1
|
Zhra M, Al Saud A, Alzayer M, Okdah L, Tamim H, Fakhoury HMA, Aljada A. Cost-effective in-house COVID-19 reverse transcription-polymerase chain reaction testing with yeast-derived Taq polymerase. Ann Thorac Med 2024; 19:165-171. [PMID: 38766371 PMCID: PMC11100475 DOI: 10.4103/atm.atm_180_23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Revised: 12/04/2023] [Accepted: 12/08/2023] [Indexed: 05/22/2024] Open
Abstract
BACKGROUND Despite the decline of the COVID-19 pandemic, there continues to be a persistent requirement for reliable testing methods that can be adapted to future outbreaks and areas with limited resources. While the standard approach of using reverse transcription-polymerase chain reaction (RT-PCR) with Taq polymerase is effective, it faces challenges such as limited access to high-quality enzymes and the presence of bacterial DNA contamination in commercial kits, which can impact the accuracy of test results. METHODS This study investigates the production of recombinant Taq polymerase in yeast cells and assesses its crude lysate in a multiplex RT-PCR assay for detecting the SARS-CoV-2 RNA-dependent RNA polymerase (RdRP) and N genes, with human Ribonuclease P serving as an internal control. RESULTS The unpurified yeast Taq polymerase demonstrates sensitivity comparable to commercially purified bacterial Taq polymerase and unpurified bacterial counterparts in detecting the RdRP and N genes. It exhibits the highest specificity, with 100% accuracy, for the N gene. The specificity for the RdRP gene closely aligns with that of commercially purified bacterial Taq polymerase and unpurified bacterial Taq polymerase. CONCLUSIONS The use of unpurified recombinant yeast Taq polymerase shows promise as a cost-effective approach for conducting in-house COVID-19 RT-PCR testing. By eliminating the need for chromatography purification steps, the production of RT-PCR kits can be streamlined, potentially improving accessibility and scalability, especially in resource-limited settings and future pandemics.
Collapse
Affiliation(s)
- Mahmoud Zhra
- Department of Biochemistry and Molecular Medicine, College of Medicine, Alfaisal University, Riyadh, Saudi Arabia
| | - Aljohara Al Saud
- Department of Biochemistry and Molecular Medicine, College of Medicine, Alfaisal University, Riyadh, Saudi Arabia
| | - Maha Alzayer
- Department of Biochemistry and Molecular Medicine, College of Medicine, Alfaisal University, Riyadh, Saudi Arabia
| | - Liliane Okdah
- Department of Infectious Disease Research, King Abdullah International Medical Research Center, Riyadh, Saudi Arabia
| | - Hani Tamim
- Department of Biochemistry and Molecular Medicine, College of Medicine, Alfaisal University, Riyadh, Saudi Arabia
| | - Hana M. A. Fakhoury
- Department of Biochemistry and Molecular Medicine, College of Medicine, Alfaisal University, Riyadh, Saudi Arabia
| | - Ahmad Aljada
- Department of Biochemistry and Molecular Medicine, College of Medicine, Alfaisal University, Riyadh, Saudi Arabia
| |
Collapse
|
2
|
Yousif D, Wu Y, Gonzales AA, Mathieu C, Zeng Y, Sample L, Terando S, Li T, Xiao J. Anti-Cariogenic Effects of S. cerevisiae and S. boulardii in S. mutans-C. albicans Cross-Kingdom In Vitro Models. Pharmaceutics 2024; 16:215. [PMID: 38399269 PMCID: PMC10891968 DOI: 10.3390/pharmaceutics16020215] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Revised: 01/22/2024] [Accepted: 01/24/2024] [Indexed: 02/25/2024] Open
Abstract
Despite the well-documented health benefits of the probiotic Saccharomyces, its application in oral health has not been comprehensively assessed. Dental caries is a transmissible disease initiated by acid production of cariogenic bacteria and yeast, such as Streptococcus mutans and Candida albicans, on tooth enamel and followed by subsequent enamel demineralization. Here, we investigated the effect of two Saccharomyces strains (Saccharomyces boulardii and Saccharomyces cerevisiae) on S. mutans-C. albicans cross-kingdom interactions using a cariogenic planktonic model. Viable cells, pH changes, and gene expression were measured. S. cerevisiae and S. boulardii inhibited the growth of C. albicans in dual- and multi-species conditions at 4, 6, and 20 h. Saccharomyces also inhibited C. albicans hyphal formation. Furthermore, Saccharomyces reduced the acidity of the culture medium, which usually plummeted below pH 5 when S. mutans and C. albicans were present in the model. The presence of Saccharomyces maintained the culture medium above 6 even after overnight incubation, demonstrating a protective potential against dental enamel demineralization. S. boulardii significantly down-regulated S. mutans atpD and eno gene expression. Overall, our results shed light on a new promising candidate, Saccharomyces, for dental caries prevention due to its potential to create a less cariogenic environment marked by a neutral pH and reduced growth of C. albicans.
Collapse
Affiliation(s)
- Dina Yousif
- Eastman Institute for Oral Health, University of Rochester Medical Center, Rochester, NY 14642, USA; (D.Y.); (Y.W.); (Y.Z.); (L.S.); (T.L.)
| | - Yan Wu
- Eastman Institute for Oral Health, University of Rochester Medical Center, Rochester, NY 14642, USA; (D.Y.); (Y.W.); (Y.Z.); (L.S.); (T.L.)
- Department of Stomatology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430042, China
| | - Alexandria Azul Gonzales
- Department of Pharmacology and Physiology, School of Medicine and Dentistry, University of Rochester Medical Center, Rochester, NY 14642, USA;
| | - Christa Mathieu
- VCU College of Health Professions, Virginia Commonwealth University, Richmond, VA 23284, USA;
| | - Yan Zeng
- Eastman Institute for Oral Health, University of Rochester Medical Center, Rochester, NY 14642, USA; (D.Y.); (Y.W.); (Y.Z.); (L.S.); (T.L.)
| | - Lee Sample
- Eastman Institute for Oral Health, University of Rochester Medical Center, Rochester, NY 14642, USA; (D.Y.); (Y.W.); (Y.Z.); (L.S.); (T.L.)
| | - Sabrina Terando
- School of Arts & Sciences, University of Rochester, Rochester, NY 14627, USA;
| | - Ting Li
- Eastman Institute for Oral Health, University of Rochester Medical Center, Rochester, NY 14642, USA; (D.Y.); (Y.W.); (Y.Z.); (L.S.); (T.L.)
- Key Laboratory of Laboratory Medical Diagnostics, Ministry of Education, Chongqing Medical University, Chongqing 400016, China
| | - Jin Xiao
- Eastman Institute for Oral Health, University of Rochester Medical Center, Rochester, NY 14642, USA; (D.Y.); (Y.W.); (Y.Z.); (L.S.); (T.L.)
| |
Collapse
|
3
|
Krause DJ. The evolution of anaerobic growth in Saccharomycotina yeasts. Yeast 2023; 40:395-400. [PMID: 37526396 DOI: 10.1002/yea.3890] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Revised: 06/26/2023] [Accepted: 07/18/2023] [Indexed: 08/02/2023] Open
Abstract
Humans rely on the ability of budding yeasts to grow without oxygen in industrial scale fermentations that produce beverages, foods, and biofuels. Oxygen is deeply woven into the energy metabolism and biosynthetic capabilities of budding yeasts. While diverse ecological habitats may provide wide varieties of different carbon and nitrogen sources for yeasts to utilize, there is no direct substitute for molecular oxygen, only a range of availability. Understanding how a small subset of budding yeasts evolved the ability to grow without oxygen could expand the set of useful species in industrial scale fermentations as well as provide insight into the cryptic field of yeast ecology. However, we still do not yet appreciate the full breadth of species that can growth without oxygen, what genes underlie this adaptation, and how these genes have evolved.
Collapse
Affiliation(s)
- David J Krause
- Department of Biology, University of Wisconsin Oshkosh, Oshkosh, Wisconsin, USA
| |
Collapse
|
4
|
Miguel GA, Carlsen S, Arneborg N, Saerens SM, Laulund S, Knudsen GM. Non-Saccharomyces yeasts for beer production: Insights into safety aspects and considerations. Int J Food Microbiol 2022; 383:109951. [DOI: 10.1016/j.ijfoodmicro.2022.109951] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Revised: 09/14/2022] [Accepted: 09/22/2022] [Indexed: 11/05/2022]
|
5
|
Steenwyk JL, Phillips MA, Yang F, Date SS, Graham TR, Berman J, Hittinger CT, Rokas A. An orthologous gene coevolution network provides insight into eukaryotic cellular and genomic structure and function. SCIENCE ADVANCES 2022; 8:eabn0105. [PMID: 35507651 PMCID: PMC9067921 DOI: 10.1126/sciadv.abn0105] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Accepted: 03/16/2022] [Indexed: 06/14/2023]
Abstract
The evolutionary rates of functionally related genes often covary. We present a gene coevolution network inferred from examining nearly 3 million orthologous gene pairs from 332 budding yeast species spanning ~400 million years of evolution. Network modules provide insight into cellular and genomic structure and function. Examination of the phenotypic impact of network perturbation using deletion mutant data from the baker's yeast Saccharomyces cerevisiae, which were obtained from previously published studies, suggests that fitness in diverse environments is affected by orthologous gene neighborhood and connectivity. Mapping the network onto the chromosomes of S. cerevisiae and Candida albicans revealed that coevolving orthologous genes are not physically clustered in either species; rather, they are often located on different chromosomes or far apart on the same chromosome. The coevolution network captures the hierarchy of cellular structure and function, provides a roadmap for genotype-to-phenotype discovery, and portrays the genome as a linked ensemble of genes.
Collapse
Affiliation(s)
- Jacob L. Steenwyk
- Department of Biological Sciences, Vanderbilt University, Nashville, TN, USA
| | - Megan A. Phillips
- Department of Biological Sciences, Vanderbilt University, Nashville, TN, USA
| | - Feng Yang
- Shmunis School of Biomedical and Cancer Research, Tel Aviv University, Ramat Aviv, Israel
- Department of Pharmacology, Shanghai Tenth People’s Hospital, Tongji University School of Medicine, Shanghai, China
| | - Swapneeta S. Date
- Department of Biological Sciences, Vanderbilt University, Nashville, TN, USA
| | - Todd R. Graham
- Department of Biological Sciences, Vanderbilt University, Nashville, TN, USA
| | - Judith Berman
- Shmunis School of Biomedical and Cancer Research, Tel Aviv University, Ramat Aviv, Israel
| | - Chris Todd Hittinger
- Laboratory of Genetics, DOE Great Lakes Bioenergy Research Center, Wisconsin Energy Institute, Center for Genomic Science Innovation, J.F. Crow Institute for the Study of Evolution, University of Wisconsin-Madison, Madison, WI, USA
| | - Antonis Rokas
- Department of Biological Sciences, Vanderbilt University, Nashville, TN, USA
| |
Collapse
|
6
|
Mooiman C, Bouwknegt J, Dekker WJC, Wiersma SJ, Ortiz-Merino RA, de Hulster E, Pronk JT. Critical parameters and procedures for anaerobic cultivation of yeasts in bioreactors and anaerobic chambers. FEMS Yeast Res 2021; 21:foab035. [PMID: 34100921 PMCID: PMC8216787 DOI: 10.1093/femsyr/foab035] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2021] [Accepted: 06/06/2021] [Indexed: 12/11/2022] Open
Abstract
All known facultatively fermentative yeasts require molecular oxygen for growth. Only in a small number of yeast species, these requirements can be circumvented by supplementation of known anaerobic growth factors such as nicotinate, sterols and unsaturated fatty acids. Biosynthetic oxygen requirements of yeasts are typically small and, unless extensive precautions are taken to minimize inadvertent entry of trace amounts of oxygen, easily go unnoticed in small-scale laboratory cultivation systems. This paper discusses critical points in the design of anaerobic yeast cultivation experiments in anaerobic chambers and laboratory bioreactors. Serial transfer or continuous cultivation to dilute growth factors present in anaerobically pre-grown inocula, systematic inclusion of control strains and minimizing the impact of oxygen diffusion through tubing are identified as key elements in experimental design. Basic protocols are presented for anaerobic-chamber and bioreactor experiments.
Collapse
Affiliation(s)
- Christiaan Mooiman
- Department of Biotechnology, Delft University of Technology, Van der Maasweg 9, 2629 HZ Delft, The Netherlands
| | - Jonna Bouwknegt
- Department of Biotechnology, Delft University of Technology, Van der Maasweg 9, 2629 HZ Delft, The Netherlands
| | - Wijb J C Dekker
- Department of Biotechnology, Delft University of Technology, Van der Maasweg 9, 2629 HZ Delft, The Netherlands
| | - Sanne J Wiersma
- Department of Biotechnology, Delft University of Technology, Van der Maasweg 9, 2629 HZ Delft, The Netherlands
| | - Raúl A Ortiz-Merino
- Department of Biotechnology, Delft University of Technology, Van der Maasweg 9, 2629 HZ Delft, The Netherlands
| | - Erik de Hulster
- Department of Biotechnology, Delft University of Technology, Van der Maasweg 9, 2629 HZ Delft, The Netherlands
| | - Jack T Pronk
- Department of Biotechnology, Delft University of Technology, Van der Maasweg 9, 2629 HZ Delft, The Netherlands
| |
Collapse
|
7
|
Nizovoy P, Bellora N, Haridas S, Sun H, Daum C, Barry K, Grigoriev IV, Libkind D, Connell LB, Moliné M. Unique genomic traits for cold adaptation in Naganishia vishniacii, a polyextremophile yeast isolated from Antarctica. FEMS Yeast Res 2020; 21:6000217. [PMID: 33232451 DOI: 10.1093/femsyr/foaa056] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2020] [Accepted: 10/15/2020] [Indexed: 12/15/2022] Open
Abstract
Cold environments impose challenges to organisms. Polyextremophile microorganisms can survive in these conditions thanks to an array of counteracting mechanisms. Naganishia vishniacii, a yeast species hitherto only isolated from McMurdo Dry Valleys, Antarctica, is an example of a polyextremophile. Here we present the first draft genomic sequence of N. vishniacii. Using comparative genomics, we unraveled unique characteristics of cold associated adaptations. 336 putative genes (total: 6183) encoding solute transfers and chaperones, among others, were absent in sister species. Among genes shared by N. vishniacii and its closest related species we found orthologs encompassing possible evidence of positive selection (dN/dS > 1). Genes associated with photoprotection were found in agreement with high solar irradiation exposure. Also genes coding for desaturases and genomic features associated with cold tolerance (i.e. trehalose synthesis and lipid metabolism) were explored. Finally, biases in amino acid usage (namely an enrichment of glutamine and a trend in proline reduction) were observed, possibly conferring increased protein flexibility. To the best of our knowledge, such a combination of mechanisms for cold tolerance has not been previously reported in fungi, making N. vishniacii a unique model for the study of the genetic basis and evolution of cold adaptation strategies.
Collapse
Affiliation(s)
- Paula Nizovoy
- Centro de Referencia en Levaduras y Tecnologı́a Cervecera (CRELTEC), Instituto Andino Patagónico de Tecnologı́as Biológicas y Geoambientales (IPATEC) - CONICET / Universidad Nacional del Comahue, San Carlos de Bariloche, Rı́o Negro 8400, Argentina
| | - Nicolás Bellora
- Centro de Referencia en Levaduras y Tecnologı́a Cervecera (CRELTEC), Instituto Andino Patagónico de Tecnologı́as Biológicas y Geoambientales (IPATEC) - CONICET / Universidad Nacional del Comahue, San Carlos de Bariloche, Rı́o Negro 8400, Argentina
| | - Sajeet Haridas
- U.S. Department of Energy Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA 94598, USA
| | - Hui Sun
- U.S. Department of Energy Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA 94598, USA
| | - Chris Daum
- U.S. Department of Energy Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA 94598, USA
| | - Kerrie Barry
- U.S. Department of Energy Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA 94598, USA
| | - Igor V Grigoriev
- U.S. Department of Energy Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA 94598, USA.,Department of Plant and Microbial Biology, University of California, Berkeley, CA 94720, USA
| | - Diego Libkind
- Centro de Referencia en Levaduras y Tecnologı́a Cervecera (CRELTEC), Instituto Andino Patagónico de Tecnologı́as Biológicas y Geoambientales (IPATEC) - CONICET / Universidad Nacional del Comahue, San Carlos de Bariloche, Rı́o Negro 8400, Argentina
| | - Laurie B Connell
- School of Marine Sciences, University of Maine, Orono, ME 04469, USA
| | - Martín Moliné
- Centro de Referencia en Levaduras y Tecnologı́a Cervecera (CRELTEC), Instituto Andino Patagónico de Tecnologı́as Biológicas y Geoambientales (IPATEC) - CONICET / Universidad Nacional del Comahue, San Carlos de Bariloche, Rı́o Negro 8400, Argentina
| |
Collapse
|
8
|
Talbert PB, Henikoff S. What makes a centromere? Exp Cell Res 2020; 389:111895. [PMID: 32035948 DOI: 10.1016/j.yexcr.2020.111895] [Citation(s) in RCA: 101] [Impact Index Per Article: 20.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2019] [Revised: 01/18/2020] [Accepted: 02/05/2020] [Indexed: 12/26/2022]
Abstract
Centromeres are the eukaryotic chromosomal sites at which the kinetochore forms and attaches to spindle microtubules to orchestrate chromosomal segregation in mitosis and meiosis. Although centromeres are essential for cell division, their sequences are not conserved and evolve rapidly. Centromeres vary dramatically in size and organization. Here we categorize their diversity and explore the evolutionary forces shaping them. Nearly all centromeres favor AT-rich DNA that is gene-free and transcribed at a very low level. Repair of frequent centromere-proximal breaks probably contributes to their rapid sequence evolution. Point centromeres are only ~125 bp and are specified by common protein-binding motifs, whereas short regional centromeres are 1-5 kb, typically have unique sequences, and may have pericentromeric repeats adapted to facilitate centromere clustering. Transposon-rich centromeres are often ~100-300 kb and are favored by RNAi machinery that silences transposons, by suppression of meiotic crossovers at centromeres, and by the ability of some transposons to target centromeres. Megabase-length satellite centromeres arise in plants and animals with asymmetric female meiosis that creates centromere competition, and favors satellite monomers one or two nucleosomes in length that position and stabilize centromeric nucleosomes. Holocentromeres encompass the length of a chromosome and may differ dramatically between mitosis and meiosis. We propose a model in which low level transcription of centromeres facilitates the formation of non-B DNA that specifies centromeres and promotes loading of centromeric nucleosomes.
Collapse
Affiliation(s)
- Paul B Talbert
- Howard Hughes Medical Institute, Fred Hutchinson Cancer Research Center, 1100 Fairview Ave N, Seattle, WA, 98109, USA
| | - Steven Henikoff
- Howard Hughes Medical Institute, Fred Hutchinson Cancer Research Center, 1100 Fairview Ave N, Seattle, WA, 98109, USA.
| |
Collapse
|
9
|
Naranjo‐Ortiz MA, Gabaldón T. Fungal evolution: diversity, taxonomy and phylogeny of the Fungi. Biol Rev Camb Philos Soc 2019; 94:2101-2137. [PMID: 31659870 PMCID: PMC6899921 DOI: 10.1111/brv.12550] [Citation(s) in RCA: 154] [Impact Index Per Article: 25.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2018] [Revised: 07/25/2019] [Accepted: 07/31/2019] [Indexed: 12/11/2022]
Abstract
The fungal kingdom comprises a hyperdiverse clade of heterotrophic eukaryotes characterized by the presence of a chitinous cell wall, the loss of phagotrophic capabilities and cell organizations that range from completely unicellular monopolar organisms to highly complex syncitial filaments that may form macroscopic structures. Fungi emerged as a 'Third Kingdom', embracing organisms that were outside the classical dichotomy of animals versus vegetals. The taxonomy of this group has a turbulent history that is only now starting to be settled with the advent of genomics and phylogenomics. We here review the current status of the phylogeny and taxonomy of fungi, providing an overview of the main defined groups. Based on current knowledge, nine phylum-level clades can be defined: Opisthosporidia, Chytridiomycota, Neocallimastigomycota, Blastocladiomycota, Zoopagomycota, Mucoromycota, Glomeromycota, Basidiomycota and Ascomycota. For each group, we discuss their main traits and their diversity, focusing on the evolutionary relationships among the main fungal clades. We also explore the diversity and phylogeny of several groups of uncertain affinities and the main phylogenetic and taxonomical controversies and hypotheses in the field.
Collapse
Affiliation(s)
- Miguel A. Naranjo‐Ortiz
- Bioinformatics and Genomics Programme, Centre for Genomic Regulation (CRG)The Barcelona Institute of Science and TechnologyDr. Aiguader 88Barcelona08003Spain
| | - Toni Gabaldón
- Bioinformatics and Genomics Programme, Centre for Genomic Regulation (CRG)The Barcelona Institute of Science and TechnologyDr. Aiguader 88Barcelona08003Spain
- Health and Experimental Sciences DepartmentUniversitat Pompeu Fabra (UPF)08003BarcelonaSpain
- ICREAPg. Lluís Companys 2308010BarcelonaSpain
| |
Collapse
|
10
|
Cai Y, Xia M, Dong H, Qian Y, Zhang T, Zhu B, Wu J, Zhang D. Engineering a vitamin B 12 high-throughput screening system by riboswitch sensor in Sinorhizobium meliloti. BMC Biotechnol 2018; 18:27. [PMID: 29751749 PMCID: PMC5948670 DOI: 10.1186/s12896-018-0441-2] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2017] [Accepted: 04/30/2018] [Indexed: 12/23/2022] Open
Abstract
Background As a very important coenzyme in the cell metabolism, Vitamin B12 (cobalamin, VB12) has been widely used in food and medicine fields. The complete biosynthesis of VB12 requires approximately 30 genes, but overexpression of these genes did not result in expected increase of VB12 production. High-yield VB12-producing strains are usually obtained by mutagenesis treatments, thus developing an efficient screening approach is urgently needed. Result By the help of engineered strains with varied capacities of VB12 production, a riboswitch library was constructed and screened, and the btuB element from Salmonella typhimurium was identified as the best regulatory device. A flow cytometry high-throughput screening system was developed based on the btuB riboswitch with high efficiency to identify positive mutants. Mutation of Sinorhizobium meliloti (S. meliloti) was optimized using the novel mutation technique of atmospheric and room temperature plasma (ARTP). Finally, the mutant S. meliloti MC5–2 was obtained and considered as a candidate for industrial applications. After 7 d’s cultivation on a rotary shaker at 30 °C, the VB12 titer of S. meliloti MC5–2 reached 156 ± 4.2 mg/L, which was 21.9% higher than that of the wild type strain S. meliloti 320 (128 ± 3.2 mg/L). The genome of S. meliloti MC5–2 was sequenced, and gene mutations were identified and analyzed. Conclusion To our knowledge, it is the first time that a riboswitch element was used in S. meliloti. The flow cytometry high-throughput screening system was successfully developed and a high-yield VB12 producing strain was obtained. The identified and analyzed gene mutations gave useful information for developing high-yield strains by metabolic engineering. Overall, this work provides a useful high-throughput screening method for developing high VB12-yield strains. Electronic supplementary material The online version of this article (10.1186/s12896-018-0441-2) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Yingying Cai
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, 32 West 7th Avenue, Tianjin Airport Economic Area, Tianjin, 300308, China.,Key Laboratory of Systems Microbial Biotechnology, Chinese Academy of Sciences, 32 West 7th Avenue, Tianjin Airport Economic Area, Tianjin, 300308, China.,College of Biotechnology, Tianjin University of Science & Technology, No. 29, thirteenth Avenue Binhai District, Tianjin, 300457, China
| | - Miaomiao Xia
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, 32 West 7th Avenue, Tianjin Airport Economic Area, Tianjin, 300308, China.,Key Laboratory of Systems Microbial Biotechnology, Chinese Academy of Sciences, 32 West 7th Avenue, Tianjin Airport Economic Area, Tianjin, 300308, China
| | - Huina Dong
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, 32 West 7th Avenue, Tianjin Airport Economic Area, Tianjin, 300308, China.,Key Laboratory of Systems Microbial Biotechnology, Chinese Academy of Sciences, 32 West 7th Avenue, Tianjin Airport Economic Area, Tianjin, 300308, China
| | - Yuan Qian
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, 32 West 7th Avenue, Tianjin Airport Economic Area, Tianjin, 300308, China.,Key Laboratory of Systems Microbial Biotechnology, Chinese Academy of Sciences, 32 West 7th Avenue, Tianjin Airport Economic Area, Tianjin, 300308, China
| | - Tongcun Zhang
- College of Biotechnology, Tianjin University of Science & Technology, No. 29, thirteenth Avenue Binhai District, Tianjin, 300457, China
| | - Beiwei Zhu
- School of Food Science and Technology, Dalian Polytechnic University, National Engineering Research Center of Seafood, Dalian, 116034, People's Republic of China
| | - Jinchuan Wu
- Industrial Biotechnology Division, Institute of Chemical and Engineering Sciences, 1 Pesek Road, Jurong Island, 627833, Singapore
| | - Dawei Zhang
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, 32 West 7th Avenue, Tianjin Airport Economic Area, Tianjin, 300308, China. .,Key Laboratory of Systems Microbial Biotechnology, Chinese Academy of Sciences, 32 West 7th Avenue, Tianjin Airport Economic Area, Tianjin, 300308, China. .,School of Food Science and Technology, Dalian Polytechnic University, National Engineering Research Center of Seafood, Dalian, 116034, People's Republic of China.
| |
Collapse
|
11
|
Montero-Mendieta S, Grabherr M, Lantz H, De la Riva I, Leonard JA, Webster MT, Vilà C. A practical guide to build de-novo assemblies for single tissues of non-model organisms: the example of a Neotropical frog. PeerJ 2017; 5:e3702. [PMID: 28879061 PMCID: PMC5582611 DOI: 10.7717/peerj.3702] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2017] [Accepted: 07/27/2017] [Indexed: 01/01/2023] Open
Abstract
Whole genome sequencing (WGS) is a very valuable resource to understand the evolutionary history of poorly known species. However, in organisms with large genomes, as most amphibians, WGS is still excessively challenging and transcriptome sequencing (RNA-seq) represents a cost-effective tool to explore genome-wide variability. Non-model organisms do not usually have a reference genome and the transcriptome must be assembled de-novo. We used RNA-seq to obtain the transcriptomic profile for Oreobates cruralis, a poorly known South American direct-developing frog. In total, 550,871 transcripts were assembled, corresponding to 422,999 putative genes. Of those, we identified 23,500, 37,349, 38,120 and 45,885 genes present in the Pfam, EggNOG, KEGG and GO databases, respectively. Interestingly, our results suggested that genes related to immune system and defense mechanisms are abundant in the transcriptome of O. cruralis. We also present a pipeline to assist with pre-processing, assembling, evaluating and functionally annotating a de-novo transcriptome from RNA-seq data of non-model organisms. Our pipeline guides the inexperienced user in an intuitive way through all the necessary steps to build de-novo transcriptome assemblies using readily available software and is freely available at: https://github.com/biomendi/TRANSCRIPTOME-ASSEMBLY-PIPELINE/wiki.
Collapse
Affiliation(s)
- Santiago Montero-Mendieta
- Conservation and Evolutionary Genetics Group, Department of Integrative Ecology, Doñana Biological Station (EBD-CSIC), Consejo Superior de Investigaciones Científicas, Seville, Spain
| | - Manfred Grabherr
- Department of Medical Biochemistry and Microbiology, National Bioinformatics Infrastructure Sweden (BILS), Uppsala Universitet, Uppsala, Sweden
| | - Henrik Lantz
- Department of Medical Biochemistry and Microbiology, National Bioinformatics Infrastructure Sweden (BILS), Uppsala Universitet, Uppsala, Sweden
| | - Ignacio De la Riva
- Department of Biodiversity and Evolutionary Biology, Museo Nacional de Ciencias Naturales, Consejo Superior de Investigaciones Científicas, Madrid, Spain
| | - Jennifer A Leonard
- Conservation and Evolutionary Genetics Group, Department of Integrative Ecology, Doñana Biological Station (EBD-CSIC), Consejo Superior de Investigaciones Científicas, Seville, Spain
| | - Matthew T Webster
- Department of Medical Biochemistry and Microbiology, Science for Life Laboratory, Uppsala Universitet, Uppsala, Sweden
| | - Carles Vilà
- Conservation and Evolutionary Genetics Group, Department of Integrative Ecology, Doñana Biological Station (EBD-CSIC), Consejo Superior de Investigaciones Científicas, Seville, Spain
| |
Collapse
|
12
|
Chen K, Yang X, Zheng F, Long CA. Genome sequencing and analysis of Kloeckera apiculata strain 34-9, a biocontrol agent against postharvest pathogens in citrus. Genes Genomics 2016. [DOI: 10.1007/s13258-016-0475-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
|
13
|
Voordeckers K, Verstrepen KJ. Experimental evolution of the model eukaryote Saccharomyces cerevisiae yields insight into the molecular mechanisms underlying adaptation. Curr Opin Microbiol 2015. [PMID: 26202939 DOI: 10.1016/j.mib.2015.06.018] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Understanding how changes in DNA drive the emergence of new phenotypes and fuel evolution remains a major challenge. One major hurdle is the lack of a fossil record of DNA that allows linking mutations to phenotypic changes. However, the emergence of high-throughput sequencing technologies now allows sequencing genomes of natural and experimentally evolved microbial populations to study how mutations arise and spread through a population, how new phenotypes arise and how this ultimately leads to adaptation. Here, we highlight key studies that have increased our mechanistic understanding of evolution. We specifically focus on the model eukaryote Saccharomyces cerevisiae because its relatively short replication time, much-studied biology and available molecular toolbox have made it a prime model for molecular evolution studies.
Collapse
Affiliation(s)
- Karin Voordeckers
- CMPG Laboratory for Genetics and Genomics, KU Leuven, Gaston Geenslaan 1, B-3001 Leuven, Belgium; VIB Laboratory for Systems Biology, Gaston Geenslaan 1, B-3001 Leuven, Belgium
| | - Kevin J Verstrepen
- CMPG Laboratory for Genetics and Genomics, KU Leuven, Gaston Geenslaan 1, B-3001 Leuven, Belgium; VIB Laboratory for Systems Biology, Gaston Geenslaan 1, B-3001 Leuven, Belgium.
| |
Collapse
|
14
|
Kobayashi N, Suzuki Y, Schoenfeld LW, Müller CA, Nieduszynski C, Wolfe KH, Tanaka TU. Discovery of an unconventional centromere in budding yeast redefines evolution of point centromeres. Curr Biol 2015; 25:2026-33. [PMID: 26166782 PMCID: PMC4533239 DOI: 10.1016/j.cub.2015.06.023] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2015] [Revised: 04/26/2015] [Accepted: 06/10/2015] [Indexed: 11/30/2022]
Abstract
Centromeres are the chromosomal regions promoting kinetochore assembly for chromosome segregation. In many eukaryotes, the centromere consists of up to mega base pairs of DNA. On such “regional centromeres,” kinetochore assembly is mainly defined by epigenetic regulation [1]. By contrast, a clade of budding yeasts (Saccharomycetaceae) has a “point centromere” of 120–200 base pairs of DNA, on which kinetochore assembly is defined by the consensus DNA sequence [2, 3]. During evolution, budding yeasts acquired point centromeres, which replaced ancestral, regional centromeres [4]. All known point centromeres among different yeast species share common consensus DNA elements (CDEs) [5, 6], implying that they evolved only once and stayed essentially unchanged throughout evolution. Here, we identify a yeast centromere that challenges this view: that of the budding yeast Naumovozyma castellii is the first unconventional point centromere with unique CDEs. The N. castellii centromere CDEs are essential for centromere function but have different DNA sequences from CDEs in other point centromeres. Gene order analyses around N. castellii centromeres indicate their unique, and separate, evolutionary origin. Nevertheless, they are still bound by the ortholog of the CBF3 complex, which recognizes CDEs in other point centromeres. The new type of point centromere originated prior to the divergence between N. castellii and its close relative Naumovozyma dairenensis and disseminated to all N. castellii chromosomes through extensive genome rearrangement. Thus, contrary to the conventional view, point centromeres can undergo rapid evolutionary changes. These findings give new insights into the evolution of point centromeres. A new type of point centromere has been identified in budding yeast N. castellii Its DNA sequence and evolutionary origin are different from other point centromeres N. castellii centromeres are bound by CBF3 that recognizes other point centromeres Contrary to the conventional view, point centromeres can change rapidly in evolution
Collapse
Affiliation(s)
- Norihiko Kobayashi
- Centre for Gene Regulation and Expression, College of Life Sciences, University of Dundee, Dundee DD1 5EH, UK
| | - Yutaka Suzuki
- Department of Computational Biology, School of Frontier Medicine, University of Tokyo, Chiba 277-8562, Japan
| | - Lori W Schoenfeld
- Whitehead Institute for Biomedical Research, Cambridge, MA 02142, USA; Howard Hughes Medical Institute and Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Carolin A Müller
- Sir William Dunn School of Pathology, University of Oxford, Oxford OX1 3RE, UK
| | - Conrad Nieduszynski
- Sir William Dunn School of Pathology, University of Oxford, Oxford OX1 3RE, UK
| | - Kenneth H Wolfe
- UCD Conway Institute, School of Medicine and Medical Science, University College Dublin, Dublin 4, Ireland
| | - Tomoyuki U Tanaka
- Centre for Gene Regulation and Expression, College of Life Sciences, University of Dundee, Dundee DD1 5EH, UK.
| |
Collapse
|
15
|
Zilli DMW, Lopes RG, Alves SL, Barros LM, Miletti LC, Stambuk BU. Secretion of the acid trehalase encoded by the CgATH1 gene allows trehalose fermentation by Candida glabrata. Microbiol Res 2015; 179:12-9. [PMID: 26411890 DOI: 10.1016/j.micres.2015.06.008] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2014] [Revised: 06/26/2015] [Accepted: 06/27/2015] [Indexed: 01/10/2023]
Abstract
The emergent pathogen Candida glabrata differs from other yeasts because it assimilates only two sugars, glucose and the disaccharide trehalose. Since rapid identification tests are based on the ability of this yeast to rapidly hydrolyze trehalose, in this work a biochemical and molecular characterization of trehalose catabolism by this yeast was performed. Our results show that C. glabrata consumes and ferments trehalose, with parameters similar to those observed during glucose fermentation. The presence of glucose in the medium during exponential growth on trehalose revealed extracellular hydrolysis of the sugar by a cell surface acid trehalase with a pH optimum of 4.4. Approximately ∼30% of the total enzymatic activity is secreted into the medium during growth on trehalose or glycerol. The secreted enzyme shows an apparent molecular mass of 275 kDa in its native form, but denaturant gel electrophoresis revealed a protein with ∼130 kDa, which due to its migration pattern and strong binding to concanavalin A, indicates that it is probably a dimeric glycoprotein. The secreted acid trehalase shows high affinity and activity for trehalose, with Km and Vmax values of 3.4 mM and 80 U (mg protein)(-1), respectively. Cloning of the CgATH1 gene (CAGLOK05137g) from de C. glabrata genome, a gene showing high homology to fungal acid trehalases, allowed trehalose fermentation after heterologous expression in Saccharomyces cerevisiae.
Collapse
Affiliation(s)
- D M W Zilli
- Departamento de Bioquímica, Centro de Ciências Biológicas, Universidade Federal de Santa Catarina, Campus Trindade, Florianópolis, SC 88040-900, Brazil
| | - R G Lopes
- Departamento de Bioquímica, Centro de Ciências Biológicas, Universidade Federal de Santa Catarina, Campus Trindade, Florianópolis, SC 88040-900, Brazil
| | - S L Alves
- Departamento de Bioquímica, Centro de Ciências Biológicas, Universidade Federal de Santa Catarina, Campus Trindade, Florianópolis, SC 88040-900, Brazil
| | - L M Barros
- Departamento de Bioquímica, Centro de Ciências Biológicas, Universidade Federal de Santa Catarina, Campus Trindade, Florianópolis, SC 88040-900, Brazil
| | - L C Miletti
- Departamento de Bioquímica, Centro de Ciências Biológicas, Universidade Federal de Santa Catarina, Campus Trindade, Florianópolis, SC 88040-900, Brazil
| | - B U Stambuk
- Departamento de Bioquímica, Centro de Ciências Biológicas, Universidade Federal de Santa Catarina, Campus Trindade, Florianópolis, SC 88040-900, Brazil.
| |
Collapse
|
16
|
Scazzocchio C. Fungal biology in the post-genomic era. Fungal Biol Biotechnol 2014; 1:7. [PMID: 28955449 PMCID: PMC5611559 DOI: 10.1186/s40694-014-0007-6] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2014] [Accepted: 09/15/2014] [Indexed: 12/12/2022] Open
Abstract
In this review I give a personal perspective of how fungal biology has changed since I started my Ph. D. in 1963. At that time we were working in the shadow of the birth of molecular biology as an autonomous and reductionistic discipline, embodied in Crick’s central dogma. This first period was methodologically characterised by the fact that we knew what genes were, but we could not access them directly. This radically changed in the 70s-80s when gene cloning, reverse genetics and DNA sequencing become possible. The “next generation” sequencing techniques have produced a further qualitative revolutionary change. The ready access to genomes and transcriptomes of any microbial organism allows old questions to be asked in a radically different way and new questions to be approached. I provide examples chosen somewhat arbitrarily to illustrate some of these changes, from applied aspects to fundamental problems such as the origin of fungal specific genes, the evolutionary history of genes clusters and the realisation of the pervasiveness of horizontal transmission. Finally, I address how the ready availability of genomes and transcriptomes could change the status of model organisms.
Collapse
Affiliation(s)
- Claudio Scazzocchio
- Department of Microbiology, Imperial College, London, SW7 2AZ UK.,Institut de Génétique et Microbiologie, CNRS UMR 8621, Université Paris-Sud, Orsay, 91405 France
| |
Collapse
|
17
|
Förster J, Halbfeld C, Zimmermann M, Blank LM. A blueprint of the amino acid biosynthesis network of hemiascomycetes. FEMS Yeast Res 2014; 14:1090-100. [PMID: 25187056 DOI: 10.1111/1567-1364.12205] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2014] [Revised: 08/28/2014] [Accepted: 08/28/2014] [Indexed: 11/28/2022] Open
Abstract
The structure and regulation of biosynthesis pathways in Saccharomyces cerevisiae have been detailed extensively. For other hemiascomycetes, genomic sequences are primarily available, whereas biochemical information on them is scarce. The resulting biochemical networks that are used for research in basic science and biotechnology are often biased by data from S. cerevisiae, assuming that there are often implicitly conserved structures between species. We examined the structure of the amino acid biosynthesis network in nine hemiascomycetes, spanning the phylogenetic clade. Differences in the genetic inventory included the presence and absence of isoenzymes and compartmentation of the pathways. Notably, no two hemiascomycetes had identical genetic inventories. For example, the lack of the mitochondrial αIPMS isoenzyme and presence of only one copy of the BCAA aminotransferase in Pichia pastoris indicate a disparately compartmented leucine biosynthesis pathway. Our findings suggest that αIPMS and BCAA aminotransferase are solely located in the cytosol of P. pastoris, requiring correction of the leucine biosynthesis pathway layout in this species. Our results argue for careful use of information from S. cerevisiae and for joint efforts to fill the knowledge gaps in other species. Such analysis will lead to contributions in biotechnology disciplines, such as protein production and compartment engineering.
Collapse
Affiliation(s)
- Jan Förster
- Institute of Applied Microbiology (iAMB), Aachen Biology and Biotechnology (ABBt), RWTH Aachen University, Aachen, Germany
| | | | | | | |
Collapse
|
18
|
Zarin T, Moses AM. Insights into molecular evolution from yeast genomics. Yeast 2014; 31:233-41. [PMID: 24760744 DOI: 10.1002/yea.3018] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2014] [Revised: 04/09/2014] [Accepted: 04/10/2014] [Indexed: 12/13/2022] Open
Abstract
Enabled by comparative genomics, yeasts have increasingly developed into a powerful model system for molecular evolution. Here we survey several areas in which yeast studies have made important contributions, including regulatory evolution, gene duplication and divergence, evolution of gene order and evolution of complexity. In each area we highlight key studies and findings based on techniques ranging from statistical analysis of large datasets to direct laboratory measurements of fitness. Future work will combine traditional evolutionary genetics analysis and experimental evolution with tools from systems biology to yield mechanistic insight into complex phenotypes.
Collapse
Affiliation(s)
- Taraneh Zarin
- Department of Cell and Systems Biology, University of Toronto, ON, Canada
| | | |
Collapse
|
19
|
Kurtzman CP. Use of gene sequence analyses and genome comparisons for yeast systematics. Int J Syst Evol Microbiol 2014; 64:325-332. [PMID: 24505070 DOI: 10.1099/ijs.0.054197-0] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Detection, identification and classification of yeasts have undergone a major transformation in the past decade and a half following application of gene sequence analyses and genome comparisons. Development of a database (barcode) of easily determined gene sequences from domains 1 and 2 (D1/D2) of large subunit rRNA and from the internal transcribed spacer (ITS) now permits many laboratories to identify species accurately and this has led to a doubling in the number of known species of yeasts over the past decade. Phylogenetic analysis of gene sequences has resulted in major revision of yeast systematics, resulting in redefinition of nearly all genera. Future work calls for application of genomics to refine our understanding of the species concept and to provide a better understanding of the boundaries of genera and higher levels of classification. This increased understanding of phylogeny is expected to allow prediction of the genetic potential of various clades and species for biotechnological applications and adaptation to environmental changes.
Collapse
Affiliation(s)
- Cletus P Kurtzman
- Bacterial Foodborne Pathogens and Mycology Research Unit, National Center for Agricultural Utilization Research, Agricultural Research Service, U.S. Department of Agriculture, Peoria, IL, USA
| |
Collapse
|
20
|
Bhattacharya I, Yan S, Yadav JSS, Tyagi RD, Surampalli RY. Saccharomyces unisporus: Biotechnological Potential and Present Status. Compr Rev Food Sci Food Saf 2013; 12:353-363. [PMID: 33412685 DOI: 10.1111/1541-4337.12016] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2012] [Accepted: 02/28/2013] [Indexed: 12/14/2022]
Abstract
The yeast species of the Saccharomyces genus have a long history of traditional applications and beneficial effects. Among these presence of the Saccharomyces unisporus has been documented in various dairy products and has become a subject of interest and great importance. S. unisporus has shown a significant role in the ripening of cheese and production of fermented milk products such as kefir and koumiss. The absence of pseudohyphae during the life cycle of S. unisporus is an indication of nonpathogenicity. Significance has been laid on the presence of S. unisporus in food-grade products and a close proximity of S. unisporus to S. florentinus and both of these species are accepted by the International Dairy Federation and the European Food and Feed Cultures Association for food and feed applications. Since over the years, S. unisporus has already become a part of various dairy products, S. unisporus can be considered as a potential candidate for generally regarded as safe status. S. unisporus has the capacity to convert ketoisophorone to levodione, which is an important pharmaceutical precursor. S. unisporus are considered as the potential producers of farnesol which eventually controls filamentation of pathogenic microorganisms. Apart from that, S. unisporus produces certain omega unsaturated fatty acids which combat diseases. Henceforth, the areas which S. unisporus can be possibly exploited for its useful intermediates are the enzymes and fatty acids it produces. In this context, this review attempts to describe and discuss the ubiquity of S. unisporus in food products, cellular composition, regulatory pathways, and its synthesis of fatty acids and enzymes.
Collapse
Affiliation(s)
- Indrani Bhattacharya
- Inst. Natl. de la recherche scientifique, Univ. du Québec, 490, Rue de la Couronne, Québec, Canada, G1K 9A9
| | - Song Yan
- Inst. Natl. de la recherche scientifique, Univ. du Québec, 490, Rue de la Couronne, Québec, Canada, G1K 9A9
| | - Jay Shankar Singh Yadav
- Inst. Natl. de la recherche scientifique, Univ. du Québec, 490, Rue de la Couronne, Québec, Canada, G1K 9A9
| | - R D Tyagi
- Inst. Natl. de la recherche scientifique, Univ. du Québec, 490, Rue de la Couronne, Québec, Canada, G1K 9A9
| | - R Y Surampalli
- U.S. Environmental Protection Agency (USEPA), P. O. Box 17-2141, Kansas City, KS 66117, U.S.A
| |
Collapse
|
21
|
Luo Y, Li C, Gong X, Wang Y, Zhang K, Cui Y, Sun YE, Li S. Splicing-related features of introns serve to propel evolution. PLoS One 2013; 8:e58547. [PMID: 23516505 PMCID: PMC3596301 DOI: 10.1371/journal.pone.0058547] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2012] [Accepted: 02/05/2013] [Indexed: 01/15/2023] Open
Abstract
The role of spliceosomal intronic structures played in evolution has only begun to be elucidated. Comparative genomic analyses of fungal snoRNA sequences, which are often contained within introns and/or exons, revealed that about one-third of snoRNA-associated introns in three major snoRNA gene clusters manifested polymorphisms, likely resulting from intron loss and gain events during fungi evolution. Genomic deletions can clearly be observed as one mechanism underlying intron and exon loss, as well as generation of complex introns where several introns lie in juxtaposition without intercalating exons. Strikingly, by tracking conserved snoRNAs in introns, we found that some introns had moved from one position to another by excision from donor sites and insertion into target sties elsewhere in the genome without needing transposon structures. This study revealed the origin of many newly gained introns. Moreover, our analyses suggested that intron-containing sequences were more prone to sustainable structural changes than DNA sequences without introns due to intron's ability to jump within the genome via unknown mechanisms. We propose that splicing-related structural features of introns serve as an additional motor to propel evolution.
Collapse
Affiliation(s)
- Yuping Luo
- Stem Cell Translational Research Center, Tongji Hospital, Tongji University School of Medicine, Shanghai, China
- College of Life Sciences, Nanchang University, Nanchang, China
- * E-mail: (YL); (YES); (SL)
| | - Chun Li
- Shanghai Stem Cell Institute, Institutes of Medical Sciences, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xi Gong
- College of Life Sciences, Nanchang University, Nanchang, China
| | - Yanlu Wang
- College of Life Sciences, Nanchang University, Nanchang, China
| | - Kunshan Zhang
- Stem Cell Translational Research Center, Tongji Hospital, Tongji University School of Medicine, Shanghai, China
| | - Yaru Cui
- Stem Cell Translational Research Center, Tongji Hospital, Tongji University School of Medicine, Shanghai, China
| | - Yi Eve Sun
- Stem Cell Translational Research Center, Tongji Hospital, Tongji University School of Medicine, Shanghai, China
- * E-mail: (YL); (YES); (SL)
| | - Siguang Li
- Stem Cell Translational Research Center, Tongji Hospital, Tongji University School of Medicine, Shanghai, China
- College of Life Sciences, Nanchang University, Nanchang, China
- * E-mail: (YL); (YES); (SL)
| |
Collapse
|
22
|
Proux-Wéra E, Armisén D, Byrne KP, Wolfe KH. A pipeline for automated annotation of yeast genome sequences by a conserved-synteny approach. BMC Bioinformatics 2012; 13:237. [PMID: 22984983 PMCID: PMC3507789 DOI: 10.1186/1471-2105-13-237] [Citation(s) in RCA: 70] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2012] [Accepted: 09/17/2012] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND Yeasts are a model system for exploring eukaryotic genome evolution. Next-generation sequencing technologies are poised to vastly increase the number of yeast genome sequences, both from resequencing projects (population studies) and from de novo sequencing projects (new species). However, the annotation of genomes presents a major bottleneck for de novo projects, because it still relies on a process that is largely manual. RESULTS Here we present the Yeast Genome Annotation Pipeline (YGAP), an automated system designed specifically for new yeast genome sequences lacking transcriptome data. YGAP does automatic de novo annotation, exploiting homology and synteny information from other yeast species stored in the Yeast Gene Order Browser (YGOB) database. The basic premises underlying YGAP's approach are that data from other species already tells us what genes we should expect to find in any particular genomic region and that we should also expect that orthologous genes are likely to have similar intron/exon structures. Additionally, it is able to detect probable frameshift sequencing errors and can propose corrections for them. YGAP searches intelligently for introns, and detects tRNA genes and Ty-like elements. CONCLUSIONS In tests on Saccharomyces cerevisiae and on the genomes of Naumovozyma castellii and Tetrapisispora blattae newly sequenced with Roche-454 technology, YGAP outperformed another popular annotation program (AUGUSTUS). For S. cerevisiae and N. castellii, 91-93% of YGAP's predicted gene structures were identical to those in previous manually curated gene sets. YGAP has been implemented as a webserver with a user-friendly interface at http://wolfe.gen.tcd.ie/annotation.
Collapse
Affiliation(s)
- Estelle Proux-Wéra
- Smurfit Institute of Genetics, Trinity College Dublin, Dublin 2, Ireland
| | | | | | | |
Collapse
|
23
|
Abstract
Technological advances in biology have begun to dramatically change the way we think about evolution, development, health and disease. The ability to sequence the genomes of many individuals within a population, and across multiple species, has opened the door to the possibility of answering some long-standing and perplexing questions about our own genetic heritage. One such question revolves around the nature of cellular hyperproliferation. This cellular behavior is used to effect wound healing in most animals, as well as, in some animals, the regeneration of lost body parts. Yet at the same time, cellular hyperproliferation is the fundamental pathological condition responsible for cancers in humans. Here, I will discuss why microevolution, macroevolution and developmental biology all have to be taken into consideration when interpreting studies of both normal and malignant hyperproliferation. I will also illustrate how a synthesis of evolutionary sciences and developmental biology through the study of diverse model organisms can inform our understanding of both health and disease.
Collapse
|
24
|
Phylogenetic origin and transcriptional regulation at the post-diauxic phase of SPI1, in Saccharomyces cerevisiae. Cell Mol Biol Lett 2012; 17:393-407. [PMID: 22610976 PMCID: PMC6275683 DOI: 10.2478/s11658-012-0017-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2012] [Accepted: 05/11/2012] [Indexed: 11/22/2022] Open
Abstract
The gene SPI1, of Saccharomyces cerevisiae, encodes a cell wall protein that is induced in several stress conditions, particularly in the postdiauxic and stationary phases of growth. It has a paralogue, SED1, which shows some common features in expression regulation and in the null mutant phenotype. In this work we have identified homologues in other species of yeasts and filamentous fungi, and we have also elucidated some aspects of the origin of SPI1, by duplication and diversification of SED1. In terms of regulation, we have found that the expression in the post-diauxic phase is regulated by genes related to the PKA pathway and stress response (MSN2/4, YAK1, POP2, SOK2, PHD1, and PHO84) and by genes involved in the PKC pathway (WSC2, PKC1, and MPK1).
Collapse
|
25
|
Piotrowski JS, Nagarajan S, Kroll E, Stanbery A, Chiotti KE, Kruckeberg AL, Dunn B, Sherlock G, Rosenzweig F. Different selective pressures lead to different genomic outcomes as newly-formed hybrid yeasts evolve. BMC Evol Biol 2012; 12:46. [PMID: 22471618 PMCID: PMC3372441 DOI: 10.1186/1471-2148-12-46] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2011] [Accepted: 04/02/2012] [Indexed: 11/23/2022] Open
Abstract
BACKGROUND Interspecific hybridization occurs in every eukaryotic kingdom. While hybrid progeny are frequently at a selective disadvantage, in some instances their increased genome size and complexity may result in greater stress resistance than their ancestors, which can be adaptively advantageous at the edges of their ancestors' ranges. While this phenomenon has been repeatedly documented in the field, the response of hybrid populations to long-term selection has not often been explored in the lab. To fill this knowledge gap we crossed the two most distantly related members of the Saccharomyces sensu stricto group, S. cerevisiae and S. uvarum, and established a mixed population of homoploid and aneuploid hybrids to study how different types of selection impact hybrid genome structure. RESULTS As temperature was raised incrementally from 31°C to 46.5°C over 500 generations of continuous culture, selection favored loss of the S. uvarum genome, although the kinetics of genome loss differed among independent replicates. Temperature-selected isolates exhibited greater inherent and induced thermal tolerance than parental species and founding hybrids, and also exhibited ethanol resistance. In contrast, as exogenous ethanol was increased from 0% to 14% over 500 generations of continuous culture, selection favored euploid S. cerevisiae x S. uvarum hybrids. Ethanol-selected isolates were more ethanol tolerant than S. uvarum and one of the founding hybrids, but did not exhibit resistance to temperature stress. Relative to parental and founding hybrids, temperature-selected strains showed heritable differences in cell wall structure in the forms of increased resistance to zymolyase digestion and Micafungin, which targets cell wall biosynthesis. CONCLUSIONS This is the first study to show experimentally that the genomic fate of newly-formed interspecific hybrids depends on the type of selection they encounter during the course of evolution, underscoring the importance of the ecological theatre in determining the outcome of the evolutionary play.
Collapse
Affiliation(s)
- Jeff S Piotrowski
- Chemical Genomics Research Group, RIKEN Advance Science Institute, Wako, Wako, Japan
- Division of Biological Sciences, The University of Montana, Missoula MT 59812, USA
| | - Saisubramanian Nagarajan
- School of Chemical and Biotechnology, SASTRA University, Tirumalaisamudram Thanjavur- 613401, Tamil Nadu, India
- Division of Biological Sciences, The University of Montana, Missoula MT 59812, USA
| | - Evgueny Kroll
- Division of Biological Sciences, The University of Montana, Missoula MT 59812, USA
| | - Alison Stanbery
- Division of Biological Sciences, The University of Montana, Missoula MT 59812, USA
| | - Kami E Chiotti
- Division of Biological Sciences, The University of Montana, Missoula MT 59812, USA
| | | | - Barbara Dunn
- Department of Genetics, Stanford University School of Medicine, Stanford, CA 94305-5120, USA
| | - Gavin Sherlock
- Department of Genetics, Stanford University School of Medicine, Stanford, CA 94305-5120, USA
| | - Frank Rosenzweig
- Division of Biological Sciences, The University of Montana, Missoula MT 59812, USA
| |
Collapse
|
26
|
Seret ML, Baret PV. IONS: Identification of Orthologs by Neighborhood and Similarity-an Automated Method to Identify Orthologs in Chromosomal Regions of Common Evolutionary Ancestry and its Application to Hemiascomycetous Yeasts. Evol Bioinform Online 2011; 7:123-33. [PMID: 21918595 PMCID: PMC3169350 DOI: 10.4137/ebo.s7465] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/04/2022] Open
Abstract
Comparative sequence analysis is widely used to infer gene function and study genome evolution and requires proper ortholog identification across different genomes. We have developed a program for the Identification of Orthologs in one-to-one relationship by Neighborhood and Similarity (IONS) between closely related species. The algorithm combines two levels of evidence to determine co-ancestrality at the genome scale: sequence similarity and shared neighborhood. The method was initially designed to provide anchor points for syntenic blocks within the Génolevures project concerning nine hemiascomycetous yeasts (about 50,000 genes) and is applicable to different input databases. Comparison based on use of a Rand index shows that the results are highly consistent with the pillars of the Yeast Gene Order Browser, a manually curated database. Compared with SYNERGY, another algorithm reporting homology relationships, our method’s main advantages are its automation and the absence of dataset-dependent parameters, facilitating consistent integration of newly released genomes.
Collapse
Affiliation(s)
- Marie-Line Seret
- Université Catholique de Louvain, Earth and Life Institute (ELI), 1348 Louvain-la-Neuve, Belgium
| | | |
Collapse
|
27
|
OhÉigeartaigh SS, Armisén D, Byrne KP, Wolfe KH. Systematic discovery of unannotated genes in 11 yeast species using a database of orthologous genomic segments. BMC Genomics 2011; 12:377. [PMID: 21791067 PMCID: PMC3161974 DOI: 10.1186/1471-2164-12-377] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2011] [Accepted: 07/26/2011] [Indexed: 02/08/2023] Open
Abstract
Background In standard BLAST searches, no information other than the sequences of the query and the database entries is considered. However, in situations where two genes from different species have only borderline similarity in a BLAST search, the discovery that the genes are located within a region of conserved gene order (synteny) can provide additional evidence that they are orthologs. Thus, for interpreting borderline search results, it would be useful to know whether the syntenic context of a database hit is similar to that of the query. This principle has often been used in investigations of particular genes or genomic regions, but to our knowledge it has never been implemented systematically. Results We made use of the synteny information contained in the Yeast Gene Order Browser database for 11 yeast species to carry out a systematic search for protein-coding genes that were overlooked in the original annotations of one or more yeast genomes but which are syntenic with their orthologs. Such genes tend to have been overlooked because they are short, highly divergent, or contain introns. The key features of our software - called SearchDOGS - are that the database entries are classified into sets of genomic segments that are already known to be orthologous, and that very weak BLAST hits are retained for further analysis if their genomic location is similar to that of the query. Using SearchDOGS we identified 595 additional protein-coding genes among the 11 yeast species, including two new genes in Saccharomyces cerevisiae. We found additional genes for the mating pheromone a-factor in six species including Kluyveromyces lactis. Conclusions SearchDOGS has proven highly successful for identifying overlooked genes in the yeast genomes. We anticipate that our approach can be adapted for study of further groups of species, such as bacterial genomes. More generally, the concept of doing sequence similarity searches against databases to which external information has been added may prove useful in other settings.
Collapse
|
28
|
Gordon JL, Byrne KP, Wolfe KH. Mechanisms of chromosome number evolution in yeast. PLoS Genet 2011; 7:e1002190. [PMID: 21811419 PMCID: PMC3141009 DOI: 10.1371/journal.pgen.1002190] [Citation(s) in RCA: 97] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2011] [Accepted: 06/03/2011] [Indexed: 12/25/2022] Open
Abstract
The whole-genome duplication (WGD) that occurred during yeast evolution changed the basal number of chromosomes from 8 to 16. However, the number of chromosomes in post-WGD species now ranges between 10 and 16, and the number in non-WGD species (Zygosaccharomyces, Kluyveromyces, Lachancea, and Ashbya) ranges between 6 and 8. To study the mechanism by which chromosome number changes, we traced the ancestry of centromeres and telomeres in each species. We observe only two mechanisms by which the number of chromosomes has decreased, as indicated by the loss of a centromere. The most frequent mechanism, seen 8 times, is telomere-to-telomere fusion between two chromosomes with the concomitant death of one centromere. The other mechanism, seen once, involves the breakage of a chromosome at its centromere, followed by the fusion of the two arms to the telomeres of two other chromosomes. The only mechanism by which chromosome number has increased in these species is WGD. Translocations and inversions have cycled telomere locations, internalizing some previously telomeric genes and creating novel telomeric locations. Comparison of centromere structures shows that the length of the CDEII region is variable between species but uniform within species. We trace the complete rearrangement history of the Lachancea kluyveri genome since its common ancestor with Saccharomyces and propose that its exceptionally low level of rearrangement is a consequence of the loss of the non-homologous end joining (NHEJ) DNA repair pathway in this species. The number of chromosomes in organisms often changes over evolutionary time. To study how the number changes, we compare several related species of yeast that share a common ancestor roughly 150 million years ago and have varying numbers of chromosomes. By inferring ancestral genome structures, we examine the changes in location of centromeres and telomeres, key elements that biologically define chromosomes. Their locations change over time by rearrangements of chromosome segments. By following these rearrangements, we trace an evolutionary path between existing centromeres and telomeres to those in the ancestral genomes, allowing us to identify the specific evolutionary events that caused changes in chromosome number. We show that, in these yeasts, chromosome number has generally decreased over time except for one notable exception: an event in an ancestor of several species where the whole genome was duplicated. Chromosome number reduction occurs by the simultaneous removal of a centromere from a chromosome and fusion of the rest of the chromosome to another that contains a working centromere. This process also results in telomere removal and the movement of genes from the ends of chromosomes to new locations in the middle of chromosomes.
Collapse
Affiliation(s)
- Jonathan L Gordon
- Smurfit Institute of Genetics, Trinity College Dublin, Dublin, Ireland.
| | | | | |
Collapse
|
29
|
Kelly WP, Stumpf MPH. Trees on networks: resolving statistical patterns of phylogenetic similarities among interacting proteins. BMC Bioinformatics 2010; 11:470. [PMID: 20854660 PMCID: PMC2955699 DOI: 10.1186/1471-2105-11-470] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2010] [Accepted: 09/20/2010] [Indexed: 11/28/2022] Open
Abstract
Background Phylogenies capture the evolutionary ancestry linking extant species. Correlations and similarities among a set of species are mediated by and need to be understood in terms of the phylogenic tree. In a similar way it has been argued that biological networks also induce correlations among sets of interacting genes or their protein products. Results We develop suitable statistical resampling schemes that can incorporate these two potential sources of correlation into a single inferential framework. To illustrate our approach we apply it to protein interaction data in yeast and investigate whether the phylogenetic trees of interacting proteins in a panel of yeast species are more similar than would be expected by chance. Conclusions While we find only negligible evidence for such increased levels of similarities, our statistical approach allows us to resolve the previously reported contradictory results on the levels of co-evolution induced by protein-protein interactions. We conclude with a discussion as to how we may employ the statistical framework developed here in further functional and evolutionary analyses of biological networks and systems.
Collapse
|
30
|
Stark C, Su TC, Breitkreutz A, Lourenco P, Dahabieh M, Breitkreutz BJ, Tyers M, Sadowski I. PhosphoGRID: a database of experimentally verified in vivo protein phosphorylation sites from the budding yeast Saccharomyces cerevisiae. DATABASE-THE JOURNAL OF BIOLOGICAL DATABASES AND CURATION 2010; 2010:bap026. [PMID: 20428315 PMCID: PMC2860897 DOI: 10.1093/database/bap026] [Citation(s) in RCA: 77] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/30/2009] [Revised: 12/07/2009] [Accepted: 12/23/2009] [Indexed: 12/17/2022]
Abstract
Protein phosphorylation plays a central role in cellular regulation. Recent proteomics strategies for identifying phosphopeptides have been developed using the model organism Saccharomyces cerevisiae, and consequently, when combined with studies of individual gene products, the number of reported specific phosphorylation sites for this organism has expanded enormously. In order to systematically document and integrate these various data types, we have developed a database of experimentally verified in vivo phosphorylation sites curated from the S. cerevisiae primary literature. PhosphoGRID (www.phosphogrid.org) records the positions of over 5000 specific phosphorylated residues on 1495 gene products. Nearly 900 phosphorylated residues are reported from detailed studies of individual proteins; these in vivo phosphorylation sites are documented by a hierarchy of experimental evidence codes. Where available for specific sites, we have also noted the relevant protein kinases and/or phosphatases, the specific condition(s) under which phosphorylation occurs, and the effect(s) that phosphorylation has on protein function. The unique features of PhosphoGRID that assign both function and specific physiological conditions to each phosphorylated residue will provide a valuable benchmark for proteome-level studies and will facilitate bioinformatic analysis of cellular signal transduction networks. Database URL: http://phosphogrid.org/
Collapse
Affiliation(s)
- Chris Stark
- Centre for Systems Biology, Samuel Lunenfeld Research Institute, 600 University Avenue, Toronto, Ontario M5G 1X5, Canada
| | | | | | | | | | | | | | | |
Collapse
|
31
|
Neef DW, Thiele DJ. Enhancer of decapping proteins 1 and 2 are important for translation during heat stress in Saccharomyces cerevisiae. Mol Microbiol 2009; 73:1032-42. [PMID: 19682251 DOI: 10.1111/j.1365-2958.2009.06827.x] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
In mammalian and Drosophila cells, heat stress strongly reduces general protein translation while activating cap-independent translation mechanisms to promote the expression of stress-response proteins. In contrast, in Saccharomyces cerevisiae general translation is only mildly and transiently reduced by heat stress and cap-independent translation mechanisms have not been correlated with the heat stress response. Recently we have identified direct target genes of the heat shock transcription factor (HSF), including genes encoding proteins thought to be important for general translation. One gene activated by HSF during heat stress encodes the enhancer of decapping protein, Edc2, previously shown to enhance mRNA decapping under conditions when the decapping machinery is limited. In this report we show that strains lacking Edc2, as well as the paralogous protein Edc1, are compromised for growth under persistent heat stress. This growth deficiency can be rescued by expression of a mutant Edc1 protein deficient in mRNA decapping indicative of a decapping independent function during heat stress. Yeast strains lacking Edc1 and Edc2 are also sensitive to the pharmacological inhibitor of translation paromomycin and exposure to heat stress and paromomycin functions synergistically to reduce yeast viability, suggesting that in the absence of Edc1 and Edc2 translation is compromised under heat stress conditions. Strains lacking Edc1 and Edc2 have significantly reduced rates of protein translation during growth under heat stress conditions, but not under normal growth conditions. We propose that Edc1 and the stress responsive isoform Edc2 play important roles in protein translation during stress.
Collapse
Affiliation(s)
- Daniel W Neef
- Department of Pharmacology and Cancer Biology, Duke University Medical Center, Durham, NC 27710, USA
| | | |
Collapse
|
32
|
Poptsova MS, Larionov SA, Ryadchenko EV, Rybalko SD, Zakharov IA, Loskutov A. Hidden chromosome symmetry: in silico transformation reveals symmetry in 2D DNA walk trajectories of 671 chromosomes. PLoS One 2009; 4:e6396. [PMID: 19636424 PMCID: PMC2712679 DOI: 10.1371/journal.pone.0006396] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2009] [Accepted: 06/23/2009] [Indexed: 11/18/2022] Open
Abstract
Maps of 2D DNA walk of 671 examined chromosomes show composition complexity change from symmetrical half-turn in bacteria to pseudo-random trajectories in archaea, fungi and humans. In silico transformation of gene order and strand position returns most of the analyzed chromosomes to a symmetrical bacterial-like state with one transition point. The transformed chromosomal sequences also reveal remarkable segmental compositional symmetry between regions from different strands located equidistantly from the transition point. Despite extensive chromosome rearrangement the relation of gene numbers on opposite strands for chromosomes of different taxa varies in narrow limits around unity with Pearson coefficient r = 0.98. Similar relation is observed for total genes' length (r = 0.86) and cumulative GC (r = 0.95) and AT (r = 0.97) skews. This is also true for human coding sequences (CDS), which comprise only several percent of the entire chromosome length. We found that frequency distributions of the length of gene clusters, continuously located on the same strand, have close values for both strands. Eukaryotic gene distribution is believed to be non-random. Contribution of different subsystems to the noted symmetries and distributions, and evolutionary aspects of symmetry are discussed.
Collapse
Affiliation(s)
- Maria S Poptsova
- University of Connecticut, Storrs, Connecticut, United States of America.
| | | | | | | | | | | |
Collapse
|
33
|
Faddah DA, Ganko EW, McCoach C, Pickrell JK, Hanlon SE, Mann FG, Mieczkowska JO, Jones CD, Lieb JD, Vision TJ. Systematic identification of balanced transposition polymorphisms in Saccharomyces cerevisiae. PLoS Genet 2009; 5:e1000502. [PMID: 19503594 PMCID: PMC2682701 DOI: 10.1371/journal.pgen.1000502] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2008] [Accepted: 05/04/2009] [Indexed: 01/22/2023] Open
Abstract
High-throughput techniques for detecting DNA polymorphisms generally do not identify changes in which the genomic position of a sequence, but not its copy number, varies among individuals. To explore such balanced structural polymorphisms, we used array-based Comparative Genomic Hybridization (aCGH) to conduct a genome-wide screen for single-copy genomic segments that occupy different genomic positions in the standard laboratory strain of Saccharomyces cerevisiae (S90) and a polymorphic wild isolate (Y101) through analysis of six tetrads from a cross of these two strains. Paired-end high-throughput sequencing of Y101 validated four of the predicted rearrangements. The transposed segments contained one to four annotated genes each, yet crosses between S90 and Y101 yielded mostly viable tetrads. The longest segment comprised 13.5 kb near the telomere of chromosome XV in the S288C reference strain and Southern blotting confirmed its predicted location on chromosome IX in Y101. Interestingly, inter-locus crossover events between copies of this segment occurred at a detectable rate. The presence of low-copy repetitive sequences at the junctions of this segment suggests that it may have arisen through ectopic recombination. Our methodology and findings provide a starting point for exploring the origins, phenotypic consequences, and evolutionary fate of this largely unexplored form of genomic polymorphism. Balanced structural polymorphisms are differences in the relative arrangement of genomic features within species that do not affect DNA copy number. Little is known about their prevalence or importance because they are difficult to observe. Here, we present a novel methodology for systematically identifying such polymorphisms based on the idea that single-copy DNA that occupies different genomic locations in two parents will segregate independently during meiosis and will therefore reveal itself as a copy number difference among a fraction of progeny. Comparative hybridization reveals multiple balanced structural polymorphisms that involve changes to gene order in two strains of yeast; the results are independently validated using paired-end whole genome shotgun sequencing. The longest transposed segment we identify comprises 13.5 kb near the telomere of chromosome XV in the S288C reference strain and contains several annotated genes. We map the location of this polymorphism in the non-reference strain using genome-wide genotypic data, which also reveals an appreciable frequency of ectopic recombination among transposed segment pairs. The breakpoints of the remaining polymorphisms are localized by the paired-end sequence data. Our work provides proof-of-principle for a very general approach to systematically identify all balanced genomic polymorphisms in two different genotypes and is a starting point for understanding the frequency, evolutionary origins, and functional consequences of this seldom-studied class of genomic structural variation in eukaryotes.
Collapse
Affiliation(s)
- Dina A. Faddah
- Department of Biology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
- Carolina Center for Genome Sciences, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
| | - Eric W. Ganko
- Department of Biology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
- Carolina Center for Genome Sciences, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
| | - Caroline McCoach
- Department of Biochemistry, Stanford University, Stanford, California, United States of America
| | - Joseph K. Pickrell
- Department of Biology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
- Carolina Center for Genome Sciences, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
| | - Sean E. Hanlon
- Department of Biology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
- Carolina Center for Genome Sciences, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
| | - Frederick G. Mann
- Department of Biology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
- Carolina Center for Genome Sciences, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
| | - Joanna O. Mieczkowska
- Department of Biology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
- Carolina Center for Genome Sciences, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
| | - Corbin D. Jones
- Department of Biology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
- Carolina Center for Genome Sciences, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
| | - Jason D. Lieb
- Department of Biology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
- Carolina Center for Genome Sciences, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
- * E-mail: (JDL); (TJV)
| | - Todd J. Vision
- Department of Biology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
- Carolina Center for Genome Sciences, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
- * E-mail: (JDL); (TJV)
| |
Collapse
|
34
|
Ends-in vs. ends-out targeted insertion mutagenesis in Saccharomyces castellii. Curr Genet 2009; 55:339-47. [PMID: 19437021 DOI: 10.1007/s00294-009-0248-8] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2009] [Revised: 04/24/2009] [Accepted: 04/26/2009] [Indexed: 10/20/2022]
Abstract
Gene replacement (knock-out) is a major tool for the analysis of gene function. However, the efficiency of correct targeting varies between species, and is dependent on the structure of the DNA construct. We analyzed the targeted insertion mutagenesis method in the budding yeast Saccharomyces castellii, phylogenetically positioned after the whole genome duplication event in the Saccharomyces lineage. We compared the targeting efficiency for target DNA constructs in the respective ends-in and ends-out form. For some of the constructs S. castellii showed a similar high degree of homologous recombination as S. cerevisiae. In agreement with S. cerevisiae, a higher targeting efficiency was seen for the diploid strain than for the haploid. Surprisingly, a higher degree of targeting efficiency was seen for ends-out constructs compared to ends-in constructs. This result may have been influenced by the difference in the length of the homologous target sequences used, although long homology regions of 300 bp-1 kb were used in all constructs. Remarkably, very short regions of cohesive heterologous sequences at the ends of the constructs highly stimulated random illegitimate integration, suggesting that the pathway of non-homologous end joining is highly active in S. castellii.
Collapse
|
35
|
|
36
|
Elaboration, diversification and regulation of the Sir1 family of silencing proteins in Saccharomyces. Genetics 2009; 181:1477-91. [PMID: 19171939 DOI: 10.1534/genetics.108.099663] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Heterochromatin renders domains of chromosomes transcriptionally silent and, due to clonal variation in its formation, can generate heritably distinct populations of genetically identical cells. Saccharomyces cerevisiae's Sir1 functions primarily in the establishment, but not the maintenance, of heterochromatic silencing at the HMR and HML loci. In several Saccharomyces species, we discovered multiple paralogs of Sir1, called Kos1-Kos4 (Kin of Sir1). The Kos and Sir1 proteins contributed partially overlapping functions to silencing of both cryptic mating loci in S. bayanus. Mutants of these paralogs reduced silencing at HML more than at HMR. Most genes of the SIR1 family were located near telomeres, and at least one paralog was regulated by telomere position effect. In S. cerevisiae, Sir1 is recruited to the silencers at HML and HMR via its ORC interacting region (OIR), which binds the bromo adjacent homology (BAH) domain of Orc1. Zygosaccharomyces rouxii, which diverged from Saccharomyces after the appearance of the silent mating cassettes, but before the whole-genome duplication, contained an ortholog of Kos3 that was apparently the archetypal member of the family, with only one OIR. In contrast, a duplication of this domain was present in all orthologs of Sir1, Kos1, Kos2, and Kos4. We propose that the functional specialization of Sir3, itself a paralog of Orc1, as a silencing protein was facilitated by the tandem duplication of the OIR domain in the Sir1 family, allowing distinct Sir1-Sir3 and Sir1-Orc1 interactions through OIR-BAH domain interactions.
Collapse
|
37
|
Jiang H, Zhang Y, Sun J, Wang W, Gu Z. Differential selection on gene translation efficiency between the filamentous fungus Ashbya gossypii and yeasts. BMC Evol Biol 2008; 8:343. [PMID: 19111070 PMCID: PMC2632675 DOI: 10.1186/1471-2148-8-343] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2008] [Accepted: 12/29/2008] [Indexed: 11/10/2022] Open
Abstract
Background The filamentous fungus Ashbya gossypii grows into a multicellular mycelium that is distinct from the unicellular morphology of its closely related yeast species. It has been proposed that genes important for cell cycle regulation play central roles for such phenotypic differences. Because A. gossypii shares an almost identical set of cell cycle genes with the typical yeast Saccharomyces cerevisiae, the differences might occur at the level of orthologous gene regulation. Codon usage patterns were compared to identify orthologous genes with different gene regulation between A. gossypii and nine closely related yeast species. Results Here we identified 3,151 orthologous genes between A. gossypii and nine yeast species. Two groups of genes with significant differences in codon usage (gene translation efficiency) were identified between A. gossypii and yeasts. 333 genes (Group I) and 552 genes (Group II) have significantly higher translation efficiency in A. gossypii and yeasts, respectively. Functional enrichment and pathway analysis show that Group I genes are significantly enriched with cell cycle functions whereas Group II genes are biased toward metabolic functions. Conclusion Because translation efficiency of a gene is closely related to its functional importance, the observed functional distributions of orthologous genes with different translation efficiency might account for phenotypic differentiation between A. gossypii and yeast species. The results shed light on the mechanisms for pseudohyphal growth in pathogenic yeast species.
Collapse
Affiliation(s)
- Huifeng Jiang
- Division of Nutritional Sciences, Cornell University, Ithaca, NY 14853, USA.
| | | | | | | | | |
Collapse
|
38
|
Jung K, Park J, Choi J, Park B, Kim S, Ahn K, Choi J, Choi D, Kang S, Lee YH. SNUGB: a versatile genome browser supporting comparative and functional fungal genomics. BMC Genomics 2008; 9:586. [PMID: 19055845 PMCID: PMC2649115 DOI: 10.1186/1471-2164-9-586] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2008] [Accepted: 12/04/2008] [Indexed: 12/24/2022] Open
Abstract
Background Since the full genome sequences of Saccharomyces cerevisiae were released in 1996, genome sequences of over 90 fungal species have become publicly available. The heterogeneous formats of genome sequences archived in different sequencing centers hampered the integration of the data for efficient and comprehensive comparative analyses. The Comparative Fungal Genomics Platform (CFGP) was developed to archive these data via a single standardized format that can support multifaceted and integrated analyses of the data. To facilitate efficient data visualization and utilization within and across species based on the architecture of CFGP and associated databases, a new genome browser was needed. Results The Seoul National University Genome Browser (SNUGB) integrates various types of genomic information derived from 98 fungal/oomycete (137 datasets) and 34 plant and animal (38 datasets) species, graphically presents germane features and properties of each genome, and supports comparison between genomes. The SNUGB provides three different forms of the data presentation interface, including diagram, table, and text, and six different display options to support visualization and utilization of the stored information. Information for individual species can be quickly accessed via a new tool named the taxonomy browser. In addition, SNUGB offers four useful data annotation/analysis functions, including 'BLAST annotation.' The modular design of SNUGB makes its adoption to support other comparative genomic platforms easy and facilitates continuous expansion. Conclusion The SNUGB serves as a powerful platform supporting comparative and functional genomics within the fungal kingdom and also across other kingdoms. All data and functions are available at the web site .
Collapse
Affiliation(s)
- Kyongyong Jung
- Fungal Bioinformatics Laboratory, Seoul National University, Seoul, Korea.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
39
|
Comparative genomics of the oxidative phosphorylation system in fungi. Fungal Genet Biol 2008; 45:1248-56. [DOI: 10.1016/j.fgb.2008.06.005] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2008] [Revised: 04/29/2008] [Accepted: 06/18/2008] [Indexed: 11/22/2022]
|
40
|
Ramsdale M. Programmed cell death in pathogenic fungi. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2008; 1783:1369-80. [DOI: 10.1016/j.bbamcr.2008.01.021] [Citation(s) in RCA: 85] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2007] [Revised: 01/22/2008] [Accepted: 01/24/2008] [Indexed: 01/27/2023]
|
41
|
Wan L, Niu H, Futcher B, Zhang C, Shokat KM, Boulton SJ, Hollingsworth NM. Cdc28-Clb5 (CDK-S) and Cdc7-Dbf4 (DDK) collaborate to initiate meiotic recombination in yeast. Genes Dev 2008; 22:386-97. [PMID: 18245450 DOI: 10.1101/gad.1626408] [Citation(s) in RCA: 106] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
S-phase cyclin-dependent kinase Cdc28-Clb5 (CDK-S) and Dbf4-dependent kinase Cdc7-Dbf4 (DDK) are highly conserved kinases well known for their roles in the initiation of DNA replication. CDK-S is also essential for initiation of meiotic recombination because it phosphorylates Ser30 of Mer2, a meiosis-specific double-strand break (DSB) protein. This work shows that the phosphorylation of Mer2 Ser30 by CDK-S primes Mer2 for subsequent phosphorylation by DDK on Ser29, creating a negatively charged "patch" necessary for DSB formation. CDK-S and DDK phosphorylation of Mer2 S30 and S29 can be bypassed by phosphomimetic amino acids, but break formation under these conditions is still dependent on DDK and CDK-S activity. Coordination between premeiotic S and DSB formation may be achieved by using CDK-S and DDK to initiate both processes. Many other proteins important for replication, recombination, repair, and chromosome segregation contain combination DDK/CDK sites, raising the possibility that this is a common regulatory mechanism.
Collapse
Affiliation(s)
- Lihong Wan
- Department of Biochemistry and Cell Biology, Stony Brook University, Stony Brook, New York 11794, USA
| | | | | | | | | | | | | |
Collapse
|
42
|
Hellborg L, Woolfit M, Arthursson-Hellborg M, Piskur J. Complex evolution of the DAL5 transporter family. BMC Genomics 2008; 9:164. [PMID: 18405355 PMCID: PMC2329640 DOI: 10.1186/1471-2164-9-164] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2007] [Accepted: 04/11/2008] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Genes continuously duplicate and the duplicated copies remain in the genome or get deleted. The DAL5 subfamily of transmembrane transporter genes has eight known members in S. cerevisiae. All are putative anion:cation symporters of vitamins (such as allantoate, nicotinate, panthotenate and biotin). The DAL5 subfamily is an old and important group since it is represented in both Basidiomycetes ("mushrooms") and Ascomycetes ("yeast"). We studied the complex evolution of this group in species from the kingdom of fungi particularly the Ascomycetes. RESULTS We identified numerous gene duplications creating sets of orthologous and paralogous genes. In different lineages the DAL5 subfamily members expanded or contracted and in some lineages a specific member could not be found at all. We also observed a close relationship between the gene YIL166C and its homologs in the Saccharomyces sensu stricto species and two "wine spoiler" yeasts, Dekkera bruxellensis and Candida guilliermondi, which could possibly be the result of horizontal gene transfer between these distantly related species. In the analyses we detect several well defined groups without S. cerevisiae representation suggesting new gene members in this subfamily with perhaps altered specialization or function. CONCLUSION The transmembrane DAL5 subfamily was found to have a very complex evolution in yeast with intra- and interspecific duplications and unusual relationships indicating specialization, specific deletions and maybe even horizontal gene transfer. We believe that this group will be important in future investigations of evolution in fungi and especially the evolution of transmembrane proteins and their specialization.
Collapse
Affiliation(s)
- Linda Hellborg
- Cell and Organism Biology, Lund University, Lund, Sweden.
| | | | | | | |
Collapse
|
43
|
Altered patterns of gene duplication and differential gene gain and loss in fungal pathogens. BMC Genomics 2008; 9:147. [PMID: 18373860 PMCID: PMC2330156 DOI: 10.1186/1471-2164-9-147] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2007] [Accepted: 03/28/2008] [Indexed: 11/21/2022] Open
Abstract
Background Duplication, followed by fixation or random loss of novel genes, contributes to genome evolution. Particular outcomes of duplication events are possibly associated with pathogenic life histories in fungi. To date, differential gene gain and loss have not been studied at genomic scales in fungal pathogens, despite this phenomenon's known importance in virulence in bacteria and viruses. Results To determine if patterns of gene duplication differed between pathogens and non-pathogens, we identified gene families across nine euascomycete and two basidiomycete species. Gene family size distributions were fit to power laws to compare gene duplication trends in pathogens versus non-pathogens. Fungal phytopathogens showed globally altered patterns of gene duplication, as indicated by differences in gene family size distribution. We also identified sixteen examples of gene family expansion and five instances of gene family contraction in pathogenic lineages. Expanded gene families included those predicted to be important in melanin biosynthesis, host cell wall degradation and transport functions. Contracted families included those encoding genes involved in toxin production, genes with oxidoreductase activity, as well as subunits of the vacuolar ATPase complex. Surveys of the functional distribution of gene duplicates indicated that pathogens show enrichment for gene duplicates associated with receptor and hydrolase activities, while euascomycete pathogens appeared to have not only these differences, but also significantly more duplicates associated with regulatory and carbohydrate binding functions. Conclusion Differences in the overall levels of gene duplication in phytopathogenic species versus non-pathogenic relatives implicate gene inventory flux as an important virulence-associated process in fungi. We hypothesize that the observed patterns of gene duplicate enrichment, gene family expansion and contraction reflect adaptation within pathogenic life histories. These adaptations were likely shaped by ancient, as well as contemporary, intimate associations with monocot hosts.
Collapse
|
44
|
Köhli M, Buck S, Schmitz HP. The function of two closely related Rho proteins is determined by an atypical switch I region. J Cell Sci 2008; 121:1065-75. [PMID: 18334559 DOI: 10.1242/jcs.015933] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
We show here that the encoded proteins of the two duplicated RHO1 genes from the filamentous fungus Ashbya gossypii, AgRHO1a and AgRHO1b have functionally diverged by unusual mutation of the conserved switch I region. Interaction studies and in vitro assays suggest that a different regulation by the two GTPase activating proteins (GAPs) AgLrg1 and AgSac7 contributes to the functional differences. GAP-specificity and protein function is determined to a large part by a single position in the switch I region of the two Rho1 proteins. In AgRho1b, this residue is a tyrosine that is conserved among the Rho-protein family, whereas AgRho1a carries an atypical histidine at the same position. Mutation of this histidine to a tyrosine changes GAP-specificity, protein function and localization of AgRho1a. Furthermore, it enables the mutated allele to complement the lethality of an AgRHO1b deletion. In summary, our findings show that a simple mutation in the switch I region of a GTP-binding protein can change its affinity towards its GAPs, which finally leads to a decoupling of very similar protein function without impairing effector interaction.
Collapse
Affiliation(s)
- Michael Köhli
- Applied Microbiology, Biozentrum Universität Basel, Klingelbergstr. 50-70, 4056 Basel, Switzerland
| | | | | |
Collapse
|
45
|
|
46
|
Abstract
The budding yeast species Saccharomyces castellii has provided important new insights into molecular evolution when incorporated in comparative genomics studies and studies of mitochondrial inheritage. Although it shows some diversity in the specific molecular details, several analyses have shown that it contains many genetic pathways similar to those of S. cerevisiae. Here we have investigated the possibility of performing genetic analyses in S. castellii. We optimized the LiAc transformation protocol to achieve 200-300 transformants/microg plasmid DNA. We found that the commonly used plasmids for S. cerevisiae are stably maintained in S. castellii under selective conditions. Surprisingly, both 2micro and CEN/ARS plasmids are kept at a high copy number. Moreover, the kanMX cassette can be used as a resistance marker against the selective drug geneticin (G418). Finally, we determined that the S. cerevisiae GAL1 promoter can be used for the activation of transcription in S. castellii, thus enabling the controlled overexpression of genes when galactose is present in the medium. The availability of these tools provides the possibility of performing genetic analyses in S. castellii, and makes it a promising new model system in which hypotheses derived from bioinformatics studies can be experimentally tested.
Collapse
|
47
|
Kuramae EE, Robert V, Echavarri-Erasun C, Boekhout T. Cophenetic correlation analysis as a strategy to select phylogenetically informative proteins: an example from the fungal kingdom. BMC Evol Biol 2007; 7:134. [PMID: 17688684 PMCID: PMC2045111 DOI: 10.1186/1471-2148-7-134] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2006] [Accepted: 08/09/2007] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND The construction of robust and well resolved phylogenetic trees is important for our understanding of many, if not all biological processes, including speciation and origin of higher taxa, genome evolution, metabolic diversification, multicellularity, origin of life styles, pathogenicity and so on. Many older phylogenies were not well supported due to insufficient phylogenetic signal present in the single or few genes used in phylogenetic reconstructions. Importantly, single gene phylogenies were not always found to be congruent. The phylogenetic signal may, therefore, be increased by enlarging the number of genes included in phylogenetic studies. Unfortunately, concatenation of many genes does not take into consideration the evolutionary history of each individual gene. Here, we describe an approach to select informative phylogenetic proteins to be used in the Tree of Life (TOL) and barcoding projects by comparing the cophenetic correlation coefficients (CCC) among individual protein distance matrices of proteins, using the fungi as an example. The method demonstrated that the quality and number of concatenated proteins is important for a reliable estimation of TOL. Approximately 40-45 concatenated proteins seem needed to resolve fungal TOL. RESULTS In total 4852 orthologous proteins (KOGs) were assigned among 33 fungal genomes from the Asco- and Basidiomycota and 70 of these represented single copy proteins. The individual protein distance matrices based on 531 concatenated proteins that has been used for phylogeny reconstruction before 14 were compared one with another in order to select those with the highest CCC, which then was used as a reference. This reference distance matrix was compared with those of the 70 single copy proteins selected and their CCC values were calculated. Sixty four KOGs showed a CCC above 0.50 and these were further considered for their phylogenetic potential. Proteins belonging to the cellular processes and signaling KOG category seem more informative than those belonging to the other three categories: information storage and processing; metabolism; and the poorly characterized category. After concatenation of 40 proteins the topology of the phylogenetic tree remained stable, but after concatenation of 60 or more proteins the bootstrap support values of some branches decreased, most likely due to the inclusion of proteins with lowers CCC values. The selection of protein sequences to be used in various TOL projects remains a critical and important process. The method described in this paper will contribute to a more objective selection of phylogenetically informative protein sequences. CONCLUSION This study provides candidate protein sequences to be considered as phylogenetic markers in different branches of fungal TOL. The selection procedure described here will be useful to select informative protein sequences to resolve branches of TOL that contain few or no species with completely sequenced genomes. The robust phylogenetic trees resulting from this method may contribute to our understanding of organismal diversification processes. The method proposed can be extended easily to other branches of TOL.
Collapse
Affiliation(s)
- Eiko E Kuramae
- Yeast Research, CBS-Fungal Biodiversity Centre, Uppsalalaan 8, 3584 CT Utrecht, The Netherlands
| | - Vincent Robert
- Yeast Research, CBS-Fungal Biodiversity Centre, Uppsalalaan 8, 3584 CT Utrecht, The Netherlands
| | - Carlos Echavarri-Erasun
- Yeast Research, CBS-Fungal Biodiversity Centre, Uppsalalaan 8, 3584 CT Utrecht, The Netherlands
| | - Teun Boekhout
- Yeast Research, CBS-Fungal Biodiversity Centre, Uppsalalaan 8, 3584 CT Utrecht, The Netherlands
| |
Collapse
|
48
|
Jackson AP. Tandem gene arrays in Trypanosoma brucei: comparative phylogenomic analysis of duplicate sequence variation. BMC Evol Biol 2007; 7:54. [PMID: 17408475 PMCID: PMC1855330 DOI: 10.1186/1471-2148-7-54] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2006] [Accepted: 04/04/2007] [Indexed: 11/23/2022] Open
Abstract
Background The genome sequence of the protistan parasite Trypanosoma brucei contains many tandem gene arrays. Gene duplicates are created through tandem duplication and are expressed through polycistronic transcription, suggesting that the primary purpose of long, tandem arrays is to increase gene dosage in an environment where individual gene promoters are absent. This report presents the first account of the tandem gene arrays in the T. brucei genome, employing several related genome sequences to establish how variation is created and removed. Results A systematic survey of tandem gene arrays showed that substantial sequence variation existed across the genome; variation from different regions of an array often produced inconsistent phylogenetic affinities. Phylogenetic relationships of gene duplicates were consistent with concerted evolution being a widespread homogenising force. However, tandem duplicates were not usually identical; therefore, any homogenising effect was coincident with divergence among duplicates. Allelic gene conversion was detected using various criteria and was apparently able to both remove and introduce sequence variation. Tandem arrays containing structural heterogeneity demonstrated how sequence homogenisation and differentiation can occur within a single locus. Conclusion The use of multiple genome sequences in a comparative analysis of tandem gene arrays identified substantial sequence variation among gene duplicates. The distribution of sequence variation is determined by a dynamic balance of conservative and innovative evolutionary forces. Gene trees from various species showed that intraspecific duplicates evolve in concert, perhaps through frequent gene conversion, although this does not prevent sequence divergence, especially where structural heterogeneity physically separates a duplicate from its neighbours. In describing dynamics of sequence variation that have consequences beyond gene dosage, this survey provides a basis for uncovering the hidden functionality within tandem gene arrays in trypanosomatids.
Collapse
Affiliation(s)
- Andrew P Jackson
- Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, Cambridgeshire, UK.
| |
Collapse
|
49
|
Man O, Pilpel Y. Differential translation efficiency of orthologous genes is involved in phenotypic divergence of yeast species. Nat Genet 2007; 39:415-21. [PMID: 17277776 DOI: 10.1038/ng1967] [Citation(s) in RCA: 104] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2006] [Accepted: 01/03/2007] [Indexed: 11/08/2022]
Abstract
A major challenge in comparative genomics is to understand how phenotypic differences between species are encoded in their genomes. Phenotypic divergence may result from differential transcription of orthologous genes, yet less is known about the involvement of differential translation regulation in species phenotypic divergence. In order to assess translation effects on divergence, we analyzed approximately 2,800 orthologous genes in nine yeast genomes. For each gene in each species, we predicted translation efficiency, using a measure of the adaptation of its codons to the organism's tRNA pool. Mining this data set, we found hundreds of genes and gene modules with correlated patterns of translational efficiency across the species. One signal encompassed entire modules that are either needed for oxidative respiration or fermentation and are efficiently translated in aerobic or anaerobic species, respectively. In addition, the efficiency of translation of the mRNA splicing machinery strongly correlates with the number of introns in the various genomes. Altogether, we found extensive selection on synonymous codon usage that modulates translation according to gene function and organism phenotype. We conclude that, like factors such as transcription regulation, translation efficiency affects and is affected by the process of species divergence.
Collapse
Affiliation(s)
- Orna Man
- Department of Molecular Genetics, The Weizmann Institute of Science, Rehovot 76100, Israel
| | | |
Collapse
|
50
|
Abstract
With almost 20 genomes sequenced from unicellular ascomycetes (Saccharomycotina), and the prospect of many more in the pipeline, we review the patterns and processes of yeast genome evolution. A central core of about 4000 genes is shared by all the sequenced yeast genomes. Gains of genes by horizontal gene transfer seem to be very rare. Gene losses are more frequent, and losses of whole sets of genes in some pathways in some species can be understood in terms of species-specific differences in biology. The wholesale loss of redundant copies of duplicated genes after whole-genome duplication in the ancestor of one clade of yeasts is likely to have caused the emergence of many reproductively isolated lineages of yeasts at that time, but other processes are responsible for species barriers that arose more recently among close relatives of Saccharomyces cerevisiae.
Collapse
Affiliation(s)
- Devin R Scannell
- Smurfit Institute of Genetics, Trinity College, Dublin 2, Ireland
| | | | | |
Collapse
|