSII-Psb27 complex could be allocated in the repair cycle, i.e. in processes after inactivation of PSII, by (15)N pulse-label experiments followed by mass spectrometry analysis. Comparison with the corresponding PSII species from Δpsb27 mutant cells showed that Psb27 prevented the release of manganese from the previously inactivated complex. These results indicate a more complex role of the Psb27 protein within the life cycle of PSII, especially under stress conditions.
Collapse
Affiliation(s)
- Nicole Grasse
- Plant Biochemistry, Faculty of Biology and Biotechnology, Ruhr-Universität Bochum, Bochum, Germany
| | | | | | | | | | | |
Collapse
|
32
|
Cañero AI, Cox L, Redondo-Gómez S, Mateos-Naranjo E, Hermosín MC, Cornejo J. Effect of the herbicides terbuthylazine and glyphosate on photosystem II photochemistry of young olive (Olea europaea) plants. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2011; 59:5528-34. [PMID: 21517077 DOI: 10.1021/jf200875u] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/30/2023]
Abstract
The purpose of this study was to understand the effect produced by the addition of the herbicides terbuthylazine (N(2)-tert-butyl-6-chloro-N(4)-ethyl-1,3,5-triazine-2,4-diamine) and glyphosate (N-(phosphonomethyl)glycine) on photosystem II photochemistry of young plants of Olea europaea L. under greenhouse conditions. The effect of soil amendment with an organic residue from olive oil production was also assessed. Terbuthylazine reduced the efficiency of photosystem II photochemistry of plants due to chronic photoinhibition, and this effect was counterbalanced by soil amendment with the organic waste, whereas the photosystem II photochemistry of olive plants was not affected by glyphosate or by glyphosate and organic waste addition. In this study, we have shown that the soil application of terbuthylazine is a source of indirect phytotoxicity for olive plants. We have also observed that the olive plants were not affected by higher amounts of glyphosate in the soil.
Collapse
Affiliation(s)
- Ana I Cañero
- Instituto de Recursos Naturales y Agrobiologia de Sevilla, CSIC, Seville, Spain
| | | | | | | | | | | |
Collapse
|
33
|
Chrysina M, Zahariou G, Sanakis Y, Ioannidis N, Petrouleas V. Conformational changes of the S2YZ* intermediate of the S2 to S3 transition in photosystem II. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY B-BIOLOGY 2011; 104:72-9. [PMID: 21377376 DOI: 10.1016/j.jphotobiol.2011.02.012] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2010] [Revised: 01/18/2011] [Accepted: 02/10/2011] [Indexed: 01/02/2023]
Abstract
The paper extends earlier studies on the S(2)Y(Z)* intermediate that is trapped by illumination in the temperature range 77 K to 190 K of untreated samples poised in the S(2)...Q(A) state. X-band EPR experiments on untreated and glycerol (50% v/v) treated samples at 10 K indicate that the intermediate consists of two components. A wide one with a splitting of ca 170 G, and a narrow one characterized by a splitting of ca 120 G (untreated), or 124 G (glycerol-treated samples). Lower temperatures of illumination in the above temperature range favor the wide component, which at 10 K decays faster than the narrow one. Re-illumination at 10 K after decay of the signal trapped at 77-190 K induces only the narrow component. Rapid scan experiments in the temperature range 77-190 K reveal high resolution spectra of the isolated tyz Z* radical and no evidence of alternative radicals. The two split signals are accordingly assigned to different conformations of the S(2)Y(Z)* intermediate A point-dipole simulation of the spectra yields "effective distances" between the spin densities of Y(Z)* and the Mn(4)Ca center of 5.7 Å for the wide and 6.4 Å for the narrow component. The results are discussed on the basis of a molecular model assuming two sequential proton transfers during oxidation of tyr Z. The wide component is assigned to a transient S(2)Y(Z)* conformation, that forms during the primary proton transfer.
Collapse
Affiliation(s)
- Maria Chrysina
- Institute of Materials Science, NCSR Demokritos, Athens 15310, Greece
| | | | | | | | | |
Collapse
|
34
|
Chen G, Allahverdiyeva Y, Aro EM, Styring S, Mamedov F. Electron paramagnetic resonance study of the electron transfer reactions in photosystem II membrane preparations from Arabidopsis thaliana. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2011; 1807:205-15. [DOI: 10.1016/j.bbabio.2010.10.010] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2010] [Revised: 10/06/2010] [Accepted: 10/08/2010] [Indexed: 10/18/2022]
|
35
|
Affiliation(s)
- Jillian L. Dempsey
- Beckman Institute, California Institute of Technology, Pasadena, CA 91125
| | - Jay R. Winkler
- Beckman Institute, California Institute of Technology, Pasadena, CA 91125
| | - Harry B. Gray
- Beckman Institute, California Institute of Technology, Pasadena, CA 91125
| |
Collapse
|
36
|
Martínez JI, Yruela I, Picorel R, Alonso PJ. 1H Hyperfine Interactions in the Mn-Cluster of Photosystem II in the S2 State Detected by Hyperfine Sublevel Correlation Spectroscopy. J Phys Chem B 2010; 114:15345-53. [DOI: 10.1021/jp107017f] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Affiliation(s)
- Jesús I. Martínez
- Instituto de Ciencia de Materiales de Aragón (ICMA), Consejo Superior de Investigaciones Científicas-Universidad de Zaragoza, C/Pedro Cerbuna 12, E-50009 Zaragoza, Spain, and Estación Experimental de Aula Dei, Consejo Superior de Investigaciones Científicas, Avda. Montañana, 1005, E-50059 Zaragoza, Spain
| | - Inmaculada Yruela
- Instituto de Ciencia de Materiales de Aragón (ICMA), Consejo Superior de Investigaciones Científicas-Universidad de Zaragoza, C/Pedro Cerbuna 12, E-50009 Zaragoza, Spain, and Estación Experimental de Aula Dei, Consejo Superior de Investigaciones Científicas, Avda. Montañana, 1005, E-50059 Zaragoza, Spain
| | - Rafael Picorel
- Instituto de Ciencia de Materiales de Aragón (ICMA), Consejo Superior de Investigaciones Científicas-Universidad de Zaragoza, C/Pedro Cerbuna 12, E-50009 Zaragoza, Spain, and Estación Experimental de Aula Dei, Consejo Superior de Investigaciones Científicas, Avda. Montañana, 1005, E-50059 Zaragoza, Spain
| | - Pablo J. Alonso
- Instituto de Ciencia de Materiales de Aragón (ICMA), Consejo Superior de Investigaciones Científicas-Universidad de Zaragoza, C/Pedro Cerbuna 12, E-50009 Zaragoza, Spain, and Estación Experimental de Aula Dei, Consejo Superior de Investigaciones Científicas, Avda. Montañana, 1005, E-50059 Zaragoza, Spain
| |
Collapse
|
37
|
Antal TK, Krendeleva TE, Rubin AB. Acclimation of green algae to sulfur deficiency: underlying mechanisms and application for hydrogen production. Appl Microbiol Biotechnol 2010; 89:3-15. [DOI: 10.1007/s00253-010-2879-6] [Citation(s) in RCA: 82] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2010] [Revised: 09/02/2010] [Accepted: 09/07/2010] [Indexed: 11/29/2022]
|
38
|
Ren Y, Zhang C, Zhao J. Substitution of chloride by bromide modifies the low-temperature tyrosine Z oxidation in active photosystem II. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2010; 1797:1421-7. [PMID: 20206122 DOI: 10.1016/j.bbabio.2010.02.025] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/27/2009] [Revised: 01/29/2010] [Accepted: 02/23/2010] [Indexed: 11/19/2022]
Abstract
Chloride is an essential cofactor for photosynthetic water oxidation. However, its location and functional roles in active photosystem II are still a matter of debate. We have investigated this issue by studying the effects of Cl- replacement by Br- in active PSII. In Br- substituted samples, Cl- is effectively replaced by Br- in the presence of 1.2 M NaBr under room light with protection of anaerobic atmosphere followed by dialysis. The following results have been obtained. i) The oxygen-evolving activities of the Br--PSII samples are significantly lower than that of the Cl--PSII samples; ii) The same S2 multiline EPR signals are observed in both Br- and Cl--PSII samples; iii) The amplitudes of the visible light induced S1TyrZ* and S2TyrZ* EPR signals are significantly decreased after Br- substitution; the S1TyrZ* EPR signal is up-shifted about 8G, whereas the S2TyrZ* signal is down-shifted about 12 G after Br- substitution. These results imply that the redox properties of TyrZ and spin interactions between TyrZ* and Mn-cluster could be significantly modified due to Br- substitution. It is suggested that Cl-/Br- probably coordinates to the Ca2+ ion of the Mn-cluster in active photosystem II.
Collapse
Affiliation(s)
- Yanan Ren
- Laboratory of Photochemistry, Beijing National Laboratory of Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
| | | | | |
Collapse
|
39
|
Low-temperature electron transfer suggests two types of QA in intact photosystem II. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2010; 1797:339-46. [DOI: 10.1016/j.bbabio.2009.12.001] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/05/2009] [Revised: 12/01/2009] [Accepted: 12/03/2009] [Indexed: 11/23/2022]
|
40
|
Conversion of the g=4.1 EPR signal to the multiline conformation during the S(2) to S(3) transition of the oxygen evolving complex of Photosystem II. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2010; 1797:487-93. [PMID: 20083085 DOI: 10.1016/j.bbabio.2010.01.008] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/13/2009] [Revised: 01/05/2010] [Accepted: 01/11/2010] [Indexed: 12/21/2022]
Abstract
The oxygen evolving complex of Photosystem II undergoes four light-induced oxidation transitions, S(0)-S(1),...,S(3)-(S(4))S(0) during its catalytic cycle. The oxidizing equivalents are stored at a (Mn)(4)Ca cluster, the site of water oxidation. EPR spectroscopy has yielded valuable information on the S states. S(2) shows a notable heterogeneity with two spectral forms; a g=2 (S=1/2) multiline, and a g=4.1 (S=5/2) signal. These oscillate in parallel during the period-four cycle. Cyanobacteria show only the multiline signal, but upon advancement to S(3) they exhibit the same characteristic g=10 (S=3) absorption with plant preparations, implying that this latter signal results from the multiline configuration. The fate of the g=4.1 conformation during advancement to S(3) is accordingly unknown. We searched for light-induced transient changes in the EPR spectra at temperatures below and above the half-inhibition temperature for the S(2) to S(3) transition (ca 230K). We observed that, above about 220K the g=4.1 signal converts to a multiline form prior to advancement to S(3). We cannot exclude that the conversion results from visible-light excitation of the Mn cluster itself. The fact however, that the conversion coincides with the onset of the S(2) to S(3) transition, suggests that it is triggered by the charge-separation process, possibly the oxidation of tyr Z and the accompanying proton relocations. It therefore appears that a configuration of (Mn)(4)Ca with a low-spin ground state advances to S(3).
Collapse
|
41
|
Roose JL, Frankel LK, Bricker TM. Documentation of Significant Electron Transport Defects on the Reducing Side of Photosystem II upon Removal of the PsbP and PsbQ Extrinsic Proteins. Biochemistry 2009; 49:36-41. [DOI: 10.1021/bi9017818] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Johnna L. Roose
- Department of Biological Sciences, Biochemistry and Molecular Biology Section, Louisiana State University, Baton Rouge, Louisiana 70803
| | - Laurie K. Frankel
- Department of Biological Sciences, Biochemistry and Molecular Biology Section, Louisiana State University, Baton Rouge, Louisiana 70803
| | - Terry M. Bricker
- Department of Biological Sciences, Biochemistry and Molecular Biology Section, Louisiana State University, Baton Rouge, Louisiana 70803
| |
Collapse
|
42
|
Antal TK, Sarvikas P, Tyystjärvi E. Two-electron reactions S2QB -->S0QB and S3QB -->S1QB are involved in deactivation of higher S states of the oxygen-evolving complex of Photosystem II. Biophys J 2009; 96:4672-80. [PMID: 19486689 PMCID: PMC2711488 DOI: 10.1016/j.bpj.2009.03.007] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2008] [Revised: 02/13/2009] [Accepted: 03/06/2009] [Indexed: 11/21/2022] Open
Abstract
The oxygen-evolving complex of Photosystem II cycles through five oxidation states (S(0)-S(4)), and dark incubation leads to 25% S(0) and 75% S(1). This distribution cannot be reached with charge recombination reactions between the higher S states and the electron acceptor Q(B)(-). We measured flash-induced oxygen evolution to understand how S(3) and S(2) are converted to lower S states when the electron required to reduce the manganese cluster does not come from Q(B)(-). Thylakoid samples preconditioned to make the concentration of the S(1) state 100% and to oxidize tyrosine Y(D) were illuminated by one or two laser preflashes, and flash-induced oxygen evolution sequences were recorded at various time intervals after the preflashes. The distribution of the S states was calculated from the flash-induced oxygen evolution pattern using an extended Kok model. The results suggest that S(2) and S(3) are converted to lower S states via recombination from S(2)Q(B)(-) and S(3)Q(B)(-) and by a slow change of the state of oxygen-evolving complex from S(3) and S(2) to S(1) and S(0) in reactions with unspecified electron donors. The slow pathway appears to contain two-electron routes, S(2)Q(B) -->S(0)Q(B), and S(3)Q(B) -->S(1)Q(B). The two-electron reactions dominate in intact thylakoid preparations in the absence of chemical additives. The two-electron reaction was replaced by a one-electron-per-step pathway, S(3)Q(B) -->S(2)Q(B) -->S(1)Q(B) in PS II-enriched membrane fragments and in thylakoids measured in the presence of artificial electron acceptors. A catalase effect suggested that H(2)O(2) acts as an electron donor for the reaction S(2)Q(B) -->S(0)Q(B) but added H(2)O(2) did not enhance this reaction.
Collapse
Affiliation(s)
| | | | - Esa Tyystjärvi
- Department of Biology, University of Turku, FI-20014 Turku, Finland
| |
Collapse
|
43
|
Ren Y, Zhang C, Bao H, Shen J, Zhao J. Probing tyrosine Z oxidation in Photosystem II core complex isolated from spinach by EPR at liquid helium temperatures. PHOTOSYNTHESIS RESEARCH 2009; 99:127-138. [PMID: 19214772 DOI: 10.1007/s11120-009-9410-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2008] [Accepted: 01/23/2009] [Indexed: 05/27/2023]
Abstract
Tyrosine Z (Tyr(Z)) oxidation observed at liquid helium temperatures provides new insights into the structure and function of Tyr(Z) in active Photosystem II (PSII). However, it has not been reported in PSII core complex from higher plants. Here, we report Tyr(Z) oxidation in the S(1) and S(2) states in PSII core complex from spinach for the first time. Moreover, we identified a 500 G-wide symmetric EPR signal (peak position g = 2.18, trough position g = 1.85) together with the g = 2.03 signal induced by visible light at 10 K in the S(1) state in the PSII core complex. These two signals decay with a similar rate in the dark and both disappear in the presence of 6% methanol. We tentatively assign this new feature to the hyperfine structure of the S(1)Tyr(Z)(*) EPR signal. Furthermore, EPR signals of the S(2) state of the Mn-cluster, the oxidation of the non-heme iron, and the S(1)Tyr(Z)(*) in PSII core complexes and PSII-enriched membranes from spinach are compared, which clearly indicate that both the donor and acceptor sides of the reaction center are undisturbed after the removal of LHCII. These results suggest that the new spinach PSII core complex is suitable for the electron transfer study of PSII at cryogenic temperatures.
Collapse
Affiliation(s)
- Yanan Ren
- Laboratory of Photochemistry, Beijing National Laboratory of Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing, China
| | | | | | | | | |
Collapse
|
44
|
Krieger-Liszkay A, Fufezan C, Trebst A. Singlet oxygen production in photosystem II and related protection mechanism. PHOTOSYNTHESIS RESEARCH 2008; 98:551-64. [PMID: 18780159 DOI: 10.1007/s11120-008-9349-3] [Citation(s) in RCA: 333] [Impact Index Per Article: 20.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2008] [Accepted: 08/03/2008] [Indexed: 05/19/2023]
Abstract
High-light illumination of photosynthetic organisms stimulates the production of singlet oxygen by photosystem II (PSII) and causes photo-oxidative stress. In the PSII reaction centre, singlet oxygen is generated by the interaction of molecular oxygen with the excited triplet state of chlorophyll (Chl). The triplet Chl is formed via charge recombination of the light-induced charge pair. Changes in the midpoint potential of the primary electron donor P(680) of the primary acceptor pheophytin or of the quinone acceptor Q(A), modulate the pathway of charge recombination in PSII and influence the yield of singlet oxygen formation. The involvement of singlet oxygen in the process of photoinhibition is discussed. Singlet oxygen is efficiently quenched by beta-carotene, tocopherol or plastoquinone. If not quenched, it can trigger the up-regulation of genes, which are involved in the molecular defence response of photosynthetic organisms against photo-oxidative stress.
Collapse
Affiliation(s)
- Anja Krieger-Liszkay
- CEA, Institut de Biologie et Technologies de Saclay, CNRS URA 2096, Service de Bioénergétique Biologie Structurale et Mécanisme, 91191 Gif-sur-Yvette Cedex, France.
| | | | | |
Collapse
|
45
|
Bao H, Zhang C, Kawakami K, Ren Y, Shen JR, Zhao J. Acceptor side effects on the electron transfer at cryogenic temperatures in intact photosystem II. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2008; 1777:1109-15. [DOI: 10.1016/j.bbabio.2008.04.044] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/17/2007] [Revised: 04/16/2008] [Accepted: 04/16/2008] [Indexed: 10/22/2022]
|
46
|
Direct quantification of the four individual S states in Photosystem II using EPR spectroscopy. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2008; 1777:496-503. [DOI: 10.1016/j.bbabio.2008.03.007] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2007] [Revised: 03/14/2008] [Accepted: 03/17/2008] [Indexed: 11/18/2022]
|
47
|
Ioannidis N, Zahariou G, Petrouleas V. The EPR spectrum of tyrosine Z* and its decay kinetics in O2-evolving photosystem II preparations. Biochemistry 2008; 47:6292-300. [PMID: 18494501 DOI: 10.1021/bi800390r] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The O2-evolving complex of photosystem II, Mn 4Ca, cycles through five oxidation states, S0,..., S4, during its catalytic function, which involves the gradual abstraction of four electrons and four protons from two bound water molecules. The direct oxidant of the complex is the tyrosine neutral radical, YZ(*), which is transiently produced by the highly oxidizing power of the photoexcited chlorophyll species P680. EPR characterization of YZ(*) has been limited, until recently, to inhibited (non-oxygen-evolving) preparations. A number of relatively recent papers have demonstrated the trapping of YZ(*) in O2-evolving preparations at liquid helium temperatures as an intermediate of the S0 to S1, S1 to S2, and S2 to S3 transitions. The respective EPR spectra are broadened and split at g approximately 2 by the magnetic interaction with the Mn cluster, but this interaction collapses at temperatures higher than about 100K [Zahariou et al. (2007) Biochemistry 46, 14335 -14341]. We have conducted a study of the Tyr Z(*) transient in the temperature range 77-240 K by employing rapid or slow EPR scans. The results reveal for the first time high-resolution X-band spectra of Tyr Z(*) in the functional system and at temperatures close to the onset of the S-state transitions. We have simulated the S 2Y Z(*) spectrum using the simulation algorithm of Svistunenko and Cooper [(2004) Biophys. J. 87, 582 -595]. The small g(x) = 2.00689 value inferred from the analysis suggests either a H-bonding of Tyr Z (*) (presumably with His190) that is stronger than what has been assumed from studies of Tyr D(*) or Tyr Z(*) in Mn-depleted preparations or a more electropositive environment around Tyr Z(*). The study has also yielded for the first time direct information on the temperature variation of the YZ(*)/QA(-) recombination reaction in the various S states. The reaction follows biphasic kinetics with the slow phase dominating at low temperatures and the fast phase dominating at high temperatures. It is tentatively proposed that the slow phase represents the action of the YZ(*)/YZ(-) redox couple while the fast phase represents that of the YZ(*)/YZH couple; it is inferred that Tyr Z at elevated temperatures is protonated at rest. It is also proposed that YZ(*)/YZH is the couple that oxidizes the Mn cluster during the S1-S2 and S2-S3 transitions. A simple mechanism ensuring a rapid (concerted) protonation of Tyr Z upon oxidation of the Mn cluster is discussed, and also, a structure-based molecular model suggesting the participation of His190 into two hydrogen bonds is proposed.
Collapse
Affiliation(s)
- Nikolaos Ioannidis
- Institute of Materials Science, NCSR Demokritos, 153 10 Aghia Paraskevi Attikis, Greece
| | | | | |
Collapse
|
48
|
Yeagle GJ, Gilchrist ML, McCarrick RM, Britt RD. Multifrequency pulsed electron paramagnetic resonance study of the S2 state of the photosystem II manganese cluster. Inorg Chem 2008; 47:1803-14. [PMID: 18330971 DOI: 10.1021/ic701680c] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Multifrequency electron spin-echo envelope modulation (ESEEM) spectroscopy is employed to measure the strength of the hyperfine coupling of magnetic nuclei to the paramagnetic (S = 1/2) S2 form of photosystem II (PSII). Previous X-band-frequency ESEEM studies indicated that one or more histidine nitrogens are electronically coupled to the tetranuclear manganese cluster in the S2 state of PSII. However, the spectral resolution was relatively poor at the approximately 9 GHz excitation frequency, precluding any in-depth analysis of the corresponding bonding interaction between the detected histidine and the manganese cluster. Here we report ESEEM experiments using higher X-, P-, and Ka-band microwave frequencies to target PSII membranes isolated from spinach. The X- to P-band ESEEM spectra suffer from the same poor resolution as that observed in previous experiments, while the Ka-band spectra show remarkably well-resolved features that allow for the direct determination of the nuclear quadrupolar couplings for a single I = 1(14)N nucleus. The Ka-band results demonstrate that at an applied field of 1.1 T we are much closer to the exact cancellation limit (alpha iso = 2nu(14)N) that optimizes ESEEM spectra. These results reveal hyperfine (alpha iso = 7.3 +/- 0.20 MHz and alpha dip = 0.50 +/- 0.10 MHz) and nuclear quadrupolar (e(2)qQ = 1.98 +/- 0.05 MHz and eta = 0.84 +/- 0.06) couplings for a single (14)N nucleus magnetically coupled to the manganese cluster in the S 2 state of PSII. These values are compared to the histidine imidazole nitrogen hyperfine and nuclear quadrupolar couplings found in superoxidized manganese catalase as well as (14)N couplings in relevant manganese model complexes.
Collapse
Affiliation(s)
- Gregory J Yeagle
- Department of Chemistry, University of California, Davis, One Shields Avenue, Davis, California 95616, USA
| | | | | | | |
Collapse
|
49
|
Hammarström L, Styring S. Coupled electron transfers in artificial photosynthesis. Philos Trans R Soc Lond B Biol Sci 2008; 363:1283-91; discussion 1291. [PMID: 17954432 DOI: 10.1098/rstb.2007.2225] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Light-induced charge separation in molecular assemblies has been widely investigated in the context of artificial photosynthesis. Important progress has been made in the fundamental understanding of electron and energy transfer and in stabilizing charge separation by multi-step electron transfer. In the Swedish Consortium for Artificial Photosynthesis, we build on principles from the natural enzyme photosystem II and Fe-hydrogenases. An important theme in this biomimetic effort is that of coupled electron-transfer reactions, which have so far received only little attention. (i) Each absorbed photon leads to charge separation on a single-electron level only, while catalytic water splitting and hydrogen production are multi-electron processes; thus there is the need for controlling accumulative electron transfer on molecular components. (ii) Water splitting and proton reduction at the potential catalysts necessarily require the management of proton release and/or uptake. Far from being just a stoichiometric requirement, this controls the electron transfer processes by proton-coupled electron transfer (PCET). (iii) Redox-active links between the photosensitizers and the catalysts are required to rectify the accumulative electron-transfer reactions, and will often be the starting points of PCET.
Collapse
Affiliation(s)
- Leif Hammarström
- Department of Photochemistry and Molecular Science, Uppsala University, PO Box 523, 751 20 Uppsala, Sweden.
| | | |
Collapse
|
50
|
Strickler MA, Hwang HJ, Burnap RL, Yano J, Walker LM, Service RJ, Britt RD, Hillier W, Debus RJ. Glutamate-354 of the CP43 polypeptide interacts with the oxygen-evolving Mn4Ca cluster of photosystem II: a preliminary characterization of the Glu354Gln mutant. Philos Trans R Soc Lond B Biol Sci 2008; 363:1179-87; discussion 1187-8. [PMID: 17954433 DOI: 10.1098/rstb.2007.2213] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
In the recent X-ray crystallographic structural models of photosystem II, Glu354 of the CP43 polypeptide is assigned as a ligand of the O2-evolving Mn4Ca cluster. In this communication, a preliminary characterization of the CP43-Glu354Gln mutant of the cyanobacterium Synechocystis sp. PCC 6803 is presented. The steady-state rate of O2 evolution in the mutant cells is only approximately 20% compared with the wild-type, but the kinetics of O2 release are essentially unchanged and the O2-flash yields show normal period-four oscillations, albeit with lower overall intensity. Purified PSII particles exhibit an essentially normal S2 state multiline electron paramagnetic resonance (EPR) signal, but exhibit a substantially altered S2-minus-S1 Fourier transform infrared (FTIR) difference spectrum. The intensities of the mutant EPR and FTIR difference spectra (above 75% compared with wild-type) are much greater than the O2 signals and suggest that CP43-Glu354Gln PSII reaction centres are heterogeneous, with a minority fraction able to evolve O2 with normal O2 release kinetics and a majority fraction unable to advance beyond the S2 or S3 states. The S2-minus-S1 FTIR difference spectrum of CP43-Glu354Gln PSII particles is altered in both the symmetric and asymmetric carboxylate stretching regions, implying either that CP43-Glu354 is exquisitely sensitive to the increased charge that develops on the Mn4Ca cluster during the S1-->S2 transition or that the CP43-Glu354Gln mutation changes the distribution of Mn(III) and Mn(IV) oxidation states within the Mn4Ca cluster in the S1 and/or S2 states.
Collapse
Affiliation(s)
- Melodie A Strickler
- Department of Biochemistry, University of California, Riverside, CA 92521, USA
| | | | | | | | | | | | | | | | | |
Collapse
|