1
|
Eskuche-Keith P, Hill SL, López-López L, Rosenbaum B, Saunders RA, Tarling GA, O'Gorman EJ. Temperature alters the predator-prey size relationships and size-selectivity of Southern Ocean fish. Nat Commun 2024; 15:3979. [PMID: 38729972 PMCID: PMC11087476 DOI: 10.1038/s41467-024-48279-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Accepted: 04/26/2024] [Indexed: 05/12/2024] Open
Abstract
A primary response of many marine ectotherms to warming is a reduction in body size, to lower the metabolic costs associated with higher temperatures. The impact of such changes on ecosystem dynamics and stability will depend on the resulting changes to community size-structure, but few studies have investigated how temperature affects the relative size of predators and their prey in natural systems. We utilise >3700 prey size measurements from ten Southern Ocean lanternfish species sampled across >10° of latitude to investigate how temperature influences predator-prey size relationships and size-selective feeding. As temperature increased, we show that predators became closer in size to their prey, which was primarily associated with a decline in predator size and an increase in the relative abundance of intermediate-sized prey. The potential implications of these changes include reduced top-down control of prey populations and a reduction in the diversity of predator-prey interactions. Both of these factors could reduce the stability of community dynamics and ecosystem resistance to perturbations under ocean warming.
Collapse
Affiliation(s)
- Patrick Eskuche-Keith
- School of Life Sciences, University of Essex, Colchester, UK.
- British Antarctic Survey, Cambridge, UK.
| | | | - Lucía López-López
- Ecosystem Oceanography Group (GRECO), Oceanographic Centre of Santander (CN IEO, CSIC), Santander, Spain
| | - Benjamin Rosenbaum
- EcoNetLab, German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Leipzig, Germany
- Institute of Biodiversity, Friedrich Schiller University Jena, Jena, Germany
| | | | | | - Eoin J O'Gorman
- School of Life Sciences, University of Essex, Colchester, UK
| |
Collapse
|
2
|
Primpke S, Meyer B, Falcou-Préfol M, Schütte W, Gerdts G. At second glance: The importance of strict quality control - A case study on microplastic in the Southern Ocean key species Antarctic krill, Euphausia superba. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 918:170618. [PMID: 38325470 DOI: 10.1016/j.scitotenv.2024.170618] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Revised: 01/30/2024] [Accepted: 01/30/2024] [Indexed: 02/09/2024]
Abstract
The stomach content of 60 krill specimens from the Southern Ocean were analyzed for the presence of microplastic (MP), by testing different sample volumes, extraction approaches, and applying hyperspectral imaging Fourier-transform infrared spectroscopy (μFTIR). Strict quality control was applied on the generated results. A high load of residual materials in pooled samples hampered the analysis and avoided a reliable determination of putative MP particles. Individual krill stomachs displayed reliable results, however, only after re-treating the samples with hydrogen peroxide. Before this treatment, lipid rich residues of krill resulted in false assignments of polymer categories and hence, false high MP particle numbers. Finally, MP was identified in 4 stomachs out of 60, with only one MP particle per stomach. Our study highlights the importance of strict quality control to verify results before coming to a final decision on MP contamination in the environment to aid the establishment of suitable internationally standardized protocols for sampling and analysis of MP in organisms including their habitats in Southern Ocean and worldwide.
Collapse
Affiliation(s)
- Sebastian Primpke
- Alfred Wegener Institute Helmholtz Centre for Polar and Marine Research, Division Shelf Sea System Ecology, Biologische Anstalt Helgoland, Kurpromenade, 27498 Helgoland, Germany.
| | - Bettina Meyer
- Alfred Wegener Institute for Polar and Marine Research, Division Polar Biological Oceanography, Am Handelshafen 12, 27570 Bremerhaven, Germany; Carl-von-Ossietzky University Oldenburg, Institute for Chemistry and Biology of the Marine Environment, Ammerländer Heerstraße 114-118, 26129 Oldenburg, Germany; Helmholtz Institute for Functional Marine Biodiversity (HIFMB) at the Carl-von-Ossietzky University, Oldenburg 26111, Germany.
| | - Mathilde Falcou-Préfol
- Alfred Wegener Institute Helmholtz Centre for Polar and Marine Research, Division Shelf Sea System Ecology, Biologische Anstalt Helgoland, Kurpromenade, 27498 Helgoland, Germany; Alfred Wegener Institute for Polar and Marine Research, Division Polar Biological Oceanography, Am Handelshafen 12, 27570 Bremerhaven, Germany; Nantes Université, 1 Quai de Tourville, 44035 Nantes Cedex 1, France
| | - Wyona Schütte
- Alfred Wegener Institute for Polar and Marine Research, Division Polar Biological Oceanography, Am Handelshafen 12, 27570 Bremerhaven, Germany; Carl-von-Ossietzky University Oldenburg, Institute for Chemistry and Biology of the Marine Environment, Ammerländer Heerstraße 114-118, 26129 Oldenburg, Germany
| | - Gunnar Gerdts
- Alfred Wegener Institute Helmholtz Centre for Polar and Marine Research, Division Shelf Sea System Ecology, Biologische Anstalt Helgoland, Kurpromenade, 27498 Helgoland, Germany
| |
Collapse
|
3
|
Liu S, Liu Y, Teschke K, Hindell MA, Downey R, Woods B, Kang B, Ma S, Zhang C, Li J, Ye Z, Sun P, He J, Tian Y. Incorporating mesopelagic fish into the evaluation of conservation areas for marine living resources under climate change scenarios. MARINE LIFE SCIENCE & TECHNOLOGY 2024; 6:68-83. [PMID: 38433967 PMCID: PMC10902249 DOI: 10.1007/s42995-023-00188-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Accepted: 07/10/2023] [Indexed: 03/05/2024]
Abstract
Mesopelagic fish (meso-fish) are central species within the Southern Ocean (SO). However, their ecosystem role and adaptive capacity to climate change are rarely integrated into protected areas assessments. This is a pity given their importance as crucial prey and predators in food webs, coupled with the impacts of climate change. Here, we estimate the habitat distribution of nine meso-fish using an ensemble model approach (MAXENT, random forest, and boosted regression tree). Four climate model simulations were used to project their distribution under two representative concentration pathways (RCP4.5 and RCP8.5) for short-term (2006-2055) and long-term (2050-2099) periods. In addition, we assess the ecological representativeness of protected areas under climate change scenarios using meso-fish as indicator species. Our models show that all species shift poleward in the future. Lanternfishes (family Myctophidae) are predicted to migrate poleward more than other families (Paralepididae, Nototheniidae, Bathylagidae, and Gonostomatidae). In comparison, lanternfishes were projected to increase habitat area in the eastern SO but lose area in the western SO; the opposite was projected for species in other families. Important areas (IAs) of meso-fish are mainly distributed near the Antarctic Peninsula and East Antarctica. Negotiated protected area cover 23% of IAs at present and 38% of IAs in the future (RCP8.5, long-term future). Many IAs of meso-fish still need to be included in protected areas, such as the Prydz Bay and the seas around the Antarctic Peninsula. Our results provide a framework for evaluating protected areas incorporating climate change adaptation strategies for protected areas management. Supplementary Information The online version contains supplementary material available at 10.1007/s42995-023-00188-9.
Collapse
Affiliation(s)
- Shuhao Liu
- Research Centre for Deep Sea and Polar Fisheries, and Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao, 266003 China
| | - Yang Liu
- Research Centre for Deep Sea and Polar Fisheries, and Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao, 266003 China
- Frontiers Science Center for Deep Ocean Multispheres and Earth System, Ocean University of China, Qingdao, 266100 China
| | - Katharina Teschke
- Alfred Wegener Institute, Helmholtz Centre for Polar and Marine Research, Am Handelshafen 12, 27570 Bremerhaven, Germany
- Helmholtz Institute for Functional Marine Biodiversity at the University Oldenburg, Ammerländer Heerstraße 231, 23129 Oldenburg, Germany
| | - Mark A Hindell
- Institute for Marine and Antarctic Studies, University of Tasmania, Hobart, 7004 Australia
| | - Rachel Downey
- Fenner School of Environment and Society, Australian National University, Canberra, ACT 2602 Australia
| | - Briannyn Woods
- Institute for Marine and Antarctic Studies, University of Tasmania, Hobart, 7004 Australia
| | - Bin Kang
- College of Fisheries, Ocean University of China, Qingdao, 266003 China
| | - Shuyang Ma
- Research Centre for Deep Sea and Polar Fisheries, and Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao, 266003 China
| | - Chi Zhang
- Research Centre for Deep Sea and Polar Fisheries, and Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao, 266003 China
| | - Jianchao Li
- Research Centre for Deep Sea and Polar Fisheries, and Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao, 266003 China
| | - Zhenjiang Ye
- Research Centre for Deep Sea and Polar Fisheries, and Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao, 266003 China
| | - Peng Sun
- Research Centre for Deep Sea and Polar Fisheries, and Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao, 266003 China
| | - Jianfeng He
- Polar Research Institute of China, Shanghai, 200136 China
| | - Yongjun Tian
- Research Centre for Deep Sea and Polar Fisheries, and Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao, 266003 China
- Frontiers Science Center for Deep Ocean Multispheres and Earth System, Ocean University of China, Qingdao, 266100 China
| |
Collapse
|
4
|
Åsvestad L, Ahonen H, Menze S, Lowther A, Lindstrøm U, Krafft BA. Seasonal acoustic presence of marine mammals at the South Orkney Islands, Scotia Sea. ROYAL SOCIETY OPEN SCIENCE 2024; 11:230233. [PMID: 38179083 PMCID: PMC10762438 DOI: 10.1098/rsos.230233] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Accepted: 11/30/2023] [Indexed: 01/06/2024]
Abstract
Increased knowledge about marine mammal seasonal distribution and species assemblage from the South Orkney Islands waters is needed for the development of management regulations of the commercial fishery for Antarctic krill (Euphausia superba) in this region. Passive acoustic monitoring (PAM) data were collected during the autumn and winter seasons in two consecutive years (2016, 2017), which represented highly contrasting environmental conditions due to the 2016 El Niño event. We explored differences in seasonal patterns in marine mammal acoustic presence between the two years in context of environmental cues and climate variability. Acoustic signals from five baleen whale species, two pinniped species and odontocete species were detected and separated into guilds. Although species diversity remained stable over time, the ice-avoiding and ice-affiliated species dominated before and after the onset of winter, respectively, and thus demonstrating a shift in guild composition related to season. Herein, we provide novel information about local marine mammal species diversity, community structure and residency times in a krill hotspot. Our study also demonstrates the utility of PAM data and its usefulness in providing new insights into the marine mammal habitat use and responses to environmental conditions, which are essential knowledge for the future development of a sustainable fishery management in a changing ecosystem.
Collapse
Affiliation(s)
| | | | | | | | - Ulf Lindstrøm
- University of Tromsø, 9037 Tromsø, Norway
- Institute of Marine Research, 9296 Tromsø Norway
| | | |
Collapse
|
5
|
Korejwo E, Panasiuk A, Wawrzynek-Borejko J, Jędruch A, Bełdowski J, Paturej A, Bełdowska M. Mercury concentrations in Antarctic zooplankton with a focus on the krill species, Euphausia superba. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 905:167239. [PMID: 37742970 DOI: 10.1016/j.scitotenv.2023.167239] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Revised: 09/19/2023] [Accepted: 09/19/2023] [Indexed: 09/26/2023]
Abstract
The Antarctic is the most isolated region in the world; nevertheless, it has not avoided the negative impact of human activity, including the inflow of toxic mercury (Hg). Hg deposited in the Antarctic marine environment can be bioavailable and accumulate in the food web, reaching elevated concentrations in high-trophic-level biota, especially if methylated. Zooplankton, together with phytoplankton, are critical for the transport of pollutants, including Hg to higher trophic levels. For the Southern Ocean ecosystem, one of the key zooplankton components is the Antarctic krill Euphausia superba, the smaller euphausiid Thysanoessa macrura, and the amphipod Themisto gaudichaudii - a crucial food source for most predatory fish, birds, and mammals. The main goal of this study was to determine the Hg burden, as well as the distribution of different Hg forms, in these dominant Antarctic planktonic crustaceans. The results showed that the highest concentrations of Hg were found in T. gaudichaudii, a typically predatory taxon. Most of the Hg in the tested crustaceans was labile and potentially bioavailable for planktivorous organisms, with the most dangerous methylmercury (MeHg) accounting for an average of 16 % of the total mercury. Elevated Hg concentrations were observed close to the land, which is influenced by the proximity to penguin and pinniped colonies. In areas near the shore, volcanic activity might be a possible cause of the increase in mercury sulfide (HgS) content. The total Hg concentration increased with the trophic position and ontogenetic stage of predation, specific to adult organisms. In contrast, the proportion of MeHg decreased with age, indicating more efficient demethylation or elimination. The Hg magnification kinetics in the study area were relatively high, which may be related to climate-change induced alterations of the Antarctic ecosystem: additional food sources and reshaped trophic structure.
Collapse
Affiliation(s)
- Ewa Korejwo
- Polish Academy of Sciences, Institute of Oceanology, Department of Marine Chemistry, and Biochemistry, ul. Powstańców Warszawy 55, 81-712 Sopot, Poland.
| | - Anna Panasiuk
- University of Gdansk, Faculty of Oceanography and Geography Laboratory of Marine Plankton Biology, Division of Marine Biology and Biotechnology, Al. Piłsudskiego 46, 81-378 Gdynia, Poland
| | - Justyna Wawrzynek-Borejko
- University of Gdansk, Faculty of Oceanography and Geography, Division of Marine Ecosystems Functioning, Al. Piłsudskiego 46, 81-378 Gdynia, Poland
| | - Agnieszka Jędruch
- Polish Academy of Sciences, Institute of Oceanology, Department of Marine Chemistry, and Biochemistry, ul. Powstańców Warszawy 55, 81-712 Sopot, Poland
| | - Jacek Bełdowski
- Polish Academy of Sciences, Institute of Oceanology, Department of Marine Chemistry, and Biochemistry, ul. Powstańców Warszawy 55, 81-712 Sopot, Poland
| | - Alicja Paturej
- University of Gdansk, Faculty of Oceanography and Geography, Division of Chemical Oceanography and Marine Geology, Al. Piłsudskiego 46, 81-378 Gdynia, Poland
| | - Magdalena Bełdowska
- University of Gdansk, Faculty of Oceanography and Geography, Division of Chemical Oceanography and Marine Geology, Al. Piłsudskiego 46, 81-378 Gdynia, Poland
| |
Collapse
|
6
|
Bahlburg D, Thorpe SE, Meyer B, Berger U, Murphy EJ. An intercomparison of models predicting growth of Antarctic krill (Euphausia superba): The importance of recognizing model specificity. PLoS One 2023; 18:e0286036. [PMID: 37506064 PMCID: PMC10381086 DOI: 10.1371/journal.pone.0286036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Accepted: 07/18/2023] [Indexed: 07/30/2023] Open
Abstract
Antarctic krill (Euphausia superba) is a key species of the Southern Ocean, impacted by climate change and human exploitation. Understanding how these changes affect the distribution and abundance of krill is crucial for generating projections of change for Southern Ocean ecosystems. Krill growth is an important indicator of habitat suitability and a series of models have been developed and used to examine krill growth potential at different spatial and temporal scales. The available models have been developed using a range of empirical and mechanistic approaches, providing alternative perspectives and comparative analyses of the key processes influencing krill growth. Here we undertake an intercomparison of a suite of the available models to understand their sensitivities to major driving variables. This illustrates that the results are strongly determined by the model structure and technical characteristics, and the data on which they were developed and validated. Our results emphasize the importance of assessing the constraints and requirements of individual krill growth models to ensure their appropriate application. The study also demonstrates the value of the development of alternative modelling approaches to identify key processes affecting the dynamics of krill. Of critical importance for modelling the growth of krill is appropriately assessing and accounting for differences in estimates of food availability resulting from alternative methods of observation. We suggest that an intercomparison approach is particularly valuable in the development and application of models for the assessment of krill growth potential at circumpolar scales and for future projections. As another result of the intercomparison, the implementations of the models used in this study are now publicly available for future use and analyses.
Collapse
Affiliation(s)
- Dominik Bahlburg
- Institute of Forest Growth and Forest Computer Sciences, Faculty of Environmental Sciences, Technische Universität Dresden, Dresden, Sachsen, Germany
- Department of Ecological Modelling, Helmholtz Centre for Environmental Research, Leipzig, Sachsen, Germany
| | - Sally E Thorpe
- Ecosystems team, British Antarctic Survey, Cambridge, United Kingdom
| | - Bettina Meyer
- Institute for Chemistry and Biology of the Marine Environment, Carl-von-Ossietzky Universität, Oldenburg, Germany
- Polar Biological Oceanography, Alfred Wegener Institute for Polar and Marine Research, Bremerhaven, Germany
- Ecosystem Functions, Helmholtz Institute for Functional Marine Biodiversity, Oldenburg, Germany
| | - Uta Berger
- Institute of Forest Growth and Forest Computer Sciences, Faculty of Environmental Sciences, Technische Universität Dresden, Dresden, Sachsen, Germany
| | - Eugene J Murphy
- Ecosystems team, British Antarctic Survey, Cambridge, United Kingdom
| |
Collapse
|
7
|
Wilkie Johnston L, Bergami E, Rowlands E, Manno C. Organic or junk food? Microplastic contamination in Antarctic krill and salps. ROYAL SOCIETY OPEN SCIENCE 2023; 10:221421. [PMID: 36998765 PMCID: PMC10049761 DOI: 10.1098/rsos.221421] [Citation(s) in RCA: 15] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Accepted: 03/06/2023] [Indexed: 06/19/2023]
Abstract
Microplastics (MP) have been reported in Southern Ocean (SO), where they are likely to encounter Antarctic zooplankton and enter pelagic food webs. Here we assess the presence of MP within Antarctic krill (Euphausia superba) and salps (Salpa thompsoni) and quantify their abundance and type by micro-Fourier transform infrared microscopy. MP were found in both species, with fibres being more abundant than fragments (krill: 56.25% and salps: 22.32% of the total MP). Polymer identification indicated MP originated from both local and distant sources. Our findings prove how in situ MP ingestion from these organisms is a real and ongoing process in the SO. MP amount was higher in krill (2.13 ± 0.26 MP ind-1) than salps (1.38 ± 0.42 MP ind-1), while MP size extracted from krill (130 ± 30 µm) was significantly lower than MP size from salps (330 ± 50 µm). We suggest that differences between abundance and size of MP ingested by these two species may be related to their food strategies, their ability to fragment MP as well as different human pressures within the collection areas of the study region. First comparative field-based evidence of MP in both krill and salps, two emblematic zooplankton species of the SO marine ecosystems, underlines that Antarctic marine ecosystems may be particularly sensitive to plastic pollution.
Collapse
Affiliation(s)
- Laura Wilkie Johnston
- British Antarctic Survey, Natural Environment Research Council, High Cross, Madingley Road, Cambridge CB3 0ET, UK
- University of St Andrews, St Andrews, Scotland KY16 9AJ, UK
| | - Elisa Bergami
- British Antarctic Survey, Natural Environment Research Council, High Cross, Madingley Road, Cambridge CB3 0ET, UK
- Department of Life Sciences, University of Modena and Reggio Emilia, Via Giuseppe Campi 213/D, Modena, Italy
| | - Emily Rowlands
- British Antarctic Survey, Natural Environment Research Council, High Cross, Madingley Road, Cambridge CB3 0ET, UK
| | - Clara Manno
- British Antarctic Survey, Natural Environment Research Council, High Cross, Madingley Road, Cambridge CB3 0ET, UK
| |
Collapse
|
8
|
Agiadi K, Quillévéré F, Nawrot R, Sommeville T, Coll M, Koskeridou E, Fietzke J, Zuschin M. Palaeontological evidence for community-level decrease in mesopelagic fish size during Pleistocene climate warming in the eastern Mediterranean. Proc Biol Sci 2023; 290:20221994. [PMID: 36629116 PMCID: PMC9832546 DOI: 10.1098/rspb.2022.1994] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
Mesopelagic fishes are an important element of marine food webs, a huge, still mostly untapped food resource and great contributors to the biological carbon pump, whose future under climate change scenarios is unknown. The shrinking of commercial fishes within decades has been an alarming observation, but its causes remain contended. Here, we investigate the effect of warming climate on mesopelagic fish size in the eastern Mediterranean Sea during a glacial-interglacial-glacial transition of the Middle Pleistocene (marine isotope stages 20-18; 814-712 kyr B.P.), which included a 4°C increase in global seawater temperature. Our results based on fossil otoliths show that the median size of lanternfishes, one of the most abundant groups of mesopelagic fishes in fossil and modern assemblages, declined by approximately 35% with climate warming at the community level. However, individual mesopelagic species showed different and often opposing trends in size across the studied time interval, suggesting that climate warming in the interglacial resulted in an ecological shift toward increased relative abundance of smaller sized mesopelagic fishes due to geographical and/or bathymetric distribution range shifts, and the size-dependent effects of warming.
Collapse
Affiliation(s)
- Konstantina Agiadi
- Department of Palaeontology, University of Vienna, Josef-Holaubek-Platz 2, UZA II, 1090, Vienna, Austria
| | - Frédéric Quillévéré
- Université Claude Bernard Lyon 1, ENS de Lyon, CNRS, UMR 5276 LGL-TPE, 69622 Villeurbanne, France
| | - Rafał Nawrot
- Department of Palaeontology, University of Vienna, Josef-Holaubek-Platz 2, UZA II, 1090, Vienna, Austria
| | - Theo Sommeville
- Department of Palaeontology, University of Vienna, Josef-Holaubek-Platz 2, UZA II, 1090, Vienna, Austria,IMBRSea Program, Ghent University - Marine Biology Research Group, Krijgslaan 281/S8, 9000 Ghent, Belgium
| | - Marta Coll
- Institute of Marine Sciences (ICM-CSIC), Passeig Marítim de la Barceloneta 37-49, 08003, Barcelona, Spain
| | - Efterpi Koskeridou
- Department of Historical Geology and Paleontology, National and Kapodistrian University of Athens, Panepistimioupolis, 15784, Athens, Greece
| | - Jan Fietzke
- GEOMAR, Helmholtz Centre for Ocean Research Kiel, Wischhofstrasse 1-3, 24148 Kiel, Germany
| | - Martin Zuschin
- Department of Palaeontology, University of Vienna, Josef-Holaubek-Platz 2, UZA II, 1090, Vienna, Austria
| |
Collapse
|
9
|
Temporal variation in the summer diet of the weddell seal, leptonychotes weddellii, at hope bay, antarctic peninsula. Polar Biol 2023. [DOI: 10.1007/s00300-022-03104-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
|
10
|
Nano-ecotoxicology in a changing ocean. SN APPLIED SCIENCES 2022. [DOI: 10.1007/s42452-022-05147-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2022] Open
Abstract
AbstractThe ocean faces an era of change, driven in large by the release of anthropogenic CO2, and the unprecedented entry of pollutants into the water column. Nanomaterials, those particles < 100 nm, represent an emerging contaminant of environmental concern. Research on the ecotoxicology and fate of nanomaterials in the natural environment has increased substantially in recent years. However, commonly such research does not consider the wider environmental changes that are occurring in the ocean, i.e., ocean warming and acidification, and occurrence of co-contaminants. In this review, the current literature available on the combined impacts of nanomaterial exposure and (i) ocean warming, (ii) ocean acidification, (iii) co-contaminant stress, upon marine biota is explored. Here, it is identified that largely co-stressors influence nanomaterial ecotoxicity by altering their fate and behaviour in the water column, thus altering their bioavailability to marine organisms. By acting in this way, such stressors, are able to mitigate or elevate toxic effects of nanomaterials in a material-specific manner. However, current evidence is limited to a relatively small set of test materials and model organisms. Indeed, data is biased towards effects upon marine bivalve species. In future, expanding studies to involve other ecologically significant taxonomic groups, primarily marine phytoplankton will be highly beneficial. Although limited in number, the available evidence highlights the importance of considering co-occurring environmental changes in ecotoxicological research, as it is likely in the natural environment, the material of interest will not be the sole stressor encountered by biota. As such, research examining ecotoxicology alongside co-occurring environmental stressors is essential to effectively evaluating risk and develop effective long-term management strategies.
Collapse
|
11
|
Estimated ammonium regeneration potentials of two common euphausiid species (Euphausia superba and E. crystallorophias) off Adélie Land, East Antarctica, in austral summer, 2008. Polar Biol 2022. [DOI: 10.1007/s00300-022-03081-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2022]
|
12
|
Möller L, Vainstein Y, Wöhlbrand L, Dörries M, Meyer B, Sohn K, Rabus R. Transcriptome-proteome compendium of the Antarctic krill (Euphausia superba): Metabolic potential and repertoire of hydrolytic enzymes. Proteomics 2022; 22:e2100404. [PMID: 35778945 DOI: 10.1002/pmic.202100404] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Revised: 06/24/2022] [Accepted: 06/28/2022] [Indexed: 11/06/2022]
Abstract
The Antarctic krill (Euphausia superba Dana) is a keystone species in the Southern Ocean that uses an arsenal of hydrolases for biomacromolecule decomposition to effectively digest its omnivorous diet. The present study builds on a hybrid-assembled transcriptome (13,671 ORFs) combined with comprehensive proteome profiling. The analysis of individual krill compartments allowed detection of significantly more different proteins compared to that of the entire animal (1,464 vs. 294 proteins). The nearby krill sampling stations in the Bransfield Strait (Antarctic Peninsula) yielded rather uniform proteome datasets. Proteins related to energy production and lipid degradation were particularly abundant in the abdomen, agreeing with the high energy demand of muscle tissue. A total of 378 different biomacromolecule hydrolysing enzymes were detected, including 250 proteases, 99 CAZymes, 14 nucleases and 15 lipases. The large repertoire in proteases is in accord with the protein-rich diet affiliated with E. superba's omnivorous lifestyle and complex biology. The richness in chitin-degrading enzymes allows not only digestion of zooplankton diet, but also the utilization of the discharged exoskeleton after moulting. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Lars Möller
- General and Molecular Microbiology, Institute for Chemistry and Biology of the Marine Environment (ICBM), Carl von Ossietzky University of Oldenburg, Oldenburg, Germany
| | - Yeheven Vainstein
- In-Vitro-Diagnostics, Fraunhofer Institute for Interfacial Engineering and Biotechnology (IGB), Stuttgart, Germany
| | - Lars Wöhlbrand
- General and Molecular Microbiology, Institute for Chemistry and Biology of the Marine Environment (ICBM), Carl von Ossietzky University of Oldenburg, Oldenburg, Germany
| | - Marvin Dörries
- General and Molecular Microbiology, Institute for Chemistry and Biology of the Marine Environment (ICBM), Carl von Ossietzky University of Oldenburg, Oldenburg, Germany.,Biodiversity Change, Helmholtz Institute for Functional Marine Biodiversity at the University of Oldenburg (HIFMB), Oldenburg, Germany
| | - Bettina Meyer
- Biodiversity and Biological Processes in Polar Oceans, Institute for Chemistry and Biology of the Marine Environment (ICBM), Carl von Ossietzky University of Oldenburg, Oldenburg, Germany.,Ecophysiology of Pelagic Key Species, Alfred Wegener Institute, Helmholtz Centre for Polar and Marine Research, Bremerhaven, Germany.,Biodiversity Change, Helmholtz Institute for Functional Marine Biodiversity at the University of Oldenburg (HIFMB), Oldenburg, Germany
| | - Kai Sohn
- In-Vitro-Diagnostics, Fraunhofer Institute for Interfacial Engineering and Biotechnology (IGB), Stuttgart, Germany
| | - Ralf Rabus
- General and Molecular Microbiology, Institute for Chemistry and Biology of the Marine Environment (ICBM), Carl von Ossietzky University of Oldenburg, Oldenburg, Germany
| |
Collapse
|
13
|
Johnston NM, Murphy EJ, Atkinson A, Constable AJ, Cotté C, Cox M, Daly KL, Driscoll R, Flores H, Halfter S, Henschke N, Hill SL, Höfer J, Hunt BPV, Kawaguchi S, Lindsay D, Liszka C, Loeb V, Manno C, Meyer B, Pakhomov EA, Pinkerton MH, Reiss CS, Richerson K, Jr. WOS, Steinberg DK, Swadling KM, Tarling GA, Thorpe SE, Veytia D, Ward P, Weldrick CK, Yang G. Status, Change, and Futures of Zooplankton in the Southern Ocean. Front Ecol Evol 2022. [DOI: 10.3389/fevo.2021.624692] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
In the Southern Ocean, several zooplankton taxonomic groups, euphausiids, copepods, salps and pteropods, are notable because of their biomass and abundance and their roles in maintaining food webs and ecosystem structure and function, including the provision of globally important ecosystem services. These groups are consumers of microbes, primary and secondary producers, and are prey for fishes, cephalopods, seabirds, and marine mammals. In providing the link between microbes, primary production, and higher trophic levels these taxa influence energy flows, biological production and biomass, biogeochemical cycles, carbon flux and food web interactions thereby modulating the structure and functioning of ecosystems. Additionally, Antarctic krill (Euphausia superba) and various fish species are harvested by international fisheries. Global and local drivers of change are expected to affect the dynamics of key zooplankton species, which may have potentially profound and wide-ranging implications for Southern Ocean ecosystems and the services they provide. Here we assess the current understanding of the dominant metazoan zooplankton within the Southern Ocean, including Antarctic krill and other key euphausiid, copepod, salp and pteropod species. We provide a systematic overview of observed and potential future responses of these taxa to a changing Southern Ocean and the functional relationships by which drivers may impact them. To support future ecosystem assessments and conservation and management strategies, we also identify priorities for Southern Ocean zooplankton research.
Collapse
|
14
|
Regional diet in Antarctic krill (Euphausia superba) as determined by lipid, fatty acid, and sterol composition. Polar Biol 2022. [DOI: 10.1007/s00300-022-03054-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
15
|
Grattepanche JD, Jeffrey WH, Gast RJ, Sanders RW. Diversity of Microbial Eukaryotes Along the West Antarctic Peninsula in Austral Spring. Front Microbiol 2022; 13:844856. [PMID: 35651490 PMCID: PMC9149413 DOI: 10.3389/fmicb.2022.844856] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2021] [Accepted: 03/17/2022] [Indexed: 11/13/2022] Open
Abstract
During a cruise from October to November 2019, along the West Antarctic Peninsula, between 64.32 and 68.37°S, we assessed the diversity and composition of the active microbial eukaryotic community within three size fractions: micro- (> 20 μm), nano- (20-5 μm), and pico-size fractions (5-0.2 μm). The communities and the environmental parameters displayed latitudinal gradients, and we observed a strong similarity in the microbial eukaryotic communities as well as the environmental parameters between the sub-surface and the deep chlorophyll maximum (DCM) depths. Chlorophyll concentrations were low, and the mixed layer was shallow for most of the 17 stations sampled. The richness of the microplankton was higher in Marguerite Bay (our southernmost stations), compared to more northern stations, while the diversity for the nano- and pico-plankton was relatively stable across latitude. The microplankton communities were dominated by autotrophs, mostly diatoms, while mixotrophs (phototrophs-consuming bacteria and kleptoplastidic ciliates, mostly alveolates, and cryptophytes) were the most abundant and active members of the nano- and picoplankton communities. While phototrophy was the dominant trophic mode, heterotrophy (mixotrophy, phagotrophy, and parasitism) tended to increase southward. The samples from Marguerite Bay showed a distinct community with a high diversity of nanoplankton predators, including spirotrich ciliates, and dinoflagellates, while cryptophytes were observed elsewhere. Some lineages were significantly related-either positively or negatively-to ice coverage (e.g., positive for Pelagophyceae, negative for Spirotrichea) and temperature (e.g., positive for Cryptophyceae, negative for Spirotrichea). This suggests that climate changes will have a strong impact on the microbial eukaryotic community.
Collapse
Affiliation(s)
| | - Wade H. Jeffrey
- Center for Environmental Diagnostics and Bioremediation, University of West Florida, Pensacola, FL, United States
| | - Rebecca J. Gast
- Department of Biology, Woods Hole Oceanographic Institution, Pensacola, MA, United States
| | - Robert W. Sanders
- Department of Biology, Temple University, Philadelphia, PA, United States
| |
Collapse
|
16
|
Bedriñana-Romano L, Zerbini AN, Andriolo A, Danilewicz D, Sucunza F. Individual and joint estimation of humpback whale migratory patterns and their environmental drivers in the Southwest Atlantic Ocean. Sci Rep 2022; 12:7487. [PMID: 35523932 PMCID: PMC9076679 DOI: 10.1038/s41598-022-11536-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Accepted: 04/18/2022] [Indexed: 02/05/2023] Open
Abstract
Humpback whales (Megaptera novaeangliae) perform seasonal migrations from high latitude feeding grounds to low latitude breeding and calving grounds. Feeding grounds at polar regions are currently experiencing major ecosystem modifications, therefore, quantitatively assessing species responses to habitat characteristics is crucial for understanding how whales might respond to such modifications. We analyzed satellite telemetry data from 22 individual humpback whales in the Southwest Atlantic Ocean (SWA). Tagging effort was divided in two periods, 2003-2012 and 2016-2019. Correlations between whale's movement parameters and environmental variables were used as proxy for inferring behavioral responses to environmental variation. Two versions of a covariate-driven continuous-time correlated random-walk state-space model, were fitted to the data: i) Population-level models (P-models), which assess correlation parameters pooling data across all individuals or groups, and ii) individual-level models (I-models), fitted independently for each tagged whale. Area of Restricted Search behavior (slower and less directionally persistent movement, ARS) was concentrated at cold waters south of the Polar Front (~ 50°S). The best model showed that ARS was expected to occur in coastal areas and over ridges and seamounts. Ice coverage during August of each year was a consistent predictor of ARS across models. Wind stress curl and sea surface temperature anomalies were also correlated with movement parameters but elicited larger inter-individual variation. I-models were consistent with P-models' predictions for the case of females accompanied by calves (mothers), while males and those of undetermined sex (males +) presented more variability as a group. Spatial predictions of humpback whale behavioral responses showed that feeding grounds for this population are concentrated in the complex system of islands, ridges, and rises of the Scotia Sea and the northern Weddell Ridge. More southernly incursions were observed in recent years, suggesting a potential response to increased temperature and large ice coverage reduction observed in the late 2010s. Although, small sample size and differences in tracking duration precluded appropriately testing predictions for such a distributional shift, our modelling framework showed the efficiency of borrowing statistical strength during data pooling, while pinpointing where more complexity should be added in the future as additional data become available.
Collapse
Affiliation(s)
- Luis Bedriñana-Romano
- Instituto de Ciencias Marinas y Limnológicas, Facultad de Ciencias, Universidad Austral de Chile, Casilla 567, Valdivia, Chile. .,NGO Centro Ballena Azul, Valdivia, Chile. .,Centro de Investigación Oceanográfica COPAS Coastal, Universidad de Concepción, Región del Bio Bio, 4070043, Concepción, Chile.
| | - Alexandre N Zerbini
- Cooperative Institute for Climate, Ocean and Ecosystem Studies, University of Washington and Marine Mammal Laboratory Alaska Fisheries Science Center/NOAA, 7600 Sand Point Way NE, Seattle, WA, USA.,Marine Ecology and Telemetry Research, 2468 Camp McKenzie Tr NW, Seabeck, WA, 98380, USA.,Instituto Aqualie, Av. Dr. Paulo Japiassú Coelho, 714, Sala 206, Juiz de Fora, MG, 36033-310, Brazil
| | - Artur Andriolo
- Instituto Aqualie, Av. Dr. Paulo Japiassú Coelho, 714, Sala 206, Juiz de Fora, MG, 36033-310, Brazil.,Laboratório de Ecologia Comportamental e Bioacústica, LABEC, Departamento de Zoologia, Instituto de Ciências Biológicas, Universidade Federal de Juiz de Fora, Juiz de Fora, Minas Gerais, Brazil
| | - Daniel Danilewicz
- Instituto Aqualie, Av. Dr. Paulo Japiassú Coelho, 714, Sala 206, Juiz de Fora, MG, 36033-310, Brazil.,Grupo de Estudos de Mamíferos Aquáticos do Rio Grande do Sul (GEMARS), Porto Alegre, RS, Brazil
| | - Federico Sucunza
- Instituto Aqualie, Av. Dr. Paulo Japiassú Coelho, 714, Sala 206, Juiz de Fora, MG, 36033-310, Brazil.,Grupo de Estudos de Mamíferos Aquáticos do Rio Grande do Sul (GEMARS), Porto Alegre, RS, Brazil
| |
Collapse
|
17
|
Population characteristics of benthopelagic Gymnoscopelus nicholsi (Pisces: Myctophidae) on the continental shelf of South Georgia (Southern Ocean) during austral summer. Polar Biol 2022. [DOI: 10.1007/s00300-022-03033-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
AbstractSouthern Ocean myctophid fish (Family Myctophidae) are an important conduit of energy through foodwebs and between the surface layers and mesopelagic depths. Species that reside in both pelagic and near-bottom environments of continental shelves, such as Gymnoscopelus nicholsi and Gymnoscopelus bolini, may also be important in benthopelagic coupling, although their ecology and role in such processes remain unresolved. Here, we examined inter-annual variation in the depth of occurrence, biomass and population dynamics of benthopelagic G. nicholsi on the South Georgia shelf (100–350 m) using bottom trawl data collected between 1987 and 2019. Gymnoscopelus nicholsi was a regular component of the local benthopelagic community, particularly northwest of South Georgia, but was patchily distributed. It appeared to enter a benthopelagic phase at ~ 3 years, with annual growth and recruitment of year classes between ~ 3 and 5 years. However, transition of cohorts into the benthopelagic zone was not annual. There was clear inter-annual variation in G. nicholsi biomass and depth of occurrence. Shallower depth of occurrence was significantly (P < 0.05) correlated with years of warmer summer sea surface temperatures, suggesting that inter-annual variation in local environmental conditions has an important influence on its migration behaviour and ecology. Our data also suggest that Antarctic krill is an important dietary component of the older G. nicholsi cohorts (~ 5 years) in the benthopelagic zone. We note that Gymnoscopelus bolini is rare in bottom trawl catches between 100 and 350 m, although Antarctic krill appears to dominate its diet from the available data. Our study provides important information on understudied myctophid species in a poorly investigated region of the water column that is relevant for Southern Ocean ecosystem studies, particularly in relation to understanding trophic connectivity between the pelagic and near-bottom realms.
Collapse
|
18
|
Jones DC, Ceia FR, Murphy E, Delord K, Furness RW, Verdy A, Mazloff M, Phillips RA, Sagar PM, Sallée JB, Schreiber B, Thompson DR, Torres LG, Underwood PJ, Weimerskirch H, Xavier JC. Untangling local and remote influences in two major petrel habitats in the oligotrophic Southern Ocean. GLOBAL CHANGE BIOLOGY 2021; 27:5773-5785. [PMID: 34386992 DOI: 10.1111/gcb.15839] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Revised: 07/29/2021] [Accepted: 08/02/2021] [Indexed: 06/13/2023]
Abstract
Ocean circulation connects geographically distinct ecosystems across a wide range of spatial and temporal scales via exchanges of physical and biogeochemical properties. Remote oceanographic processes can be especially important for ecosystems in the Southern Ocean, where the Antarctic Circumpolar Current transports properties across ocean basins through both advection and mixing. Recent tracking studies have indicated the existence of two large-scale, open ocean habitats in the Southern Ocean used by grey petrels (Procellaria cinerea) from two populations (i.e., Kerguelen and Antipodes islands) during their nonbreeding season for extended periods during austral summer (i.e., October to February). In this work, we use a novel combination of large-scale oceanographic observations, surface drifter data, satellite-derived primary productivity, numerical adjoint sensitivity experiments, and output from a biogeochemical state estimate to examine local and remote influences on these grey petrel habitats. Our aim is to understand the oceanographic features that control these isolated foraging areas and to evaluate their ecological value as oligotrophic open ocean habitats. We estimate the minimum local primary productivity required to support these populations to be much <1% of the estimated local primary productivity. The region in the southeast Indian Ocean used by the birds from Kerguelen is connected by circulation to the productive Kerguelen shelf. In contrast, the region in the south-central Pacific Ocean used by seabirds from the Antipodes is relatively isolated suggesting it is more influenced by local factors or the cumulative effects of many seasonal cycles. This work exemplifies the potential use of predator distributions and oceanographic data to highlight areas of the open ocean that may be more dynamic and productive than previously thought. Our results highlight the need to consider advective connections between ecosystems in the Southern Ocean and to re-evaluate the ecological relevance of oligotrophic Southern Ocean regions from a conservation perspective.
Collapse
Affiliation(s)
- Daniel C Jones
- British Antarctic Survey, Natural Environment Research Council, Cambridge, UK
| | - Filipe R Ceia
- Department of Life Sciences, Marine and Environmental Sciences Centre, University of Coimbra, Coimbra, Portugal
| | - Eugene Murphy
- British Antarctic Survey, Natural Environment Research Council, Cambridge, UK
| | - Karine Delord
- Centre d'Etudes Biologiques de Chizé, UMR 7372 du CNRS-La Rochelle Université, Villiers-en-Bois, France
| | - Robert W Furness
- Institute of Biodiversity Animal Health and Comparative Medicine, University of Glasgow, Glasgow, UK
| | - Ariane Verdy
- Scripps Institution of Oceanography, UCSD, San Diego, California, USA
| | - Matthew Mazloff
- Scripps Institution of Oceanography, UCSD, San Diego, California, USA
| | - Richard A Phillips
- British Antarctic Survey, Natural Environment Research Council, Cambridge, UK
| | - Paul M Sagar
- National Institute of Water and Atmospheric Research Ltd, Christchurch, New Zealand
| | | | - Ben Schreiber
- British Antarctic Survey, Natural Environment Research Council, Cambridge, UK
- Centre for Mathematical Sciences, University of Cambridge, Cambridge, UK
| | - David R Thompson
- National Institute of Water and Atmospheric Research Ltd, Wellington, New Zealand
| | - Leigh G Torres
- Geospatial Ecology of Marine Megafauna Lab, Department of Fisheries and Wildlife, Marine Mammal Institute, Oregon State University, Corvallis, Oregon, USA
| | - Philip J Underwood
- British Antarctic Survey, Natural Environment Research Council, Cambridge, UK
| | - Henri Weimerskirch
- Centre d'Etudes Biologiques de Chizé, UMR 7372 du CNRS-La Rochelle Université, Villiers-en-Bois, France
| | - José C Xavier
- British Antarctic Survey, Natural Environment Research Council, Cambridge, UK
- Department of Life Sciences, Marine and Environmental Sciences Centre, University of Coimbra, Coimbra, Portugal
| |
Collapse
|
19
|
McCormack SA, Melbourne-Thomas J, Trebilco R, Griffith G, Hill SL, Hoover C, Johnston NM, Marina TI, Murphy EJ, Pakhomov EA, Pinkerton M, Plagányi É, Saravia LA, Subramaniam RC, Van de Putte AP, Constable AJ. Southern Ocean Food Web Modelling: Progress, Prognoses, and Future Priorities for Research and Policy Makers. Front Ecol Evol 2021. [DOI: 10.3389/fevo.2021.624763] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
Graphical AbstractGraphical summary of multiple aspects of Southern Ocean food web structure and function including alternative energy pathways through pelagic food webs, climate change and fisheries impacts and the importance of microbial networks and benthic systems.
Collapse
|
20
|
Murphy EJ, Johnston NM, Hofmann EE, Phillips RA, Jackson JA, Constable AJ, Henley SF, Melbourne-Thomas J, Trebilco R, Cavanagh RD, Tarling GA, Saunders RA, Barnes DKA, Costa DP, Corney SP, Fraser CI, Höfer J, Hughes KA, Sands CJ, Thorpe SE, Trathan PN, Xavier JC. Global Connectivity of Southern Ocean Ecosystems. Front Ecol Evol 2021. [DOI: 10.3389/fevo.2021.624451] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Southern Ocean ecosystems are globally important. Processes in the Antarctic atmosphere, cryosphere, and the Southern Ocean directly influence global atmospheric and oceanic systems. Southern Ocean biogeochemistry has also been shown to have global importance. In contrast, ocean ecological processes are often seen as largely separate from the rest of the global system. In this paper, we consider the degree of ecological connectivity at different trophic levels, linking Southern Ocean ecosystems with the global ocean, and their importance not only for the regional ecosystem but also the wider Earth system. We also consider the human system connections, including the role of Southern Ocean ecosystems in supporting society, culture, and economy in many nations, influencing public and political views and hence policy. Rather than Southern Ocean ecosystems being defined by barriers at particular oceanic fronts, ecological changes are gradual due to cross-front exchanges involving oceanographic processes and organism movement. Millions of seabirds and hundreds of thousands of cetaceans move north out of polar waters in the austral autumn interacting in food webs across the Southern Hemisphere, and a few species cross the equator. A number of species migrate into the east and west ocean-basin boundary current and continental shelf regions of the major southern continents. Human travel in and out of the Southern Ocean region includes fisheries, tourism, and scientific vessels in all ocean sectors. These operations arise from many nations, particularly in the Northern Hemisphere, and are important in local communities as well as national economic, scientific, and political activities. As a result of the extensive connectivity, future changes in Southern Ocean ecosystems will have consequences throughout the Earth system, affecting ecosystem services with socio-economic impacts throughout the world. The high level of connectivity also means that changes and policy decisions in marine ecosystems outside the Southern Ocean have consequences for ecosystems south of the Antarctic Polar Front. Knowledge of Southern Ocean ecosystems and their global connectivity is critical for interpreting current change, projecting future change impacts, and identifying integrated strategies for conserving and managing both the Southern Ocean and the broader Earth system.
Collapse
|
21
|
López-López L, Genner MJ, Tarling GA, Saunders RA, O’Gorman EJ. Ecological Networks in the Scotia Sea: Structural Changes Across Latitude and Depth. Ecosystems 2021. [DOI: 10.1007/s10021-021-00665-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
22
|
Nirazuka S, Makabe R, Swadling KM, Moteki M. Phyto-detritus feeding by early-stage larvae of Electrona antarctica (Myctophidae) off Wilkes Land in the Southern Ocean, austral summer 2017. Polar Biol 2021. [DOI: 10.1007/s00300-021-02880-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
23
|
Caccavo JA, Christiansen H, Constable AJ, Ghigliotti L, Trebilco R, Brooks CM, Cotte C, Desvignes T, Dornan T, Jones CD, Koubbi P, Saunders RA, Strobel A, Vacchi M, van de Putte AP, Walters A, Waluda CM, Woods BL, Xavier JC. Productivity and Change in Fish and Squid in the Southern Ocean. Front Ecol Evol 2021. [DOI: 10.3389/fevo.2021.624918] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Southern Ocean ecosystems are globally important and vulnerable to global drivers of change, yet they remain challenging to study. Fish and squid make up a significant portion of the biomass within the Southern Ocean, filling key roles in food webs from forage to mid-trophic species and top predators. They comprise a diverse array of species uniquely adapted to the extreme habitats of the region. Adaptations such as antifreeze glycoproteins, lipid-retention, extended larval phases, delayed senescence, and energy-conserving life strategies equip Antarctic fish and squid to withstand the dark winters and yearlong subzero temperatures experienced in much of the Southern Ocean. In addition to krill exploitation, the comparatively high commercial value of Antarctic fish, particularly the lucrative toothfish, drives fisheries interests, which has included illegal fishing. Uncertainty about the population dynamics of target species and ecosystem structure and function more broadly has necessitated a precautionary, ecosystem approach to managing these stocks and enabling the recovery of depleted species. Fisheries currently remain the major local driver of change in Southern Ocean fish productivity, but global climate change presents an even greater challenge to assessing future changes. Parts of the Southern Ocean are experiencing ocean-warming, such as the West Antarctic Peninsula, while other areas, such as the Ross Sea shelf, have undergone cooling in recent years. These trends are expected to result in a redistribution of species based on their tolerances to different temperature regimes. Climate variability may impair the migratory response of these species to environmental change, while imposing increased pressures on recruitment. Fisheries and climate change, coupled with related local and global drivers such as pollution and sea ice change, have the potential to produce synergistic impacts that compound the risks to Antarctic fish and squid species. The uncertainty surrounding how different species will respond to these challenges, given their varying life histories, environmental dependencies, and resiliencies, necessitates regular assessment to inform conservation and management decisions. Urgent attention is needed to determine whether the current management strategies are suitably precautionary to achieve conservation objectives in light of the impending changes to the ecosystem.
Collapse
|
24
|
Seco J, Freitas R, Xavier JC, Bustamante P, Coelho JP, Coppola F, Saunders RA, Almeida Â, Fielding S, Pardal MA, Stowasser G, Pompeo G, Tarling GA, Brierley AS, Pereira E. Oxidative stress, metabolic activity and mercury concentrations in Antarctic krill Euphausia superba and myctophid fish of the Southern Ocean. MARINE POLLUTION BULLETIN 2021; 166:112178. [PMID: 33721686 DOI: 10.1016/j.marpolbul.2021.112178] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2020] [Revised: 02/10/2021] [Accepted: 02/15/2021] [Indexed: 06/12/2023]
Abstract
Indicators of oxidative stress and metabolic capacity are key factors in understanding the fitness of wild populations. In the present study, these factors were evaluated in the pelagic Southern Ocean taxa Antarctic krill (Euphausia superba) and myctophid fish (Electrona antarctica, Gymnoscopelus braueri and G. nicholsi) to establish a baseline record for future studies. Mercury (Hg) concentrations were also analysed to evaluate its potential impacts on species biochemical performance. E. superba had higher metabolic activity than most of the myctophid species, which may explain the comparatively lower energy reserves found in the former. The activity of antioxidant enzymes showed, generally, a lower level in E. superba than in the myctophid species. The lack of any relationship between Hg concentrations and organisms' antioxidant and biotransformation defence mechanisms indicate that levels of Hg accumulated in the studied species were not high enough to affect their biochemical processes adversely.
Collapse
Affiliation(s)
- José Seco
- Department of Chemistry & CESAM/REQUIMTE, University of Aveiro, 3810-193 Aveiro, Portugal; Pelagic Ecology Research Group, Scottish Oceans Institute, Gatty Marine Laboratory, School of Biology, University of St Andrews, St Andrews KY16 8LB, Scotland, UK
| | - Rosa Freitas
- Department of Biology & CESAM, University of Aveiro, 3810-193 Aveiro, Portugal.
| | - José C Xavier
- British Antarctic Survey, NERC, High Cross, Madingley Road, Cambridge CB3 0ET, UK; MARE-Marine and Environmental Sciences Centre, Department of Life Sciences, University of Coimbra, Calçada Martim de Freitas, 3000-456 Coimbra, Portugal
| | - Paco Bustamante
- Littoral Environnement et Sociétés (LIENSs), UMR 7266 CNRS - La Rochelle Université, 2 rue Olympe de Gouges, 17000 La Rochelle, France; Institut Universitaire de France (IUF), 1 rue Descartes, 75005 Paris, France
| | - João P Coelho
- Department of Biology & CESAM, University of Aveiro, 3810-193 Aveiro, Portugal
| | - Francesca Coppola
- Department of Biology & CESAM, University of Aveiro, 3810-193 Aveiro, Portugal
| | - Ryan A Saunders
- British Antarctic Survey, NERC, High Cross, Madingley Road, Cambridge CB3 0ET, UK
| | - Ângela Almeida
- Department of Biology & CESAM, University of Aveiro, 3810-193 Aveiro, Portugal
| | - Sophie Fielding
- British Antarctic Survey, NERC, High Cross, Madingley Road, Cambridge CB3 0ET, UK
| | - Miguel A Pardal
- CFE - Centre for Functional Ecology, Department of Life Sciences, University of Coimbra, Calçada Martim de Freitas, 3000-456 Coimbra, Portugal
| | - Gabriele Stowasser
- British Antarctic Survey, NERC, High Cross, Madingley Road, Cambridge CB3 0ET, UK
| | - Giulia Pompeo
- Department of Chemistry & CESAM/REQUIMTE, University of Aveiro, 3810-193 Aveiro, Portugal
| | - Geraint A Tarling
- British Antarctic Survey, NERC, High Cross, Madingley Road, Cambridge CB3 0ET, UK
| | - Andrew S Brierley
- Pelagic Ecology Research Group, Scottish Oceans Institute, Gatty Marine Laboratory, School of Biology, University of St Andrews, St Andrews KY16 8LB, Scotland, UK
| | - Eduarda Pereira
- Department of Chemistry & CESAM/REQUIMTE, University of Aveiro, 3810-193 Aveiro, Portugal; Department of Chemistry & REQUIMTE, University of Aveiro, 3810-193 Aveiro, Portugal
| |
Collapse
|
25
|
Seco J, Aparício S, Brierley AS, Bustamante P, Ceia FR, Coelho JP, Philips RA, Saunders RA, Fielding S, Gregory S, Matias R, Pardal MA, Pereira E, Stowasser G, Tarling GA, Xavier JC. Mercury biomagnification in a Southern Ocean food web. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2021; 275:116620. [PMID: 33581632 DOI: 10.1016/j.envpol.2021.116620] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/13/2020] [Revised: 01/26/2021] [Accepted: 01/27/2021] [Indexed: 06/12/2023]
Abstract
Biomagnification of mercury (Hg) in the Scotia Sea food web of the Southern Ocean was examined using the stable isotope ratios of nitrogen (δ15N) and carbon (δ13C) as proxies for trophic level and feeding habitat, respectively. Total Hg and stable isotopes were measured in samples of particulate organic matter (POM), zooplankton, squid, myctophid fish, notothenioid fish and seabird tissues collected in two years (austral summers 2007/08 and 2016/17). Overall, there was extensive overlap in δ13C values across taxonomic groups suggesting similarities in habitats, with the exception of the seabirds, which showed some differences, possibly due to the type of tissue analysed (feathers instead of muscle). δ15N showed increasing enrichment across groups in the order POM to zooplankton to squid to myctophid fish to notothenioid fish to seabirds. There were significant differences in δ15N and δ13C values among species within taxonomic groups, reflecting inter-specific variation in diet. Hg concentrations increased with trophic level, with the lowest values in POM (0.0005 ± 0.0002 μg g-1 dw) and highest values in seabirds (3.88 ± 2.41 μg g-1 in chicks of brown skuas Stercorarius antarcticus). Hg concentrations tended to be lower in 2016/17 than in 2007/08 for mid-trophic level species (squid and fish), but the opposite was found for top predators (i.e. seabirds), which had higher levels in the 2016/17 samples. This may reflect an interannual shift in the Scotia Sea marine food web, caused by the reduced availability of a key prey species, Antarctic krill Euphausia superba. In 2016/17, seabirds would have been forced to feed on higher trophic-level prey, such as myctophids, that have higher Hg burdens. These results suggest that changes in the food web are likely to affect the pathway of mercury to Southern Ocean top predators.
Collapse
Affiliation(s)
- José Seco
- Department of Chemistry and CESAM/REQUIMTE, University of Aveiro, 3810-193, Aveiro, Portugal; Pelagic Ecology Research Group, Scottish Oceans Institute, Gatty Marine Laboratory, University of St Andrews, St Andrews, KY16 8LB, Scotland, UK.
| | - Sara Aparício
- Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, Caparica, Portugal
| | - Andrew S Brierley
- Pelagic Ecology Research Group, Scottish Oceans Institute, Gatty Marine Laboratory, University of St Andrews, St Andrews, KY16 8LB, Scotland, UK
| | - Paco Bustamante
- Littoral Environnement et Sociétés (LIENSs), UMR 7266 CNRS - La Rochelle Université, 2 Rue Olympe de Gouges, 17000, La Rochelle, France; Institut Universitaire de France (IUF), 1 Rue Descartes, 75005, Paris, France
| | - Filipe R Ceia
- University of Coimbra, Marine and Environmental Sciences Centre, Department of Life Sciences, Calçada Martim de Freitas, 3000-456, Coimbra, Portugal
| | - João P Coelho
- CESAM - Centre for Environmental and Marine Studies, Department of Biology, University of Aveiro, Campus Universitário de Santiago, 3810-193, Aveiro, Portugal
| | - Richard A Philips
- British Antarctic Survey, NERC, High Cross, Madingley Road, Cambridge, CB3 0ET, UK
| | - Ryan A Saunders
- British Antarctic Survey, NERC, High Cross, Madingley Road, Cambridge, CB3 0ET, UK
| | - Sophie Fielding
- British Antarctic Survey, NERC, High Cross, Madingley Road, Cambridge, CB3 0ET, UK
| | - Susan Gregory
- British Antarctic Survey, NERC, High Cross, Madingley Road, Cambridge, CB3 0ET, UK; Government of South Georgia & the South Sandwich Islands, Stanley, Falkland Islands
| | - Ricardo Matias
- British Antarctic Survey, NERC, High Cross, Madingley Road, Cambridge, CB3 0ET, UK
| | - Miguel A Pardal
- CFE - Centre for Functional Ecology, Department of Life Sciences, University of Coimbra, Calçada Martim de Freitas, 3000-456, Coimbra, Portugal
| | - Eduarda Pereira
- Department of Chemistry and CESAM/REQUIMTE, University of Aveiro, 3810-193, Aveiro, Portugal
| | - Gabriele Stowasser
- British Antarctic Survey, NERC, High Cross, Madingley Road, Cambridge, CB3 0ET, UK
| | - Geraint A Tarling
- University of Coimbra, Marine and Environmental Sciences Centre, Department of Life Sciences, Calçada Martim de Freitas, 3000-456, Coimbra, Portugal
| | - José C Xavier
- University of Coimbra, Marine and Environmental Sciences Centre, Department of Life Sciences, Calçada Martim de Freitas, 3000-456, Coimbra, Portugal; British Antarctic Survey, NERC, High Cross, Madingley Road, Cambridge, CB3 0ET, UK
| |
Collapse
|
26
|
Bamford CCG, Warwick-Evans V, Staniland IJ, Jackson JA, Trathan PN. Wintertime overlaps between female Antarctic fur seals (Arctocephalus gazella) and the krill fishery at South Georgia, South Atlantic. PLoS One 2021; 16:e0248071. [PMID: 33662029 PMCID: PMC7932113 DOI: 10.1371/journal.pone.0248071] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2020] [Accepted: 02/18/2021] [Indexed: 11/24/2022] Open
Abstract
The diet of Antarctic fur seals (Arctocephalus gazella) at South Georgia is dominated by Antarctic krill (Euphausia superba). During the breeding season, foraging trips by lactating female fur seals are constrained by their need to return to land to provision their pups. Post-breeding, seals disperse in order to feed and recover condition; estimates indicate c.70% of females remain near to South Georgia, whilst others head west towards the Patagonian Shelf or south to the ice-edge. The krill fishery at South Georgia operates only during the winter, providing the potential for fur seal: fishery interaction during these months. Here we use available winter (May to September) tracking data from Platform Terminal Transmitter (PTT) tags deployed on female fur seals at Bird Island, South Georgia. We develop habitat models describing their distribution during the winters of 1999 and 2003 with the aim of visualising and quantifying the degree of spatial overlap between female fur seals and krill harvesting in South Georgia waters. We show that spatial distribution of fur seals around South Georgia is extensive, and that the krill fishery overlaps with small, highly localised areas of available fur seal habitat. From these findings we discuss the implications for management, and future work.
Collapse
Affiliation(s)
- Connor C. G. Bamford
- British Antarctic Survey, High Cross, Cambridge, United Kingdom
- University of Southampton, Southampton, United Kingdom
| | | | - Iain J. Staniland
- British Antarctic Survey, High Cross, Cambridge, United Kingdom
- International Whaling Commission, The Red House, Impington, Cambridge, United Kingdom
| | | | | |
Collapse
|
27
|
McCormack SA, Melbourne‐Thomas J, Trebilco R, Blanchard JL, Raymond B, Constable A. Decades of dietary data demonstrate regional food web structures in the Southern Ocean. Ecol Evol 2021; 11:227-241. [PMID: 33437425 PMCID: PMC7790630 DOI: 10.1002/ece3.7017] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2020] [Revised: 09/11/2020] [Accepted: 10/23/2020] [Indexed: 11/07/2022] Open
Abstract
Understanding regional-scale food web structure in the Southern Ocean is critical to informing fisheries management and assessments of climate change impacts on Southern Ocean ecosystems and ecosystem services. Historically, a large component of Southern Ocean ecosystem research has focused on Antarctic krill, which provide a short, highly efficient food chain, linking primary producers to higher trophic levels. Over the last 15 years, the presence of alternative energy pathways has been identified and hypotheses on their relative importance in different regions raised. Using the largest circumpolar dietary database ever compiled, we tested these hypotheses using an empirical circumpolar comparison of food webs across the four major regions/sectors of the Southern Ocean (defined as south of 40°S) within the austral summer period. We used network analyses and generalizations of taxonomic food web structure to confirm that while Antarctic krill are dominant as the mid-trophic level for the Atlantic and East Pacific food webs (including the Scotia Arc and Western Antarctic Peninsula), mesopelagic fish and other krill species are dominant contributors to predator diets in the Indian and West Pacific regions (East Antarctica and the Ross Sea). We also highlight how tracking data and habitat modeling for mobile top predators in the Southern Ocean show that these species integrate food webs over large regional scales. Our study provides a quantitative assessment, based on field observations, of the degree of regional differentiation in Southern Ocean food webs and the relative importance of alternative energy pathways between regions.
Collapse
Affiliation(s)
- Stacey A. McCormack
- Institute for Marine and Antarctic StudiesUniversity of TasmaniaHobartTas.Australia
| | - Jessica Melbourne‐Thomas
- CSIRO [Commonwealth Scientific and Industrial Research Organisation] Oceans and AtmosphereHobartTas.Australia
- Centre for Marine SocioecologyUniversity of TasmaniaHobartTas.Australia
| | - Rowan Trebilco
- CSIRO [Commonwealth Scientific and Industrial Research Organisation] Oceans and AtmosphereHobartTas.Australia
- Centre for Marine SocioecologyUniversity of TasmaniaHobartTas.Australia
| | - Julia L. Blanchard
- Institute for Marine and Antarctic StudiesUniversity of TasmaniaHobartTas.Australia
- Centre for Marine SocioecologyUniversity of TasmaniaHobartTas.Australia
- Australian Antarctic Program PartnershipUniversity of TasmaniaHobartTasmaniaAustralia
| | - Ben Raymond
- Institute for Marine and Antarctic StudiesUniversity of TasmaniaHobartTas.Australia
- Australian Antarctic DivisionDepartment of Agriculture, Water and EnvironmentKingstonTas.Australia
- Australian Antarctic Program PartnershipUniversity of TasmaniaHobartTasmaniaAustralia
| | - Andrew Constable
- Centre for Marine SocioecologyUniversity of TasmaniaHobartTas.Australia
- Australian Antarctic DivisionDepartment of Agriculture, Water and EnvironmentKingstonTas.Australia
| |
Collapse
|
28
|
Continuous moulting by Antarctic krill drives major pulses of carbon export in the north Scotia Sea, Southern Ocean. Nat Commun 2020; 11:6051. [PMID: 33247126 PMCID: PMC7699634 DOI: 10.1038/s41467-020-19956-7] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2020] [Accepted: 11/04/2020] [Indexed: 12/02/2022] Open
Abstract
Antarctic krill play an important role in biogeochemical cycles and can potentially generate high-particulate organic carbon (POC) fluxes to the deep ocean. They also have an unusual trait of moulting continuously throughout their life-cycle. We determine the krill seasonal contribution to POC flux in terms of faecal pellets (FP), exuviae and carcasses from sediment trap samples collected in the Southern Ocean. We found that krill moulting generated an exuviae flux of similar order to that of FP, together accounting for 87% of an annual POC flux (22.8 g m−2 y−1). Using an inverse modelling approach, we determined the krill population size necessary to generate this flux peaked at 261 g m−2. This study shows the important role of krill exuviae as a vector for POC flux. Since krill moulting cycle depends on temperature, our results highlight the sensitivity of POC flux to rapid regional environmental change. Antarctic krill are known to be important to the carbon cycle, but the exact contribution is not known. Here the authors show that krill moulting is a major vector of carbon export in the Southern Ocean, together with krill faecal pellets accounting for almost 90% of annual particulate organic carbon flux.
Collapse
|
29
|
Bestley S, Ropert-Coudert Y, Bengtson Nash S, Brooks CM, Cotté C, Dewar M, Friedlaender AS, Jackson JA, Labrousse S, Lowther AD, McMahon CR, Phillips RA, Pistorius P, Puskic PS, Reis AODA, Reisinger RR, Santos M, Tarszisz E, Tixier P, Trathan PN, Wege M, Wienecke B. Marine Ecosystem Assessment for the Southern Ocean: Birds and Marine Mammals in a Changing Climate. Front Ecol Evol 2020. [DOI: 10.3389/fevo.2020.566936] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
|
30
|
Seco J, Xavier JC, Bustamante P, Coelho JP, Saunders RA, Ferreira N, Fielding S, Pardal MA, Stowasser G, Viana T, Tarling GA, Pereira E, Brierley AS. Main drivers of mercury levels in Southern Ocean lantern fish Myctophidae. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2020; 264:114711. [PMID: 32559867 DOI: 10.1016/j.envpol.2020.114711] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2019] [Revised: 04/28/2020] [Accepted: 04/29/2020] [Indexed: 06/11/2023]
Abstract
Myctophids are the most abundant fish group in the Southern Ocean pelagic ecosystem and are an important link in the Antarctic marine food web. Due to their major ecological role, evaluating the level of mercury (Hg) contamination in myctophids is important as a step towards understanding the trophic pathway of this contaminant. The concentrations of total Hg were determined in muscle, gill, heart and liver tissue of 9 myctophid species to quantify tissue partitioning variability between species. Organic Hg concentration and proportion in muscle was also determined. Hg concentrations were higher in the liver and heart than in muscle and gills, but the proportion of organic Hg was almost 100% in muscle, indicating that the main uptake route for Hg is through the diet. Most of the species analysed have similar vertical and horizontal distributions, and similar feeding modes and prey. Geographical and temporal variability of Hg concentrations was examined using samples from 3 different sampling cruise (2007/08, 2015/16 and 2016/17) and 2 locations (South Georgia and South Orkneys Islands). Our results appear to indicate a decreasing trend in Hg contamination over the last decade, particularly gill tissue, which is in agreement with a previous study on squid from the same region. There was no significant variability in Hg concentration between the different sampling locations. Hg levels were consistent with values reported previously for myctophids around the world, indicating low global-scale geographic variability. A positive relationship between fish size and Hg concentration was found for most species, with the exception of Electrona antarctica females, which may be explained through Hg elimination by egg laying. We estimate that myctophids collectively comprise a Southern Ocean mercury 'reserve' of ≈1.82 metric tonnes.
Collapse
Affiliation(s)
- José Seco
- Department of Chemistry and CESAM/REQUIMTE, University of Aveiro, 3810-193, Aveiro, Portugal; Pelagic Ecology Research Group, Scottish Oceans Institute, Gatty Marine Laboratory, University of St Andrews, St Andrews, KY16 8LB, Scotland, UK.
| | - José C Xavier
- British Antarctic Survey, NERC, High Cross, Madingley Road, Cambridge, CB3 0ET, UK; MARE-Marine and Environmental Sciences Centre, Department of Life Sciences, University of Coimbra, Calçada Martim de Freitas, 3000-456, Coimbra, Portugal
| | - Paco Bustamante
- Institut Universitaire de France (IUF), 1 rue Descartes, 75005, Paris, France
| | - João P Coelho
- Department of Biology and CESAM, University of Aveiro, 3810-193, Aveiro, Portugal
| | - Ryan A Saunders
- British Antarctic Survey, NERC, High Cross, Madingley Road, Cambridge, CB3 0ET, UK
| | - Nicole Ferreira
- Department of Chemistry and CESAM/REQUIMTE, University of Aveiro, 3810-193, Aveiro, Portugal
| | - Sophie Fielding
- British Antarctic Survey, NERC, High Cross, Madingley Road, Cambridge, CB3 0ET, UK
| | - Miguel A Pardal
- CFE - Centre for Functional Ecology, Department of Life Sciences, University of Coimbra, Calçada Martim de Freitas, 3000-456, Coimbra, Portugal
| | - Gabriele Stowasser
- British Antarctic Survey, NERC, High Cross, Madingley Road, Cambridge, CB3 0ET, UK
| | - Thainara Viana
- Department of Chemistry and CESAM/REQUIMTE, University of Aveiro, 3810-193, Aveiro, Portugal
| | - Geraint A Tarling
- British Antarctic Survey, NERC, High Cross, Madingley Road, Cambridge, CB3 0ET, UK
| | - Eduarda Pereira
- Department of Chemistry and CESAM/REQUIMTE, University of Aveiro, 3810-193, Aveiro, Portugal
| | - Andrew S Brierley
- Pelagic Ecology Research Group, Scottish Oceans Institute, Gatty Marine Laboratory, University of St Andrews, St Andrews, KY16 8LB, Scotland, UK
| |
Collapse
|
31
|
Demographic and maturity patterns of Antarctic krill (Euphausia superba) in an overwintering hotspot. Polar Biol 2020. [DOI: 10.1007/s00300-020-02704-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
32
|
Jones-Williams K, Galloway T, Cole M, Stowasser G, Waluda C, Manno C. Close encounters - microplastic availability to pelagic amphipods in sub-antarctic and antarctic surface waters. ENVIRONMENT INTERNATIONAL 2020; 140:105792. [PMID: 32438220 DOI: 10.1016/j.envint.2020.105792] [Citation(s) in RCA: 66] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2019] [Revised: 04/22/2020] [Accepted: 05/01/2020] [Indexed: 06/11/2023]
Abstract
This study investigated the distribution of plastic debris from the Atlantic portion of the Sub-Antarctic to the Antarctic Peninsula. This region is home to some of the highest concentrations of zooplankton biomass but is also threatened by increasing shipping traffic from fishing and the growing tourism market. Samples were collected using a surface-towed neuston net during the Austral summer 2018, aboard the RRS James Clark Ross. Using Fourier Transform Infrared Spectrometry it was found that 45.6% of the plastic particles isolated from seawater samples were sampling contamination, originating predominantly from the ship. Of the remaining particles, both low density (polyethylene, polypropylene) and high-density (phenoxy and epoxy resins) polymers were found in the surface water suggesting both long-range and local sources of origin. Whilst we found that micro and mesoplastic concentrations in seawater were significantly low (0.013 ± 0.005n/m3) compared to global averages, they were higher along the Antarctic Peninsula than the open ocean (Sub-Antarctic) stations. The potential availability of micro and mesoplastics (MP) to pelagic amphipods was explored, using an observed encounter rate (OER) and a possible encounter rate (PER). The total OER (0.8%) was higher than the PER (0.15%), suggesting that even at low concentrations, microplastics are encountered, and potentially consumed, by amphipods. This study highlights the need to prioritise regions of high zooplankton abundance and to investigate both water and biota to build up a picture of plastic pollution and its potential interaction with the Antarctic Ecosystem.
Collapse
Affiliation(s)
- Kirstie Jones-Williams
- British Antarctic Survey, High Cross, Madingley Road, Cambridge CB30ET, United Kingdom; University of Exeter, Streatham Campus, Northcote House, Exeter EX4 4QJ, United Kingdom.
| | - Tamara Galloway
- University of Exeter, Streatham Campus, Northcote House, Exeter EX4 4QJ, United Kingdom
| | - Matthew Cole
- Plymouth Marine Laboratory, Prospect Place, Plymouth PL1 3DH, United Kingdom
| | - Gabriele Stowasser
- British Antarctic Survey, High Cross, Madingley Road, Cambridge CB30ET, United Kingdom
| | - Claire Waluda
- British Antarctic Survey, High Cross, Madingley Road, Cambridge CB30ET, United Kingdom
| | - Clara Manno
- British Antarctic Survey, High Cross, Madingley Road, Cambridge CB30ET, United Kingdom
| |
Collapse
|
33
|
Hellessey N, Johnson R, Ericson JA, Nichols PD, Kawaguchi S, Nicol S, Hoem N, Virtue P. Antarctic Krill Lipid and Fatty acid Content Variability is Associated to Satellite Derived Chlorophyll a and Sea Surface Temperatures. Sci Rep 2020; 10:6060. [PMID: 32269236 PMCID: PMC7142126 DOI: 10.1038/s41598-020-62800-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2019] [Accepted: 03/19/2020] [Indexed: 11/23/2022] Open
Abstract
Antarctic krill (Euphausia superba) are a key component of the Antarctic food web with considerable lipid reserves that are vital for their health and higher predator survival. Krill lipids are primarily derived from their diet of plankton, in particular diatoms and flagellates. Few attempts have been made to link the spatial and temporal variations in krill lipids to those in their food supply. Remotely-sensed environmental parameters provide large-scale information on the potential availability of krill food, although relating this to physiological and biochemical differences has only been performed on small scales and with limited samples. Our study utilised remotely-sensed data (chlorophyll a and sea surface temperature) coupled with krill lipid data obtained from 3 years of fishery-derived samples. We examined within and between year variation of trends in both the environment and krill biochemistry data. Chlorophyll a levels were positively related to krill lipid levels, particularly triacylglycerol. Plankton fatty acid biomarkers analysed in krill (such as n-3 polyunsaturated fatty acids) increased with decreasing sea surface temperature and increasing chlorophyll a levels. Our study demonstrates the utility of combining remote-sensing and biochemical data in examining biological and physiological relationships between Antarctic krill and the Southern Ocean environment.
Collapse
Affiliation(s)
- Nicole Hellessey
- Institute for Marine and Antarctic Studies, University of Tasmania, 20 Castray Esplanade, Battery Point, Tasmania, 7004, Australia. .,CSIRO Oceans and Atmosphere, Castray Esplanade, Battery Point, Tasmania, 7004, Australia. .,Antarctic Climate and Ecosystems Cooperative Research Centre, 20 Castray Esplanade, Battery Point, Tasmania, 7004, Australia. .,School of Biological Sciences, Georgia Institute of Technology, 311 Ferst Drive NW, Atlanta, Georgia, 30332, United States of America.
| | - Robert Johnson
- Institute for Marine and Antarctic Studies, University of Tasmania, 20 Castray Esplanade, Battery Point, Tasmania, 7004, Australia
| | - Jessica A Ericson
- Institute for Marine and Antarctic Studies, University of Tasmania, 20 Castray Esplanade, Battery Point, Tasmania, 7004, Australia.,CSIRO Oceans and Atmosphere, Castray Esplanade, Battery Point, Tasmania, 7004, Australia.,Antarctic Climate and Ecosystems Cooperative Research Centre, 20 Castray Esplanade, Battery Point, Tasmania, 7004, Australia.,Cawthron Institute, Private Bag 2, Nelson, 7041, New Zealand
| | - Peter D Nichols
- Institute for Marine and Antarctic Studies, University of Tasmania, 20 Castray Esplanade, Battery Point, Tasmania, 7004, Australia.,CSIRO Oceans and Atmosphere, Castray Esplanade, Battery Point, Tasmania, 7004, Australia
| | - So Kawaguchi
- Antarctic Climate and Ecosystems Cooperative Research Centre, 20 Castray Esplanade, Battery Point, Tasmania, 7004, Australia.,Australian Antarctic Division, 203 Channel Highway, Kingston, Tasmania, 7050, Australia
| | - Stephen Nicol
- Institute for Marine and Antarctic Studies, University of Tasmania, 20 Castray Esplanade, Battery Point, Tasmania, 7004, Australia.,Antarctic Climate and Ecosystems Cooperative Research Centre, 20 Castray Esplanade, Battery Point, Tasmania, 7004, Australia
| | - Nils Hoem
- Aker BioMarine Antarctic AS, Oksenøyveien 10, P.O. Box 496, NO-1327, Lysaker, Norway
| | - Patti Virtue
- Institute for Marine and Antarctic Studies, University of Tasmania, 20 Castray Esplanade, Battery Point, Tasmania, 7004, Australia.,CSIRO Oceans and Atmosphere, Castray Esplanade, Battery Point, Tasmania, 7004, Australia.,Antarctic Climate and Ecosystems Cooperative Research Centre, 20 Castray Esplanade, Battery Point, Tasmania, 7004, Australia
| |
Collapse
|
34
|
Tremblay N, Hünerlage K, Werner T. Hypoxia Tolerance of 10 Euphausiid Species in Relation to Vertical Temperature and Oxygen Gradients. Front Physiol 2020; 11:248. [PMID: 32265739 PMCID: PMC7107326 DOI: 10.3389/fphys.2020.00248] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2019] [Accepted: 03/04/2020] [Indexed: 12/12/2022] Open
Abstract
Oxygen Minimum Zones prevail in most of the world's oceans and are particularly extensive in Eastern Boundary Upwelling Ecosystems such as the Humboldt and the Benguela upwelling systems. In these regions, euphausiids are an important trophic link between primary producers and higher trophic levels. The species are known as pronounced diel vertical migrators, thus facing different levels of oxygen and temperature within a 24 h cycle. Declining oxygen levels may lead to vertically constrained habitats in euphausiids, which consequently will affect several trophic levels in the food web of the respective ecosystem. By using the regulation index (RI), the present study aimed at investigating the hypoxia tolerances of different euphausiid species from Atlantic, Pacific as well as from Polar regions. RI was calculated from 141 data sets and used to differentiate between respiration strategies using median and quartile (Q) values: low degree of oxyregulation (0.25 < RI median < 0.5); high degree of oxyregulation (0.5 < RI median < 1; Q1 > 0.25 or Q3 > 0.75); and metabolic suppression (RI median, Q1 and Q3 < 0). RI values of the polar (Euphausia superba, Thysanoessa inermis) and sub-tropical (Euphausia hanseni, Nyctiphanes capensis, and Nematoscelis megalops) species indicate a high degree of oxyregulation, whereas almost perfect oxyconformity (RI median ≈ 0; Q1 < 0 and Q3 > 0) was identified for the neritic temperate species Thysanoessa spinifera and the tropical species Euphausia lamelligera. RI values of Euphausia distinguenda and the Humboldt species Euphausia mucronata qualified these as metabolic suppressors. RI showed a significant impact of temperature on the respiration strategy of E. hanseni from oxyregulation to metabolic suppression. The species' estimated hypoxia tolerances and the degree of oxyconformity vs. oxyregulation were linked to diel vertical migration behavior and the temperature experienced during migration. The results highlight that the euphausiid species investigated have evolved various strategies to deal with different levels of oxygen, ranging from species showing a high degree of oxyconformity to strong oxyregulation. Neritic species may be more affected by hypoxia, as these are often short-distance-migrators and only adapted to a narrow range of environmental conditions.
Collapse
Affiliation(s)
- Nelly Tremblay
- Shelf Sea System Ecology, Alfred-Wegener-Institut Helmholtz-Zentrum für Polar- und Meeresforschung, Helgoland, Germany
| | - Kim Hünerlage
- Institute for Sea Fisheries, Thünen Institute, Bremerhaven, Germany
| | | |
Collapse
|
35
|
Seco J, Xavier JC, Brierley AS, Bustamante P, Coelho JP, Gregory S, Fielding S, Pardal MA, Pereira B, Stowasser G, Tarling GA, Pereira E. Mercury levels in Southern Ocean squid: Variability over the last decade. CHEMOSPHERE 2020; 239:124785. [PMID: 31726533 DOI: 10.1016/j.chemosphere.2019.124785] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/28/2019] [Revised: 08/01/2019] [Accepted: 09/04/2019] [Indexed: 06/10/2023]
Abstract
The concentrations of total and proportions of organic mercury were measured in tissues of 355 individuals of 8 species of Southern Ocean squid (Alluroteuthis antarcticus, Bathyteuthis abyssicola, Filippovia knipovitchi, Galiteuthis glacialis, Gonatus antarcticus, Kondakovia longimana, Psychroteuthis glacialis and Slosarczykovia circumantarctica). Squid were caught around South Georgia (Scotia Sea) during 5 cruises, between the austral summers of 2006/07 to 2016/17 to evaluate temporal changes in bioaccumulation and tissue partitioning. Total mercury concentrations varied between 4 ng g-1 and 804 ng g-1 among all tissues. Net accumulation of mercury in muscle with size was observed in A. antarcticus, B. abyssicola and P. glacialis, but no relationship was found for S. circumantarctica and lower concentrations were observed in larger individuals of G. glacialis. Muscle tissues had the highest mercury concentrations in the majority of species, except for F. knipovitchi for which the digestive gland contained highest concentrations. In terms of the percentage of organic mercury in the tissues, muscle always contained the highest values (67%-97%), followed by the digestive gland (22%-38%). Lowest organic mercury percentages were found consistently in the gills (9%-19%), suggesting only low levels of incorporation through the dissolved pathway and/or a limited redistribution of dietary organic mercury towards this tissue. Overall, results are indicative of a decreasing trend of mercury concentrations in the majority of analysed species over the last decade. As cephalopods are an important Southern Ocean trophic link between primary consumers and top predators, these changes suggest decreasing mercury levels in lower trophic levels and an alleviation of the mercury burden on higher predators that consume squid.
Collapse
Affiliation(s)
- José Seco
- Department of Chemistry and CESAM/REQUIMTE, University of Aveiro, 3810-193, Aveiro, Portugal; Pelagic Ecology Research Group, Scottish Oceans Institute, University of St Andrews, St Andrews, KY16 8LB, Scotland, UK.
| | - José C Xavier
- British Antarctic Survey, NERC, High Cross, Madingley Road, Cambridge, CB3 0ET, UK; MARE-Marine and Environmental Sciences Centre, Department of Life Sciences, University of Coimbra, Calçada Martim de Freitas, 3000-456, Coimbra, Portugal
| | - Andrew S Brierley
- Pelagic Ecology Research Group, Scottish Oceans Institute, University of St Andrews, St Andrews, KY16 8LB, Scotland, UK
| | - Paco Bustamante
- Littoral Environnement et Sociétés (LIENSs), UMR 7266 CNRS - La Rochelle Université, 2 Rue Olympe de Gouges, 17000, La Rochelle, France
| | - João P Coelho
- Department of Biology and CESAM, University of Aveiro, 3810-193, Aveiro, Portugal
| | - Susan Gregory
- British Antarctic Survey, NERC, High Cross, Madingley Road, Cambridge, CB3 0ET, UK; Government of South Georgia & the South Sandwich Islands, Stanley, Falkland Islands
| | - Sophie Fielding
- British Antarctic Survey, NERC, High Cross, Madingley Road, Cambridge, CB3 0ET, UK
| | - Miguel A Pardal
- CFE - Centre for Functional Ecology, Department of Life Sciences, University of Coimbra, Calçada Martim de Freitas, 3000-456, Coimbra, Portugal
| | - Bárbara Pereira
- Department of Chemistry and CESAM/REQUIMTE, University of Aveiro, 3810-193, Aveiro, Portugal
| | - Gabriele Stowasser
- British Antarctic Survey, NERC, High Cross, Madingley Road, Cambridge, CB3 0ET, UK
| | - Geraint A Tarling
- British Antarctic Survey, NERC, High Cross, Madingley Road, Cambridge, CB3 0ET, UK
| | - Eduarda Pereira
- Department of Chemistry and CESAM/REQUIMTE, University of Aveiro, 3810-193, Aveiro, Portugal
| |
Collapse
|
36
|
Cetacean distribution in relation to environmental parameters between Drake Passage and northern Antarctic Peninsula. Polar Biol 2019. [DOI: 10.1007/s00300-019-02607-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
37
|
New insights into the seasonal diet of Antarctic krill using triacylglycerol and phospholipid fatty acids, and sterol composition. Polar Biol 2019. [DOI: 10.1007/s00300-019-02573-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
|
38
|
Dornan T, Fielding S, Saunders RA, Genner MJ. Swimbladder morphology masks Southern Ocean mesopelagic fish biomass. Proc Biol Sci 2019; 286:20190353. [PMID: 31138069 PMCID: PMC6545075 DOI: 10.1098/rspb.2019.0353] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Within the twilight of the oceanic mesopelagic realm, 200-1000 m below sea level, are potentially vast resources of fish. Collectively, these mesopelagic fishes are the most abundant vertebrates on Earth, and this global fish community plays a vital role in the function of oceanic ecosystems. The biomass of these fishes has recently been estimated using acoustic survey methods, which rely on echosounder-generated signals being reflected from gas-filled swimbladders and detected by transducers on vessels. Here, we use X-ray computed tomography scans to demonstrate that several of the most abundant species of mesopelagic fish in the Southern Ocean lack gas-filled swimbladders. We also show using catch data from survey trawls that the fish community switches from fish possessing gas-filled swimbladders to those lacking swimbladders as latitude increases towards the Antarctic continent. Thus, the acoustic surveys that repeatedly show a decrease in mesopelagic fish biomass towards polar environments systematically overlook a large proportion of fish species that dominate polar seas. Importantly, this includes lanternfish species that are key prey items for top predators in the region, including king penguins and elephant seals. This latitudinal community switch, from gas to non-gas dominance, has considerable implications for acoustic biomass estimation, ecosystem modelling and long-term monitoring of species at risk from climate change and potential exploitation.
Collapse
Affiliation(s)
- Tracey Dornan
- 1 British Antarctic Survey , High Cross, Madingley Road, Cambridge CB3 0ET , UK.,2 School of Biological Sciences, University of Bristol , Life Sciences Building, 24 Tyndall Avenue, Bristol BS8 1TQ , UK
| | - Sophie Fielding
- 1 British Antarctic Survey , High Cross, Madingley Road, Cambridge CB3 0ET , UK
| | - Ryan A Saunders
- 1 British Antarctic Survey , High Cross, Madingley Road, Cambridge CB3 0ET , UK
| | - Martin J Genner
- 2 School of Biological Sciences, University of Bristol , Life Sciences Building, 24 Tyndall Avenue, Bristol BS8 1TQ , UK
| |
Collapse
|
39
|
Freer JJ, Tarling GA, Collins MA, Partridge JC, Genner MJ. Predicting future distributions of lanternfish, a significant ecological resource within the Southern Ocean. DIVERS DISTRIB 2019. [DOI: 10.1111/ddi.12934] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Affiliation(s)
- Jennifer J. Freer
- School of Biological Sciences University of Bristol Bristol UK
- British Antarctic Survey Cambridge UK
| | | | - Martin A. Collins
- British Antarctic Survey Cambridge UK
- Centre for Environment Fisheries and Aquaculture Science Lowestoft UK
| | - Julian C. Partridge
- School of Biological Sciences and Oceans Institute University of Western Australia Crawley Western Australia Australia
| | | |
Collapse
|
40
|
Havermans C, Auel H, Hagen W, Held C, Ensor NS, A Tarling G. Predatory zooplankton on the move: Themisto amphipods in high-latitude marine pelagic food webs. ADVANCES IN MARINE BIOLOGY 2019; 82:51-92. [PMID: 31229150 DOI: 10.1016/bs.amb.2019.02.002] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Hyperiid amphipods are predatory pelagic crustaceans that are particularly prevalent in high-latitude oceans. Many species are likely to have co-evolved with soft-bodied zooplankton groups such as salps and medusae, using them as substrate, for food, shelter or reproduction. Compared to other pelagic groups, such as fish, euphausiids and soft-bodied zooplankton, hyperiid amphipods are poorly studied especially in terms of their distribution and ecology. Hyperiids of the genus Themisto, comprising seven distinct species, are key players in temperate and cold-water pelagic ecosystems where they reach enormous levels of biomass. In these areas, they are important components of marine food webs, and they are major prey for many commercially important fish and squid stocks. In northern parts of the Southern Ocean, Themisto are so prevalent that they are considered to take on the role that Antarctic krill play further south. Nevertheless, although they are around the same size as krill, and may also occur in swarms, their feeding behaviour and mode of reproduction are completely different, hence their respective impacts on ecosystem structure differ. Themisto are major predators of meso- and macrozooplankton in several major oceanic regions covering shelves to open ocean from the polar regions to the subtropics. Based on a combination of published and unpublished occurrence data, we plot out the distributions of the seven species of Themisto. Further, we consider the different predators that rely on Themisto for a large fraction of their diet, demonstrating their major importance for higher trophic levels such as fish, seabirds and mammals. For instance, T. gaudichaudii in the Southern Ocean comprises a major part of the diets of around 80 different species of squid, fish, seabirds and marine mammals, while T. libellula in the Bering Sea and Greenland waters is a main prey item for commercially exploited fish species. We also consider the ongoing and predicted range expansions of Themisto species in light of environmental changes. In northern high latitudes, sub-Arctic Themisto species are replacing truly Arctic, ice-bound, species. In the Southern Ocean, a range expansion of T. gaudichaudii is expected as water masses warm, impacting higher trophic levels and biogeochemical cycles. We identify the many knowlegde gaps that must be filled in order to evaluate, monitor and predict the ecological shifts that will result from the changing patterns of distribution and abundance of this important pelagic group.
Collapse
Affiliation(s)
- Charlotte Havermans
- BreMarE-Bremen Marine Ecology, Marine Zoology, Universität Bremen, Bremen, Germany; Alfred-Wegener-Institut Helmholtz-Zentrum für Polar-und Meeresforschung, Bremerhaven, Germany.
| | - Holger Auel
- BreMarE-Bremen Marine Ecology, Marine Zoology, Universität Bremen, Bremen, Germany
| | - Wilhelm Hagen
- BreMarE-Bremen Marine Ecology, Marine Zoology, Universität Bremen, Bremen, Germany
| | - Christoph Held
- Alfred-Wegener-Institut Helmholtz-Zentrum für Polar-und Meeresforschung, Bremerhaven, Germany
| | - Natalie S Ensor
- British Antarctic Survey, Natural Environment Research Council, Cambridge, United Kingdom
| | - Geraint A Tarling
- British Antarctic Survey, Natural Environment Research Council, Cambridge, United Kingdom
| |
Collapse
|
41
|
Seco J, Xavier JC, Coelho JP, Pereira B, Tarling G, Pardal MA, Bustamante P, Stowasser G, Brierley AS, Pereira ME. Spatial variability in total and organic mercury levels in Antarctic krill Euphausia superba across the Scotia Sea. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2019; 247:332-339. [PMID: 30685674 DOI: 10.1016/j.envpol.2019.01.031] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/01/2018] [Revised: 01/08/2019] [Accepted: 01/09/2019] [Indexed: 06/09/2023]
Abstract
Total and organic mercury concentrations were determined for males, females and juveniles of Euphausia superba collected at three discrete locations in the Scotia Sea (South Orkney Islands, South Georgia and Antarctic Polar Front) to assess spatial mercury variability in Antarctic krill. There was clear geographic differentiation in mercury concentrations, with specimens from the South Orkney Islands having total mercury concentrations 5 to 7 times higher than Antarctic krill from South Georgia and the Antarctic Polar Front. Mercury did not appear to accumulate with life-stage since juveniles had higher concentrations of total mercury (0.071 μg g-1 from South Orkney Islands; 0.014 μg g-1 from South Georgia) than adults (0.054 μg g-1 in females and 0.048 μg g-1 in males from South Orkney Islands; 0.006 μg g-1 in females and 0.007 μg g-1 in males from South Georgia). Results suggest that females may use egg laying as a mechanism to excrete mercury, with eggs having higher concentrations than the corresponding somatic tissue. Organic mercury makes up a minor percentage of total mercury (15-37%) with the percentage being greater in adults than in juveniles. When compared to euphausiids from other parts of the world, the concentration of mercury in Antarctic krill is within the same range, or higher, highlighting the global distribution of this contaminant. Given the high potential for biomagnification of mercury through food webs, concentrations in Antarctic krill may have deleterious effects on long-lived Antarctic krill predators.
Collapse
Affiliation(s)
- José Seco
- Department of Chemistry and CESAM, University of Aveiro, 3810-193, Aveiro, Portugal; Pelagic Ecology Research Group, Scottish Oceans Institute, University of St Andrews, St Andrews, KY16 8LB, UK.
| | - José C Xavier
- British Antarctic Survey, NERC, High Cross, Madingley Road, CB30ET, Cambridge, UK; MARE-Marine and Environmental Sciences Centre, Department of Life Sciences, University of Coimbra, 3000-456, Coimbra, Portugal
| | - João P Coelho
- Department of Biology and CESAM, University of Aveiro, 3810-193, Aveiro, Portugal
| | - Bárbara Pereira
- Department of Chemistry and CESAM, University of Aveiro, 3810-193, Aveiro, Portugal
| | - Geraint Tarling
- British Antarctic Survey, NERC, High Cross, Madingley Road, CB30ET, Cambridge, UK
| | - Miguel A Pardal
- CFE - Centre for Functional Ecology, Department of Life Sciences, University of Coimbra, Calçada Martim de Freitas, 3000-456, Coimbra, Portugal
| | - Paco Bustamante
- Littoral Environnement et Sociétés (LIENSs), UMR 7266 CNRS-Université de La Rochelle, 2 Rue Olympe de Gouges, 17000, La Rochelle, France
| | - Gabriele Stowasser
- British Antarctic Survey, NERC, High Cross, Madingley Road, CB30ET, Cambridge, UK
| | - Andrew S Brierley
- Pelagic Ecology Research Group, Scottish Oceans Institute, University of St Andrews, St Andrews, KY16 8LB, UK
| | - Maria E Pereira
- Department of Chemistry and CESAM, University of Aveiro, 3810-193, Aveiro, Portugal
| |
Collapse
|
42
|
Belcher A, Henson SA, Manno C, Hill SL, Atkinson A, Thorpe SE, Fretwell P, Ireland L, Tarling GA. Krill faecal pellets drive hidden pulses of particulate organic carbon in the marginal ice zone. Nat Commun 2019; 10:889. [PMID: 30792498 PMCID: PMC6385259 DOI: 10.1038/s41467-019-08847-1] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2018] [Accepted: 02/04/2019] [Indexed: 02/01/2023] Open
Abstract
The biological carbon pump drives a flux of particulate organic carbon (POC) through the ocean and affects atmospheric levels of carbon dioxide. Short term, episodic flux events are hard to capture with current observational techniques and may thus be underrepresented in POC flux estimates. We model the potential hidden flux of POC originating from Antarctic krill, whose swarming behaviour could result in a major conduit of carbon to depth through their rapid exploitation of phytoplankton blooms and bulk egestion of rapidly sinking faecal pellets (FPs). Our model results suggest a seasonal krill FP export flux of 0.039 GT C across the Southern Ocean marginal ice zone, corresponding to 17-61% (mean 35%) of current satellite-derived export estimates for this zone. The magnitude of our conservatively estimated flux highlights the important role of large, swarming macrozooplankton in POC export and, the need to incorporate such processes more mechanistically to improve model projections.
Collapse
Affiliation(s)
- A Belcher
- British Antarctic Survey, Cambridge, CB3 0ET, UK.
| | - S A Henson
- National Oceanography Centre, Southampton, SO14 3ZH, UK
| | - C Manno
- British Antarctic Survey, Cambridge, CB3 0ET, UK
| | - S L Hill
- British Antarctic Survey, Cambridge, CB3 0ET, UK
| | - A Atkinson
- Plymouth Marine Laboratory, Prospect Place, The Hoe, Plymouth, PL1 3DH, UK
| | - S E Thorpe
- British Antarctic Survey, Cambridge, CB3 0ET, UK
| | - P Fretwell
- British Antarctic Survey, Cambridge, CB3 0ET, UK
| | - L Ireland
- British Antarctic Survey, Cambridge, CB3 0ET, UK
| | - G A Tarling
- British Antarctic Survey, Cambridge, CB3 0ET, UK
| |
Collapse
|
43
|
Kohlbach D, Graeve M, Lange BA, David C, Schaafsma FL, van Franeker JA, Vortkamp M, Brandt A, Flores H. Dependency of Antarctic zooplankton species on ice algae-produced carbon suggests a sea ice-driven pelagic ecosystem during winter. GLOBAL CHANGE BIOLOGY 2018; 24:4667-4681. [PMID: 29999582 DOI: 10.1111/gcb.14392] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/05/2018] [Revised: 06/07/2018] [Accepted: 06/18/2018] [Indexed: 06/08/2023]
Abstract
How the abundant pelagic life of the Southern Ocean survives winter darkness, when the sea is covered by pack ice and phytoplankton production is nearly zero, is poorly understood. Ice-associated ("sympagic") microalgae could serve as a high-quality carbon source during winter, but their significance in the food web is so far unquantified. To better understand the importance of ice algae-produced carbon for the overwintering of Antarctic organisms, we investigated fatty acid (FA) and stable isotope compositions of 10 zooplankton species, and their potential sympagic and pelagic carbon sources. FA-specific carbon stable isotope compositions were used in stable isotope mixing models to quantify the contribution of ice algae-produced carbon (αIce ) to the body carbon of each species. Mean αIce estimates ranged from 4% to 67%, with large variations between species and depending on the FA used for the modelling. Integrating the αIce estimates from all models, the sympagic amphipod Eusirus laticarpus was the most dependent on ice algal carbon (αIce : 54%-67%), and the salp Salpa thompsoni showed the least dependency on ice algal carbon (αIce : 8%-40%). Differences in αIce estimates between FAs associated with short-term vs. long-term lipid pools suggested an increasing importance of ice algal carbon for many species as the winter season progressed. In the abundant winter-active copepod Calanus propinquus, mean αIce reached more than 50% in late winter. The trophic carbon flux from ice algae into this copepod was between 3 and 5 mg C m-2 day-1 . This indicates that copepods and other ice-dependent zooplankton species transfer significant amounts of carbon from ice algae into the pelagic system, where it fuels the food web, the biological carbon pump and elemental cycling. Understanding the role of ice algae-produced carbon in these processes will be the key to predictions of the impact of future sea ice decline on Antarctic ecosystem functioning.
Collapse
Affiliation(s)
- Doreen Kohlbach
- Alfred-Wegener-Institut Helmholtz-Zentrum für Polar-und Meeresforschung, Bremerhaven, Germany
- Centre for Natural History (CeNak), Zoological Museum, University of Hamburg, Hamburg, Germany
- Fisheries and Oceans Canada, Freshwater Institute, Winnipeg, Manitoba, Canada
| | - Martin Graeve
- Alfred-Wegener-Institut Helmholtz-Zentrum für Polar-und Meeresforschung, Bremerhaven, Germany
| | - Benjamin A Lange
- Alfred-Wegener-Institut Helmholtz-Zentrum für Polar-und Meeresforschung, Bremerhaven, Germany
- Centre for Natural History (CeNak), Zoological Museum, University of Hamburg, Hamburg, Germany
- Fisheries and Oceans Canada, Freshwater Institute, Winnipeg, Manitoba, Canada
| | - Carmen David
- Alfred-Wegener-Institut Helmholtz-Zentrum für Polar-und Meeresforschung, Bremerhaven, Germany
- Centre for Natural History (CeNak), Zoological Museum, University of Hamburg, Hamburg, Germany
| | | | | | - Martina Vortkamp
- Alfred-Wegener-Institut Helmholtz-Zentrum für Polar-und Meeresforschung, Bremerhaven, Germany
| | - Angelika Brandt
- Centre for Natural History (CeNak), Zoological Museum, University of Hamburg, Hamburg, Germany
- Senckenberg Naturmuseum, Frankfurt am Main, Germany
| | - Hauke Flores
- Alfred-Wegener-Institut Helmholtz-Zentrum für Polar-und Meeresforschung, Bremerhaven, Germany
- Centre for Natural History (CeNak), Zoological Museum, University of Hamburg, Hamburg, Germany
| |
Collapse
|
44
|
Young EF, Tysklind N, Meredith MP, de Bruyn M, Belchier M, Murphy EJ, Carvalho GR. Stepping stones to isolation: Impacts of a changing climate on the connectivity of fragmented fish populations. Evol Appl 2018; 11:978-994. [PMID: 29928304 PMCID: PMC5999207 DOI: 10.1111/eva.12613] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2017] [Accepted: 02/05/2018] [Indexed: 01/02/2023] Open
Abstract
In the marine environment, understanding the biophysical mechanisms that drive variability in larval dispersal and population connectivity is essential for estimating the potential impacts of climate change on the resilience and genetic structure of populations. Species whose populations are small, isolated and discontinuous in distribution will differ fundamentally in their response and resilience to environmental stress, compared with species that are broadly distributed, abundant and frequently exchange conspecifics. Here, we use an individual-based modelling approach, combined with a population genetics projection model, to consider the impacts of a warming climate on the population connectivity of two contrasting Antarctic fish species, Notothenia rossii and Champsocephalus gunnari. Focussing on the Scotia Sea region, sea surface temperatures are predicted to increase significantly by the end of the 21st century, resulting in reduced planktonic duration and increased egg and larval mortality. With shorter planktonic durations, the results of our study predict reduced dispersal of both species across the Scotia Sea, from Antarctic Peninsula sites to islands in the north and east, and increased dispersal among neighbouring sites, such as around the Antarctic Peninsula. Increased mortality modified the magnitude of population connectivity but had little effect on the overall patterns. Whilst the predicted changes in connectivity had little impact on the projected regional population genetic structure of N. rossii, which remained broadly genetically homogeneous within distances of ~1,500 km, the genetic isolation of C. gunnari populations in the northern Scotia Sea was predicted to increase with rising sea temperatures. Our study highlights the potential for increased isolation of island populations in a warming world, with implications for the resilience of populations and their ability to adapt to ongoing environmental change, a matter of high relevance to fisheries and ecosystem-level management.
Collapse
Affiliation(s)
| | - Niklas Tysklind
- School of Biological SciencesBangor UniversityBangorGwyneddUK
- Present address:
INRAUMR8172 EcoFoGAgroParisTechCiradCNRSUniversité des AntillesUniversité de GuyaneKourouFrance
| | | | - Mark de Bruyn
- School of Life and Environmental SciencesThe University of SydneySydneyNSWAustralia
| | | | | | | |
Collapse
|
45
|
Isotopic niches of sympatric Gentoo and Chinstrap Penguins: evidence of competition for Antarctic krill? Polar Biol 2018. [DOI: 10.1007/s00300-018-2306-5] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
|
46
|
Borowicz A, McDowall P, Youngflesh C, Sayre-McCord T, Clucas G, Herman R, Forrest S, Rider M, Schwaller M, Hart T, Jenouvrier S, Polito MJ, Singh H, Lynch HJ. Multi-modal survey of Adélie penguin mega-colonies reveals the Danger Islands as a seabird hotspot. Sci Rep 2018. [PMID: 29500389 DOI: 10.1038/s41598-018-22313] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/04/2023] Open
Abstract
Despite concerted international effort to track and interpret shifts in the abundance and distribution of Adélie penguins, large populations continue to be identified. Here we report on a major hotspot of Adélie penguin abundance identified in the Danger Islands off the northern tip of the Antarctic Peninsula (AP). We present the first complete census of Pygoscelis spp. penguins in the Danger Islands, estimated from a multi-modal survey consisting of direct ground counts and computer-automated counts of unmanned aerial vehicle (UAV) imagery. Our survey reveals that the Danger Islands host 751,527 pairs of Adélie penguins, more than the rest of AP region combined, and include the third and fourth largest Adélie penguin colonies in the world. Our results validate the use of Landsat medium-resolution satellite imagery for the detection of new or unknown penguin colonies and highlight the utility of combining satellite imagery with ground and UAV surveys. The Danger Islands appear to have avoided recent declines documented on the Western AP and, because they are large and likely to remain an important hotspot for avian abundance under projected climate change, deserve special consideration in the negotiation and design of Marine Protected Areas in the region.
Collapse
Affiliation(s)
- Alex Borowicz
- Department of Ecology and Evolution, 113 Life Sciences, Stony Brook University, Stony Brook, NY, 11794, United States
| | - Philip McDowall
- Department of Ecology and Evolution, 113 Life Sciences, Stony Brook University, Stony Brook, NY, 11794, United States
| | - Casey Youngflesh
- Department of Ecology and Evolution, 113 Life Sciences, Stony Brook University, Stony Brook, NY, 11794, United States
| | - Thomas Sayre-McCord
- Department of Applied Ocean Physics and Engineering, Woods Hole Oceanographic Institution, Woods Hole, MA, 02543, United States
- Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, MA, 02139, United States
| | - Gemma Clucas
- Department of Zoology, South Parks Road, Oxford, OX1 3PS, United Kingdom
- Natural Resources and the Environment, James Hall, University of New Hampshire, Durham, NH, 03824, United States
| | - Rachael Herman
- Department of Ecology and Evolution, 113 Life Sciences, Stony Brook University, Stony Brook, NY, 11794, United States
- Department of Oceanography and Coastal Sciences, Louisiana State University, Baton Rouge, 70803, United States
| | - Steven Forrest
- Antarctic Resource, Inc., 303 S. Broadway, Suite 200-190, Denver, CO, 80209, United States
| | - Melissa Rider
- Antarctic Resource, Inc., 303 S. Broadway, Suite 200-190, Denver, CO, 80209, United States
| | - Mathew Schwaller
- Department of Ecology and Evolution, 113 Life Sciences, Stony Brook University, Stony Brook, NY, 11794, United States
| | - Tom Hart
- Department of Zoology, South Parks Road, Oxford, OX1 3PS, United Kingdom
| | - Stéphanie Jenouvrier
- Biology Department, Woods Hole Oceanographic Institution, Woods Hole, MA, United States
- Centre d'Etudes Biologiques de Chizé, UMR 7372 Centre National de la Recherche Scientifique/Univ La Rochelle, Villiers en Bois, France
| | - Michael J Polito
- Department of Oceanography and Coastal Sciences, Louisiana State University, Baton Rouge, 70803, United States
- Biology Department, Woods Hole Oceanographic Institution, Woods Hole, MA, United States
| | - Hanumant Singh
- Department of Applied Ocean Physics and Engineering, Woods Hole Oceanographic Institution, Woods Hole, MA, 02543, United States
| | - Heather J Lynch
- Department of Ecology and Evolution, 113 Life Sciences, Stony Brook University, Stony Brook, NY, 11794, United States.
| |
Collapse
|
47
|
Multi-modal survey of Adélie penguin mega-colonies reveals the Danger Islands as a seabird hotspot. Sci Rep 2018; 8:3926. [PMID: 29500389 PMCID: PMC5834637 DOI: 10.1038/s41598-018-22313-w] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2017] [Accepted: 02/20/2018] [Indexed: 01/28/2023] Open
Abstract
Despite concerted international effort to track and interpret shifts in the abundance and distribution of Adélie penguins, large populations continue to be identified. Here we report on a major hotspot of Adélie penguin abundance identified in the Danger Islands off the northern tip of the Antarctic Peninsula (AP). We present the first complete census of Pygoscelis spp. penguins in the Danger Islands, estimated from a multi-modal survey consisting of direct ground counts and computer-automated counts of unmanned aerial vehicle (UAV) imagery. Our survey reveals that the Danger Islands host 751,527 pairs of Adélie penguins, more than the rest of AP region combined, and include the third and fourth largest Adélie penguin colonies in the world. Our results validate the use of Landsat medium-resolution satellite imagery for the detection of new or unknown penguin colonies and highlight the utility of combining satellite imagery with ground and UAV surveys. The Danger Islands appear to have avoided recent declines documented on the Western AP and, because they are large and likely to remain an important hotspot for avian abundance under projected climate change, deserve special consideration in the negotiation and design of Marine Protected Areas in the region.
Collapse
|
48
|
Impacts of rising sea temperature on krill increase risks for predators in the Scotia Sea. PLoS One 2018; 13:e0191011. [PMID: 29385153 PMCID: PMC5791976 DOI: 10.1371/journal.pone.0191011] [Citation(s) in RCA: 54] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2017] [Accepted: 12/27/2017] [Indexed: 02/02/2023] Open
Abstract
Climate change is a threat to marine ecosystems and the services they provide, and reducing fishing pressure is one option for mitigating the overall consequences for marine biota. We used a minimally realistic ecosystem model to examine how projected effects of ocean warming on the growth of Antarctic krill, Euphausia superba, might affect populations of krill and dependent predators (whales, penguins, seals, and fish) in the Scotia Sea. We also investigated the potential to mitigate depletion risk for predators by curtailing krill fishing at different points in the 21st century. The projected effects of ocean warming on krill biomass were strongest in the northern Scotia Sea, with a ≥40% decline in the mass of individual krill. Projections also suggest a 25% chance that krill biomass will fall below an established depletion threshold (75% of its unimpacted level), with consequent risks for some predator populations, especially penguins. Average penguin abundance declined by up to 30% of its unimpacted level, with up to a 50% chance of falling below the depletion threshold. Simulated krill fishing at currently permitted harvest rates further increased risks for depletion, and stopping fishing offset the increased risks associated with ocean warming in our model to some extent. These results varied by location and species group. Risk reductions at smaller spatial scales also differed from those at the regional level, which suggests that some predator populations may be more vulnerable than others to future changes in krill biomass. However, impacts on predators did not always map directly to those for krill. Our findings indicate the importance of identifying vulnerable marine populations and targeting protection measures at appropriate spatial scales, and the potential for spatially-structured management to avoid aggravating risks associated with rising ocean temperatures. This may help balance tradeoffs among marine ecosystem services in an uncertain future.
Collapse
|
49
|
Tarling GA, Ward P, Thorpe SE. Spatial distributions of Southern Ocean mesozooplankton communities have been resilient to long-term surface warming. GLOBAL CHANGE BIOLOGY 2018; 24:132-142. [PMID: 28850764 DOI: 10.1111/gcb.13834] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2017] [Accepted: 06/23/2017] [Indexed: 06/07/2023]
Abstract
The biogeographic response of oceanic planktonic communities to climatic change has a large influence on the future stability of marine food webs and the functioning of global biogeochemical cycles. Temperature plays a pivotal role in determining the distribution of these communities and ocean warming has the potential to cause major distributional shifts, particularly in polar regions where the thermal envelope is narrow. We considered the impact of long-term ocean warming on the spatial distribution of Southern Ocean mesozooplankton communities through examining plankton abundance in relation to sea surface temperature between two distinct periods, separated by around 60 years. Analyses considered 16 dominant mesozooplankton taxa (in terms of biomass and abundance) in the southwest Atlantic sector of the Southern Ocean, from net samples and in situ temperature records collected during the Discovery Investigations (1926-1938) and contemporary campaigns (1996-2013). Sea surface temperature was found to have increased significantly by 0.74°C between the two eras. The corresponding sea surface temperature at which community abundance peaked was also significantly higher in contemporary times, by 0.98°C. Spatial projections indicated that the geographical location of community peak abundance had remained the same between the two eras despite the poleward advance of sea surface isotherms. If the community had remained within the same thermal envelope as in the 1920s-1930s, community peak abundance would be 500 km further south in the contemporary era. Studies in the northern hemisphere have found that dominant taxa, such as calanoid copepods, have conserved their thermal niches and tracked surface isotherms polewards. The fact that this has not occurred in the Southern Ocean suggests that other selective pressures, particularly food availability and the properties of underlying water masses, place greater constraints on spatial distributions in this region. It further demonstrates that this community is thermally resilient to present levels of sea surface warming.
Collapse
Affiliation(s)
- Geraint A Tarling
- British Antarctic Survey, Natural Environment Research Council, Cambridge, UK
| | - Peter Ward
- British Antarctic Survey, Natural Environment Research Council, Cambridge, UK
| | - Sally E Thorpe
- British Antarctic Survey, Natural Environment Research Council, Cambridge, UK
| |
Collapse
|
50
|
Murphy EJ, Cavanagh RD, Drinkwater KF, Grant SM, Heymans JJ, Hofmann EE, Hunt GL, Johnston NM. Understanding the structure and functioning of polar pelagic ecosystems to predict the impacts of change. Proc Biol Sci 2017; 283:rspb.2016.1646. [PMID: 27928038 PMCID: PMC5204148 DOI: 10.1098/rspb.2016.1646] [Citation(s) in RCA: 67] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2016] [Accepted: 10/12/2016] [Indexed: 01/28/2023] Open
Abstract
The determinants of the structure, functioning and resilience of pelagic ecosystems across most of the polar regions are not well known. Improved understanding is essential for assessing the value of biodiversity and predicting the effects of change (including in biodiversity) on these ecosystems and the services they maintain. Here we focus on the trophic interactions that underpin ecosystem structure, developing comparative analyses of how polar pelagic food webs vary in relation to the environment. We highlight that there is not a singular, generic Arctic or Antarctic pelagic food web, and, although there are characteristic pathways of energy flow dominated by a small number of species, alternative routes are important for maintaining energy transfer and resilience. These more complex routes cannot, however, provide the same rate of energy flow to highest trophic-level species. Food-web structure may be similar in different regions, but the individual species that dominate mid-trophic levels vary across polar regions. The characteristics (traits) of these species are also different and these differences influence a range of food-web processes. Low functional redundancy at key trophic levels makes these ecosystems particularly sensitive to change. To develop models for projecting responses of polar ecosystems to future environmental change, we propose a conceptual framework that links the life histories of pelagic species and the structure of polar food webs.
Collapse
Affiliation(s)
- E J Murphy
- British Antarctic Survey, NERC, Cambridge, UK
| | | | | | - S M Grant
- British Antarctic Survey, NERC, Cambridge, UK
| | - J J Heymans
- Scottish Association for Marine Science, Oban, Argyll, UK
| | - E E Hofmann
- Center for Coastal and Physical Oceanography, Old Dominion University, Norfolk, VA, USA
| | - G L Hunt
- School of Aquatic and Fishery Sciences, University of Washington, Seattle, WA, USA
| | | |
Collapse
|