1
|
Cruz-Hernández AE, Colín-García M, Ortega-Gutiérrez F, Mateo-Martí E. Komatiites as Complex Adsorption Surfaces for Amino Acids in Prebiotic Environments, a Prebiotic Chemistry Essay. Life (Basel) 2022; 12:1788. [PMID: 36362942 PMCID: PMC9696357 DOI: 10.3390/life12111788] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2022] [Revised: 10/28/2022] [Accepted: 11/02/2022] [Indexed: 08/15/2023] Open
Abstract
Komatiites represent the oldest known terrestrial rocks, and their composition has been cataloged as the closest to that of the first terrestrial crust after the cooling of the magma ocean. These rocks could have been present in multiple environments on the early Earth and served as concentrators of organic molecules. In this study, the adsorption of five amino acids (glycine, lysine, histidine, arginine, and aspartic acid) on a natural komatiite, a simulated komatiite, and the minerals olivine, pyroxene, and plagioclase were analyzed under three different pH values: acid pH (5.5), natural pH of the aqueous solution of each amino acid and alkaline pH (11). Adsorption experiments were performed in solid-liquid suspensions and organic molecules were analyzed by spectrophotometry. The main objective of this essay was to determine if the complex surfaces could have participated as concentrators of amino acids in scenarios of the primitive Earth and if the adsorption responds to the change of charge of the molecules. The results showed that komatiite is capable of adsorbing amino acids in different amounts depending on the experimental conditions. In total, 75 systems were analyzed that show different adsorptions, which implies that different interactions are involved, particularly in relation to the type of amino acid, the type of solid material and the conditions of the medium.
Collapse
Affiliation(s)
- Abigail E. Cruz-Hernández
- Posgrado en Ciencias de la Tierra, Universidad Nacional Autónoma de México, Ciudad de México 04510, Mexico
| | - María Colín-García
- Instituto de Geología, Universidad Nacional Autónoma de México, Ciudad de México 04510, Mexico
| | | | - Eva Mateo-Martí
- Centro de Astrobiología (CAB) CSIC-INTA, Carretera de Ajalvir km 4, 28850 Torrejón de Ardoz, Spain
| |
Collapse
|
2
|
Results of an Eight-Year Extraction of Phosphorus Minerals within the Seymchan Meteorite. LIFE (BASEL, SWITZERLAND) 2022; 12:life12101591. [PMID: 36295026 PMCID: PMC9605057 DOI: 10.3390/life12101591] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Revised: 10/08/2022] [Accepted: 10/11/2022] [Indexed: 11/16/2022]
Abstract
In-fall of extraterrestrial material including meteorites and interstellar dust particles during the late heavy bombardment are known to have brought substantial amounts of reduced oxidation-state phosphorus to the early Earth in the form of siderophilic minerals, e.g., schreibersite ((FeNi)3P). In this report, we present results on the reaction of meteoritic phosphide minerals in the Seymchan meteorite in ultrapure water for 8 years. The ions produced during schreibersite corrosion (phosphite, hypophosphate, pyrophosphate, and phosphate) are stable and persistent in aqueous solution over this timescale. These results were also compared with the short-term corrosion reactions of the meteoritic mineral schreibersite's synthetic analog Fe3P in aqueous and non-aqueous solutions (ultrapure water and formamide). This finding suggests that the reduced-oxidation-state phosphorus (P) compounds including phosphite could be ubiquitous and stable on the early Earth over a long span of time and such compounds could be readily available on the early Earth.
Collapse
|
3
|
Kloprogge JT(T, Hartman H. Clays and the Origin of Life: The Experiments. Life (Basel) 2022; 12:259. [PMID: 35207546 PMCID: PMC8880559 DOI: 10.3390/life12020259] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Revised: 01/08/2022] [Accepted: 02/01/2022] [Indexed: 12/15/2022] Open
Abstract
There are three groups of scientists dominating the search for the origin of life: the organic chemists (the Soup), the molecular biologists (RNA world), and the inorganic chemists (metabolism and transient-state metal ions), all of which have experimental adjuncts. It is time for Clays and the Origin of Life to have its experimental adjunct. The clay data coming from Mars and carbonaceous chondrites have necessitated a review of the role that clays played in the origin of life on Earth. The data from Mars have suggested that Fe-clays such as nontronite, ferrous saponites, and several other clays were formed on early Mars when it had sufficient water. This raised the question of the possible role that these clays may have played in the origin of life on Mars. This has put clays front and center in the studies on the origin of life not only on Mars but also here on Earth. One of the major questions is: What was the catalytic role of Fe-clays in the origin and development of metabolism here on Earth? First, there is the recent finding of a chiral amino acid (isovaline) that formed on the surface of a clay mineral on several carbonaceous chondrites. This points to the formation of amino acids on the surface of clay minerals on carbonaceous chondrites from simpler molecules, e.g., CO2, NH3, and HCN. Additionally, there is the catalytic role of small organic molecules, such as dicarboxylic acids and amino acids found on carbonaceous chondrites, in the formation of Fe-clays themselves. Amino acids and nucleotides adsorb on clay surfaces on Earth and subsequently polymerize. All of these observations and more must be subjected to strict experimental analysis. This review provides an overview of what has happened and is now happening in the experimental clay world related to the origin of life. The emphasis is on smectite-group clay minerals, such as montmorillonite and nontronite.
Collapse
Affiliation(s)
- Jacob Teunis (Theo) Kloprogge
- School of Earth and Environmental Sciences, The University of Queensland, Brisbane, QLD 4072, Australia
- Department of Chemistry, College of Arts and Sciences, University of the Philippines Visayas, Miagao 5023, Philippines
| | - Hyman Hartman
- Department of Earth Atmospheric and Planetary Sciences, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA 02139, USA
| |
Collapse
|
4
|
Kring DA, Bach W. Hydrogen Production from Alteration of Chicxulub Crater Impact Breccias: Potential Energy Source for a Subsurface Microbial Ecosystem. ASTROBIOLOGY 2021; 21:1547-1564. [PMID: 34678049 DOI: 10.1089/ast.2021.0045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
A sulfate-reducing population of thermophiles grew in porous, permeable niches within glass-bearing impact breccias of the Chicxulub impact crater. The microbial community grew in an impact-generated hydrothermal system that vented on the seafloor several hundred meters beneath the sea surface. Potential electron donors for that metabolism are hydrocarbons, although a strong C-isotope signature of that source does not exist. Model calculations explored here suggest that alteration of glass within the impact breccias may have produced H2 in sufficient quantities for population growth as the hydrothermal system cooled through thermophilic temperatures, although it is sensitive to the oxidation state of iron in the melt rock prior to hydrothermal alteration and the secondary mineral assemblage. At high water-to-rock ratios and temperatures below 45°C, H2 yields are insufficient to maintain a population of hydrogenotrophic sulfate-reducing bacteria, but yields double with a higher proportion of ferrous iron between 45 and 65°C. The most reduced rocks (i.e., highest proportion of ferrous iron) that are allowed to form andradite, which is observed in core samples, produce copious amounts of H2 in the temperature window for thermophiles and hyperthermophiles. Mixtures of melt rock and carbonate, which is observed in breccia matrices, produce somewhat less H2, and the onset of massive H2 production is shifted to higher temperatures (i.e., lower W/R).
Collapse
Affiliation(s)
- David A Kring
- Lunar and Planetary Institute, Universities Space Research Association, Houston, Texas, USA
| | - Wolfgang Bach
- Geoscience Department and MARUM - Center for Marine Environmental Sciences, Universität Bremen, Bremen, Germany
| |
Collapse
|
5
|
Gaylor MO, Miro P, Vlaisavljevich B, Kondage AAS, Barge LM, Omran A, Videau P, Swenson VA, Leinen LJ, Fitch NW, Cole KL, Stone C, Drummond SM, Rageth K, Dewitt LR, González Henao S, Karanauskus V. Plausible Emergence and Self Assembly of a Primitive Phospholipid from Reduced Phosphorus on the Primordial Earth. ORIGINS LIFE EVOL B 2021; 51:185-213. [PMID: 34279769 DOI: 10.1007/s11084-021-09613-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Accepted: 06/19/2021] [Indexed: 11/28/2022]
Abstract
How life arose on the primitive Earth is one of the biggest questions in science. Biomolecular emergence scenarios have proliferated in the literature but accounting for the ubiquity of oxidized (+ 5) phosphate (PO43-) in extant biochemistries has been challenging due to the dearth of phosphate and molecular oxygen on the primordial Earth. A compelling body of work suggests that exogenous schreibersite ((Fe,Ni)3P) was delivered to Earth via meteorite impacts during the Heavy Bombardment (ca. 4.1-3.8 Gya) and there converted to reduced P oxyanions (e.g., phosphite (HPO32-) and hypophosphite (H2PO2-)) and phosphonates. Inspired by this idea, we review the relevant literature to deduce a plausible reduced phospholipid analog of modern phosphatidylcholines that could have emerged in a primordial hydrothermal setting. A shallow alkaline lacustrine basin underlain by active hydrothermal fissures and meteoritic schreibersite-, clay-, and metal-enriched sediments is envisioned. The water column is laden with known and putative primordial hydrothermal reagents. Small system dimensions and thermal- and UV-driven evaporation further concentrate chemical precursors. We hypothesize that a reduced phospholipid arises from Fischer-Tropsch-type (FTT) production of a C8 alkanoic acid, which condenses with an organophosphinate (derived from schreibersite corrosion to hypophosphite with subsequent methylation/oxidation), to yield a reduced protophospholipid. This then condenses with an α-amino nitrile (derived from Strecker-type reactions) to form the polar head. Preliminary modeling results indicate that reduced phospholipids do not aggregate rapidly; however, single layer micelles are stable up to aggregates with approximately 100 molecules.
Collapse
Affiliation(s)
- Michael O Gaylor
- Department of Chemistry, Dakota State University, Madison, SD, 57042, USA.
| | - Pere Miro
- Department of Chemistry, University of South Dakota, Vermillion, SD, 57069, USA
| | - Bess Vlaisavljevich
- Department of Chemistry, University of South Dakota, Vermillion, SD, 57069, USA
| | | | - Laura M Barge
- NASA Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA, 91109, USA
| | - Arthur Omran
- School of Geosciences, University of South Florida, Tampa, FL, 33620, USA
- Department of Chemistry, University of North Florida, Jacksonville, FL, 32224, USA
| | - Patrick Videau
- Department of Biology, Southern Oregon University, Ashland, OR, 97520, USA
- Bayer Crop Science, Chesterfield, MO, 63017, USA
| | - Vaille A Swenson
- Department of Chemistry, Dakota State University, Madison, SD, 57042, USA
- Department of Molecular Medicine, Mayo Clinic, Rochester, MN, 55905, USA
| | - Lucas J Leinen
- Department of Chemistry, Dakota State University, Madison, SD, 57042, USA
| | - Nathaniel W Fitch
- Department of Chemistry, Dakota State University, Madison, SD, 57042, USA
| | - Krista L Cole
- Department of Chemistry, Dakota State University, Madison, SD, 57042, USA
| | - Chris Stone
- Department of Biology, Southern Oregon University, Ashland, OR, 97520, USA
| | - Samuel M Drummond
- Department of Chemistry, Dakota State University, Madison, SD, 57042, USA
| | - Kayli Rageth
- Department of Chemistry, Dakota State University, Madison, SD, 57042, USA
| | - Lillian R Dewitt
- Department of Chemistry, Dakota State University, Madison, SD, 57042, USA
| | | | | |
Collapse
|
6
|
Dass AV, Georgelin T, Westall F, Foucher F, De Los Rios P, Busiello DM, Liang S, Piazza F. Equilibrium and non-equilibrium furanose selection in the ribose isomerisation network. Nat Commun 2021; 12:2749. [PMID: 33980850 PMCID: PMC8115175 DOI: 10.1038/s41467-021-22818-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2020] [Accepted: 03/19/2021] [Indexed: 11/08/2022] Open
Abstract
The exclusive presence of β-D-ribofuranose in nucleic acids is still a conundrum in prebiotic chemistry, given that pyranose species are substantially more stable at equilibrium. However, a precise characterisation of the relative furanose/pyranose fraction at temperatures higher than about 50 °C is still lacking. Here, we employ a combination of NMR measurements and statistical mechanics modelling to predict a population inversion between furanose and pyranose at equilibrium at high temperatures. More importantly, we show that a steady temperature gradient may steer an open isomerisation network into a non-equilibrium steady state where furanose is boosted beyond the limits set by equilibrium thermodynamics. Moreover, we demonstrate that nonequilibrium selection of furanose is maximum at optimal dissipation, as gauged by the temperature gradient and energy barriers for isomerisation. The predicted optimum is compatible with temperature drops found in hydrothermal vents associated with extremely fresh lava flows on the seafloor.
Collapse
Affiliation(s)
- Avinash Vicholous Dass
- Centre de Biophysique Moléculaire, CNRS-UPR4301, Rue C. Sadron, Orléans, France
- Department of Physics, Ludwig Maximilians University, München, Germany
| | - Thomas Georgelin
- Centre de Biophysique Moléculaire, CNRS-UPR4301, Rue C. Sadron, Orléans, France
- Laboratoire de Réactivité de Surface, UMR 7197, Sorbonne Université, Paris, France
| | - Frances Westall
- Centre de Biophysique Moléculaire, CNRS-UPR4301, Rue C. Sadron, Orléans, France
| | - Frédéric Foucher
- Centre de Biophysique Moléculaire, CNRS-UPR4301, Rue C. Sadron, Orléans, France
| | - Paolo De Los Rios
- Institute of Physics, School of Basic Sciences, Ecole Polytechnique Fédérale de Lausanne-EPFL, Lausanne, Switzerland
- Institute of Bioengineering, School of Life Sciences, Ecole Polytechnique Fédérale de Lausanne-EPFL, Lausanne, Switzerland
| | - Daniel Maria Busiello
- Institute of Physics, School of Basic Sciences, Ecole Polytechnique Fédérale de Lausanne-EPFL, Lausanne, Switzerland
| | - Shiling Liang
- Institute of Physics, School of Basic Sciences, Ecole Polytechnique Fédérale de Lausanne-EPFL, Lausanne, Switzerland
| | - Francesco Piazza
- Centre de Biophysique Moléculaire, CNRS-UPR4301, Rue C. Sadron, Orléans, France.
- Université d'Orléans, UFR CoST Sciences et Techniques, Orléans, France.
| |
Collapse
|
7
|
The Role of Glycerol and Its Derivatives in the Biochemistry of Living Organisms, and Their Prebiotic Origin and Significance in the Evolution of Life. Catalysts 2021. [DOI: 10.3390/catal11010086] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Abstract
The emergence and evolution of prebiotic biomolecules on the early Earth remain a question that is considered crucial to understanding the chemistry of the origin of life. Amongst prebiotic molecules, glycerol is significant due to its ubiquity in biochemistry. In this review, we discuss the significance of glycerol and its various derivatives in biochemistry, their plausible roles in the origin and evolution of early cell membranes, and significance in the biochemistry of extremophiles, followed by their prebiotic origin on the early Earth and associated catalytic processes that led to the origin of these compounds. We also discuss various scenarios for the prebiotic syntheses of glycerol and its derivates and evaluate these to determine their relevance to early Earth biochemistry and geochemistry, and recapitulate the utilization of various minerals (including clays), condensation agents, and solvents that could have led to the successful prebiotic genesis of these biomolecules. Furthermore, important prebiotic events such as meteoritic delivery and prebiotic synthesis reactions under astrophysical conditions are also discussed. Finally, we have also highlighted some novel features of glycerol, including glycerol nucleic acid (GNA), in the origin and evolution of the life.
Collapse
|
8
|
Kring DA, Whitehouse MJ, Schmieder M. Microbial Sulfur Isotope Fractionation in the Chicxulub Hydrothermal System. ASTROBIOLOGY 2021; 21:103-114. [PMID: 33124879 PMCID: PMC7826424 DOI: 10.1089/ast.2020.2286] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Accepted: 10/14/2020] [Indexed: 06/11/2023]
Abstract
Target lithologies and post-impact hydrothermal mineral assemblages in a new 1.3 km deep core from the peak ring of the Chicxulub impact crater indicate sulfate reduction was a potential energy source for a microbial ecosystem (Kring et al., 2020). That sulfate was metabolized is confirmed here by microscopic pyrite framboids with δ34S values of -5 to -35 ‰ and ΔSsulfate-sulfide values between pyrite and source sulfate of 25 to 54 ‰, which are indicative of biologic fractionation rather than inorganic fractionation processes. These data indicate the Chicxulub impact crater and its hydrothermal system hosted a subsurface microbial community in porous permeable niches within the crater's peak ring.
Collapse
Affiliation(s)
- David A. Kring
- Lunar and Planetary Institute, Universities Space Research Association, Houston, Texas, USA
| | | | - Martin Schmieder
- Lunar and Planetary Institute, Universities Space Research Association, Houston, Texas, USA
- HNU–Neu-Ulm University of Applied Sciences, Neu-Ulm, Germany
| |
Collapse
|
9
|
Singh SV, Vishakantaiah J, Meka JK, Sivaprahasam V, Chandrasekaran V, Thombre R, Thiruvenkatam V, Mallya A, Rajasekhar BN, Muruganantham M, Datey A, Hill H, Bhardwaj A, Jagadeesh G, Reddy KPJ, Mason NJ, Sivaraman B. Shock Processing of Amino Acids Leading to Complex Structures-Implications to the Origin of Life. Molecules 2020; 25:molecules25235634. [PMID: 33265981 PMCID: PMC7730583 DOI: 10.3390/molecules25235634] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2020] [Revised: 11/15/2020] [Accepted: 11/18/2020] [Indexed: 11/30/2022] Open
Abstract
The building blocks of life, amino acids, are believed to have been synthesized in the extreme conditions that prevail in space, starting from simple molecules containing hydrogen, carbon, oxygen and nitrogen. However, the fate and role of amino acids when they are subjected to similar processes largely remain unexplored. Here we report, for the first time, that shock processed amino acids tend to form complex agglomerate structures. Such structures are formed on timescales of about 2 ms due to impact induced shock heating and subsequent cooling. This discovery suggests that the building blocks of life could have self-assembled not just on Earth but on other planetary bodies as a result of impact events. Our study also provides further experimental evidence for the ‘threads’ observed in meteorites being due to assemblages of (bio)molecules arising from impact-induced shocks.
Collapse
Affiliation(s)
- Surendra V. Singh
- Atomic Molecular and Optical Physics Division, Physical Research Laboratory, Ahmedabad 380009, India; (S.V.S.); (J.K.M.)
- Discipline of Physics, Indian Institute of Technology Gandhinagar, Gandhinagar 382355, India
| | - Jayaram Vishakantaiah
- Solid State & Structural Chemistry Unit, Indian Institute of Science, Bangalore 560012, India;
| | - Jaya K. Meka
- Atomic Molecular and Optical Physics Division, Physical Research Laboratory, Ahmedabad 380009, India; (S.V.S.); (J.K.M.)
| | - Vijayan Sivaprahasam
- Planetary Science Division, Physical Research Laboratory, Ahmedabad 380009, India; (V.S.); (A.B.)
| | | | - Rebecca Thombre
- Department of Biotechnology, Modern College of Arts, Science and Commerce, Pune 411005, India;
| | - Vijay Thiruvenkatam
- Discipline of Biological Engineering, Indian Institute of Technology Gandhinagar, Gandhinagar 382355, India;
| | - Ambresh Mallya
- Centre for Nano Science and Engineering, Indian Institute of Science, Bangalore 560012, India;
| | | | | | - Akshay Datey
- Department of Aerospace Engineering, Indian Institute of Science, Bangalore 560012, India; (A.D.); (G.J.); (K.P.J.R.)
| | - Hugh Hill
- Physical Sciences, International Space University, 67400 Illkirch-Graffenstaden, France;
| | - Anil Bhardwaj
- Planetary Science Division, Physical Research Laboratory, Ahmedabad 380009, India; (V.S.); (A.B.)
| | - Gopalan Jagadeesh
- Department of Aerospace Engineering, Indian Institute of Science, Bangalore 560012, India; (A.D.); (G.J.); (K.P.J.R.)
| | - Kalidevapura P. J. Reddy
- Department of Aerospace Engineering, Indian Institute of Science, Bangalore 560012, India; (A.D.); (G.J.); (K.P.J.R.)
| | - Nigel J. Mason
- School of Physical Sciences, University of Kent, Canterbury CT2 7NZ, UK
- Correspondence: (N.J.M.); (B.S.)
| | - Bhalamurugan Sivaraman
- Atomic Molecular and Optical Physics Division, Physical Research Laboratory, Ahmedabad 380009, India; (S.V.S.); (J.K.M.)
- Correspondence: (N.J.M.); (B.S.)
| |
Collapse
|
10
|
Osinski G, Cockell C, Pontefract A, Sapers H. The Role of Meteorite Impacts in the Origin of Life. ASTROBIOLOGY 2020; 20:1121-1149. [PMID: 32876492 PMCID: PMC7499892 DOI: 10.1089/ast.2019.2203] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
The conditions, timing, and setting for the origin of life on Earth and whether life exists elsewhere in our solar system and beyond represent some of the most fundamental scientific questions of our time. Although the bombardment of planets and satellites by asteroids and comets has long been viewed as a destructive process that would have presented a barrier to the emergence of life and frustrated or extinguished life, we provide a comprehensive synthesis of data and observations on the beneficial role of impacts in a wide range of prebiotic and biological processes. In the context of previously proposed environments for the origin of life on Earth, we discuss how meteorite impacts can generate both subaerial and submarine hydrothermal vents, abundant hydrothermal-sedimentary settings, and impact analogues for volcanic pumice rafts and splash pools. Impact events can also deliver and/or generate many of the necessary chemical ingredients for life and catalytic substrates such as clays as well. The role that impact cratering plays in fracturing planetary crusts and its effects on deep subsurface habitats for life are also discussed. In summary, we propose that meteorite impact events are a fundamental geobiological process in planetary evolution that played an important role in the origin of life on Earth. We conclude with the recommendation that impact craters should be considered prime sites in the search for evidence of past life on Mars. Furthermore, unlike other geological processes such as volcanism or plate tectonics, impact cratering is ubiquitous on planetary bodies throughout the Universe and is independent of size, composition, and distance from the host star. Impact events thus provide a mechanism with the potential to generate habitable planets, moons, and asteroids throughout the Solar System and beyond.
Collapse
Affiliation(s)
- G.R. Osinski
- Institute for Earth and Space Exploration, University of Western Ontario, London, Canada
- Department of Earth Sciences, University of Western Ontario, London, Canada
- Address correspondence to: Dr. Gordon Osinski, Department of Earth Sciences, 1151 Richmond Street, University of Western Ontario, London ON, N6A 5B7, Canada
| | - C.S. Cockell
- UK Centre for Astrobiology, School of Physics and Astronomy, University of Edinburgh, Edinburgh, UK
| | - A. Pontefract
- Department of Biology, Georgetown University, Washington, DC, USA
| | - H.M. Sapers
- Division of Geological and Planetary Sciences, California Institute of Technology, Pasadena, California, USA
- Department of Earth Sciences, University of Southern California, Los Angeles, California, USA
| |
Collapse
|
11
|
Schmieder M, Kring DA. Earth's Impact Events Through Geologic Time: A List of Recommended Ages for Terrestrial Impact Structures and Deposits. ASTROBIOLOGY 2020; 20:91-141. [PMID: 31880475 PMCID: PMC6987741 DOI: 10.1089/ast.2019.2085] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/22/2019] [Accepted: 09/19/2019] [Indexed: 05/19/2023]
Abstract
This article presents a current (as of September 2019) list of recommended ages for proven terrestrial impact structures (n = 200) and deposits (n = 46) sourced from the primary literature. High-precision impact ages can be used to (1) reconstruct and quantify the impact flux in the inner Solar System and, in particular, the Earth-Moon system, thereby placing constraints on the delivery of extraterrestrial mass accreted on Earth through geologic time; (2) utilize impact ejecta as event markers in the stratigraphic record and to refine bio- and magneto-stratigraphy; (3) test models and hypotheses of synchronous double or multiple impact events in the terrestrial record; (4) assess the potential link between large impacts, mass extinctions, and diversification events in the biosphere; and (5) constrain the duration of melt sheet crystallization in large impact basins and the lifetime of hydrothermal systems in cooling impact craters, which may have served as habitats for microbial life on the early Earth and, possibly, Mars.
Collapse
Affiliation(s)
- Martin Schmieder
- Lunar and Planetary Institute—USRA, Houston, Texas
- NASA Solar System Exploration Research Virtual Institute (SSERVI)
- Address correspondence to: Martin Schmieder, Lunar and Planetary Institute—USRA, 3600 Bay Area Blvd, Houston, TX 77058
| | - David A. Kring
- Lunar and Planetary Institute—USRA, Houston, Texas
- NASA Solar System Exploration Research Virtual Institute (SSERVI)
| |
Collapse
|
12
|
McLoughlin N, Grosch EG, Vullum PE, Guagliardo P, Saunders M, Wacey D. Critically testing olivine-hosted putative martian biosignatures in the Yamato 000593 meteorite-Geobiological implications. GEOBIOLOGY 2019; 17:691-707. [PMID: 31478592 DOI: 10.1111/gbi.12361] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/25/2019] [Revised: 07/12/2019] [Accepted: 07/31/2019] [Indexed: 06/10/2023]
Abstract
On rocky planets such as Earth and Mars the serpentinization of olivine in ultramafic crust produces hydrogen that can act as a potential energy source for life. Direct evidence of fluid-rock interaction on Mars comes from iddingsite alteration veins found in martian meteorites. In the Yamato 000593 meteorite, putative biosignatures have been reported from altered olivines in the form of microtextures and associated organic material that have been compared to tubular bioalteration textures found in terrestrial sub-seafloor volcanic rocks. Here, we use a suite of correlative, high-sensitivity, in situ chemical, and morphological analyses to characterize and re-evaluate these microalteration textures in Yamato 000593, a clinopyroxenite from the shallow subsurface of Mars. We show that the altered olivine crystals have angular and micro-brecciated margins and are also highly strained due to impact-induced fracturing. The shape of the olivine microalteration textures is in no way comparable to microtunnels of inferred biological origin found in terrestrial volcanic glasses and dunites, and rather we argue that the Yamato 000593 microtextures are abiotic in origin. Vein filling iddingsite extends into the olivine microalteration textures and contains amorphous organic carbon occurring as bands and sub-spherical concentrations <300 nm across. We propose that a martian impact event produced the micro-brecciated olivine crystal margins that reacted with subsurface hydrothermal fluids to form iddingsite containing organic carbon derived from abiotic sources. These new data have implications for how we might seek potential biosignatures in ultramafic rocks and impact craters on both Mars and Earth.
Collapse
Affiliation(s)
| | - Eugene G Grosch
- Department of Geology, Rhodes University, Grahamstown, South Africa
| | - Per Erik Vullum
- SINTEF Materials and Chemistry, Trondheim, Norway
- Department of Physics, Norwegian University of Science and Technology (NTNU), Trondheim, Norway
| | - Paul Guagliardo
- Centre for Microscopy Characterisation and Analysis, The University of Western Australia, Perth, Western Australia, Australia
| | - Martin Saunders
- Centre for Microscopy Characterisation and Analysis, The University of Western Australia, Perth, Western Australia, Australia
- School of Molecular Sciences, The University of Western Australia, Perth, Western Australia, Australia
| | - David Wacey
- Centre for Microscopy Characterisation and Analysis, The University of Western Australia, Perth, Western Australia, Australia
| |
Collapse
|
13
|
Drake H, Roberts NMW, Heim C, Whitehouse MJ, Siljeström S, Kooijman E, Broman C, Ivarsson M, Åström ME. Timing and origin of natural gas accumulation in the Siljan impact structure, Sweden. Nat Commun 2019; 10:4736. [PMID: 31628335 PMCID: PMC6802084 DOI: 10.1038/s41467-019-12728-y] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2019] [Accepted: 09/27/2019] [Indexed: 11/29/2022] Open
Abstract
Fractured rocks of impact craters may be suitable hosts for deep microbial communities on Earth and potentially other terrestrial planets, yet direct evidence remains elusive. Here, we present a study of the largest crater of Europe, the Devonian Siljan structure, showing that impact structures can be important unexplored hosts for long-term deep microbial activity. Secondary carbonate minerals dated to 80 ± 5 to 22 ± 3 million years, and thus postdating the impact by more than 300 million years, have isotopic signatures revealing both microbial methanogenesis and anaerobic oxidation of methane in the bedrock. Hydrocarbons mobilized from matured shale source rocks were utilized by subsurface microorganisms, leading to accumulation of microbial methane mixed with a thermogenic and possibly a minor abiotic gas fraction beneath a sedimentary cap rock at the crater rim. These new insights into crater hosted gas accumulation and microbial activity have implications for understanding the astrobiological consequences of impacts. Fractured rocks of impact craters have been suggested to be suitable hosts for deep microbial communities on Earth, and potentially other terrestrial planets, yet direct evidence remains elusive. Here, the authors show that the Siljan impact structure is host to long-term deep methane-cycling microbial activity.
Collapse
Affiliation(s)
- Henrik Drake
- Linnæus University, Department of Biology and Environmental Science, 39182, Kalmar, Sweden.
| | - Nick M W Roberts
- Geochronology and Tracers Facility, British Geological Survey, Nottingham, NG12 5GG, UK
| | - Christine Heim
- Department of Geobiology, Geoscience Centre Göttingen of the Georg-August University, Goldschmidtstr. 3, 37077, Göttingen, Germany
| | - Martin J Whitehouse
- Swedish Museum of Natural History, P.O. Box 50 007, 10405, Stockholm, Sweden
| | - Sandra Siljeström
- Bioscience and Materials/Chemistry and Materials, RISE Research Institutes of Sweden, Box 5607, 114 86, Stockholm, Sweden
| | - Ellen Kooijman
- Swedish Museum of Natural History, P.O. Box 50 007, 10405, Stockholm, Sweden
| | - Curt Broman
- Department of Geological Sciences, Stockholm University, 106 91, Stockholm, Sweden
| | - Magnus Ivarsson
- Swedish Museum of Natural History, P.O. Box 50 007, 10405, Stockholm, Sweden.,Department of Biology, University of Southern Denmark, Campusvej 55, 5230, Odense, Denmark
| | - Mats E Åström
- Linnæus University, Department of Biology and Environmental Science, 39182, Kalmar, Sweden
| |
Collapse
|
14
|
Abstract
Impact-generated hydrothermal systems have been suggested as favourable environments for deep microbial ecosystems on Earth, and possibly beyond. Fossil evidence from a handful of impact craters worldwide have been used to support this notion. However, as always with mineralized remains of microorganisms in crystalline rock, certain time constraints with respect to the ecosystems and their subsequent fossilization are difficult to obtain. Here we re-evaluate previously described fungal fossils from the Lockne crater (458 Ma), Sweden. Based on in-situ Rb/Sr dating of secondary calcite-albite-feldspar (356.6 ± 6.7 Ma) we conclude that the fungal colonization took place at least 100 Myr after the impact event, thus long after the impact-induced hydrothermal activity ceased. We also present microscale stable isotope data of 13C-enriched calcite suggesting the presence of methanogens contemporary with the fungi. Thus, the Lockne fungi fossils are not, as previously thought, related to the impact event, but nevertheless have colonized fractures that may have been formed or were reactivated by the impact. Instead, the Lockne fossils show similar features as recent findings of ancient microbial remains elsewhere in the fractured Swedish Precambrian basement and may thus represent a more general feature in this scarcely explored habitat than previously known.
Collapse
|
15
|
Chatterjee S, Yadav S. The Origin of Prebiotic Information System in the Peptide/RNA World: A Simulation Model of the Evolution of Translation and the Genetic Code. Life (Basel) 2019; 9:E25. [PMID: 30832272 PMCID: PMC6463137 DOI: 10.3390/life9010025] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2018] [Revised: 01/09/2019] [Accepted: 02/25/2019] [Indexed: 12/20/2022] Open
Abstract
Information is the currency of life, but the origin of prebiotic information remains a mystery. We propose transitional pathways from the cosmic building blocks of life to the complex prebiotic organic chemistry that led to the origin of information systems. The prebiotic information system, specifically the genetic code, is segregated, linear, and digital, and it appeared before the emergence of DNA. In the peptide/RNA world, lipid membranes randomly encapsulated amino acids, RNA, and peptide molecules, which are drawn from the prebiotic soup, to initiate a molecular symbiosis inside the protocells. This endosymbiosis led to the hierarchical emergence of several requisite components of the translation machine: transfer RNAs (tRNAs), aminoacyl-tRNA synthetase (aaRS), messenger RNAs (mRNAs), ribosomes, and various enzymes. When assembled in the right order, the translation machine created proteins, a process that transferred information from mRNAs to assemble amino acids into polypeptide chains. This was the beginning of the prebiotic information age. The origin of the genetic code is enigmatic; herein, we propose an evolutionary explanation: the demand for a wide range of protein enzymes over peptides in the prebiotic reactions was the main selective pressure for the origin of information-directed protein synthesis. The molecular basis of the genetic code manifests itself in the interaction of aaRS and their cognate tRNAs. In the beginning, aminoacylated ribozymes used amino acids as a cofactor with the help of bridge peptides as a process for selection between amino acids and their cognate codons/anticodons. This process selects amino acids and RNA species for the next steps. The ribozymes would give rise to pre-tRNA and the bridge peptides to pre-aaRS. Later, variants would appear and evolution would produce different but specific aaRS-tRNA-amino acid combinations. Pre-tRNA designed and built pre-mRNA for the storage of information regarding its cognate amino acid. Each pre-mRNA strand became the storage device for the genetic information that encoded the amino acid sequences in triplet nucleotides. As information appeared in the digital languages of the codon within pre-mRNA and mRNA, and the genetic code for protein synthesis evolved, the prebiotic chemistry then became more organized and directional with the emergence of the translation and genetic code. The genetic code developed in three stages that are coincident with the refinement of the translation machines: the GNC code that was developed by the pre-tRNA/pre-aaRS /pre-mRNA machine, SNS code by the tRNA/aaRS/mRNA machine, and finally the universal genetic code by the tRNA/aaRS/mRNA/ribosome machine. We suggest the coevolution of translation machines and the genetic code. The emergence of the translation machines was the beginning of the Darwinian evolution, an interplay between information and its supporting structure. Our hypothesis provides the logical and incremental steps for the origin of the programmed protein synthesis. In order to better understand the prebiotic information system, we converted letter codons into numerical codons in the Universal Genetic Code Table. We have developed a software, called CATI (Codon-Amino Acid-Translator-Imitator), to translate randomly chosen numerical codons into corresponding amino acids and vice versa. This conversion has granted us insight into how the genetic code might have evolved in the peptide/RNA world. There is great potential in the application of numerical codons to bioinformatics, such as barcoding, DNA mining, or DNA fingerprinting. We constructed the likely biochemical pathways for the origin of translation and the genetic code using the Model-View-Controller (MVC) software framework, and the translation machinery step-by-step. While using AnyLogic software, we were able to simulate and visualize the entire evolution of the translation machines, amino acids, and the genetic code.
Collapse
Affiliation(s)
- Sankar Chatterjee
- Department of Geosciences, Museum of Texas Tech University, Box 43191, 3301 4th Street, Lubbock, TX 79409, USA.
| | - Surya Yadav
- Rawls College of Business, Texas Tech University, Box 42101, 703 Flint Avenue, Lubbock, TX 79409, USA.
| |
Collapse
|
16
|
Pantaleone S, Ugliengo P, Sodupe M, Rimola A. When the Surface Matters: Prebiotic Peptide-Bond Formation on the TiO 2 (101) Anatase Surface through Periodic DFT-D2 Simulations. Chemistry 2018; 24:16292-16301. [PMID: 30212609 DOI: 10.1002/chem.201803263] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2018] [Indexed: 12/13/2022]
Abstract
The mechanism of the peptide-bond formation between two glycine (Gly) molecules has been investigated by means of PBE-D2* and PBE0-D2* periodic simulations on the TiO2 (101) anatase surface. This is a process of great relevance both in fundamental prebiotic chemistry, as the reaction univocally belongs to one of the different organizational events that ultimately led to the emergence of life on Earth, as well as from an industrial perspective, since formation of amides is a key reaction for pharmaceutical companies. The efficiency of the surface catalytic sites is demonstrated by comparing the reactions in the gas phase and on the surface. At variance with the uncatalyzed gas-phase reaction, which involves a concerted nucleophilic attack and dehydration step, on the surface these two steps occur along a stepwise mechanism. The presence of surface Lewis and Brönsted sites exerts some catalytic effect by lowering the free energy barrier for the peptide-bond formation by about 6 kcal mol-1 compared to the gas-phase reaction. Moreover, the co-presence of molecules acting as proton-transfer assistants (i.e., H2 O and Gly) provide a more significant kinetic energy barrier decrease. The reaction on the surface is also favorable from a thermodynamic standpoint, involving very large and negative reaction energies. This is due to the fact that the anatase surface also acts as a dehydration agent during the condensation reaction, since the outermost coordinatively unsaturated Ti atoms strongly anchor the released water molecules. Our theoretical results provide a comprehensive atomistic interpretation of the experimental results of Martra et al. (Angew. Chem. Int. Ed. 2014, 53, 4671), in which polyglycine formation was obtained by successive feedings of Gly vapor on TiO2 surfaces in dry conditions and are, therefore, relevant in a prebiotic context envisaging dry and wet cycles occurring, at mineral surfaces, in a small pool.
Collapse
Affiliation(s)
- Stefano Pantaleone
- Departament de Química, Universitat Autònoma de Barcelona, Bellaterra, 08193, Catalonia, Spain
| | - Piero Ugliengo
- Dipartimento di Chimica and Nanostructured Interfaces and Surfaces (NIS), Inter-Departmental centre, Università degli Studi di Torino, Via P. Giuria 7, 10125, Torino, Italy
| | - Mariona Sodupe
- Departament de Química, Universitat Autònoma de Barcelona, Bellaterra, 08193, Catalonia, Spain
| | - Albert Rimola
- Departament de Química, Universitat Autònoma de Barcelona, Bellaterra, 08193, Catalonia, Spain
| |
Collapse
|
17
|
Preiner M, Xavier JC, Sousa FL, Zimorski V, Neubeck A, Lang SQ, Greenwell HC, Kleinermanns K, Tüysüz H, McCollom TM, Holm NG, Martin WF. Serpentinization: Connecting Geochemistry, Ancient Metabolism and Industrial Hydrogenation. Life (Basel) 2018; 8:life8040041. [PMID: 30249016 PMCID: PMC6316048 DOI: 10.3390/life8040041] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2018] [Revised: 09/18/2018] [Accepted: 09/20/2018] [Indexed: 11/16/2022] Open
Abstract
Rock⁻water⁻carbon interactions germane to serpentinization in hydrothermal vents have occurred for over 4 billion years, ever since there was liquid water on Earth. Serpentinization converts iron(II) containing minerals and water to magnetite (Fe₃O₄) plus H₂. The hydrogen can generate native metals such as awaruite (Ni₃Fe), a common serpentinization product. Awaruite catalyzes the synthesis of methane from H₂ and CO₂ under hydrothermal conditions. Native iron and nickel catalyze the synthesis of formate, methanol, acetate, and pyruvate-intermediates of the acetyl-CoA pathway, the most ancient pathway of CO₂ fixation. Carbon monoxide dehydrogenase (CODH) is central to the pathway and employs Ni⁰ in its catalytic mechanism. CODH has been conserved during 4 billion years of evolution as a relic of the natural CO₂-reducing catalyst at the onset of biochemistry. The carbide-containing active site of nitrogenase-the only enzyme on Earth that reduces N₂-is probably also a relic, a biological reconstruction of the naturally occurring inorganic catalyst that generated primordial organic nitrogen. Serpentinization generates Fe₃O₄ and H₂, the catalyst and reductant for industrial CO₂ hydrogenation and for N₂ reduction via the Haber⁻Bosch process. In both industrial processes, an Fe₃O₄ catalyst is matured via H₂-dependent reduction to generate Fe₅C₂ and Fe₂N respectively. Whether serpentinization entails similar catalyst maturation is not known. We suggest that at the onset of life, essential reactions leading to reduced carbon and reduced nitrogen occurred with catalysts that were synthesized during the serpentinization process, connecting the chemistry of life and Earth to industrial chemistry in unexpected ways.
Collapse
Affiliation(s)
- Martina Preiner
- Institute of Molecular Evolution, University of Düsseldorf, 40225 Düsseldorf, Germany.
| | - Joana C Xavier
- Institute of Molecular Evolution, University of Düsseldorf, 40225 Düsseldorf, Germany.
| | - Filipa L Sousa
- Division of Archaea Biology and Ecogenomics, Department of Ecogenomics and Systems Biology, University of Vienna, Althanstrasse 14 UZA I, 1090 Vienna, Austria.
| | - Verena Zimorski
- Institute of Molecular Evolution, University of Düsseldorf, 40225 Düsseldorf, Germany.
| | - Anna Neubeck
- Department of Earth Sciences, Palaeobiology, Uppsala University, Geocentrum, Villavägen 16, SE-752 36 Uppsala, Sweden.
| | - Susan Q Lang
- School of the Earth, Ocean, and Environment, University of South Carolina, 701 Sumter St. EWS 401, Columbia, SC 29208, USA.
| | - H Chris Greenwell
- Department of Earth Sciences, Durham University, South Road, DH1 3LE Durham, UK.
| | - Karl Kleinermanns
- Institute for Physical Chemistry, University of Düsseldorf, 40225 Düsseldorf, Germany.
| | - Harun Tüysüz
- Max-Planck-Institut für Kohlenforschung, Kaiser-Wilhelm-Platz 1, 45470 Mülheim an der Ruhr, Germany.
| | - Tom M McCollom
- Laboratory for Atmospheric and Space Physics, University of Colorado, Boulder, CO 80309, USA.
| | - Nils G Holm
- Department of Geological Sciences, Stockholm University, SE-106 91 Stockholm, Sweden.
| | - William F Martin
- Institute of Molecular Evolution, University of Düsseldorf, 40225 Düsseldorf, Germany.
| |
Collapse
|
18
|
Rapid recovery of life at ground zero of the end-Cretaceous mass extinction. Nature 2018; 558:288-291. [PMID: 29849143 PMCID: PMC6058194 DOI: 10.1038/s41586-018-0163-6] [Citation(s) in RCA: 101] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2017] [Accepted: 04/03/2018] [Indexed: 11/22/2022]
Abstract
The Cretaceous-Paleogene (K-Pg) mass extinction eradicated 76% of species on Earth1,2. It was caused by the impact of an asteroid3,4 on the Yucatán carbonate platform in the southern Gulf of Mexico at 66.0 Ma5 which formed the Chicxulub impact crater6,7. Following the mass extinction, recovery of the global marine ecosystem, measured in terms of primary productivity, was geographically heterogeneous8, as export production in the Gulf of Mexico and North Atlantic/Tethys took 300 kyr to return to Late Cretaceous quantities, slower than most other regions8–11. Delayed recovery of marine productivity closer to the crater implies an impact-related environmental control, like toxic metal poisoning12, on recovery times. Conversely, if no such geographic pattern exists, the best explanation for the observed heterogeneity is ecological, based on trophic interactions13, species incumbency and competitive exclusion by opportunists14, and “chance”8,15,16. Importantly, this question has bearing on the inherent predictability (or lack thereof) of future patterns of recovery in modern anthropogenically perturbed ecosystems. If there is a relationship between the distance from the impact and the recovery of marine productivity, we would expect recovery rates to be slowest in the crater itself. Here, we present the first record of foraminifera, calcareous nannoplankton, trace fossils, and elemental abundance data from the first ~200 kyr of the Paleocene within the Chicxulub Crater. We show that life reappeared in the basin just years after the impact and a thriving, high-productivity ecosystem was established within 30 kyr, faster than many sites across the globe. This is a clear indication that proximity to the impact did not delay recovery and thus there was no impact-related environmental control on recovery. Ecological processes likely controlled the recovery of productivity after the K-Pg mass extinction and are therefore likely to be significant in the response of the ocean ecosystem to other rapid extinction events.
Collapse
|
19
|
Clark BC, Kolb VM. Comet Pond II: Synergistic Intersection of Concentrated Extraterrestrial Materials and Planetary Environments to Form Procreative Darwinian Ponds. Life (Basel) 2018; 8:E12. [PMID: 29751593 PMCID: PMC6027224 DOI: 10.3390/life8020012] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2018] [Revised: 04/24/2018] [Accepted: 05/02/2018] [Indexed: 12/12/2022] Open
Abstract
In the “comet pond” model, a rare combination of circumstances enables the entry and landing of pristine organic material onto a planetary surface with the creation of a pond by a soft impact and melting of entrained ices. Formation of the constituents of the comet in the cold interstellar medium and our circumstellar disk results in multiple constituents at disequilibrium which undergo rapid chemical reactions in the warmer, liquid environment. The planetary surface also provides minerals and atmospheric gases which chemically interact with the pond’s organic- and trace-element-rich constituents. Pond physical morphology and the heterogeneities imposed by gravitational forces (bottom sludge; surface scum) and weather result in a highly heterogeneous variety of macro- and microenvironments. Wet/dry, freeze/thaw, and natural chromatography processes further promote certain reaction sequences. Evaporation concentrates organics less volatile than water. Freezing concentrates all soluble organics into a residual liquid phase, including CH₃OH, HCN, etc. The pond’s evolutionary processes culminate in the creation of a Macrobiont with the metabolically equivalent capabilities of energy transduction and replication of RNA (or its progenitor informational macromolecule), from which smaller organisms can emerge. Planet-wide dispersal of microorganisms is achieved through wind transport, groundwater, and/or spillover from the pond into surface hydrologic networks.
Collapse
Affiliation(s)
- Benton C Clark
- Research Branch, Space Science Institute, Boulder, CO 80201, USA.
| | - Vera M Kolb
- Department of Chemistry, University of Wisconsin⁻Parkside, Kenosha, WI 53141, USA.
| |
Collapse
|
20
|
Chatterjee S. A symbiotic view of the origin of life at hydrothermal impact crater-lakes. Phys Chem Chem Phys 2018; 18:20033-46. [PMID: 27126878 DOI: 10.1039/c6cp00550k] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Submarine hydrothermal vents are generally considered as the likely habitats for the origin and evolution of early life on Earth. The theory suffers from the 'concentration problem' of cosmic and terrestrial biomolecules because of the vastness of the Eoarchean global ocean. An attractive alternative site would be highly sequestered, small, hydrothermal crater-lakes that might have cradled life on early Earth. A new symbiotic model for the origin of life at hydrothermal crater-lakes is proposed here. Meteoritic impacts on the Eoarchean crust at the tail end of the Heavy Bombardment period might have played important roles in the origin of life. Impacts and collisions that created hydrothermal crater lakes on the Eoarchean crust inadvertently became the perfect crucibles for prebiotic chemistry with building blocks of life, which ultimately led to the first organisms by prebiotic synthesis. In this scenario, life arose through four hierarchical stages of increasing molecular complexity in multiple niches of crater basins. In the cosmic stage (≥4.6 Ga), the building blocks of life had their beginnings in the interstellar space during the explosion of a nearby star. Both comets and carbonaceous chondrites delivered building blocks of life and ice to early Earth, which were accumulated in hydrothermal impact crater-lakes. In the geologic stage (∼4 Ga), crater basins contained an assortment of cosmic and terrestrial organic compounds, powered by hydrothermal, solar, tidal, and chemical energies, which drove the prebiotic synthesis. At the water surface, self-assembled primitive lipid membranes floated as a thick oil slick. Archean Greenstone belts in Greenland, Australia, and South Africa possibly represent the relics of these Archean craters, where the oldest fossils of thermophilic life (∼3.5 Ga) have been detected. In the chemical stage, monomers such as nucleotides and amino acids were selected from random assemblies of the prebiotic soup; they were polymerized at pores of mineral surfaces with the coevolution of RNA and protein molecules to form the 'RNA/protein world'. Lipid membranes randomly encapsulated these RNA and protein molecules to initiate a molecular symbiosis in a 'RNA/protein/lipid world' that led to hierarchical emergence of several cell components: plasma membranes, ribosomes, coding RNA and proteins, DNA, and finally protocells with a primitive genetic code. In the biological stage, the emergence of the first cells capable of reproduction, heredity, variation, and Darwinian evolution is the key breakthrough in the origin of life. RNA virus and prions may represent the evolutionary relics of the RNA/protein world that survived as parasites for billions of years. Although the proposed endosymbiotic model is speculative it has intrinsic heuristic value. Future experiments on encapsulated RNA virus and prions have the potential to create a synthetic cell that may confirm a coherent narrative of this hierarchical evolutionary sequence.
Collapse
Affiliation(s)
- Sankar Chatterjee
- Department of Geosciences, Museum of Texas Tech University, P. O. Box 43191, Lubbock, TX 79409, USA.
| |
Collapse
|
21
|
McMahon S, Parnell J, Blamey NJF. Evidence for Seismogenic Hydrogen Gas, a Potential Microbial Energy Source on Earth and Mars. ASTROBIOLOGY 2016; 16:690-702. [PMID: 27623198 DOI: 10.1089/ast.2015.1405] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
UNLABELLED The oxidation of molecular hydrogen (H2) is thought to be a major source of metabolic energy for life in the deep subsurface on Earth, and it could likewise support any extant biosphere on Mars, where stable habitable environments are probably limited to the subsurface. Faulting and fracturing may stimulate the supply of H2 from several sources. We report the H2 content of fluids present in terrestrial rocks formed by brittle fracturing on fault planes (pseudotachylites and cataclasites), along with protolith control samples. The fluids are dominated by water and include H2 at abundances sufficient to support hydrogenotrophic microorganisms, with strong H2 enrichments in the pseudotachylites compared to the controls. Weaker and less consistent H2 enrichments are observed in the cataclasites, which represent less intense seismic friction than the pseudotachylites. The enrichments agree quantitatively with previous experimental measurements of frictionally driven H2 formation during rock fracturing. We find that conservative estimates of current martian global seismicity predict episodic H2 generation by Marsquakes in quantities useful to hydrogenotrophs over a range of scales and recurrence times. On both Earth and Mars, secondary release of H2 may also accompany the breakdown of ancient fault rocks, which are particularly abundant in the pervasively fractured martian crust. This study strengthens the case for the astrobiological investigation of ancient martian fracture systems. KEY WORDS Deep biosphere-Faults-Fault rocks-Seismic activity-Hydrogen-Mars. Astrobiology 16, 690-702.
Collapse
Affiliation(s)
- Sean McMahon
- 1 Department of Geology and Geophysics, Yale University , New Haven, Connecticut, USA
| | - John Parnell
- 2 Department of Geology and Petroleum Geology, School of Geosciences, University of Aberdeen , Aberdeen, UK
| | - Nigel J F Blamey
- 3 Department of Earth Sciences, Brock University , St Catharines, Canada
| |
Collapse
|
22
|
Adam ZR. Temperature oscillations near natural nuclear reactor cores and the potential for prebiotic oligomer synthesis. ORIGINS LIFE EVOL B 2016; 46:171-87. [PMID: 26680444 DOI: 10.1007/s11084-015-9478-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2015] [Accepted: 12/04/2015] [Indexed: 12/01/2022]
Abstract
Geologic settings capable of driving prebiotic oligomer synthesis reactions remain a relatively unexplored aspect of origins of life research. Natural nuclear reactors are an example of Precambrian energy sources that produced unique temperature fluctuations. Heat transfer models indicate that water-moderated, convectively-cooled natural fission reactors in porous host rocks create temperature oscillations that resemble those employed in polymerase chain reaction (PCR) devices to artificially amplify oligonucleotides. This temperature profile is characterized by short-duration pulses up to 70-100 °C, followed by a sustained period of temperatures in the range of 30-70 °C, and finally a period of relaxation to ambient temperatures until the cycle is restarted by a fresh influx of pore water. For a given reactor configuration, temperature maxima and the time required to relax to ambient temperatures depend most strongly on the aggregate effect of host rock permeability in decreasing the thermal expansion and increasing the viscosity and evaporation temperature of the pore fluids. Once formed, fission-fueled reactors can sustain multi-kilowatt-level power production for 10(5)-10(6) years, ensuring microenvironmental longevity and chemical output. The model outputs indicate that organic synthesis on young planetary bodies with a sizeable reservoir of fissile material can involve more sophisticated energy dissipation pathways than modern terrestrial analog settings alone would suggest.
Collapse
Affiliation(s)
- Zachary R Adam
- Department of Earth and Planetary Sciences, Harvard University, 26 Oxford Street, Room 51, Cambridge, MA, 02138, USA.
- Blue Marble Space Institute of Science, 1001 4th Ave, Suite 3201, Seattle, WA, 98154, USA.
| |
Collapse
|
23
|
Mishima S, Ohtomo Y, Kakegawa T. Occurrence of Tourmaline in Metasedimentary Rocks of the Isua Supracrustal Belt, Greenland: Implications for Ribose Stabilization in Hadean Marine Sediments. ORIGINS LIFE EVOL B 2016; 46:247-71. [PMID: 26631409 DOI: 10.1007/s11084-015-9474-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2015] [Accepted: 10/30/2015] [Indexed: 10/22/2022]
Abstract
Abiotic formation of RNA was important for the emergence of terrestrial life, but the acknowledged difficulties of generating and stabilizing ribose have often raised questions regarding how the first RNA might have formed. Previous researchers have proposed that borate could have stabilized ribose; however, the availability of borate on the early Earth has been the subject of intense debate. In order to examine whether borate was available on the early Earth, this study examined metasedimentary rocks from the Isua Supracrustal Belt. Garnet, biotite, and quartz comprise the major constituents of the examined rocks. Field relationships and the chemical compositions of the examined rocks suggest sedimentary origin. The present study found that garnet crystals contain a number of inclusions of tourmaline (a type of borosilicate mineral). All tourmaline crystals are Fe-rich and categorized as schorl. Both garnet and tourmaline often contain graphite inclusions and this close association of tourmaline with garnet and graphite has not been recognized previously. Garnet-biotite and graphite geothermometers suggest that the tourmaline in garnet experienced peak metamorphic conditions (~500 °C and 5 kbar). The mineralogical characteristics of the tourmaline and the whole rock composition indicate that the tourmaline formed authigenically in the sediment during diagenesis and/or early metamorphism. Clay minerals in modern sediments have the capability to adsorb and concentrate borate, which could lead to boron enrichment during diagenesis, followed by tourmaline formation under metamorphic conditions. Clay minerals, deposited on the early Archean seafloor, were the precursors of the garnet and biotite in the examined samples. The studied tourmaline crystals were most likely formed in the same way as modern tourmaline in marine sediments. Therefore, boron enrichment by clays must have been possible even during the early Archean. Thus, similar enrichment could have been possible during the Hadean, providing a stabilization agent for ribose.
Collapse
Affiliation(s)
- Shinpei Mishima
- Department of Earth Science, Tohoku University, Aza-aoba 6-3, Aramaki, Aoba-ku, Sendai, Japan.
| | - Yoko Ohtomo
- Faculty, Graduate School and School of Engineering, Hokkaido University, Kita 13, Nishi 8, Kita-ku, Sapporo, Japan
| | - Takeshi Kakegawa
- Department of Earth Science, Tohoku University, Aza-aoba 6-3, Aramaki, Aoba-ku, Sendai, Japan
| |
Collapse
|
24
|
Grosch EG, Hazen RM. Microbes, Mineral Evolution, and the Rise of Microcontinents-Origin and Coevolution of Life with Early Earth. ASTROBIOLOGY 2015; 15:922-939. [PMID: 26430911 DOI: 10.1089/ast.2015.1302] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
Earth is the most mineralogically diverse planet in our solar system, the direct consequence of a coevolving geosphere and biosphere. We consider the possibility that a microbial biosphere originated and thrived in the early Hadean-Archean Earth subseafloor environment, with fundamental consequences for the complex evolution and habitability of our planet. In this hypothesis paper, we explore possible venues for the origin of life and the direct consequences of microbially mediated, low-temperature hydrothermal alteration of the early oceanic lithosphere. We hypothesize that subsurface fluid-rock-microbe interactions resulted in more efficient hydration of the early oceanic crust, which in turn promoted bulk melting to produce the first evolved fragments of felsic crust. These evolved magmas most likely included sialic or tonalitic sheets, felsic volcaniclastics, and minor rhyolitic intrusions emplaced in an Iceland-type extensional setting as the earliest microcontinents. With the further development of proto-tectonic processes, these buoyant felsic crustal fragments formed the nucleus of intra-oceanic tonalite-trondhjemite-granitoid (TTG) island arcs. Thus microbes, by facilitating extensive hydrothermal alteration of the earliest oceanic crust through bioalteration, promoted mineral diversification and may have been early architects of surface environments and microcontinents on young Earth. We explore how the possible onset of subseafloor fluid-rock-microbe interactions on early Earth accelerated metavolcanic clay mineral formation, crustal melting, and subsequent metamorphic mineral evolution. We also consider environmental factors supporting this earliest step in geosphere-biosphere coevolution and the implications for habitability and mineral evolution on other rocky planets, such as Mars.
Collapse
Affiliation(s)
- Eugene G Grosch
- 1 Department of Earth Science, University of Bergen , Bergen, Norway
| | - Robert M Hazen
- 2 Geophysical Laboratory, Carnegie Institution of Washington , Washington, DC, USA
| |
Collapse
|
25
|
McLoughlin N, Grosch EG. A Hierarchical System for Evaluating the Biogenicity of Metavolcanic- and Ultramafic-Hosted Microalteration Textures in the Search for Extraterrestrial Life. ASTROBIOLOGY 2015; 15:901-921. [PMID: 26496528 DOI: 10.1089/ast.2014.1259] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
The low-temperature alteration of submarine volcanic glasses has been argued to involve the activity of microorganisms, and analogous fluid-rock-microbial-mediated alteration has also been postulated on Mars. However, establishing the extent to which microbes are involved in volcanic glass alteration has proven to be difficult, and the reliability of resulting textural biosignatures is debated, particularly in the early rock record. We therefore propose a hierarchical scheme to evaluate the biogenicity of candidate textural biosignatures found in altered terrestrial and extraterrestrial basaltic glasses and serpentinized ultramafic rocks. The hierarchical scheme is formulated to give increasing confidence of a biogenic origin and involves (i) investigation of the textural context and syngenicity of the candidate biosignature; (ii) characterization of the morphology and size range of the microtextures; (iii) mapping of the geological and physicochemical variables controlling the occurrence and preservation of the microtextures; (iv) in situ investigation of chemical signatures that are syngenetic to the microtexture; and (v) identification of growth patterns suggestive of biological behavior and redox variations in the host minerals. The scheme results in five categories of candidate biosignature as follows: Category 1 indicates preservation of very weak evidence for biogenicity, Categories 2 through 4 indicate evidence for increasing confidence of a biogenic origin, and Category 5 indicates that biogenic origin is most likely. We apply this hierarchical approach to examine the evidence for a biogenic origin of several examples, including candidate bacterial encrustations in altered pillow lavas, granular and tubular microtextures in volcanic glass from the subseafloor and a Phanerozoic ophiolite, mineralized microtextures in Archean metavolcanic glass, and alteration textures in olivines of the martian meteorite Yamato 000593. The aim of this hierarchical approach is to provide a framework for identifying robust biosignatures of microbial life in the altered oceanic crust on Earth, and in extraterrestrial altered mafic-ultramafic rocks, particularly on Mars.
Collapse
Affiliation(s)
| | - Eugene G Grosch
- Department of Earth Sciences, University of Bergen , Bergen, Norway
| |
Collapse
|
26
|
El origen geológico de la vida: una perspectiva desde la meteorítica. TIP REVISTA ESPECIALIZADA EN CIENCIAS QUÍMICO-BIOLÓGICAS 2015. [DOI: 10.1016/j.recqb.2015.05.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
|
27
|
The place of RNA in the origin and early evolution of the genetic machinery. Life (Basel) 2014; 4:1050-91. [PMID: 25532530 PMCID: PMC4284482 DOI: 10.3390/life4041050] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2014] [Revised: 12/02/2014] [Accepted: 12/09/2014] [Indexed: 11/17/2022] Open
Abstract
The extant genetic machinery revolves around three interrelated polymers: RNA, DNA and proteins. Two evolutionary views approach this vital connection from opposite perspectives. The RNA World theory posits that life began in a cold prebiotic broth of monomers with the de novo emergence of replicating RNA as functionally self-contained polymer and that subsequent evolution is characterized by RNA → DNA memory takeover and ribozyme → enzyme catalyst takeover. The FeS World theory posits that life began as an autotrophic metabolism in hot volcanic-hydrothermal fluids and evolved with organic products turning into ligands for transition metal catalysts thereby eliciting feedback and feed-forward effects. In this latter context it is posited that the three polymers of the genetic machinery essentially coevolved from monomers through oligomers to polymers, operating functionally first as ligands for ligand-accelerated transition metal catalysis with later addition of base stacking and base pairing, whereby the functional dichotomy between hereditary DNA with stability on geologic time scales and transient, catalytic RNA with stability on metabolic time scales existed since the dawn of the genetic machinery. Both approaches are assessed comparatively for chemical soundness.
Collapse
|
28
|
Pontefract A, Osinski GR, Cockell CS, Moore CA, Moores JE, Southam G. Impact-generated endolithic habitat within crystalline rocks of the Haughton impact structure, Devon Island, Canada. ASTROBIOLOGY 2014; 14:522-533. [PMID: 24926727 DOI: 10.1089/ast.2013.1100] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
The colonization of rocks by endolithic communities is an advantageous trait, especially in environments such as hot or cold deserts, where large temperature ranges, low water availability, and high-intensity ultraviolet radiation pose a significant challenge to survival and growth. On Mars, similar conditions (albeit more extreme) prevail. In these environments, meteorite impact structures could provide refuge for endolithic organisms. Though initially detrimental to biology, an impact event into a rocky body can favorably change the availability and habitability of a substrate for endolithic organisms, which are then able to (re)colonize microfractures and pore spaces created during the impact. Here, we show how shocked gneisses from the Haughton impact structure, Devon Island, Canada, offer significant refuge for endolithic communities. A total of 28 gneiss samples representing a range of shock states were analyzed, collected from in situ, stable field locations. For each sample, the top centimeter of rock was examined with confocal scanning laser microscopy, scanning electron microscopy, and bright-field microscopy to investigate the relationship of biomass with shock level, which was found to correlate generally with increased shock state and particularly with increased porosity. We found that gneisses, which experienced pressures between 35 and 60 GPa, provide the most ideal habitat for endolithic organisms.
Collapse
Affiliation(s)
- Alexandra Pontefract
- 1 Centre for Planetary Science and Exploration/Department of Earth Sciences, University of Western Ontario , London, Canada
| | | | | | | | | | | |
Collapse
|
29
|
Russell MJ, Barge LM, Bhartia R, Bocanegra D, Bracher PJ, Branscomb E, Kidd R, McGlynn S, Meier DH, Nitschke W, Shibuya T, Vance S, White L, Kanik I. The drive to life on wet and icy worlds. ASTROBIOLOGY 2014; 14:308-43. [PMID: 24697642 PMCID: PMC3995032 DOI: 10.1089/ast.2013.1110] [Citation(s) in RCA: 133] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/21/2013] [Accepted: 02/02/2014] [Indexed: 05/22/2023]
Abstract
This paper presents a reformulation of the submarine alkaline hydrothermal theory for the emergence of life in response to recent experimental findings. The theory views life, like other self-organizing systems in the Universe, as an inevitable outcome of particular disequilibria. In this case, the disequilibria were two: (1) in redox potential, between hydrogen plus methane with the circuit-completing electron acceptors such as nitrite, nitrate, ferric iron, and carbon dioxide, and (2) in pH gradient between an acidulous external ocean and an alkaline hydrothermal fluid. Both CO2 and CH4 were equally the ultimate sources of organic carbon, and the metal sulfides and oxyhydroxides acted as protoenzymatic catalysts. The realization, now 50 years old, that membrane-spanning gradients, rather than organic intermediates, play a vital role in life's operations calls into question the idea of "prebiotic chemistry." It informs our own suggestion that experimentation should look to the kind of nanoengines that must have been the precursors to molecular motors-such as pyrophosphate synthetase and the like driven by these gradients-that make life work. It is these putative free energy or disequilibria converters, presumably constructed from minerals comprising the earliest inorganic membranes, that, as obstacles to vectorial ionic flows, present themselves as the candidates for future experiments. Key Words: Methanotrophy-Origin of life. Astrobiology 14, 308-343. The fixation of inorganic carbon into organic material (autotrophy) is a prerequisite for life and sets the starting point of biological evolution. (Fuchs, 2011 ) Further significant progress with the tightly membrane-bound H(+)-PPase family should lead to an increased insight into basic requirements for the biological transport of protons through membranes and its coupling to phosphorylation. (Baltscheffsky et al., 1999 ).
Collapse
|
30
|
Barge LM, Kee TP, Doloboff IJ, Hampton JMP, Ismail M, Pourkashanian M, Zeytounian J, Baum MM, Moss JA, Lin CK, Kidd RD, Kanik I. The fuel cell model of abiogenesis: a new approach to origin-of-life simulations. ASTROBIOLOGY 2014; 14:254-270. [PMID: 24621309 DOI: 10.1089/ast.2014.1140] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
In this paper, we discuss how prebiotic geo-electrochemical systems can be modeled as a fuel cell and how laboratory simulations of the origin of life in general can benefit from this systems-led approach. As a specific example, the components of what we have termed the "prebiotic fuel cell" (PFC) that operates at a putative Hadean hydrothermal vent are detailed, and we used electrochemical analysis techniques and proton exchange membrane (PEM) fuel cell components to test the properties of this PFC and other geo-electrochemical systems, the results of which are reported here. The modular nature of fuel cells makes them ideal for creating geo-electrochemical reactors with which to simulate hydrothermal systems on wet rocky planets and characterize the energetic properties of the seafloor/hydrothermal interface. That electrochemical techniques should be applied to simulating the origin of life follows from the recognition of the fuel cell-like properties of prebiotic chemical systems and the earliest metabolisms. Conducting this type of laboratory simulation of the emergence of bioenergetics will not only be informative in the context of the origin of life on Earth but may help in understanding whether life might emerge in similar environments on other worlds.
Collapse
Affiliation(s)
- Laura M Barge
- 1 Jet Propulsion Laboratory, California Institute of Technology , Pasadena, California, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
31
|
Grosch EG, McLoughlin N, Lanari P, Erambert M, Vidal O. Microscale mapping of alteration conditions and potential biosignatures in basaltic-ultramafic rocks on early Earth and beyond. ASTROBIOLOGY 2014; 14:216-228. [PMID: 24588497 DOI: 10.1089/ast.2013.1116] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
Subseafloor environments preserved in Archean greenstone belts provide an analogue for investigating potential subsurface habitats on Mars. The c. 3.5-3.4 Ga pillow lava metabasalts of the mid-Archean Barberton greenstone belt, South Africa, have been argued to contain the earliest evidence for microbial subseafloor life. This includes candidate trace fossils in the form of titanite microtextures, and sulfur isotopic signatures of pyrite preserved in metabasaltic glass of the c. 3.472 Ga Hooggenoeg Formation. It has been contended that similar microtextures in altered martian basalts may represent potential extraterrestrial biosignatures of microbe-fluid-rock interaction. But despite numerous studies describing these putative early traces of life, a detailed metamorphic characterization of the microtextures and their host alteration conditions in the ancient pillow lava metabasites is lacking. Here, we present a new nondestructive technique with which to study the in situ metamorphic alteration conditions associated with potential biosignatures in mafic-ultramafic rocks of the Hooggenoeg Formation. Our approach combines quantitative microscale compositional mapping by electron microprobe with inverse thermodynamic modeling to derive low-temperature chlorite crystallization conditions. We found that the titanite microtextures formed under subgreenschist to greenschist facies conditions. Two chlorite temperature groups were identified in the maps surrounding the titanite microtextures and record peak metamorphic conditions at 315 ± 40°C (XFe3+(chlorite) = 25-34%) and lower-temperature chlorite veins/microdomains at T = 210 ± 40°C (lower XFe3+(chlorite) = 40-45%). These results provide the first metamorphic constraints in textural context on the Barberton titanite microtextures and thereby improve our understanding of the local preservation conditions of these potential biosignatures. We suggest that this approach may prove to be an important tool in future studies to assess the biogenicity of these earliest candidate traces of life on Earth. Furthermore, we propose that this mapping approach could also be used to investigate altered mafic-ultramafic extraterrestrial samples containing candidate biosignatures.
Collapse
Affiliation(s)
- Eugene G Grosch
- 1 Department of Earth Science and Centre for Geobiology, University of Bergen , Bergen, Norway
| | | | | | | | | |
Collapse
|
32
|
Huber C, Kraus F, Hanzlik M, Eisenreich W, Wächtershäuser G. Elements of metabolic evolution. Chemistry 2012; 18:2063-80. [PMID: 22241585 DOI: 10.1002/chem.201102914] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2011] [Indexed: 11/09/2022]
Abstract
Research into the origin of evolution is polarized between a genetics-first approach, with its focus on polymer replication, and a metabolism-first approach that takes aim at chemical reaction cycles. Taking the latter approach, we explored reductive carbon fixation in a volcanic hydrothermal setting, driven by the chemical potential of quenched volcanic fluids for converting volcanic C1 compounds into organic products by transition-metal catalysts. These catalysts are assumed to evolve by accepting ever-new organic products as ligands for enhancing their catalytic power, which in turn enhances the rates of synthetic pathways that give rise to ever-new organic products, with the overall effect of a self-expanding metabolism. We established HCN, CO, and CH(3)SH as carbon nutrients, CO and H(2) as reductants, and iron-group transition metals as catalysts. In one case, we employed the "cyano-system" [Ni(OH)(CN)] with [Ni(CN)(4)](2-) as the dominant nickel-cyano species. This reaction mainly produced α-amino acids and α-hydroxy acids as well as various intermediates and derivatives. An organo-metal-catalyzed mechanism is suggested that mainly builds carbon skeletons by repeated cyano insertions, with minor CO insertions in the presence of CO. The formation of elemental nickel (Ni(0)) points to an active reduced-nickel species. In another case, we employed the mercapto-carbonyl system [Co(2)(CO)(8)]/Ca(OH)(2)/CO for the double-carbonylation of mercaptans. In a "hybrid system", we combined benzyl mercaptan with the cyano system, in which [Ni(OH)(CN)] was the most productive for the double-carbon-fixation reaction. Finally, we demonstrated that the addition of products of the cyano system (Gly, Ala) to the hybrid system increased productivity. These results demonstrate the chemical possibility of metabolic evolution through rate-promotion of one synthetic reaction by the products of another.
Collapse
Affiliation(s)
- Claudia Huber
- Lehrstuhl für Biochemie, Department of Chemistry, Technische Universität München, Lichtenbergstrasse 4, 85747 Garching, Germany
| | | | | | | | | |
Collapse
|
33
|
Brasier MD, Matthewman R, McMahon S, Wacey D. Pumice as a remarkable substrate for the origin of life. ASTROBIOLOGY 2011; 11:725-735. [PMID: 21879814 DOI: 10.1089/ast.2010.0546] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
The context for the emergence of life on Earth sometime prior to 3.5 billion years ago is almost as big a puzzle as the definition of life itself. Hitherto, the problem has largely been addressed in terms of theoretical and experimental chemistry plus evidence from extremophile habitats like modern hydrothermal vents and meteorite impact structures. Here, we argue that extensive rafts of glassy, porous, and gas-rich pumice could have had a significant role in the origin of life and provided an important habitat for the earliest communities of microorganisms. This is because pumice has four remarkable properties. First, during eruption it develops the highest surface-area-to-volume ratio known for any rock type. Second, it is the only known rock type that floats as rafts at the air-water interface and then becomes beached in the tidal zone for long periods of time. Third, it is exposed to an unusually wide variety of conditions, including dehydration. Finally, from rafting to burial, it has a remarkable ability to adsorb metals, organics, and phosphates as well as to host organic catalysts such as zeolites and titanium oxides. These remarkable properties now deserve to be rigorously explored in the laboratory and the early rock record.
Collapse
|
34
|
Izawa MRM, Banerjee NR, Osinski GR, Flemming RL, Parnell J, Cockell CS. Weathering of post-impact hydrothermal deposits from the Haughton impact structure: implications for microbial colonization and biosignature preservation. ASTROBIOLOGY 2011; 11:537-550. [PMID: 21767151 DOI: 10.1089/ast.2011.0612] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
Meteorite impacts are among the very few processes common to all planetary bodies with solid surfaces. Among the effects of impact on water-bearing targets is the formation of post-impact hydrothermal systems and associated mineral deposits. The Haughton impact structure (Devon Island, Nunavut, Canada, 75.2 °N, 89.5 °W) hosts a variety of hydrothermal mineral deposits that preserve assemblages of primary hydrothermal minerals commonly associated with secondary oxidative/hydrous weathering products. Hydrothermal mineral deposits at Haughton include intra-breccia calcite-marcasite vugs, small intra-breccia calcite or quartz vugs, intra-breccia gypsum megacryst vugs, hydrothermal pipe structures and associated surface "gossans," banded Fe-oxyhydroxide deposits, and calcite and quartz veins and coatings in shattered target rocks. Of particular importance are sulfide-rich deposits and their associated assemblage of weathering products. Hydrothermal mineral assemblages were characterized structurally, texturally, and geochemically with X-ray diffraction, micro X-ray diffraction, optical and electron microscopy, and inductively coupled plasma atomic emission spectroscopy. Primary sulfides (marcasite and pyrite) are commonly associated with alteration minerals, including jarosite (K,Na,H(3)O)Fe(3)(SO(4))(2)(OH)(6), rozenite FeSO(4)·4(H(2)O), copiapite (Fe,Mg)Fe(4)(SO(4))(6)(OH)(2)·20(H(2)O), fibroferrite Fe(SO(4))(OH)·5(H(2)O), melanterite FeSO(4)·7(H(2)O), szomolnokite FeSO(4)·H(2)O, goethite α-FeO(OH), lepidocrocite γ-FeO(OH) and ferrihydrite Fe(2)O(3)·0.5(H(2)O). These alteration assemblages are consistent with geochemical conditions that were locally very different from the predominantly circumneutral, carbonate-buffered environment at Haughton. Mineral assemblages associated with primary hydrothermal activity, and the weathering products of such deposits, provide constraints on possible microbial activity in the post-impact environment. The initial period of active hydrothermal circulation produced primary mineral assemblages, including Fe sulfides, and was succeeded by a period dominated by oxidation and low-temperature hydration of primary minerals by surface waters. Active hydrothermal circulation can enable the rapid delivery of nutrients to microbes. Nutrient availability following the cessation of hydrothermal circulation is likely more restricted; therefore, the biological importance of chemical energy from hydrothermal mineral deposits increases with time. Weathering of primary hydrothermal deposits and dissolution and reprecipitation of mobile weathering products also create many potential habitats for endolithic microbes. They also provide a mechanism that may preserve biological materials, potentially over geological timescales.
Collapse
Affiliation(s)
- M R M Izawa
- Department of Earth Sciences, University of Western Ontario, London, ON N6A5B7, Canada.
| | | | | | | | | | | |
Collapse
|
35
|
Maheen G, Wang Y, Wang Y, Shi Z, Tian G, Feng S. Mimicking the prebiotic acidic hydrothermal environment: One-pot prebiotic hydrothermal synthesis of glucose phosphates. HETEROATOM CHEMISTRY 2011. [DOI: 10.1002/hc.20675] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
36
|
Trevors J. Perspective: Researching the transition from non-living to the first microorganisms: Methods and experiments are major challenges. J Microbiol Methods 2010; 81:259-63. [DOI: 10.1016/j.mimet.2010.03.015] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2010] [Accepted: 03/19/2010] [Indexed: 11/25/2022]
|
37
|
Meunier A, Petit S, Cockell CS, El Albani A, Beaufort D. The Fe-rich clay microsystems in basalt-komatiite lavas: importance of Fe-smectites for pre-biotic molecule catalysis during the Hadean eon. ORIGINS LIFE EVOL B 2010; 40:253-72. [PMID: 20213161 DOI: 10.1007/s11084-010-9205-2] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2009] [Accepted: 01/11/2010] [Indexed: 11/29/2022]
Abstract
During the Hadean to early Archean period (4.5-3.5 Ga), the surface of the Earth's crust was predominantly composed of basalt and komatiite lavas. The conditions imposed by the chemical composition of these rocks favoured the crystallization of Fe-Mg clays rather than that of Al-rich ones (montmorillonite). Fe-Mg clays were formed inside chemical microsystems through sea weathering or hydrothermal alteration, and for the most part, through post-magmatic processes. Indeed, at the end of the cooling stage, Fe-Mg clays precipitated directly from the residual liquid which concentrated in the voids remaining in the crystal framework of the mafic-ultramafic lavas. Nontronite-celadonite and chlorite-saponite covered all the solid surfaces (crystals, glass) and are associated with tiny pyroxene and apatite crystals forming the so-called "mesostasis". The mesostasis was scattered in the lava body as micro-settings tens of micrometres wide. Thus, every square metre of basalt or komatiite rocks was punctuated by myriads of clay-rich patches, each of them potentially behaving as a single chemical reactor which could concentrate the organics diluted in the ocean water. Considering the high catalytic potentiality of clays, and particularly those of the Fe-rich ones (electron exchangers), it is probable that large parts of the surface of the young Earth participated in the synthesis of prebiotic molecules during the Hadean to early Archean period through innumerable clay-rich micro-settings in the massive parts and the altered surfaces of komatiite and basaltic lavas. This leads us to suggest that Fe,Mg-clays should be preferred to Al-rich ones (montmorillonite) to conduct experiments for the synthesis and the polymerisation of prebiotic molecules.
Collapse
Affiliation(s)
- Alain Meunier
- HydrASA University of Poitiers, Bât. Sciences Naturelles-FRE 3114 INSU-CNRS, 40 avenue du Recteur Pineau, 86022, Poitiers Cedex, France.
| | | | | | | | | |
Collapse
|
38
|
Maheen G, Tian G, Wang Y, He C, Shi Z, Yuan H, Feng S. Resolving the enigma of prebiotic COP bond formation: Prebiotic hydrothermal synthesis of important biological phosphate esters. HETEROATOM CHEMISTRY 2010. [DOI: 10.1002/hc.20591] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
39
|
On the free energy that drove primordial anabolism. Int J Mol Sci 2009; 10:1853-1871. [PMID: 19468343 PMCID: PMC2680651 DOI: 10.3390/ijms10041853] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2009] [Revised: 04/16/2009] [Accepted: 04/20/2009] [Indexed: 12/25/2022] Open
Abstract
A key problem in understanding the origin of life is to explain the mechanism(s) that led to the spontaneous assembly of molecular building blocks that ultimately resulted in the appearance of macromolecular structures as they are known in modern biochemistry today. An indispensable thermodynamic prerequisite for such a primordial anabolism is the mechanistic coupling to processes that supplied the free energy required. Here I review different sources of free energy and discuss the potential of each form having been involved in the very first anabolic reactions that were fundamental to increase molecular complexity and thus were essential for life.
Collapse
|
40
|
Environmental regulation in a network of simulated microbial ecosystems. Proc Natl Acad Sci U S A 2008; 105:10432-7. [PMID: 18647835 DOI: 10.1073/pnas.0800244105] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The Earth possesses a number of regulatory feedback mechanisms involving life. In the absence of a population of competing biospheres, it has proved hard to find a robust evolutionary mechanism that would generate environmental regulation. It has been suggested that regulation must require altruistic environmental alterations by organisms and, therefore, would be evolutionarily unstable. This need not be the case if organisms alter the environment as a selectively neutral by-product of their metabolism, as in the majority of biogeochemical reactions, but a question then arises: Why should the combined by-product effects of the biota have a stabilizing, rather than destabilizing, influence on the environment? Under certain conditions, selection acting above the level of the individual can be an effective adaptive force. Here we present an evolutionary simulation model in which environmental regulation involving higher-level selection robustly emerges in a network of interconnected microbial ecosystems. Spatial structure creates conditions for a limited form of higher-level selection to act on the collective environment-altering properties of local communities. Local communities that improve their environmental conditions achieve larger populations and are better colonizers of available space, whereas local communities that degrade their environment shrink and become susceptible to invasion. The spread of environment-improving communities alters the global environment toward the optimal conditions for growth and tends to regulate against external perturbations. This work suggests a mechanism for environmental regulation that is consistent with evolutionary theory.
Collapse
|
41
|
Hatton B, Rickard D. Nucleic acids bind to nanoparticulate iron (II) monosulphide in aqueous solutions. ORIGINS LIFE EVOL B 2008; 38:257-70. [PMID: 18409029 DOI: 10.1007/s11084-008-9132-7] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2007] [Accepted: 02/22/2008] [Indexed: 11/27/2022]
Abstract
In the hydrothermal FeS-world origin of life scenarios nucleic acids are suggested to bind to iron (II) monosulphide precipitated from the reaction between hydrothermal sulphidic vent solutions and iron-bearing oceanic water. In lower temperature systems, the first precipitate from this process is nanoparticulate, metastable FeSm with a mackinawite structure. Although the interactions between bulk crystalline iron sulphide minerals and nucleic acids have been reported, their reaction with nanoparticulate FeSm has not previously been investigated. We investigated the binding of different nucleic acids, and their constituents, to freshly precipitated, nanoparticulate FeSm. The degree to which the organic molecules interacted with FeSm is chromosomal DNA > RNA > oligomeric DNA > deoxadenosine monophosphate approximately deoxyadenosine approximately adenine. Although we found that FeSm does not fluoresce within the visible spectrum and there is no quantum confinement effect seen in the absorption, the mechanism of linkage of the FeSm to these biomolecules appears to be primarily electrostatic and similar to that found for the attachment of ZnS quantum dots. The results of a preliminary study of similar reactions with nanoparticulate CuS further supported the suggestion that the interaction mechanism was generic for nanoparticulate transition metal sulphides. In terms of the FeS-world hypothesis, the results of this study further support the idea that sulphide minerals precipitated at hydrothermal vents interact with biomolecules and could have assisted in the formation and polymerisation of nucleic acids.
Collapse
Affiliation(s)
- Bryan Hatton
- School of Earth and Ocean Sciences, Cardiff University, Park Place, Cardiff, CF10 3YE, UK.
| | | |
Collapse
|
42
|
Watson AJ. Implications of an anthropic model of evolution for emergence of complex life and intelligence. ASTROBIOLOGY 2008; 8:175-185. [PMID: 18237258 DOI: 10.1089/ast.2006.0115] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
Structurally complex life and intelligence evolved late on Earth; models for the evolution of global temperature suggest that, due to the increasing solar luminosity, the future life span of the (eukaryote) biosphere will be "only" about another billion years, a short time compared to the approximately 4 Ga since life began. A simple stochastic model (Carter, 1983) suggests that this timing might be governed by the necessity to pass a small number, n, of very difficult evolutionary steps, with n < 10 and a best guess of n = 4, in order for intelligent observers like ourselves to evolve. Here I extend the model analysis to derive probability distributions for each step. Past steps should tend to be evenly spaced through Earth's history, and this is consistent with identification of the steps with some of the major transitions in the evolution of life on Earth. A complementary approach, identifying the critical steps with major reorganizations in Earth's biogeochemical cycles, suggests that the Archean-Proterozoic and Proterozoic-Phanerozoic transitions might be identified with critical steps. The success of the model lends support to a "Rare Earth" hypothesis (Ward and Brownlee, 2000): structurally complex life is separated from prokaryotes by several very unlikely steps and, hence, will be much less common than prokaryotes. Intelligence is one further unlikely step, so it is much less common still.
Collapse
Affiliation(s)
- Andrew J Watson
- School of Environmental Science, University of East Anglia, Norwich, UK.
| |
Collapse
|
43
|
Mulkidjanian AY, Galperin MY. Physico-chemical and evolutionary constraints for the formation and selection of first biopolymers: towards the consensus paradigm of the abiogenic origin of life. Chem Biodivers 2007; 4:2003-15. [PMID: 17886857 DOI: 10.1002/cbdv.200790167] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
During the last two decades, the common school of thought has split into two, so that the problem of the origin of life is tackled in the framework of either the 'replication first' paradigm or the 'metabolism first' scenario. The first paradigm suggests that the life started from the spontaneous emergence of the first, supposedly RNA-based 'replicators' and considers in much detail their further evolution in the so-called 'RNA world'. The alternative hypothesis of 'metabolism first' derives the life from increasingly complex autocatalytic chemical cycles. In this work, we emphasize the role of selection during the pre-biological stages of evolution and focus on the constraints that are imposed by physical, chemical, and biological laws. We try to demonstrate that the 'replication first' and 'metabolism first' hypotheses complement, rather than contradict, each other. We suggest that life on Earth has started from a 'metabolism-driven replication'; the suggested scenario might serve as a consensus scheme in the framework of which the molecular details of origin of life can be further elaborated. The key feature of the scenario is the participation of the UV irradiation both as driving and selecting forces during the earlier stages of evolution.
Collapse
|
44
|
Russell MJ. The alkaline solution to the emergence of life: energy, entropy and early evolution. Acta Biotheor 2007; 55:133-79. [PMID: 17704896 DOI: 10.1007/s10441-007-9018-5] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2007] [Accepted: 05/07/2007] [Indexed: 11/27/2022]
Abstract
The Earth agglomerates and heats. Convection cells within the planetary interior expedite the cooling process. Volcanoes evolve steam, carbon dioxide, sulfur dioxide and pyrophosphate. An acidulous Hadean ocean condenses from the carbon dioxide atmosphere. Dusts and stratospheric sulfurous smogs absorb a proportion of the Sun's rays. The cooled ocean leaks into the stressed crust and also convects. High temperature acid springs, coupled to magmatic plumes and spreading centers, emit iron, manganese, zinc, cobalt and nickel ions to the ocean. Away from the spreading centers cooler alkaline spring waters emanate from the ocean floor. These bear hydrogen, formate, ammonia, hydrosulfide and minor methane thiol. The thermal potential begins to be dissipated but the chemical potential is dammed. The exhaling alkaline solutions are frustrated in their further attempt to mix thoroughly with their oceanic source by the spontaneous precipitation of biomorphic barriers of colloidal iron compounds and other minerals. It is here we surmise that organic molecules are synthesized, filtered, concentrated and adsorbed, while acetate and methane--separate products of the precursor to the reductive acetyl-coenzyme-A pathway-are exhaled as waste. Reactions in mineral compartments produce acetate, amino acids, and the components of nucleosides. Short peptides, condensed from the simple amino acids, sequester 'ready-made' iron sulfide clusters to form protoferredoxins, and also bind phosphates. Nucleotides are assembled from amino acids, simple phosphates carbon dioxide and ribose phosphate upon nanocrystalline mineral surfaces. The side chains of particular amino acids register to fitting nucleotide triplet clefts. Keyed in, the amino acids are polymerized, through acid-base catalysis, to alpha chains. Peptides, the tenuous outer-most filaments of the nanocrysts, continually peel away from bound RNA. The polymers are concentrated at cooler regions of the mineral compartments through thermophoresis. RNA is reproduced through a convective polymerase chain reaction operating between 40 and 100 degrees C. The coded peptides produce true ferredoxins, the ubiquitous proteins with the longest evolutionary pedigree. They take over the role of catalyst and electron transfer agent from the iron sulfides. Other iron-nickel sulfide clusters, sequestered now by cysteine residues as CO-dehydrogenase and acetyl-coenzyme-A synthase, promote further chemosynthesis and support the hatchery--the electrochemical reactor--from which they sprang. Reactions and interactions fall into step as further pathways are negotiated. This hydrothermal circuitry offers a continuous supply of material and chemical energy, as well as electricity and proticity at a potential appropriate for the onset of life in the dark, a rapidly emerging kinetic structure born to persist, evolve and generate entropy while the sun shines.
Collapse
Affiliation(s)
- Michael J Russell
- Planetary Science and Life Detection Section 3220, MS:183-601, Jet Propulsion Laboratory, California Institute of Technology, 4800 Oak Grove Drive, Pasadena, CA, 91109-8099, USA.
| |
Collapse
|
45
|
Abstract
The theory of a chemo-autotrophic origin of life in a volcanic Iron-Sulfur World postulates the emergence of a pioneer organism within a flow of volcanic exhalations. The pioneer organism is characterized by a composite structure with an inorganic substructure and an organic superstructure. Within the surfaces of the inorganic substructure, iron, cobalt, nickel, and other transition-metal centers with sulfido, carbonyl, cyano, and other ligands are catalytically active, and promote the growth of the organic superstructure through carbon fixation, driven by the reducing potential of the volcanic exhalations. This pioneer organism is reproductive by an autocatalytic feedback effect, whereby some organic products serve as ligands for activating the catalytic metal centres whence they arise. This unitary structure-function relationship of the pioneer organism constitutes the 'Anlage' for two major strands of evolution: enzymatization and cellularization, whereby the upward evolution of life by increase of molecular complexity is grounded ultimately in the transition metal-catalyzed, synthetic redox chemistry of the pioneer organism.
Collapse
|
46
|
Leach S, Smith IWM, Cockell CS. Introduction: Conditions for the emergence of life on the early Earth. Philos Trans R Soc Lond B Biol Sci 2006; 361:1675-9. [PMID: 17008208 PMCID: PMC1664687 DOI: 10.1098/rstb.2006.1895] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Affiliation(s)
- Sydney Leach
- LERMA, Observatoire de Paris-Meudon, 92195 Meudon, France.
| | | | | |
Collapse
|
47
|
Abstract
The formation of the Earth as a planet was a large stochastic process in which the rapid assembly of asteroidal-to-Mars-sized bodies was followed by a more extended period of growth through collisions of these objects, facilitated by the gravitational perturbations associated with Jupiter. The Earth's inventory of water and organic molecules may have come from diverse sources, not more than 10% roughly from comets, the rest from asteroidal precursors to chondritic bodies and possibly objects near Earth's orbit for which no representative class of meteorites exists today in laboratory collections. The final assembly of the Earth included a catastrophic impact with a Mars-sized body, ejecting mantle and crustal material to form the Moon, and also devolatilizing part of the Earth. A magma ocean and steam atmosphere (possibly with silica vapour) existed briefly in this period, but terrestrial surface waters were below the critical point within 100 million years after Earth's formation, and liquid water existed continuously on the surface within a few hundred million years. Organic material delivered by comets and asteroids would have survived, in part, this violent early period, but frequent impacts of remaining debris probably prevented the continuous habitability of the Earth for one to several hundred million years. Planetary analogues to or records of this early time when life began include Io (heat flow), Titan (organic chemistry) and Venus (remnant early granites).
Collapse
Affiliation(s)
- Jonathan I Lunine
- Istituto di Fisica dello Spazio Interplanetario, INAF ARTOV, Via del Fosso del Cavaliere, 100, 00133 Rome, Italy.
| |
Collapse
|
48
|
Jortner J. Conditions for the emergence of life on the early Earth: summary and reflections. Philos Trans R Soc Lond B Biol Sci 2006; 361:1877-91. [PMID: 17008225 PMCID: PMC1664691 DOI: 10.1098/rstb.2006.1909] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
This review attempts to situate the emergence of life on the early Earth within the scientific issues of the operational and mechanistic description of life, the conditions and constraints of prebiotic chemistry, together with bottom-up molecular fabrication and biomolecular nanofabrication and top-down miniaturization approaches to the origin of terrestrial life.
Collapse
Affiliation(s)
- Joshua Jortner
- School of Chemistry, Tel Aviv University, Ramat Aviv, 69978 Tel Aviv, Israel.
| |
Collapse
|
49
|
Wächtershäuser G. From volcanic origins of chemoautotrophic life to Bacteria, Archaea and Eukarya. Philos Trans R Soc Lond B Biol Sci 2006; 361:1787-806; discussion 1806-8. [PMID: 17008219 PMCID: PMC1664677 DOI: 10.1098/rstb.2006.1904] [Citation(s) in RCA: 143] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
The theory of a chemoautotrophic origin of life in a volcanic iron-sulphur world postulates a pioneer organism at sites of reducing volcanic exhalations. The pioneer organism is characterized by a composite structure with an inorganic substructure and an organic superstructure. Within the surfaces of the inorganic substructure iron, cobalt, nickel and other transition metal centres with sulphido, carbonyl and other ligands were catalytically active and promoted the growth of the organic superstructure through carbon fixation, driven by the reducing potential of the volcanic exhalations. This pioneer metabolism was reproductive by an autocatalytic feedback mechanism. Some organic products served as ligands for activating catalytic metal centres whence they arose. The unitary structure-function relationship of the pioneer organism later gave rise to two major strands of evolution: cellularization and emergence of the genetic machinery. This early phase of evolution ended with segregation of the domains Bacteria, Archaea and Eukarya from a rapidly evolving population of pre-cells. Thus, life started with an initial, direct, deterministic chemical mechanism of evolution giving rise to a later, indirect, stochastic, genetic mechanism of evolution and the upward evolution of life by increase of complexity is grounded ultimately in the synthetic redox chemistry of the pioneer organism.
Collapse
|
50
|
Huber C, Wächtershäuser G. -Hydroxy and -Amino Acids Under Possible Hadean, Volcanic Origin-of-Life Conditions. Science 2006; 314:630-2. [PMID: 17068257 DOI: 10.1126/science.1130895] [Citation(s) in RCA: 140] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
To test the theory of a chemoautotrophic origin of life in a volcanic, hydrothermal setting, we explored mechanisms for the buildup of bio-organic compounds by carbon fixation on catalytic transition metal precipitates. We report the carbon monoxide-dependent formation of carbon-fixation products, including an ordered series of alpha-hydroxy and alpha-amino acids of the general formula R-CHA-COOH (where R is H, CH3,C2H5,orHOCH2 and A is OH or NH2) by carbon fixation at 80 degrees to 120 degrees C, catalyzed by nickel or nickel,iron precipitates with carbonyl, cyano, and methylthio ligands as carbon sources, with or without sulfido ligands. Calcium or magnesium hydroxide was added as a pH buffer. The results narrow the gap between biochemistry and volcanic geochemistry and open a new gateway for the exploration of a volcanic, hydrothermal origin of life.
Collapse
Affiliation(s)
- Claudia Huber
- Department of Organic Chemistry and Biochemistry, Technische Universität München, Lichtenbergstrasse 4, D-85747 Garching, Germany
| | | |
Collapse
|