1
|
Cole MR, Ware C, McHuron EA, Costa DP, Ponganis PJ, McDonald BI. Deep dives and high tissue density increase mean dive costs in California sea lions (Zalophus californianus). J Exp Biol 2023; 226:jeb246059. [PMID: 37345474 DOI: 10.1242/jeb.246059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Accepted: 06/14/2023] [Indexed: 06/23/2023]
Abstract
Diving is central to the foraging strategies of many marine mammals and seabirds. Still, the effect of dive depth on foraging cost remains elusive because energy expenditure is difficult to measure at fine temporal scales in wild animals. We used depth and acceleration data from eight lactating California sea lions (Zalophus californianus) to model body density and investigate the effect of dive depth and tissue density on rates of energy expenditure. We calculated body density in 5 s intervals from the rate of gliding descent. We modeled body density across depth in each dive, revealing high tissue densities and diving lung volumes (DLVs). DLV increased with dive depth in four individuals. We used the buoyancy calculated from dive-specific body-density models and drag calculated from swim speed to estimate metabolic power and cost of transport in 5 s intervals during descents and ascents. Deeper dives required greater mean power for round-trip vertical transit, especially in individuals with higher tissue density. These trends likely follow from increased mean swim speed and buoyant hinderance that increasingly outweighs buoyant aid in deeper dives. This suggests that deep diving is either a 'high-cost, high-reward' strategy or an energetically expensive option to access prey when prey in shallow waters are limited, and that poor body condition may increase the energetic costs of deep diving. These results add to our mechanistic understanding of how foraging strategy and body condition affect energy expenditure in wild breath-hold divers.
Collapse
Affiliation(s)
- Mason R Cole
- Moss Landing Marine Laboratories, San Jose State University, 8272 Moss Landing Rd, Moss Landing, CA 95039, USA
| | - Colin Ware
- Center for Coastal and Ocean Mapping, University of New Hampshire, Durham, NH 03924, USA
| | - Elizabeth A McHuron
- Cooperative Institute for Climate, Ocean, and Ecosystem Studies, University of Washington, Seattle, WA 98105, USA
| | - Daniel P Costa
- Department of Ecology and Evolutionary Biology, University of California, Santa Cruz, CA 95064, USA
| | - Paul J Ponganis
- Scripps Institution of Oceanography, University of California San Diego, Center for Marine Biodiversity and Biomedicine, 8655 Kennel Way, La Jolla, CA 92037, USA
| | - Birgitte I McDonald
- Moss Landing Marine Laboratories, San Jose State University, 8272 Moss Landing Rd, Moss Landing, CA 95039, USA
| |
Collapse
|
2
|
Strubbe D, Jiménez L, Barbosa AM, Davis AJS, Lens L, Rahbek C. Mechanistic models project bird invasions with accuracy. Nat Commun 2023; 14:2520. [PMID: 37130835 PMCID: PMC10154326 DOI: 10.1038/s41467-023-38329-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Accepted: 04/26/2023] [Indexed: 05/04/2023] Open
Abstract
Invasive species pose a major threat to biodiversity and inflict massive economic costs. Effective management of bio-invasions depends on reliable predictions of areas at risk of invasion, as they allow early invader detection and rapid responses. Yet, considerable uncertainty remains as to how to predict best potential invasive distribution ranges. Using a set of mainly (sub)tropical birds introduced to Europe, we show that the true extent of the geographical area at risk of invasion can accurately be determined by using ecophysiological mechanistic models that quantify species' fundamental thermal niches. Potential invasive ranges are primarily constrained by functional traits related to body allometry and body temperature, metabolic rates, and feather insulation. Given their capacity to identify tolerable climates outside of contemporary realized species niches, mechanistic predictions are well suited for informing effective policy and management aimed at preventing the escalating impacts of invasive species.
Collapse
Affiliation(s)
- Diederik Strubbe
- Terrestrial Ecology Unit (TEREC), Department of Biology, Ghent University, K.L. Ledeganckstraat 35, 9000, Gent, Belgium.
- Center for Macroecology, Evolution, and Climate (CMEC), GLOBE Institute, University of Copenhagen, 2100, Copenhagen Ø, Denmark.
| | - Laura Jiménez
- School of Life Sciences, University of Hawai'i at Mānoa, 2538 McCarthy Mall, Honolulu, HI, 96822, USA
- Centro de Modelamiento Matemático (CNRS IRL2807), Universidad de Chile, Santiago, Chile
| | - A Márcia Barbosa
- CICGE-Centro de Investigação em Ciências Geo-Espaciais, Alameda do Monte da Virgem, 4430-146, Vila Nova de Gaia, Portugal
| | - Amy J S Davis
- Terrestrial Ecology Unit (TEREC), Department of Biology, Ghent University, K.L. Ledeganckstraat 35, 9000, Gent, Belgium
- Ecology, Department of Biology, University of Konstanz, Universitätsstraße 10, 78464, Konstanz, Germany
| | - Luc Lens
- Terrestrial Ecology Unit (TEREC), Department of Biology, Ghent University, K.L. Ledeganckstraat 35, 9000, Gent, Belgium
| | - Carsten Rahbek
- Center for Macroecology, Evolution, and Climate (CMEC), GLOBE Institute, University of Copenhagen, 2100, Copenhagen Ø, Denmark
| |
Collapse
|
3
|
Ste Marie E, Grémillet D, Fort J, Patterson A, Brisson-Curadeau É, Clairbaux M, Perret S, Speakman J, Elliott KH. Accelerating animal energetics: High dive costs in a small seabird disrupt the dynamic body acceleration - energy expenditure relationship. J Exp Biol 2022; 225:275487. [PMID: 35593255 DOI: 10.1242/jeb.243252] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Accepted: 05/12/2022] [Indexed: 11/20/2022]
Abstract
Accelerometry has been widely used to estimate energy expenditure in a broad array of terrestrial and aquatic species. However, a recent reappraisal of the method showed that relationships between dynamic body acceleration (DBA) and energy expenditure weaken as the proportion of non-mechanical costs increase. Aquatic air breathing species often exemplify this pattern, as buoyancy, thermoregulation and other physiological mechanisms disproportionately affect oxygen consumption during dives. Combining biologging with the doubly-labelled water method, we simultaneously recorded daily energy expenditure (DEE) and triaxial acceleration in one of the world's smallest wing-propelled breath-hold divers, the dovekie (Alle alle). These data were used to estimate the activity-specific costs of flying and diving and to test whether overall dynamic body acceleration (ODBA) is a reliable predictor of DEE in this abundant seabird. Average DEE for chick-rearing dovekies was 604±119 kJ/d across both sampling years. Despite recording lower stroke frequencies for diving than for flying (in line with allometric predictions for auks), dive costs were estimated to surpass flight costs in our sample of birds (flying: 7.24, diving: 9.37 X BMR). As expected, ODBA was not an effective predictor of DEE in this species. However, accelerometer-derived time budgets did accurately estimate DEE in dovekies. This work represents an empirical example of how the apparent energetic costs of buoyancy and thermoregulation limit the effectiveness of ODBA as the sole predictor of overall energy expenditure in small shallow-diving endotherms.
Collapse
Affiliation(s)
- Eric Ste Marie
- Department of Natural Resource Sciences, McGill University, Ste Anne-de-Bellevue, Quebec, Canada
| | - David Grémillet
- Centre d'Etudes Biologiques de Chizé (CEBC), UMR 7372 CNRS - La Rochelle Université, Villiers-en-Bois, France.,Percy FitzPatrick Institute of African Ornithology, University of Cape Town, Rondebosch, South Africa
| | - Jérôme Fort
- Littoral, Environnement et Sociétés (LIENSs), UMR7266 CNRS - La Rochelle Université, 17000 La Rochelle, France
| | - Allison Patterson
- Department of Natural Resource Sciences, McGill University, Ste Anne-de-Bellevue, Quebec, Canada
| | - Émile Brisson-Curadeau
- Department of Natural Resource Sciences, McGill University, Ste Anne-de-Bellevue, Quebec, Canada
| | - Manon Clairbaux
- School of Biological, Environmental and Earth Sciences, University College Cork, Cork T23 N73K, Ireland
| | - Samuel Perret
- CEFE, Univ Montpellier, CNRS, EPHE, IRD, Univ Paul Valéry Montpellier 3, Montpellier
| | - John Speakman
- Institute of Biological and Environmental Sciences, University of Aberdeen, Aberdeen, UK
| | - Kyle H Elliott
- Department of Natural Resource Sciences, McGill University, Ste Anne-de-Bellevue, Quebec, Canada
| |
Collapse
|
4
|
Hicks O, Kato A, Angelier F, Wisniewska DM, Hambly C, Speakman JR, Marciau C, Ropert-Coudert Y. Acceleration predicts energy expenditure in a fat, flightless, diving bird. Sci Rep 2020; 10:21493. [PMID: 33299039 PMCID: PMC7726140 DOI: 10.1038/s41598-020-78025-7] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2020] [Accepted: 11/18/2020] [Indexed: 12/15/2022] Open
Abstract
Energy drives behaviour and life history decisions, yet it can be hard to measure at fine scales in free-moving animals. Accelerometry has proven a powerful tool to estimate energy expenditure, but requires calibration in the wild. This can be difficult in some environments, or for particular behaviours, and validations have produced equivocal results in some species, particularly air-breathing divers. It is, therefore, important to calibrate accelerometry across different behaviours to understand the most parsimonious way to estimate energy expenditure in free-living conditions. Here, we combine data from miniaturised acceleration loggers on 58 free-living Adélie penguins with doubly labelled water (DLW) measurements of their energy expenditure over several days. Across different behaviours, both in water and on land, dynamic body acceleration was a good predictor of independently measured DLW-derived energy expenditure (R2 = 0.72). The most parsimonious model suggested different calibration coefficients are required to predict behaviours on land versus foraging behaviour in water (R2 = 0.75). Our results show that accelerometry can be used to reliably estimate energy expenditure in penguins, and we provide calibration equations for estimating metabolic rate across several behaviours in the wild.
Collapse
Affiliation(s)
- Olivia Hicks
- Centre D'Etudes Biologiques de Chizé, CNRS, La Rochelle Université, UMR 7372, Villiers-en-Bois, France.
| | - Akiko Kato
- Centre D'Etudes Biologiques de Chizé, CNRS, La Rochelle Université, UMR 7372, Villiers-en-Bois, France
| | - Frederic Angelier
- Centre D'Etudes Biologiques de Chizé, CNRS, La Rochelle Université, UMR 7372, Villiers-en-Bois, France
| | - Danuta M Wisniewska
- Centre D'Etudes Biologiques de Chizé, CNRS, La Rochelle Université, UMR 7372, Villiers-en-Bois, France
| | - Catherine Hambly
- Institute of Biological and Environmental Sciences, University of Aberdeen, Aberdeen, UK
| | - John R Speakman
- Institute of Biological and Environmental Sciences, University of Aberdeen, Aberdeen, UK
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, People's Republic of China
| | - Coline Marciau
- Centre D'Etudes Biologiques de Chizé, CNRS, La Rochelle Université, UMR 7372, Villiers-en-Bois, France
| | - Yan Ropert-Coudert
- Centre D'Etudes Biologiques de Chizé, CNRS, La Rochelle Université, UMR 7372, Villiers-en-Bois, France
| |
Collapse
|
5
|
Roussel D, Le Coadic M, Rouanet JL, Duchamp C. Skeletal muscle metabolism in sea-acclimatized king penguins. I. Thermogenic mechanisms. J Exp Biol 2020; 223:jeb233668. [PMID: 32968000 DOI: 10.1242/jeb.233668] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2020] [Accepted: 09/10/2020] [Indexed: 12/25/2022]
Abstract
At fledging, king penguin juveniles undergo a major energetic challenge to overcome the intense and prolonged energy demands for thermoregulation and locomotion imposed by life in cold seas. Among other responses, sea acclimatization triggers fuel selection in skeletal muscle metabolism towards lipid oxidation in vitro, which is reflected by a drastic increase in lipid-induced thermogenesis in vivo However, the exact nature of skeletal muscle thermogenic mechanisms (shivering and/or non-shivering thermogenesis) remains undefined. The aim of the present study was to determine in vivo whether the capacity for non-shivering thermogenesis was enhanced by sea acclimatization. We measured body temperature, metabolic rate, heart rate and shivering activity in fully immersed king penguins (Aptenodytes patagonicus) exposed to water temperatures ranging from 12 to 29°C. Results from terrestrial pre-fledging juveniles were compared with those from sea-acclimatized immature penguins (hereafter 'immatures'). The capacity for thermogenesis in water was as effective in juveniles as in immatures, while the capacity for non-shivering thermogenesis was not reinforced by sea acclimatization. This result suggests that king penguins mainly rely on skeletal muscle contraction (shivering or locomotor activity) to maintain endothermy at sea. Sea-acclimatized immature penguins also exhibited higher shivering efficiency and oxygen pulse (amount of oxygen consumed or energy expended per heartbeat) than pre-fledging juvenile birds. Such increase in shivering and cardiovascular efficiency may favor a more efficient activity-thermoregulatory heat substitution providing penguins with the aptitude to survive the tremendous energetic challenge imposed by marine life in cold circumpolar oceans.
Collapse
Affiliation(s)
- Damien Roussel
- Université de Lyon, Université Claude Bernard Lyon 1, CNRS, ENTPE, UMR5023 LEHNA, F-69622 Villeurbanne, France
| | - Marion Le Coadic
- Université de Lyon, Université Claude Bernard Lyon 1, CNRS, ENTPE, UMR5023 LEHNA, F-69622 Villeurbanne, France
| | - Jean-Louis Rouanet
- Université de Lyon, Université Claude Bernard Lyon 1, CNRS, ENTPE, UMR5023 LEHNA, F-69622 Villeurbanne, France
| | - Claude Duchamp
- Université de Lyon, Université Claude Bernard Lyon 1, CNRS, ENTPE, UMR5023 LEHNA, F-69622 Villeurbanne, France
| |
Collapse
|
6
|
Favilla AB, Costa DP. Thermoregulatory Strategies of Diving Air-Breathing Marine Vertebrates: A Review. Front Ecol Evol 2020. [DOI: 10.3389/fevo.2020.555509] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
|
7
|
González-Medina E, Cabello-Vergel J, Playà-Montmany N, Villegas A, Parejo M, Abad-Gómez JM, Sánchez-Guzmán JM, Masero JA. Going to sleep with a full belly: Thermal substitution by specific dynamic action in shorebirds. Comp Biochem Physiol A Mol Integr Physiol 2020; 244:110689. [PMID: 32197969 DOI: 10.1016/j.cbpa.2020.110689] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2019] [Revised: 03/09/2020] [Accepted: 03/10/2020] [Indexed: 10/24/2022]
Abstract
Many bird species occupy habitats where environmental temperatures fall well below their thermoneutral zone (TNZ), so they must deal with high energy costs of thermoregulation to keep in heat balance. In such circumstances, specific dynamic action (SDA) - also referred to as heat increment of feeding - could be used to substitute for these high thermoregulatory costs. If birds ingest food before going to roost in cold environments, the SDA will be beneficial as an energy-conserving mechanism by thermal substitution. We investigated the magnitude and duration of SDA in a small-sized shorebird, the dunlin Calidris alpina, while feeding on living prey. We simulated in the aviary the food availability of a semidiurnal tidal cycle, and calculated the thermal substitution by SDA below their TNZ at the beginning of the "high tide" (resting period), after feeding ad libitum during the "low tide" (feeding period). Within TNZ (25 °C), dunlins consumed 12% (2.15 kJ) of the gross energy intake in excess by the SDA, with a duration of ~95 min. At 10 °C, i.e. below the lower critical limit of TNZ, SDA magnitude and duration were reduced by 29% and 31%, respectively. The amount of food ingested significantly affected the duration and magnitude of SDA, as well as the dunlin's body temperature. Thermal substitution by SDA saved 11% of the dunlin's theoretical daily energy requirement during winter. This thermal substitution could be commonly used by birds going to roost in cold climates. Interacting with other different behavioral and/or physiological strategies would help to maintain lower energetic costs and enhance survival in cold environments.
Collapse
Affiliation(s)
- Erick González-Medina
- Conservation Biology Research Group, Área de Zoología, Universidad de Extremadura, Badajoz 06006, Spain; Posgrado de Ciencias del Mar y Limnología, Universidad Nacional Autónoma de México, Ciudad Universitaria, 04510 Ciudad de México, Mexico.
| | - Julián Cabello-Vergel
- Conservation Biology Research Group, Área de Zoología, Universidad de Extremadura, Badajoz 06006, Spain
| | - Núria Playà-Montmany
- Conservation Biology Research Group, Área de Zoología, Universidad de Extremadura, Badajoz 06006, Spain
| | - Auxiliadora Villegas
- Conservation Biology Research Group, Área de Zoología, Universidad de Extremadura, Badajoz 06006, Spain
| | - Manuel Parejo
- Conservation Biology Research Group, Área de Zoología, Universidad de Extremadura, Badajoz 06006, Spain
| | - José M Abad-Gómez
- Conservation Biology Research Group, Área de Zoología, Universidad de Extremadura, Badajoz 06006, Spain
| | - Juan M Sánchez-Guzmán
- Conservation Biology Research Group, Área de Zoología, Universidad de Extremadura, Badajoz 06006, Spain
| | - José A Masero
- Conservation Biology Research Group, Área de Zoología, Universidad de Extremadura, Badajoz 06006, Spain
| |
Collapse
|
8
|
Tyler NJC, Gregorini P, Parker KL, Hazlerigg DG. Animal responses to environmental variation: physiological mechanisms in ecological models of performance in deer (Cervidae). ANIMAL PRODUCTION SCIENCE 2020. [DOI: 10.1071/an19418] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Context
Proper assessment of the consequences of environmental variation on animals depends on our ability to predict how they will perform under different circumstances. This requires two kinds of information. We need to know which environmental factors influence animal performance and their mode of action, i.e. whether a given factor acts alone or through interaction with other factors, directly or indirectly, instantaneously or after a delay and so on. This essentially correlative process falls within the domain of ecology. We also need to know what determines the direction, amplitude and limits of animal responses to environmental variation and change. This essentially experimental process falls within the domain of physiology. Physiological mechanisms are frequently poorly integrated within the correlative framework of ecological models. This is evident where programmed responses are attributed to environmental forcing and where the effect of environmental factors is evaluated without reference to the physiological state and regulatory capacity of the animal on which they act.
Aims
Here we examine ways in which the impacts of external (environmental) stimuli and constraints on performance are moderated by the animals (deer) on which they impinge.
Key results
The analysis shows (1) how trade-offs in foraging behaviour, illustrated by the timing of activity under the threat of predation, are modulated by integration of short-term metabolic feedback and animal emotions that influence the motivation to feed, (2) how the influence of thermal and nutritional challenges on performance, illustrated by the effect of weather conditions during gestation on the body mass of reindeer (Rangifer tarandus) calves at weaning, depends on the metabolic state of the female at the time the challenge occurs and (3) how annual cycles of growth, appetite and reproduction in seasonal species of deer are governed by innate circannual timers, such that their responses to seasonal changes in food supply are anticipatory and governed by rheostatic systems that adjust homeostatic set- points, rather than being purely reactive.
Conclusions
Concepts like ‘maintenance’ and ‘energy balance’, which were originally derived from non-seasonal domestic ruminants, are unable to account for annual cycles in metabolic and nutritional status in seasonal deer. Contrasting seasonal phenotypes (fat and anoestrous in summer, lean and oestrous in winter) represent adaptive solutions to the predictable challenges presented by contrasting seasonal environments, not failure of homeostasis in one season and its success in another.
Implications
The analysis and interpretation of responses to environment in terms of interaction between the external stimuli and the internal systems that govern them offer a more comprehensive, multifaceted understanding of the influence of environmental variation on performance in deer and open lines of ecological enquiry defined by non-intuitive aspects of animal function.
Collapse
|
9
|
Wilson RP, Börger L, Holton MD, Scantlebury DM, Gómez-Laich A, Quintana F, Rosell F, Graf PM, Williams H, Gunner R, Hopkins L, Marks N, Geraldi NR, Duarte CM, Scott R, Strano MS, Robotka H, Eizaguirre C, Fahlman A, Shepard ELC. Estimates for energy expenditure in free-living animals using acceleration proxies: A reappraisal. J Anim Ecol 2019; 89:161-172. [PMID: 31173339 DOI: 10.1111/1365-2656.13040] [Citation(s) in RCA: 99] [Impact Index Per Article: 19.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2018] [Accepted: 04/10/2019] [Indexed: 11/30/2022]
Abstract
It is fundamentally important for many animal ecologists to quantify the costs of animal activities, although it is not straightforward to do so. The recording of triaxial acceleration by animal-attached devices has been proposed as a way forward for this, with the specific suggestion that dynamic body acceleration (DBA) be used as a proxy for movement-based power. Dynamic body acceleration has now been validated frequently, both in the laboratory and in the field, although the literature still shows that some aspects of DBA theory and practice are misunderstood. Here, we examine the theory behind DBA and employ modelling approaches to assess factors that affect the link between DBA and energy expenditure, from the deployment of the tag, through to the calibration of DBA with energy use in laboratory and field settings. Using data from a range of species and movement modes, we illustrate that vectorial and additive DBA metrics are proportional to each other. Either can be used as a proxy for energy and summed to estimate total energy expended over a given period, or divided by time to give a proxy for movement-related metabolic power. Nonetheless, we highlight how the ability of DBA to predict metabolic rate declines as the contribution of non-movement-related factors, such as heat production, increases. Overall, DBA seems to be a substantive proxy for movement-based power but consideration of other movement-related metrics, such as the static body acceleration and the rate of change of body pitch and roll, may enable researchers to refine movement-based metabolic costs, particularly in animals where movement is not characterized by marked changes in body acceleration.
Collapse
Affiliation(s)
- Rory P Wilson
- Department of Biosciences, Swansea University, Swansea, UK
| | - Luca Börger
- Department of Biosciences, Swansea University, Swansea, UK
| | - Mark D Holton
- Department of Computing Science, Swansea University, Swansea, UK
| | - D Michael Scantlebury
- School of Biological Sciences, Institute for Global Food Security, Queen's University Belfast, Belfast, UK
| | - Agustina Gómez-Laich
- Instituto de Biología de Organismos Marinos IBIOMAR-CONICET, Puerto Madryn, Argentina
| | - Flavio Quintana
- Instituto de Biología de Organismos Marinos IBIOMAR-CONICET, Puerto Madryn, Argentina
| | - Frank Rosell
- Department of Natural Sciences and Environmental Health, Faculty of Technology, Natural Sciences, and Maritime Sciences, University of South-Eastern Norway, Bø i Telemark, Norway
| | - Patricia M Graf
- Department of Forestry and Renewable Forest Resources, Biotechnical Faculty, University of Ljubljana, Ljubljana, Slovenia.,Institute of Wildlife Biology and Game Management, University of Natural Resources and Life Sciences, Vienna, Vienna, Austria
| | | | - Richard Gunner
- Department of Biosciences, Swansea University, Swansea, UK
| | - Lloyd Hopkins
- Department of Biosciences, Swansea University, Swansea, UK
| | - Nikki Marks
- School of Biological Sciences, Institute for Global Food Security, Queen's University Belfast, Belfast, UK
| | - Nathan R Geraldi
- Red Sea Research Centre and Computational Biology Research Center, King Abdullah University of Science and Technology, Thuwal, Saudi Arabia
| | - Carlos M Duarte
- Red Sea Research Centre and Computational Biology Research Center, King Abdullah University of Science and Technology, Thuwal, Saudi Arabia
| | - Rebecca Scott
- Geomar Helmholz Centre for Ocean Research Kiel, Kiel, Germany
| | - Michael S Strano
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
| | | | - Christophe Eizaguirre
- School of Biological and Chemical Sciences, Queen Mary University of London, London, UK
| | - Andreas Fahlman
- Departamento de Investigación, Fundación Oceanogràfic de la Comunidad Valenciana, Valencia, Spain
| | - Emily L C Shepard
- Department of Biosciences, Swansea University, Swansea, UK.,Max Planck Institute for Ornithology, Radolfzell, Germany
| |
Collapse
|
10
|
Lewden A, Enstipp MR, Bonnet B, Bost C, Georges JY, Handrich Y. Thermal strategies of king penguins during prolonged fasting in water. ACTA ACUST UNITED AC 2017; 220:4600-4611. [PMID: 29051228 DOI: 10.1242/jeb.168807] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2017] [Accepted: 10/13/2017] [Indexed: 11/20/2022]
Abstract
Most animals experience periods of unfavourable conditions, challenging their daily energy balance. During breeding, king penguins fast voluntarily for up to 1.5 months in the colony, after which they replenish their energy stores at sea. However, at sea, birds might encounter periods of low foraging profitability, forcing them to draw from previously stored energy (e.g. subcutaneous fat). Accessing peripheral fat stores requires perfusion, increasing heat loss and thermoregulatory costs. Hence, how these birds balance the conflicting demands of nutritional needs and thermoregulation is unclear. We investigated the physiological responses of king penguins to fasting in cold water by: (1) monitoring tissue temperatures, as a proxy of tissue perfusion, at four distinct sites (deep and peripheral); and (2) recording their oxygen consumption rate while birds floated inside a water tank. Despite frequent oscillations, temperatures of all tissues often reached near-normothermic levels, indicating that birds maintained perfusion to peripheral tissues throughout their fasting period in water. The oxygen consumption rate of birds increased with fasting duration in water, while it was also higher when the flank tissue was warmer, indicating greater perfusion. Hence, fasting king penguins in water maintained peripheral perfusion, despite the associated greater heat loss and, therefore, thermoregulatory costs, probably to access subcutaneous fat stores. Hence, the observed normothermia in peripheral tissues of king penguins at sea, upon completion of a foraging bout, is likely explained by their nutritional needs: depositing free fatty acids (FFA) in subcutaneous tissues after profitable foraging or mobilizing FFA to fuel metabolism when foraging success was insufficient.
Collapse
Affiliation(s)
- Agnès Lewden
- Université de Strasbourg, CNRS, Département Ecologie, Physiologie et Ethologie, IPHC UMR 7178, F-67000 Strasbourg, France
| | - Manfred R Enstipp
- Université de Strasbourg, CNRS, Département Ecologie, Physiologie et Ethologie, IPHC UMR 7178, F-67000 Strasbourg, France.,Centre d'Etudes Biologiques de Chizé, CNRS, UMR 7372, 79360 Villiers en Bois, France
| | - Batshéva Bonnet
- Centre d'Etudes Biologiques de Chizé, CNRS, UMR 7372, 79360 Villiers en Bois, France
| | - Caroline Bost
- Centre d'Etudes Biologiques de Chizé, CNRS, UMR 7372, 79360 Villiers en Bois, France
| | - Jean-Yves Georges
- Université de Strasbourg, CNRS, Département Ecologie, Physiologie et Ethologie, IPHC UMR 7178, F-67000 Strasbourg, France
| | - Yves Handrich
- Université de Strasbourg, CNRS, Département Ecologie, Physiologie et Ethologie, IPHC UMR 7178, F-67000 Strasbourg, France
| |
Collapse
|
11
|
Lewden A, Enstipp MR, Picard B, van Walsum T, Handrich Y. High peripheral temperatures in king penguins while resting at sea: thermoregulation versus fat deposition. ACTA ACUST UNITED AC 2017. [PMID: 28623225 DOI: 10.1242/jeb.158980] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Marine endotherms living in cold water face an energetically challenging situation. Unless properly insulated, these animals will lose heat rapidly. The field metabolic rate of king penguins at sea is about twice that on land. However, when at sea, their metabolic rate is higher during extended resting periods at the surface than during foraging, when birds descend to great depth in pursuit of their prey. This is most likely explained by differences in thermal status. During foraging, peripheral vasoconstriction leads to a hypothermic shell, which is rewarmed during extended resting bouts at the surface. Maintaining peripheral perfusion during rest in cold water, however, will greatly increase heat loss and, therefore, thermoregulatory costs. Two hypotheses have been proposed to explain the maintenance of a normothermic shell during surface rest: (1) to help the unloading of N2 accumulated during diving; and (2) to allow the storage of fat in subcutaneous tissue, following the digestion of food. We tested the latter hypothesis by maintaining king penguins within a shallow seawater tank, while we recorded tissue temperature at four distinct sites. When king penguins were released into the tank during the day, their body temperature immediately declined. However, during the night, periodic rewarming of abdominal and peripheral tissues occurred, mimicking temperature patterns observed in the wild. Body temperatures, particularly in the flank, also depended on body condition and were higher in 'lean' birds (after 10 days of fasting) than in 'fat' birds. While not explicitly tested, our observation that nocturnal rewarming persists in the absence of diving activity during the day does not support the N2 unloading hypothesis. Rather, differences in temperature changes throughout the day and night, and the effect of body condition/mass supports the hypothesis that tissue perfusion during rest is required for nutritional needs.
Collapse
Affiliation(s)
- Agnès Lewden
- Université de Strasbourg, CNRS, Département Ecologie, Physiologie et Ethologie, IPHC UMR 7178, F-67000 Strasbourg, France
| | - Manfred R Enstipp
- Université de Strasbourg, CNRS, Département Ecologie, Physiologie et Ethologie, IPHC UMR 7178, F-67000 Strasbourg, France.,Centre d'Etudes Biologiques de Chizé, CNRS, UMR 7372, 79360 Villiers en Bois, France
| | - Baptiste Picard
- Centre d'Etudes Biologiques de Chizé, CNRS, UMR 7372, 79360 Villiers en Bois, France
| | - Tessa van Walsum
- University of Roehampton, Department of Life Sciences, London SW15 4JD, UK
| | - Yves Handrich
- Université de Strasbourg, CNRS, Département Ecologie, Physiologie et Ethologie, IPHC UMR 7178, F-67000 Strasbourg, France
| |
Collapse
|
12
|
Halsey LG. Relationships grow with time: a note of caution about energy expenditure‐proxy correlations, focussing on accelerometry as an example. Funct Ecol 2017. [DOI: 10.1111/1365-2435.12822] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Lewis G. Halsey
- University of Roehampton Holybourne Avenue LondonSW15 4JD UK
| |
Collapse
|
13
|
Klinger DH, Dale JJ, Gleiss AC, Brandt T, Estess EE, Gardner L, Machado B, Norton A, Rodriguez L, Stiltner J, Farwell C, Block BA. The effect of temperature on postprandial metabolism of yellowfin tuna (Thunnus albacares). Comp Biochem Physiol A Mol Integr Physiol 2016; 195:32-8. [DOI: 10.1016/j.cbpa.2016.01.005] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2015] [Revised: 01/05/2016] [Accepted: 01/07/2016] [Indexed: 11/16/2022]
|
14
|
Rezende EL, Bacigalupe LD. Thermoregulation in endotherms: physiological principles and ecological consequences. J Comp Physiol B 2015; 185:709-27. [PMID: 26025431 DOI: 10.1007/s00360-015-0909-5] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2014] [Revised: 04/18/2015] [Accepted: 04/27/2015] [Indexed: 01/01/2023]
Abstract
In a seminal study published nearly 70 years ago, Scholander et al. (Biol Bull 99:259-271, 1950) employed Newton's law of cooling to describe how metabolic rates (MR) in birds and mammals vary predictably with ambient temperature (T a). Here, we explore the theoretical consequences of Newton's law of cooling and show that a thermoregulatory polygon provides an intuitively simple and yet useful description of thermoregulatory responses in endothermic organisms. This polygon encapsulates the region in which heat production and dissipation are in equilibrium and, therefore, the range of conditions in which thermoregulation is possible. Whereas the typical U-shaped curve describes the relationship between T a and MR at rest, thermoregulatory polygons expand this framework to incorporate the impact of activity, other behaviors and environmental conditions on thermoregulation and energy balance. We discuss how this framework can be employed to study the limits to effective thermoregulation and their ecological repercussions, allometric effects and residual variation in MR and thermal insulation, and how thermoregulatory requirements might constrain locomotor or reproductive performance (as proposed, for instance, by the heat dissipation limit theory). In many systems the limited empirical knowledge on how organismal traits may respond to environmental changes prevents physiological ecology from becoming a fully developed predictive science. In endotherms, however, we contend that the lack of theoretical developments that translate current physiological understanding into formal mechanistic models remains the main impediment to study the ecological and evolutionary repercussions of thermoregulation. In spite of the inherent limitations of Newton's law of cooling as an oversimplified description of the mechanics of heat transfer, we argue that understanding how systems that obey this approximation work can be enlightening on conceptual grounds and relevant as an analytical and predictive tool to study ecological phenomena. As such, the proposed approach may constitute a powerful tool to study the impact of thermoregulatory constraints on variables related to fitness, such as survival and reproductive output, and help elucidating how species will be affected by ongoing climate change.
Collapse
Affiliation(s)
- Enrico L Rezende
- Department of Life Sciences, University of Roehampton, Holybourne Avenue, London, SW15 4JD, UK.
| | - Leonardo D Bacigalupe
- Instituto de Ciencias Ambientales y Evolutivas, Universidad Austral de Chile, Valdivia, Chile.
| |
Collapse
|
15
|
Richman SE, Lovvorn JR. Effects of air and water temperatures on resting metabolism of auklets and other diving birds. Physiol Biochem Zool 2011; 84:316-32. [PMID: 21527823 DOI: 10.1086/660008] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
For small aquatic endotherms, heat loss while floating on water can be a dominant energy cost, and requires accurate estimation in energetics models for different species. We measured resting metabolic rate (RMR) in air and on water for a small diving bird, the Cassin's auklet (Ptychoramphus aleuticus), and compared these results to published data for other diving birds of diverse taxa and sizes. For 8 Cassin's auklets (~165 g), the lower critical temperature was higher on water (21 °C) than in air (16 °C). Lowest values of RMR (W kg⁻¹) averaged 19% higher on water (12.14 ± 3.14 SD) than in air (10.22 ± 1.43). At lower temperatures, RMR averaged 25% higher on water than in air, increasing with similar slope. RMR was higher on water than in air for alcids, cormorants, and small penguins but not for diving ducks, which appear exceptionally resistant to heat loss in water. Changes in RMR (W) with body mass either in air or on water were mostly linear over the 5- to 20-fold body mass ranges of alcids, diving ducks, and penguins, while cormorants showed no relationship of RMR with mass. The often large energetic effects of time spent floating on water can differ substantially among major taxa of diving birds, so that relevant estimates are critical to understanding their patterns of daily energy use.
Collapse
Affiliation(s)
- Samantha E Richman
- Department of Zoology, University of Wyoming, Laramie, Wyoming 82071, USA.
| | | |
Collapse
|
16
|
Humphries MM, Careau V. Heat for nothing or activity for free? Evidence and implications of activity-thermoregulatory heat substitution. Integr Comp Biol 2011; 51:419-31. [PMID: 21700569 DOI: 10.1093/icb/icr059] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
If heat generated through activity can substitute for heat required for thermoregulation, then activity in cold environments may be energetically free for endotherms. Although the possibility of activity-thermoregulatory heat substitution has been long recognized, its empirical generality and ecological implications remain unclear. We combine a review of the literature and a model of heat exchange to explore the generality of activity-thermoregulatory heat substitution, to assess the extent to which substitution is likely to vary with body size and ambient temperature, and to examine some potential macroecological implications. A majority of the 51 studies we located showed evidence of activity-thermoregulatory heat substitution (35 of 51 studies), with 28 of 32 species examined characterized by substitution in one or more study. Among studies that did detect substitution, the average magnitude of substitution was 57%, but its occurrence and extent varied taxonomically, allometrically, and with ambient temperature. Modeling of heat production and dissipation suggests that large birds and mammals, engaged in intense activity and exposed to relatively warm conditions, have more scope for substitution than do smaller endotherms engaged in less intense activity and experiencing cooler conditions. However, ambient temperature has to be less than the lower critical temperature (the lower bound of the thermal neutral zone) for activity-thermoregulatory heat substitution to occur and this threshold is lower in large endotherms than in small endotherms. Thus, in nature, substitution is most likely to be observed in intermediate-sized birds and mammals experiencing intermediate ambient temperatures. Activity-thermoregulatory heat substitution may be an important determinant of the activity patterns and metabolic ecology of endotherms. For example, a pattern of widely varying field metabolic rates (FMR) at low latitudes that converges to higher and less variable FMR at high latitudes has been interpreted as suggesting that warm environments at low latitudes allow a greater variety of feasible metabolic niches than do cool, high-latitude environments. However, activity-thermoregulatory heat substitution will generate this pattern of latitudinal FMR variation even if endotherms from cold and warm climates are metabolically and behaviorally identical, because the metabolic rates of resting and active animals are more similar in cold than in warm environments. Activity-thermoregulatory heat substitution is an understudied aspect of endotherm thermal biology that is apt to be a major influence on the physiological, behavioral and ecological responses of free-ranging endotherms to variation in temperature.
Collapse
Affiliation(s)
- Murray M Humphries
- Department of Natural Resource Sciences, McGill University, Macdonald Campus, H9X3V9 QC, Canada.
| | | |
Collapse
|
17
|
Liwanag HEM. Energetic costs and thermoregulation in northern fur seal (Callorhinus ursinus) pups: the importance of behavioral strategies for thermal balance in furred marine mammals. Physiol Biochem Zool 2010; 83:898-910. [PMID: 20950169 DOI: 10.1086/656426] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
Behavioral thermoregulation represents an important strategy for reducing energetic costs in thermally challenging environments, particularly among terrestrial vertebrates. Because of the cryptic lifestyle of aquatic species, the energetic benefits of such behaviors in marine endotherms have been much more difficult to demonstrate. In this study, I examined the importance of behavioral thermoregulation in the northern fur seal (Callorhinus ursinus) pup, a small-bodied endotherm that spends prolonged periods at sea. The thermal neutral zones of three weaned male northern fur seal pups (body mass range = 11.8-12.8 kg) were determined by measuring resting metabolic rate using open-flow respirometry at water temperatures ranging from 2.5° to 25.0°C. Metabolic rate averaged 10.03 ± 2.26 mL O₂kg⁻¹ min⁻¹ for pups resting within their thermal neutral zone; lower critical temperature was 8.3° ± 2.5°C , approximately 8°C higher than the coldest sea surface temperatures encountered in northern Pacific waters. To determine whether behavioral strategies could mitigate this potential thermal limitation, I measured metabolic rate during grooming activities and the unique jughandling behavior of fur seals. Both sedentary grooming and active grooming resulted in significant increases in metabolic rate relative to rest (P = 0.001), and percent time spent grooming increased significantly at colder water temperatures (P < 0.001). Jughandling metabolic rate (12.71 ± 2.73 mL O₂kg⁻¹ min ⁻¹) was significantly greater than resting rates at water temperatures within the thermal neutral zone (P < 0.05) but less than resting metabolism at colder water temperatures. These data indicate that behavioral strategies may help to mitigate thermal challenges faced by northern fur seal pups while resting at sea.
Collapse
Affiliation(s)
- Heather E M Liwanag
- Department of Ecology and Evolutionary Biology, University of California, Santa Cruz, California 95060, USA.
| |
Collapse
|
18
|
Ribak G, Swallow JG, Jones DR. Drag-based 'hovering' in ducks: the hydrodynamics and energetic cost of bottom feeding. PLoS One 2010; 5:e12565. [PMID: 20830286 PMCID: PMC2935360 DOI: 10.1371/journal.pone.0012565] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2010] [Accepted: 08/06/2010] [Indexed: 11/18/2022] Open
Abstract
Diving ducks use their webbed feet to provide the propulsive force that moves them underwater. To hold position near the bottom while feeding, ducks paddle constantly to resist the buoyant force of the body. Using video sequences from two orthogonal cameras we reconstructed the 3-dimensional motion of the feet through water and estimated the forces involved with a quasi-steady blade-element model. We found that during station holding, near the bottom, ducks use drag based propulsion with the webbed area of the foot moving perpendicular to the trajectory of the foot. The body was pitched at 76+/-3.47 degrees below the horizon and the propulsive force was directed 26+/-1.9 degrees ventral to the body so that 98% of the propulsive force in the sagittal plane of the duck worked to oppose buoyancy. The mechanical work done by moving both feet through a paddling cycle was 1.1+/-0.2 J which was equivalent to an energy expenditure of 3.7+/-0.5 W to hold position while feeding at 1.5 m depth. We conclude that in shallow water the high energetic cost of feeding in ducks is due to the need to paddle constantly against buoyancy even after reaching the bottom. The mechanical energy spent on holding position near the bottom, while feeding, is approximately 2 fold higher than previous estimates that were made for similar bottom depths but based on the presumed motion of the body instead of motion of the feet.
Collapse
Affiliation(s)
- Gal Ribak
- Department of Biology, University of South Dakota, Vermillion, South Dakota, USA.
| | | | | |
Collapse
|
19
|
Gleiss AC, Wilson RP, Shepard ELC. Making overall dynamic body acceleration work: on the theory of acceleration as a proxy for energy expenditure. Methods Ecol Evol 2010. [DOI: 10.1111/j.2041-210x.2010.00057.x] [Citation(s) in RCA: 264] [Impact Index Per Article: 18.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
20
|
Liwanag HEM, Williams TM, Costa DP, Kanatous SB, Davis RW, Boyd IL. The effects of water temperature on the energetic costs of juvenile and adult California sea lions (Zalophus californianus): the importance of skeletal muscle thermogenesis for thermal balance. ACTA ACUST UNITED AC 2010; 212:3977-84. [PMID: 19946075 DOI: 10.1242/jeb.033282] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
As highly mobile marine predators, many pinniped species routinely encounter a wide range of water temperatures during foraging and in association with seasonal, geographical and climatic changes. To determine how such variation in environmental temperature may impact energetic costs in otariids, we determined the thermal neutral zone of adult and juvenile California sea lions (Zalophus californianus) by measuring resting metabolic rate using open-flow respirometry. Five adult female (body mass range =82.2-107.2 kg) and four juvenile (body mass=26.2-36.5 kg) sea lions were examined over experimental water temperatures ranging from 0 to 20 degrees C (adults) or 5 to 20 degrees C (juveniles). The metabolic rate of adult sea lions averaged 6.4+/-0.64 ml O(2) kg(-1) min(-1) when resting within the thermal neutral zone. The lower critical temperature of adults was 6.4+/-2.2 degrees C, approximately 4 degrees C lower than sea surface temperatures routinely encountered off coastal California. In comparison, juvenile sea lions did not demonstrate thermal neutrality within the range of water temperatures examined. Resting metabolic rate of the younger animals, 6.3+/-0.53 ml O(2) kg(-1) min(-1), increased as water temperature approached 12 degrees C, and suggested a potential thermal limitation in the wild. To determine whether muscle thermogenesis during activity could mitigate this limitation, we measured the active metabolic rate of juveniles swimming at water temperature (T(water))=5, 12 and 20 degrees C. No significant difference (F=0.377, P=0.583) in swimming metabolic rate was found among water temperatures, suggesting that thermal disadvantages due to small body size in juvenile sea lions may be circumvented by recycling endogenous heat during locomotor activity.
Collapse
Affiliation(s)
- H E M Liwanag
- Department of Ecology and Evolutionary Biology, University of California, Santa Cruz, CA 95060, USA.
| | | | | | | | | | | |
Collapse
|
21
|
Lovvorn JR, Grebmeier JM, Cooper LW, Bump JK, Richman SE. Modeling marine protected areas for threatened eiders in a climatically changing Bering Sea. ECOLOGICAL APPLICATIONS : A PUBLICATION OF THE ECOLOGICAL SOCIETY OF AMERICA 2009; 19:1596-1613. [PMID: 19769106 DOI: 10.1890/08-1193.1] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
Delineating protected areas for sensitive species is a growing challenge as changing climate alters the geographic pattern of habitats as well as human responses to those shifts. When human impacts are expected within projected ranges of threatened species, there is often demand to demarcate the minimum habitat required to ensure the species' persistence. Because diminished or wide-ranging populations may not occupy all viable (and needed) habitat at once, one must identify thresholds of resources that will support the species even in unoccupied areas. Long-term data on the shifting mosaic of critical resources may indicate ranges of future variability. We addressed these issues for the Spectacled Eider (Somateria fischeri), a federally threatened species that winters in pack ice of the Bering Sea. Changing climate has decreased ice cover and severely reduced the eiders' benthic prey and has increased prospects for expansion of bottom trawling that may further affect prey communities. To assess long-term changes in habitats that will support eiders, we linked data on benthic prey, sea ice, and weather from 1970 to 2001 with a spatially explicit simulation model of eider energy balance that integrated field, laboratory, and remote-sensing studies. Areas estimated to have prey densities adequate for eiders in 1970-1974 did not include most areas that were viable 20 years later (1993-1994). Unless the entire area with adequate prey in 1993-1994 had been protected, the much reduced viable area in 1999-2001 might well have been excluded. During long non-foraging periods (as at night), eiders can save much energy by resting on ice vs. floating on water; thus, loss of ice cover in the future might substantially decrease the area in which prey densities are adequate to offset the eiders' energy needs. For wide-ranging benthivores such as eiders, our results emphasize that fixed protected areas based on current conditions can be too small or inflexible to subsume long-term shifts in habitat conditions. Better knowledge of patterns of natural disturbance experienced by prey communities, and appropriate allocation of human disturbance over seasons or years, may yield alternative strategies to large-scale closures that may be politically and economically problematic.
Collapse
Affiliation(s)
- James R Lovvorn
- Department of Zoology, University of Wyoming, Laramie, Wyoming 82071, USA.
| | | | | | | | | |
Collapse
|
22
|
Richman SE, Lovvorn JR. Predator size, prey size and threshold food densities of diving ducks: does a common prey base support fewer large animals? J Anim Ecol 2009; 78:1033-42. [PMID: 19426253 DOI: 10.1111/j.1365-2656.2009.01556.x] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
1. Allometry predicts that a given habitat area or common prey biomass supports fewer numbers of larger than smaller predators; however, birds from related taxa or the same feeding guild often deviate from this pattern. In particular, foraging costs of birds may differ among locomotor modes, while intake rates vary with accessibility, handling times and energy content of different-sized prey. Such mechanisms might affect threshold prey densities needed for energy balance, and thus relative numbers of different-sized predators in habitats with varying prey patches. 2. We compared the foraging profitability (energy gain minus cost) of two diving ducks: smaller lesser scaup (Aythya affinis, 450-1090 g) and larger white-winged scoters (Melanitta fusca, 950-1800 g). Calculations were based on past measurements of dive costs with respirometry, and of intake rates of a common bivalve prey ranging in size, energy content and burial depth in sediments. 3. For scaup feeding on small prey <12 mm long, all clams buried deeper than 5 cm were unprofitable at realistic prey densities. For clams buried in the top 5 cm, the profitability threshold decreased from 216 to 34 clams m(-2) as energy content increased from 50 to 300 J clam(-1). 4. For larger scoters feeding on larger prey 18-24 mm long, foraging was profitable for clams buried deeper than 5 cm, with a threshold density of 147 m(-2) for clams containing 380 J clam(-1). For clams <5 cm deep, the threshold density decreased from 86 to 36 clams m(-2) as energy content increased from 380 to 850 J clam(-1). If scoters decreased dive costs by swimming with wings as well as feet (not an option for scaup), threshold prey densities were 11-12% lower. 5. Our results show that threshold densities of total prey numbers for different-sized ducks depend on prey size structure and depth in the sediments. Thus, heterogeneity in disturbance regimes and prey population dynamics can create a mosaic of patches favouring large or small predators. Whether a given area or total prey biomass will support greater numbers of larger or smaller predators will vary with these effects.
Collapse
|
23
|
Careau V, Bininda-Emonds ORP, Thomas DW, Réale D, Humphries MM. Exploration strategies map along fast-slow metabolic and life-history continua in muroid rodents. Funct Ecol 2009. [DOI: 10.1111/j.1365-2435.2008.01468.x] [Citation(s) in RCA: 115] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
24
|
Domenici P, Claireaux G, McKenzie DJ. Environmental constraints upon locomotion and predator-prey interactions in aquatic organisms: an introduction. Philos Trans R Soc Lond B Biol Sci 2008; 362:1929-36. [PMID: 17472928 PMCID: PMC2042526 DOI: 10.1098/rstb.2007.2078] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Environmental constraints in aquatic habitats have become topics of concern to both the scientific community and the public at large. In particular, coastal and freshwater habitats are subject to dramatic variability in various environmental factors, as a result of both natural and anthropogenic processes. The protection and sustainable management of all aquatic habitats requires greater understanding of how environmental constraints influence aquatic organisms. Locomotion and predator-prey interactions are intimately linked and fundamental to the survival of mobile aquatic organisms. This paper summarizes the main points from the review and research articles which comprise the theme issue 'Environmental constraints upon locomotion and predator-prey interactions in aquatic organisms'. The articles explore how natural and anthropogenic factors can constrain these two fundamental activities in a diverse range of organisms from phytoplankton to marine mammals. Some major environmental constraints derive from the intrinsic properties of the fluid and are mechanical in nature, such as viscosity and flow regime. Other constraints derive from direct effects of factors, such as temperature, oxygen content of the water or turbidity, upon the mechanisms underlying the performance of locomotion and predator-prey interactions. The effect of these factors on performance at the tissue and organ level is reflected in constraints upon performance of the whole organism. All these constraints can influence behaviour. Ultimately, they can have an impact on ecological performance. One issue that requires particular attention is how factors such as temperature and oxygen can exert different constraints on the physiology and behaviour of different taxa and the ecological implications of this. Given the multiplicity of constraints, the complexity of their interactions, and the variety of biological levels at which they can act, there is a clear need for integration between the fields of physiology, biomechanics, behaviour, ecology, biological modelling and evolution in both laboratory and field studies. For studies on animals in their natural environment, further technological advances are required to allow investigation of how the prevailing physico-chemical conditions influence basic physiological processes and behaviour.
Collapse
Affiliation(s)
- P Domenici
- CNR-IAMC-c/o International Marine Centre, Localita Sa Mardini, 09072 Torregrande, Oristano, Italy.
| | | | | |
Collapse
|
25
|
Enstipp MR, Grémillet D, Jones DR. Heat increment of feeding in double-crested cormorants (Phalacrocorax auritus) and its potential for thermal substitution. ACTA ACUST UNITED AC 2008; 211:49-57. [PMID: 18083732 DOI: 10.1242/jeb.012229] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Diving endotherms inhabiting polar regions face potentially high thermoregulatory costs. Unless properly insulated, these animals will lose vast amounts of heat when diving in cold water, which has to be balanced by heat production. Heat generated as a by-product of digestion (heat increment of feeding, HIF) or from exercising muscles might be important in maintaining thermal balance under such conditions, as it would reduce the need for shivering thermogenesis. Recording the rate of oxygen consumption (V(O(2))), respiratory exchange ratio (RER), and stomach temperature, we studied the magnitude and duration of HIF in seven double-crested cormorants (Phalacrocorax auritus) following the voluntary ingestion of a single herring (Clupea pallasi) while birds rested in air. Conducting trials at thermoneutral (21.1+/-0.2 degrees C) and sub-thermoneutral temperatures (5.5+/-0.7 degrees C), we investigated the potential of HIF for thermal substitution. After the ingestion of a 100 g herring at thermoneutral conditions, V(O(2))was elevated for an average of 328+/-28 min, during which time birds consumed 2697+/-294 ml O(2) in excess of the resting rate. At sub-thermoneutral conditions, duration (228+/-6 min) and magnitude (1391+/-271 ml O(2)) of V(O(2))elevation were significantly reduced. This indicates that cormorants are able to use the heat generated as by-product of digestion to substitute for regulatory thermogenesis, if heat loss is sufficiently high. Altering meal size during sub-thermoneutral trials, we also found that HIF in cormorants was significantly greater after larger food intake. Based on these experimental results, a simple calculation suggests that substitution from HIF might reduce the daily thermoregulatory costs of double-crested cormorants wintering in coastal British Columbia by approximately 38%. Magnitude of HIF and its potential for thermal substitution should be integrated into bioenergetic models to avoid overestimating energy expenditure in these top predators.
Collapse
Affiliation(s)
- Manfred R Enstipp
- Institut Pluridisciplinaire Hubert Curien (IPHC), Département Ecologie, Physiologie et Ethologie (DEPE), UMR 7178 CNRS-ULP, 23 Rue Becquerel, F-67087, Strasbourg Cedex 2, France.
| | | | | |
Collapse
|
26
|
Costs of diving by wing and foot propulsion in a sea duck, the white-winged scoter. J Comp Physiol B 2007; 178:321-32. [DOI: 10.1007/s00360-007-0225-9] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2007] [Revised: 11/16/2007] [Accepted: 11/22/2007] [Indexed: 10/22/2022]
|