1
|
Liu Z, De Schutter E, Li Y. GABA-Induced Seizure-Like Events Caused by Multi-ionic Interactive Dynamics. eNeuro 2024; 11:ENEURO.0308-24.2024. [PMID: 39443111 PMCID: PMC11524612 DOI: 10.1523/eneuro.0308-24.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Accepted: 09/17/2024] [Indexed: 10/25/2024] Open
Abstract
Experimental evidence showed that an increase in intracellular chloride concentration [Formula: see text] caused by gamma-aminobutyric acid (GABA) input can promote epileptic firing activity, but the actual mechanisms remain elusive. Here in this theoretical work, we show that influx of chloride and concomitant bicarbonate ion [Formula: see text] efflux upon GABA receptor activation can induce epileptic firing activity by transition of GABA from inhibition to excitation. We analyzed the intrinsic property of neuron firing states as a function of [Formula: see text] We found that as [Formula: see text] increases, the system exhibits a saddle-node bifurcation, above which the neuron exhibits a spectrum of intensive firing, periodic bursting interrupted by depolarization block (DB) state, and eventually a stable DB through a Hopf bifurcation. We demonstrate that only GABA stimuli together with [Formula: see text] efflux can switch GABA's effect to excitation which leads to a series of seizure-like events (SLEs). Exposure to a low [Formula: see text] can drive neurons with high concentrations of [Formula: see text] downward to lower levels of [Formula: see text], during which it could also trigger SLEs depending on the exchange rate with the bath. Our analysis and simulation results show how the competition between GABA stimuli-induced accumulation of [Formula: see text] and [Formula: see text] application-induced decrease of [Formula: see text] regulates the neuron firing activity, which helps to understand the fundamental ionic dynamics of SLE.
Collapse
Affiliation(s)
- Zichao Liu
- School of Systems Science, Beijing Normal University, Beijing 100875, China
| | - Erik De Schutter
- Computational Neuroscience Unit, Okinawa Institute of Science and Technology Graduate University, Okinawa 904-0495, Japan
| | - Yinyun Li
- School of Systems Science, Beijing Normal University, Beijing 100875, China
- Computational Neuroscience Unit, Okinawa Institute of Science and Technology Graduate University, Okinawa 904-0495, Japan
| |
Collapse
|
2
|
Verardo C, Mele LJ, Selmi L, Palestri P. Finite-element modeling of neuromodulation via controlled delivery of potassium ions using conductive polymer-coated microelectrodes. J Neural Eng 2024; 21:026002. [PMID: 38306702 DOI: 10.1088/1741-2552/ad2581] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Accepted: 02/02/2024] [Indexed: 02/04/2024]
Abstract
Objective. The controlled delivery of potassium is an interesting neuromodulation modality, being potassium ions involved in shaping neuron excitability, synaptic transmission, network synchronization, and playing a key role in pathological conditions like epilepsy and spreading depression. Despite many successful examples of pre-clinical devices able to influence the extracellular potassium concentration, computational frameworks capturing the corresponding impact on neuronal activity are still missing.Approach. We present a finite-element model describing a PEDOT:PSS-coated microelectrode (herein, simplyionic actuator) able to release potassium and thus modulate the activity of a cortical neuron in anin-vitro-like setting. The dynamics of ions in the ionic actuator, the neural membrane, and the cellular fluids are solved self-consistently.Main results. We showcase the capability of the model to describe on a physical basis the modulation of the intrinsic excitability of the cell and of the synaptic transmission following the electro-ionic stimulation produced by the actuator. We consider three case studies for the ionic actuator with different levels of selectivity to potassium: ideal selectivity, no selectivity, and selectivity achieved by embedding ionophores in the polymer.Significance. This work is the first step toward a comprehensive computational framework aimed to investigate novel neuromodulation devices targeting specific ionic species, as well as to optimize their design and performance, in terms of the induced modulation of neural activity.
Collapse
Affiliation(s)
- Claudio Verardo
- Polytechnic Department of Engineering and Architecture, Università degli Studi di Udine, Udine, Italy
- BioRobotics Institute and Department of Excellence in Robotics and AI, Scuola Superiore Sant'Anna, Pisa, Italy
| | - Leandro Julian Mele
- Polytechnic Department of Engineering and Architecture, Università degli Studi di Udine, Udine, Italy
- Department of Materials Science and Engineering, Stanford University, Stanford, CA, United States of America
| | - Luca Selmi
- Department of Engineering "Enzo Ferrari", Università degli Studi di Modena e Reggio Emilia, Modena, Italy
| | - Pierpaolo Palestri
- Polytechnic Department of Engineering and Architecture, Università degli Studi di Udine, Udine, Italy
- Department of Engineering "Enzo Ferrari", Università degli Studi di Modena e Reggio Emilia, Modena, Italy
| |
Collapse
|
3
|
Fateev I, Polezhaev A. Chimera states in a chain of superdiffusively coupled neurons. CHAOS (WOODBURY, N.Y.) 2023; 33:103110. [PMID: 37831792 DOI: 10.1063/5.0168422] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Accepted: 09/19/2023] [Indexed: 10/15/2023]
Abstract
Two- and three-component systems of superdiffusion equations describing the dynamics of action potential propagation in a chain of non-locally interacting neurons with Hindmarsh-Rose nonlinear functions have been considered. Non-local couplings based on the fractional Laplace operator describing superdiffusion kinetics are found to support chimeras. In turn, the system with local couplings, based on the classical Laplace operator, shows synchronous behavior. For several parameters responsible for the activation properties of neurons, it is shown that the structure and evolution of chimera states depend significantly on the fractional Laplacian exponent, reflecting non-local properties of the couplings. For two-component systems, an anisotropic transition to full incoherence in the parameter space responsible for non-locality of the first and second variables is established. Introducing a third slow variable induces a gradual transition to incoherence via additional chimera states formation. We also discuss the possible causes of chimera states formation in such a system of non-locally interacting neurons and relate them with the properties of the fractional Laplace operator in a system with global coupling.
Collapse
Affiliation(s)
- I Fateev
- P.N. Lebedev Physical Institute of the Russian Academy of Sciences, 53 Leninskiy Prospekt, Moscow 119991, Russian Federation
| | - A Polezhaev
- P.N. Lebedev Physical Institute of the Russian Academy of Sciences, 53 Leninskiy Prospekt, Moscow 119991, Russian Federation
| |
Collapse
|
4
|
Øyehaug L. Slow ion concentration oscillations and multiple states in neuron-glia interaction-insights gained from reduced mathematical models. FRONTIERS IN NETWORK PHYSIOLOGY 2023; 3:1189118. [PMID: 37284003 PMCID: PMC10241345 DOI: 10.3389/fnetp.2023.1189118] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/18/2023] [Accepted: 04/28/2023] [Indexed: 06/08/2023]
Abstract
When potassium in the extracellular space separating neurons and glia reaches sufficient levels, neurons may fire spontaneous action potentials or even become inactivated due to membrane depolarisation, which, in turn, may lead to increased extracellular potassium levels. Under certain circumstances, this chain of events may trigger periodic bursts of neuronal activity. In the present study, reduced neuron-glia models are applied to explore the relationship between bursting behaviour and ion concentration dynamics. These reduced models are built based on a previously developed neuron-glia model, in which channel-mediated neuronal sodium and potassium currents are replaced by a function of neuronal sodium and extracellular potassium concentrations. Simulated dynamics of the resulting two reduced models display features that are qualitatively similar to those of the existing neuron-glia model. Bifurcation analyses of the reduced models show rich and interesting dynamics that include the existence of Hopf bifurcations between which the models exhibit slow ion concentration oscillations for a wide range of parameter values. The study demonstrates that even very simple models can provide insights of possible relevance to complex phenomena.
Collapse
|
5
|
Savya SP, Li F, Lam S, Wellman SM, Stieger KC, Chen K, Eles JR, Kozai TDY. In vivo spatiotemporal dynamics of astrocyte reactivity following neural electrode implantation. Biomaterials 2022; 289:121784. [PMID: 36103781 PMCID: PMC10231871 DOI: 10.1016/j.biomaterials.2022.121784] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Revised: 08/24/2022] [Accepted: 08/29/2022] [Indexed: 11/02/2022]
Abstract
Brain computer interfaces (BCIs), including penetrating microelectrode arrays, enable both recording and stimulation of neural cells. However, device implantation inevitably causes injury to brain tissue and induces a foreign body response, leading to reduced recording performance and stimulation efficacy. Astrocytes in the healthy brain play multiple roles including regulating energy metabolism, homeostatic balance, transmission of neural signals, and neurovascular coupling. Following an insult to the brain, they are activated and gather around the site of injury. These reactive astrocytes have been regarded as one of the main contributors to the formation of a glial scar which affects the performance of microelectrode arrays. This study investigates the dynamics of astrocytes within the first 2 weeks after implantation of an intracortical microelectrode into the mouse brain using two-photon microscopy. From our observation astrocytes are highly dynamic during this period, exhibiting patterns of process extension, soma migration, morphological activation, and device encapsulation that are spatiotemporally distinct from other glial cells, such as microglia or oligodendrocyte precursor cells. This detailed characterization of astrocyte reactivity will help to better understand the tissue response to intracortical devices and lead to the development of more effective intervention strategies to improve the functional performance of neural interfacing technology.
Collapse
Affiliation(s)
- Sajishnu P Savya
- Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA, USA; Northwestern University, USA
| | - Fan Li
- Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA, USA; Center for Neural Basis of Cognition, University of Pittsburgh, Pittsburgh, PA, USA; Computational Modeling & Simulation PhD Program, University of Pittsburgh, Pittsburgh, PA, USA
| | - Stephanie Lam
- Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA, USA; Center for Neural Basis of Cognition, University of Pittsburgh, Pittsburgh, PA, USA
| | - Steven M Wellman
- Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA, USA; Center for Neural Basis of Cognition, University of Pittsburgh, Pittsburgh, PA, USA
| | - Kevin C Stieger
- Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA, USA; Center for Neural Basis of Cognition, University of Pittsburgh, Pittsburgh, PA, USA
| | - Keying Chen
- Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA, USA; Center for Neural Basis of Cognition, University of Pittsburgh, Pittsburgh, PA, USA
| | - James R Eles
- Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA, USA; Center for Neural Basis of Cognition, University of Pittsburgh, Pittsburgh, PA, USA
| | - Takashi D Y Kozai
- Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA, USA; Center for Neural Basis of Cognition, University of Pittsburgh, Pittsburgh, PA, USA; Center for Neuroscience, University of Pittsburgh, University of Pittsburgh, Pittsburgh, PA, USA; McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, PA, USA; NeuroTech Center, University of Pittsburgh Brain Institute, Pittsburgh, PA, USA.
| |
Collapse
|
6
|
Subramanian M, Chiang CC, Couturier NH, Durand DM. Theta waves, neural spikes and seizures can propagate by ephaptic coupling in vivo. Exp Neurol 2022; 354:114109. [PMID: 35551899 PMCID: PMC10214533 DOI: 10.1016/j.expneurol.2022.114109] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2021] [Revised: 04/30/2022] [Accepted: 05/05/2022] [Indexed: 11/29/2022]
Abstract
Electric field coupling has been shown to be responsible for non-synaptic neural activity propagation in hippocampal slices and cortical slices. Epileptiform and slow-wave sleep activity can propagate by electric field coupling without using synaptic connections at speeds of ~0.1 m/s in vitro. However, the characteristics of the events that can propagate using electric field coupling through a volume conductor in vivo have not been studied. Thus, we tested the hypothesis that various types of neural signals such as interictal spikes, theta waves and seizures could propagate in vivo across a transection in the hippocampus. We induced epileptiform activity in 4 rats under anesthesia by injecting 4-aminopyridine in the temporal region of the hippocampus, four recording electrodes were inserted along the longitudinal axis of the hippocampus. A transection was made between the electrodes to study the propagation of the neural activity. Although 54% of the interictal spikes could propagate through the cut, only those spikes with a high amplitude and short duration had a high probability to do so. 70% of seizure events could propagate through the cut but parameters distinguishing between propagating and non-propagating seizure events could not be identified. Theta activity was also observed to propagate at a mean speed of 0.16 ± 0.12 m/s in the characteristic range of propagation using electric field coupling through the transection. The electric field volume conduction mechanism was confirmed by showing that propagation was blocked by placing a dielectric layer within the cut. The speed of propagation was not affected by the transection thereby providing further evidence that various types of neural signals including activity in the theta range can propagate by electric field coupling in-vivo.
Collapse
Affiliation(s)
- Muthumeenakshi Subramanian
- Neural Engineering Center, Department of Biomedical Engineering, Case Western Reserve University, Cleveland, OH 44106, USA
| | - Chia-Chu Chiang
- Neural Engineering Center, Department of Biomedical Engineering, Case Western Reserve University, Cleveland, OH 44106, USA
| | - Nicholas H Couturier
- Neural Engineering Center, Department of Biomedical Engineering, Case Western Reserve University, Cleveland, OH 44106, USA
| | - Dominique M Durand
- Neural Engineering Center, Department of Biomedical Engineering, Case Western Reserve University, Cleveland, OH 44106, USA.
| |
Collapse
|
7
|
Tyurikova O, Shih P, Dembitskaya Y, Savtchenko LP, McHugh TJ, Rusakov DA, Semyanov A. K + efflux through postsynaptic NMDA receptors suppresses local astrocytic glutamate uptake. Glia 2022; 70:961-974. [PMID: 35084774 PMCID: PMC9132042 DOI: 10.1002/glia.24150] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Revised: 01/14/2022] [Accepted: 01/14/2022] [Indexed: 12/31/2022]
Abstract
Glutamatergic transmission prompts K+ efflux through postsynaptic NMDA receptors. The ensuing hotspot of extracellular K+ elevation depolarizes presynaptic terminal, boosting glutamate release, but whether this also affects glutamate uptake in local astroglia has remained an intriguing question. Here, we find that the pharmacological blockade, or conditional knockout, of postsynaptic NMDA receptors suppresses use-dependent increase in the amplitude and duration of the astrocytic glutamate transporter current (IGluT ), whereas blocking astrocytic K+ channels prevents the duration increase only. Glutamate spot-uncaging reveals that astrocyte depolarization, rather than extracellular K+ rises per se, is required to reduce the amplitude and duration of IGluT . Biophysical simulations confirm that local transient elevations of extracellular K+ can inhibit local glutamate uptake in fine astrocytic processes. Optical glutamate sensor imaging and a two-pathway test relate postsynaptic K+ efflux to enhanced extrasynaptic glutamate signaling. Thus, repetitive glutamatergic transmission triggers a feedback loop in which postsynaptic K+ efflux can transiently facilitate presynaptic release while reducing local glutamate uptake.
Collapse
Affiliation(s)
- Olga Tyurikova
- Shemyakin‐Ovchinnikov Institute of Bioorganic ChemistryRussian Academy of SciencesMoscowRussia
- Department of Clinical and Experimental EpilepsyUCL Institute of Neurology, Queen SquareLondonUK
- Brain Science Institute (BSI)RIKENWako‐shiSaitamaJapan
| | - Pei‐Yu Shih
- Brain Science Institute (BSI)RIKENWako‐shiSaitamaJapan
| | - Yulia Dembitskaya
- Shemyakin‐Ovchinnikov Institute of Bioorganic ChemistryRussian Academy of SciencesMoscowRussia
- Brain Science Institute (BSI)RIKENWako‐shiSaitamaJapan
| | - Leonid P. Savtchenko
- Department of Clinical and Experimental EpilepsyUCL Institute of Neurology, Queen SquareLondonUK
| | - Thomas J. McHugh
- Brain Science Institute (BSI)RIKENWako‐shiSaitamaJapan
- RIKEN Center for Brain Science, Wako‐shiSaitamaJapan
| | - Dmitri A. Rusakov
- Department of Clinical and Experimental EpilepsyUCL Institute of Neurology, Queen SquareLondonUK
| | - Alexey Semyanov
- Shemyakin‐Ovchinnikov Institute of Bioorganic ChemistryRussian Academy of SciencesMoscowRussia
- Brain Science Institute (BSI)RIKENWako‐shiSaitamaJapan
- Department of Clinical Pharmacology, Sechenov First Moscow State Medical UniversityMoscowRussia
| |
Collapse
|
8
|
Zhao H, Liu F, Yin Y, Wang S. Potassium Titanate Assembled Titanium Dioxide Nanotube Arrays Endow Titanium Implants Excellent Osseointegration Performance and Nerve Formation Potential. Front Chem 2022; 10:839093. [PMID: 35145950 PMCID: PMC8821153 DOI: 10.3389/fchem.2022.839093] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2021] [Accepted: 01/10/2022] [Indexed: 11/21/2022] Open
Abstract
Titanium based materials have been widely applied in bone-tissue engineering. However, inefficient bone repair remains to be solved due to the lack of neural network reconstruction at the bone-implant interface. Herein, we propose a functional surface modification approach to promote neurogenesis. Using an electrochemical technique and a hydrothermal approach, a potassium titanate nanorod-decorated titanium oxide (K2Ti6O13-TiO2) nanotube array is constructed on the surface of titanium implants. The K2Ti6O13-TiO2 hybrid nanotube array on titanium implants can enhance the osteogenic differentiation of mesenchymal stem cells due to the special nanostructures of titanium oxide nanorods. Meanwhile, the release of potassium ions is able to accelerate the neural differentiation of neural stem cells. This study provides a new approach to promote neuralization on the surface of implants, which is promising for future applications in constructing a fully functional interface in bone repair.
Collapse
Affiliation(s)
- Hang Zhao
- State Key Laboratory of Crystal Materials, Shandong University, Jinan, China
| | - Feng Liu
- State Key Laboratory of Crystal Materials, Shandong University, Jinan, China
| | - Yixin Yin
- Oral Implantology Center, Jinan Stomatological Hospital, Jinan, China
- *Correspondence: Yixin Yin, ; Shuhua Wang,
| | - Shuhua Wang
- State Key Laboratory of Crystal Materials, Shandong University, Jinan, China
- *Correspondence: Yixin Yin, ; Shuhua Wang,
| |
Collapse
|
9
|
Chizhov AV, Amakhin DV, Smirnova EY, Zaitsev AV. Ictal wavefront propagation in slices and simulations with conductance-based refractory density model. PLoS Comput Biol 2022; 18:e1009782. [PMID: 35041661 PMCID: PMC8797236 DOI: 10.1371/journal.pcbi.1009782] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Revised: 01/28/2022] [Accepted: 12/21/2021] [Indexed: 12/04/2022] Open
Abstract
The mechanisms determining ictal discharge (ID) propagation are still not clear. In the present study, we aimed to examine these mechanisms in animal and mathematical models of epileptiform activity. Using double-patch and extracellular potassium ion concentration recordings in rat hippocampal-cortical slices, we observed that IDs moved at a speed of about 1 mm/s or less. The mechanisms of such slow propagation have been studied with a mathematical, conductance-based refractory density (CBRD) model that describes the GABA- and glutamatergic neuronal populations’ interactions and ion dynamics in brain tissue. The modeling study reveals two main factors triggerring IDs: (i) increased interneuronal activity leading to chloride ion accumulation and a consequent depolarizing GABAergic effect and (ii) the elevation of extracellular potassium ion concentration. The local synaptic transmission followed by local potassium ion extrusion and GABA receptor-mediated chloride ion accumulation underlies the ID wavefront’s propagation. In contrast, potassium ion diffusion in the extracellular space is slower and does not affect ID’s speed. The short discharges, constituting the ID, propagate much faster than the ID front. The accumulation of sodium ions inside neurons due to their hyperactivity and glutamatergic currents boosts the Na+/K+ pump, which terminates the ID. Knowledge of the mechanism of ID generation and propagation contributes to the development of new treatments against epilepsy. During an epileptic seizure, neuronal excitation spreads across the brain tissue and is accompanied by significant changes in ionic concentrations. Ictal discharge front spreads at low speeds, less than 1 mm/s. Mechanisms underlying this phenomenon are not yet well understood. We study these mechanisms using electrophysiological recordings in brain slices and computer simulations. Our detailed biophysical model describing neuronal populations’ interaction, spatial propagation, and ionic dynamics reproduces the generation and propagation of spontaneously repeating ictal discharges. The simulations are consistent with our recordings of the electrical activity and the extracellular potassium ion concentration. We distinguished between the two alternative mechanisms of the ictal wavefront propagation: (i) the diffusion of potassium ions released from excited neurons, which depolarizes distant neurons and thus supports excitation, and (ii) the axonal spread of excitation followed by the local extracellular potassium ion accumulation that supports the excitation. Our simulations provide evidence in favor of the latter mechanism. Our experiment-based modeling contributes to a mathematical description of brain tissue functioning and potentially contributes to developing new treatments against epilepsy.
Collapse
Affiliation(s)
- Anton V. Chizhov
- Laboratory of Molecular Mechanisms of Neural Interactions, Sechenov Institute of Evolutionary Physiology and Biochemistry of the Russian Academy of Sciences, Saint Petersburg, Russia
- Computational Physics Laboratory, Ioffe Institute, Saint Petersburg, Russia
- * E-mail:
| | - Dmitry V. Amakhin
- Laboratory of Molecular Mechanisms of Neural Interactions, Sechenov Institute of Evolutionary Physiology and Biochemistry of the Russian Academy of Sciences, Saint Petersburg, Russia
| | - Elena Yu. Smirnova
- Laboratory of Molecular Mechanisms of Neural Interactions, Sechenov Institute of Evolutionary Physiology and Biochemistry of the Russian Academy of Sciences, Saint Petersburg, Russia
- Computational Physics Laboratory, Ioffe Institute, Saint Petersburg, Russia
- Institute of Experimental Medicine, Almazov National Medical Research Centre, Saint Petersburg, Russia
| | - Aleksey V. Zaitsev
- Laboratory of Molecular Mechanisms of Neural Interactions, Sechenov Institute of Evolutionary Physiology and Biochemistry of the Russian Academy of Sciences, Saint Petersburg, Russia
| |
Collapse
|
10
|
A unified physiological framework of transitions between seizures, sustained ictal activity and depolarization block at the single neuron level. J Comput Neurosci 2022; 50:33-49. [PMID: 35031915 PMCID: PMC8818009 DOI: 10.1007/s10827-022-00811-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2021] [Revised: 11/10/2021] [Accepted: 01/03/2022] [Indexed: 10/29/2022]
Abstract
The majority of seizures recorded in humans and experimental animal models can be described by a generic phenomenological mathematical model, the Epileptor. In this model, seizure-like events (SLEs) are driven by a slow variable and occur via saddle node (SN) and homoclinic bifurcations at seizure onset and offset, respectively. Here we investigated SLEs at the single cell level using a biophysically relevant neuron model including a slow/fast system of four equations. The two equations for the slow subsystem describe ion concentration variations and the two equations of the fast subsystem delineate the electrophysiological activities of the neuron. Using extracellular K+ as a slow variable, we report that SLEs with SN/homoclinic bifurcations can readily occur at the single cell level when extracellular K+ reaches a critical value. In patients and experimental models, seizures can also evolve into sustained ictal activity (SIA) and depolarization block (DB), activities which are also parts of the dynamic repertoire of the Epileptor. Increasing extracellular concentration of K+ in the model to values found during experimental status epilepticus and DB, we show that SIA and DB can also occur at the single cell level. Thus, seizures, SIA, and DB, which have been first identified as network events, can exist in a unified framework of a biophysical model at the single neuron level and exhibit similar dynamics as observed in the Epileptor.Author Summary: Epilepsy is a neurological disorder characterized by the occurrence of seizures. Seizures have been characterized in patients in experimental models at both macroscopic and microscopic scales using electrophysiological recordings. Experimental works allowed the establishment of a detailed taxonomy of seizures, which can be described by mathematical models. We can distinguish two main types of models. Phenomenological (generic) models have few parameters and variables and permit detailed dynamical studies often capturing a majority of activities observed in experimental conditions. But they also have abstract parameters, making biological interpretation difficult. Biophysical models, on the other hand, use a large number of variables and parameters due to the complexity of the biological systems they represent. Because of the multiplicity of solutions, it is difficult to extract general dynamical rules. In the present work, we integrate both approaches and reduce a detailed biophysical model to sufficiently low-dimensional equations, and thus maintaining the advantages of a generic model. We propose, at the single cell level, a unified framework of different pathological activities that are seizures, depolarization block, and sustained ictal activity.
Collapse
|
11
|
Repeated hippocampal seizures lead to brain-wide reorganization of circuits and seizure propagation pathways. Neuron 2021; 110:221-236.e4. [PMID: 34706219 PMCID: PMC10402913 DOI: 10.1016/j.neuron.2021.10.010] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Revised: 05/18/2021] [Accepted: 10/05/2021] [Indexed: 11/24/2022]
Abstract
Repeated seizure activity can lead to long-term changes in seizure dynamics and behavior. However, resulting changes in brain-wide dynamics remain poorly understood. This is due partly to technical challenges in precise seizure control and in vivo whole-brain mapping of circuit dynamics. Here, we developed an optogenetic kindling model through repeated stimulation of ventral hippocampal CaMKII neurons in adult rats. We then combined fMRI with electrophysiology to track brain-wide circuit dynamics resulting from non-afterdischarge (AD)-generating stimulations and individual convulsive seizures. Kindling induced widespread increases in non-AD-generating stimulation response and ipsilateral functional connectivity and elevated anxiety. Individual seizures in kindled animals showed more significant increases in brain-wide activity and bilateral functional connectivity. Onset time quantification provided evidence for kindled seizure propagation from the ipsilateral to the contralateral hemisphere. Furthermore, a core of slow-migrating hippocampal activity was identified in both non-kindled and kindled seizures, revealing a novel mechanism of seizure sustainment and propagation.
Collapse
|
12
|
Shivacharan RS, Chiang CC, Wei X, Subramanian M, Couturier NH, Pakalapati N, Durand DM. Neural recruitment by ephaptic coupling in epilepsy. Epilepsia 2021; 62:1505-1517. [PMID: 33979453 DOI: 10.1111/epi.16903] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Revised: 03/30/2021] [Accepted: 03/30/2021] [Indexed: 11/28/2022]
Abstract
OBJECTIVE One of the challenges in treating patients with drug-resistant epilepsy is that the mechanisms of seizures are unknown. Most current interventions are based on the assumption that epileptic activity recruits neurons and progresses by synaptic transmission. However, several experimental studies have shown that neural activity in rodent hippocampi can propagate independently of synaptic transmission. Recent studies suggest these waves are self-propagating by electric field (ephaptic) coupling. In this study, we tested the hypothesis that neural recruitment during seizures can occur by electric field coupling. METHODS 4-Aminopyridine was used in both in vivo and in vitro preparation to trigger seizures or epileptiform activity. A transection was made in the in vivo hippocampus and in vitro hippocampal and cortical slices to study whether the induced seizure activity can recruit neurons across the gap. A computational model was built to test whether ephaptic coupling alone can account for neural recruitment across the transection. The model prediction was further validated by in vitro experiments. RESULTS Experimental results show that electric fields generated by seizure-like activity in the hippocampus both in vitro and in vivo can recruit neurons locally and through a transection of the tissue. The computational model suggests that the neural recruitment across the transection is mediated by electric field coupling. With in vitro experiments, we show that a dielectric material can block the recruitment of epileptiform activity across a transection, and that the electric fields measured within the gap are similar to those predicted by model simulations. Furthermore, this nonsynaptic neural recruitment is also observed in cortical slices, suggesting that this effect is robust in brain tissue. SIGNIFICANCE These results indicate that ephaptic coupling, a nonsynaptic mechanism, can underlie neural recruitment by a small electric field generated by seizure activity and could explain the low success rate of surgical transections in epilepsy patients.
Collapse
Affiliation(s)
- Rajat S Shivacharan
- Neural Engineering, Department of Biomedical Engineering, Case Western Reserve University, Cleveland, Ohio, USA
| | - Chia-Chu Chiang
- Neural Engineering, Department of Biomedical Engineering, Case Western Reserve University, Cleveland, Ohio, USA
| | - Xile Wei
- School of Electrical and Information Engineering, Tianjin University, Tianjin, China
| | - Muthumeenakshi Subramanian
- Neural Engineering, Department of Biomedical Engineering, Case Western Reserve University, Cleveland, Ohio, USA
| | - Nicholas H Couturier
- Neural Engineering, Department of Biomedical Engineering, Case Western Reserve University, Cleveland, Ohio, USA
| | - Nrupen Pakalapati
- Neural Engineering, Department of Biomedical Engineering, Case Western Reserve University, Cleveland, Ohio, USA
| | - Dominique M Durand
- Neural Engineering, Department of Biomedical Engineering, Case Western Reserve University, Cleveland, Ohio, USA
| |
Collapse
|
13
|
Firippi E, Chaves M. Topology-induced dynamics in a network of synthetic oscillators with piecewise affine approximation. CHAOS (WOODBURY, N.Y.) 2020; 30:113128. [PMID: 33261335 DOI: 10.1063/5.0020670] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/2020] [Accepted: 10/22/2020] [Indexed: 06/12/2023]
Abstract
In synthetic biology approaches, minimal systems are used to reproduce complex molecular mechanisms that appear in the core functioning of multi-cellular organisms. In this paper, we study a piecewise affine model of a synthetic two-gene oscillator and prove existence and stability of a periodic solution for all parameters in a given region. Motivated by the synchronization of circadian clocks in a cluster of cells, we next consider a network of N identical oscillators under diffusive coupling to investigate the effect of the topology of interactions in the network's dynamics. Our results show that both all-to-all and one-to-all coupling topologies may introduce new stable steady states in addition to the expected periodic orbit. Both topologies admit an upper bound on the coupling parameter that prevents the generation of new steady states. However, this upper bound is independent of the number of oscillators in the network and less conservative for the one-to-all topology.
Collapse
Affiliation(s)
- E Firippi
- Université Côte d'Azur, Inria, INRA, CNRS, Sorbonne Université, Biocore Team, Sophia Antipolis 06902 Valbonne, France
| | - M Chaves
- Université Côte d'Azur, Inria, INRA, CNRS, Sorbonne Université, Biocore Team, Sophia Antipolis 06902 Valbonne, France
| |
Collapse
|
14
|
Zhao L, Luo F, Wang A, Zhang J, Wang Y, Zhao L, Wang Z, Pu Q. Quick stabilization of capillary for rapid determination of potassium ions in the blood of epilepsy patients by capillary electrophoresis without sample pretreatment. Electrophoresis 2020; 41:1273-1279. [PMID: 32358896 DOI: 10.1002/elps.202000022] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2020] [Revised: 04/21/2020] [Accepted: 04/23/2020] [Indexed: 11/07/2022]
Abstract
Mutations in the potassium channel genes may be linked to the development of epilepsy and affect the blood potassium levels. Therefore, accurate determination of potassium in the blood will be critical to diagnose the cause of epilepsy. CE is a competent technique for the fast detection of multiple ions, but complicated matrices of a blood sample may cause significant variation of migration times and the peak shape. In this work, a procedure for rapid stabilization of the capillary inner surface through preflushing of a blood sample was employed. The process takes only 40 min for a capillary and then it can be used for more than 2 weeks. No pretreatment of the blood sample or other surface modification of the capillary is needed for the analysis. The RSDs of the migration time and peak area were reduced to 1.5 and 5.1% from 12.6 and 14.5%, respectively. The proposed method has been successfully applied to the determination of the potassium contents in the blood sample of patients with epilepsy at different stages. The recoveries of potassium ions in these blood samples are in a range from 86.5 to 104.5%.
Collapse
Affiliation(s)
- Litao Zhao
- School of Pharmacy, Lanzhou University, Lanzhou, P. R. China
| | - Fanghong Luo
- School of Pharmacy, Lanzhou University, Lanzhou, P. R. China
| | - Anting Wang
- School of Pharmacy, Lanzhou University, Lanzhou, P. R. China
| | - Jing Zhang
- School of Pharmacy, Lanzhou University, Lanzhou, P. R. China
| | - Yuanhang Wang
- College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, P. R. China
| | - Liangtao Zhao
- TSing Biomedical Research Center, The Second Hospital of Lanzhou University, Lanzhou, P. R. China
| | - Zhaoyan Wang
- School of Pharmacy, Lanzhou University, Lanzhou, P. R. China
| | - Qiaosheng Pu
- College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, P. R. China
| |
Collapse
|
15
|
Martinez-Banaclocha M. Astroglial Isopotentiality and Calcium-Associated Biomagnetic Field Effects on Cortical Neuronal Coupling. Cells 2020; 9:cells9020439. [PMID: 32069981 PMCID: PMC7073214 DOI: 10.3390/cells9020439] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2020] [Revised: 02/07/2020] [Accepted: 02/10/2020] [Indexed: 01/01/2023] Open
Abstract
Synaptic neurotransmission is necessary but does not sufficiently explain superior cognitive faculties. Growing evidence has shown that neuron-astroglial chemical crosstalk plays a critical role in the processing of information, computation, and memory. In addition to chemical and electrical communication among neurons and between neurons and astrocytes, other nonsynaptic mechanisms called ephaptic interactions can contribute to the neuronal synchronization from different brain regions involved in the processing of information. New research on brain astrocytes has clearly shown that the membrane potential of these cells remains very stable among neighboring and distant astrocytes due to the marked bioelectric coupling between them through gap junctions. This finding raises the possibility that the neocortical astroglial network exerts a guiding template modulating the excitability and synchronization of trillions of neurons by astroglial Ca2+-associated bioelectromagnetic interactions. We propose that bioelectric and biomagnetic fields of the astroglial network equalize extracellular local field potentials (LFPs) and associated local magnetic field potentials (LMFPs) in the cortical layers of the brain areas involved in the processing of information, contributing to the adequate and coherent integration of external and internal signals. This article reviews the current knowledge of ephaptic interactions in the cerebral cortex and proposes that the isopotentiality of cortical astrocytes is a prerequisite for the maintenance of the bioelectromagnetic crosstalk between neurons and astrocytes in the neocortex.
Collapse
|
16
|
Takeda T, Takeda S, Kakigi A. A possible mechanism of the formation of endolymphatic hydrops and its associated inner ear disorders. Auris Nasus Larynx 2019; 47:25-41. [PMID: 31623941 DOI: 10.1016/j.anl.2019.09.005] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2019] [Revised: 08/29/2019] [Accepted: 09/12/2019] [Indexed: 12/19/2022]
Abstract
The pathology of Meniere's disease (MD) is well established to be endolymphatic hydrops. However, the mechanism underlying deafness and vertigo of MD or idiopathic endolymphatic hydrops is still unknown. In order to evaluate the pathogenesis of deafness and vertigo in MD, it seems to be rational to investigate the interrelationship between hydrops and inner ear disorders using animals with experimentally-induced endolymphatic hydrops. In spite of intense efforts by many researchers, the mechanism of vertiginous attack has been unexplained, because animals with experimental hydrops usually did not show vertiginous attack. Recently, there are two reports to succeed to evoke vertiginous attack in animals with experimental hydrops. In the present paper were first surveyed past proposals about underlying mechanism of the development of hydrops and inner ear disorders associated with hydrops, and were discussed the pathogenetic mechanism of vertiginous attack in hydrops. In conclusion, abrupt development of hydrops was thought to play a pivotal role in the onset of vertiginous seizure.
Collapse
Affiliation(s)
- Taizo Takeda
- Department of Otolaryngology, Kochi Medical School, Nankoku, Kochi, Japan
| | | | - Akinobu Kakigi
- Department of Otolaryngology-Head & Neck Surgery, Kobe University, Graduate School of Medicine, Hyogo, Japan.
| |
Collapse
|
17
|
Tryba AK, Merricks EM, Lee S, Pham T, Cho S, Nordli DR, Eissa TL, Goodman RR, McKhann GM, Emerson RG, Schevon CA, van Drongelen W. Role of paroxysmal depolarization in focal seizure activity. J Neurophysiol 2019; 122:1861-1873. [PMID: 31461373 DOI: 10.1152/jn.00392.2019] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
We analyze the role of inhibition in sustaining focal epileptic seizure activity. We review ongoing seizure activity at the mesoscopic scale that can be observed with microelectrode arrays as well as at the macroscale of standard clinical EEG. We provide clinical, experimental, and modeling data to support the hypothesis that paroxysmal depolarization (PD) is a critical component of the ictal machinery. We present dual-patch recordings in cortical cultures showing reduced synaptic transmission associated with presynaptic occurrence of PD, and we find that the PD threshold is cell size related. We further find evidence that optically evoked PD activity in parvalbumin neurons can promote propagation of neuronal excitation in neocortical networks in vitro. Spike sorting results from microelectrode array measurements around ictal wave propagation in human focal seizures demonstrate a strong increase in putative inhibitory firing with an approaching excitatory wave, followed by a sudden reduction of firing at passage. At the macroscopic level, we summarize evidence that this excitatory ictal wave activity is strongly correlated with oscillatory activity across a centimeter-sized cortical network. We summarize Wilson-Cowan-type modeling showing how inhibitory function is crucial for this behavior. Our findings motivated us to develop a network motif of neurons in silico, governed by a reduced version of the Hodgkin-Huxley formalism, to show how feedforward, feedback, PD, and local failure of inhibition contribute to observed dynamics across network scales. The presented multidisciplinary evidence suggests that the PD not only is a cellular marker or epiphenomenon but actively contributes to seizure activity.NEW & NOTEWORTHY We present mechanisms of ongoing focal seizures across meso- and macroscales of microelectrode array and standard clinical recordings, respectively. We find modeling, experimental, and clinical evidence for a dual role of inhibition across these scales: local failure of inhibition allows propagation of a mesoscopic ictal wave, whereas inhibition elsewhere remains intact and sustains macroscopic oscillatory activity. We present evidence for paroxysmal depolarization as a mechanism behind this dual role of inhibition in shaping ictal activity.
Collapse
Affiliation(s)
- Andrew K Tryba
- Section of Neurology, Department of Pediatrics, The University of Chicago, Chicago, Illinois
| | - Edward M Merricks
- Department of Neurology, Columbia University Medical Center, New York, New York
| | - Somin Lee
- Section of Neurology, Department of Pediatrics, The University of Chicago, Chicago, Illinois
| | - Tuan Pham
- Section of Neurology, Department of Pediatrics, The University of Chicago, Chicago, Illinois
| | - SungJun Cho
- Section of Neurology, Department of Pediatrics, The University of Chicago, Chicago, Illinois
| | - Douglas R Nordli
- Section of Neurology, Department of Pediatrics, The University of Chicago, Chicago, Illinois
| | - Tahra L Eissa
- Department of Applied Mathematics, University of Colorado Boulder, Boulder, Colorado
| | - Robert R Goodman
- Department of Neurosurgery, Northwell Health/Lenox Hill Hospital, New York, New York
| | - Guy M McKhann
- Department of Neurological Surgery, Columbia University Medical Center, New York, New York
| | | | - Catherine A Schevon
- Department of Neurology, Columbia University Medical Center, New York, New York
| | - Wim van Drongelen
- Section of Neurology, Department of Pediatrics, The University of Chicago, Chicago, Illinois
| |
Collapse
|
18
|
Steidl E, Gleyzes M, Maddalena F, Debanne D, Buisson B. Neuroservice proconvulsive (NS-PC) set: A new platform of electrophysiology-based assays to determine the proconvulsive potential of lead compounds. J Pharmacol Toxicol Methods 2019; 99:106587. [PMID: 31207287 DOI: 10.1016/j.vascn.2019.106587] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2018] [Revised: 05/17/2019] [Accepted: 05/22/2019] [Indexed: 10/26/2022]
Abstract
INTRODUCTION Failures in drug development often result from the emergence of unexpected adverse drug reactions. It is clear that adverse drug reactions, including seizure liability, should be assessed earlier. The goal of the present work was to develop a new platform of in vitro assays, NS-PC set (for Neuroservice proconvulsive set), to determine the proconvulsive potential of compounds earlier in preclinical development. METHODS Assays were based on electrophysiological recordings in acute hippocampal slices performed with multielectrode arrays. 4 reference proconvulsive/seizurogenic compounds (4-aminopyridine, bicuculline, kainate and carbachol) and 4 anti-epileptic drugs (AEDs; phenobarbital, carbamazepine, clonazepam and valproic acid) were evaluated on electrophysiological endpoints involved in seizure risk (neuronal excitability, balance of excitatory/inhibitory synaptic transmission, occurrence of neuronal synchronization mechanisms materialized by epileptiform discharges). RESULTS The reference compounds increased the number and area under the curve of population spikes, triggered epileptiform discharges and enhanced the firing rate of CA1 neurons. The effects of the 4 antiepileptic drugs were assessed on these 3 parameters. They were able to partially of completely reverse the effects of proconvulsive compounds. DISCUSSION The use of reference proconvulsive compounds and AEDs validated the electrophysiological parameters to detect proconvulsive risk. Systematic evaluation of compounds with the 3 complementary endpoints increase the probability to detect seizure liability in vitro. Depending on the compound mechanism of action, only one or two of the identified parameters might be modified.
Collapse
Affiliation(s)
- Esther Steidl
- Neuroservice SARL, 595 rue Pierre Berthier, 13593 Aix-en-Provence, France.
| | - Melanie Gleyzes
- Neuroservice SARL, 595 rue Pierre Berthier, 13593 Aix-en-Provence, France
| | - Fabien Maddalena
- Neuroservice SARL, 595 rue Pierre Berthier, 13593 Aix-en-Provence, France
| | - Dominique Debanne
- UNIS, UMR1072 INSERM - Aix-Marseille Université, 53 Bvd Pierre Dramard, 13015 Marseille, France
| | - Bruno Buisson
- Neuroservice SARL, 595 rue Pierre Berthier, 13593 Aix-en-Provence, France
| |
Collapse
|
19
|
Sudhakar SK, Choi TJ, Ahmed OJ. Biophysical Modeling Suggests Optimal Drug Combinations for Improving the Efficacy of GABA Agonists after Traumatic Brain Injuries. J Neurotrauma 2019; 36:1632-1645. [PMID: 30484362 PMCID: PMC6531909 DOI: 10.1089/neu.2018.6065] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Traumatic brain injuries (TBI) lead to dramatic changes in the surviving brain tissue. Altered ion concentrations, coupled with changes in the expression of membrane-spanning proteins, create a post-TBI brain state that can lead to further neuronal loss caused by secondary excitotoxicity. Several GABA receptor agonists have been tested in the search for neuroprotection immediately after an injury, with paradoxical results. These drugs not only fail to offer neuroprotection, but can also slow down functional recovery after TBI. Here, using computational modeling, we provide a biophysical hypothesis to explain these observations. We show that the accumulation of intracellular chloride ions caused by a transient upregulation of Na+-K+-2Cl- (NKCC1) co-transporters as observed following TBI, causes GABA receptor agonists to lead to excitation and depolarization block, rather than the expected hyperpolarization. The likelihood of prolonged, excitotoxic depolarization block is further exacerbated by the extremely high levels of extracellular potassium seen after TBI. Our modeling results predict that the neuroprotective efficacy of GABA receptor agonists can be substantially enhanced when they are combined with NKCC1 co-transporter inhibitors. This suggests a rational, biophysically principled method for identifying drug combinations for neuroprotection after TBI.
Collapse
Affiliation(s)
| | - Thomas J. Choi
- Department of Psychology, University of Michigan, Ann Arbor, Michigan
| | - Omar J. Ahmed
- Department of Psychology, University of Michigan, Ann Arbor, Michigan
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, Michigan
- Department of Neuroscience Graduate Program, University of Michigan, Ann Arbor, Michigan
- Department of Kresge Hearing Research Institute, University of Michigan, Ann Arbor, Michigan
- Department of Michigan Center for Integrative Research in Critical Care, University of Michigan, Ann Arbor, Michigan
| |
Collapse
|
20
|
Electrostatics of Tau Protein by Molecular Dynamics. Biomolecules 2019; 9:biom9030116. [PMID: 30909607 PMCID: PMC6468555 DOI: 10.3390/biom9030116] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2019] [Revised: 03/19/2019] [Accepted: 03/20/2019] [Indexed: 12/25/2022] Open
Abstract
Tau is a microtubule-associated protein that promotes microtubule assembly and stability. This protein is implicated in several neurodegenerative diseases, including Alzheimer’s. To date, the three-dimensional (3D) structure of tau has not been fully solved, experimentally. Even the most recent information is sometimes controversial in regard to how this protein folds, interacts, and behaves. Predicting the tau structure and its profile sheds light on the knowledge about its properties and biological function, such as the binding to microtubules (MT) and, for instance, the effect on ionic conductivity. Our findings on the tau structure suggest a disordered protein, with discrete portions of well-defined secondary structure, mostly at the microtubule binding region. In addition, the first molecular dynamics simulation of full-length tau along with an MT section was performed, unveiling tau structure when associated with MT and interaction sites. Electrostatics and conductivity were also examined to understand how tau affects the ions in the intracellular fluid environment. Our results bring a new insight into tau and tubulin MT proteins, their characteristics, and the structure–function relationship.
Collapse
|
21
|
Shivacharan RS, Chiang CC, Zhang M, Gonzalez-Reyes LE, Durand DM. Self-propagating, non-synaptic epileptiform activity recruits neurons by endogenous electric fields. Exp Neurol 2019; 317:119-128. [PMID: 30776338 DOI: 10.1016/j.expneurol.2019.02.005] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2018] [Revised: 01/18/2019] [Accepted: 02/08/2019] [Indexed: 01/23/2023]
Abstract
It is well documented that synapses play a significant role in the transmission of information between neurons. However, in the absence of synaptic transmission, neural activity has been observed to continue to propagate. Previous studies have shown that propagation of epileptiform activity takes place in the absence of synaptic transmission and gap junctions and is outside the range of ionic diffusion and axonal conduction. Computer simulations indicate that electric field coupling could be responsible for the propagation of neural activity under pathological conditions such as epilepsy. Electric fields can modulate neuronal membrane voltage, but there is no experimental evidence suggesting that electric field coupling can mediate self-regenerating propagation of neural activity. Here we examine the role of electric field coupling by eliminating all forms of neural communications except electric field coupling with a cut through the neural tissue. We show that 4-AP induced activity generates an electric field capable of recruiting neurons on the distal side of the cut. Experiments also show that applied electric fields with amplitudes similar to endogenous values can induce propagating waves. Finally, we show that canceling the electrical field at a given point can block spontaneous propagation. The results from these in vitro electrophysiology experiments suggest that electric field coupling is a critical mechanism for non-synaptic neural propagation and therefore could contribute to the propagation of epileptic activity in the brain.
Collapse
Affiliation(s)
- Rajat S Shivacharan
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, OH 44106, USA
| | - Chia-Chu Chiang
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, OH 44106, USA
| | - Mingming Zhang
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, OH 44106, USA
| | - Luis E Gonzalez-Reyes
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, OH 44106, USA
| | - Dominique M Durand
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, OH 44106, USA.
| |
Collapse
|
22
|
Bauer T, Sipos W, Stark TD, Käser T, Knecht C, Brunthaler R, Saalmüller A, Hofmann T, Ehling-Schulz M. First Insights Into Within Host Translocation of the Bacillus cereus Toxin Cereulide Using a Porcine Model. Front Microbiol 2018; 9:2652. [PMID: 30464760 PMCID: PMC6234764 DOI: 10.3389/fmicb.2018.02652] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2018] [Accepted: 10/17/2018] [Indexed: 11/13/2022] Open
Abstract
Bacillus cereus is a gram-positive pathogen mainly known to evoke two types of foodborne poisonings. The diarrheal syndrome is caused by enterotoxins produced during growth in the intestine. In contrast, the emetic type is caused by the dodecadepsipeptide cereulide pre-formed in food. Usually, both diseases are self-limiting but occasionally more severe forms, including fatal ones, are reported. Since the mechanisms of cereulide toxin uptake and translocation within the body as well as the mechanism of its toxic action are still unknown, we used a porcine model to investigate the uptake, routes of excretion and distribution of cereulide within the host. Pigs were orally challenged with cereulide using single doses of 10-150 μg cereulide kg-1 body weight to study acute effects or using daily doses of 10 μg cereulide kg-1 body weight administered for 7 days to investigate effects of longtime, chronic exposure. Our study showed that part of cereulide ingested with food is rapidly excreted with feces while part of the cereulide toxin is absorbed, passes through membranes and is distributed within the body. Results from the chronic trial indicate bioaccumulation of cereulide in certain tissues and organs, such as kidney, liver, muscles and fat tissues. Beside its detection in various tissues and organs, our study also demonstrated that cereulide is able to cross the blood-brain-barrier, which may partially explain the cerebral effects reported from human intoxication cases. The neurobehavioral symptoms, such as seizures and lethargy, observed in our porcine model resemble those reported from human food borne intoxications. The rapid onset of these symptoms indicates direct effects of cereulide on the central nervous system (CNS), which warrant further research. The porcine model presented here might be useful to study the specific neurobiological effect in detail. Furthermore, our study revealed that typical diagnostic specimens used in human medicine, such as blood samples and urine, are not suitable for diagnostics of food borne cereulide intoxications. Instead, screening of fecal samples by SIDA-LC-MS may represent a simple and non-invasive method for detection of cereulide intoxications in clinical settings as well as in foodborne outbreak situations.
Collapse
Affiliation(s)
- Tobias Bauer
- Department of Pathobiology, Functional Microbiology, Institute of Microbiology, University of Veterinary Medicine Vienna, Vienna, Austria
| | - Wolfgang Sipos
- University Clinic for Swine, Department for Farm Animals and Veterinary Public Health, University of Veterinary Medicine Vienna, Vienna, Austria
| | - Timo D Stark
- Chair of Food Chemistry and Molecular Sensory Science, Technische Universität München, Freising, Germany
| | - Tobias Käser
- Department of Pathobiology, Institute of Immunology, University of Veterinary Medicine Vienna, Vienna, Austria.,Department of Population Health and Pathobiology, College of Veterinary Medicine, North Carolina State University (NCSU), Raleigh, NC, United States
| | - Christian Knecht
- University Clinic for Swine, Department for Farm Animals and Veterinary Public Health, University of Veterinary Medicine Vienna, Vienna, Austria
| | - Rene Brunthaler
- Department of Pathobiology, Institute of Pathology and Forensic Veterinary Medicine, University of Veterinary Medicine Vienna, Vienna, Austria
| | - Armin Saalmüller
- Department of Pathobiology, Institute of Immunology, University of Veterinary Medicine Vienna, Vienna, Austria
| | - Thomas Hofmann
- Chair of Food Chemistry and Molecular Sensory Science, Technische Universität München, Freising, Germany
| | - Monika Ehling-Schulz
- Department of Pathobiology, Functional Microbiology, Institute of Microbiology, University of Veterinary Medicine Vienna, Vienna, Austria
| |
Collapse
|
23
|
Potassium dynamics and seizures: Why is potassium ictogenic? Epilepsy Res 2018; 143:50-59. [DOI: 10.1016/j.eplepsyres.2018.04.005] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2018] [Revised: 03/26/2018] [Accepted: 04/07/2018] [Indexed: 01/01/2023]
|
24
|
Proix T, Jirsa VK, Bartolomei F, Guye M, Truccolo W. Predicting the spatiotemporal diversity of seizure propagation and termination in human focal epilepsy. Nat Commun 2018. [PMID: 29540685 PMCID: PMC5852068 DOI: 10.1038/s41467-018-02973-y] [Citation(s) in RCA: 69] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Recent studies have shown that seizures can spread and terminate across brain areas via a rich diversity of spatiotemporal patterns. In particular, while the location of the seizure onset area is usually invariant across seizures in an individual patient, the source of traveling (2–3 Hz) spike-and-wave discharges during seizures can either move with the slower propagating ictal wavefront or remain stationary at the seizure onset area. Furthermore, although many focal seizures terminate synchronously across brain areas, some evolve into distinct ictal clusters and terminate asynchronously. Here, we introduce a unifying perspective based on a new neural field model of epileptic seizure dynamics. Two main mechanisms, the co-existence of wave propagation in excitable media and coupled-oscillator dynamics, together with the interaction of multiple time scales, account for the reported diversity. We confirm our predictions in seizures and tractography data obtained from patients with pharmacologically resistant epilepsy. Our results contribute toward patient-specific seizure modeling. A major goal of epilepsy research is understanding the spatiotemporal dynamics of seizure. Here, the authors extend the Epileptor neural mass model into a neural field model, in order to provide a unified and patient-specific model of seizure initiation, propagation, and termination.
Collapse
Affiliation(s)
- Timothée Proix
- Department of Neuroscience, Brown University, Providence, RI, 02912, USA.,Institute for Brain Science, Brown University, Providence, RI, 02912, USA.,Center for Neurorestoration & Neurotechnology, U.S. Department of Veterans Affairs, Providence, RI, 02912, USA
| | - Viktor K Jirsa
- Institut de Neurosciences des Systèmes (INS), Inserm, Aix Marseille Univ, Marseille, 13005, France
| | - Fabrice Bartolomei
- Institut de Neurosciences des Systèmes (INS), Inserm, Aix Marseille Univ, Marseille, 13005, France
| | - Maxime Guye
- CNRS, CRMBM UMR 7339, Aix Marseille Univ, Marseille, 13005, France
| | - Wilson Truccolo
- Department of Neuroscience, Brown University, Providence, RI, 02912, USA. .,Institute for Brain Science, Brown University, Providence, RI, 02912, USA. .,Center for Neurorestoration & Neurotechnology, U.S. Department of Veterans Affairs, Providence, RI, 02912, USA.
| |
Collapse
|
25
|
Hartle H, Wackerbauer R. Transient chaos and associated system-intrinsic switching of spacetime patterns in two synaptically coupled layers of Morris-Lecar neurons. Phys Rev E 2018; 96:032223. [PMID: 29347029 DOI: 10.1103/physreve.96.032223] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2017] [Indexed: 11/07/2022]
Abstract
Spatiotemporal chaos collapses to either a rest state or a propagating pulse solution in a single layer of diffusively coupled, excitable Morris-Lecar neurons. Weak synaptic coupling of two such layers reveals system intrinsic switching of spatiotemporal activity patterns within and between the layers at irregular times. Within a layer, switching sequences include spatiotemporal chaos, erratic and regular pulse propagation, spontaneous network wide neuron activity, and rest state. A momentary substantial reduction in neuron activity in one layer can reinitiate transient spatiotemporal chaos in the other layer, which can induce a swap of spatiotemporal chaos with a pulse state between the layers. Presynaptic input maximizes the distance between propagating pulses, in contrast to pulse merging in the absence of synapses.
Collapse
Affiliation(s)
- Harrison Hartle
- Department of Physics, University of Alaska, Fairbanks, Alaska 99775-5920, USA
| | - Renate Wackerbauer
- Department of Physics, University of Alaska, Fairbanks, Alaska 99775-5920, USA
| |
Collapse
|
26
|
Magagna-Poveda A, Moretto JN, Scharfman HE. Increased gyrification and aberrant adult neurogenesis of the dentate gyrus in adult rats. Brain Struct Funct 2017; 222:4219-4237. [PMID: 28656372 PMCID: PMC5909844 DOI: 10.1007/s00429-017-1457-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2017] [Accepted: 06/06/2017] [Indexed: 02/08/2023]
Abstract
A remarkable example of maladaptive plasticity is the development of epilepsy after a brain insult or injury to a normal animal or human. A structure that is considered central to the development of this type of epilepsy is the dentate gyrus (DG), because it is normally a relatively inhibited structure and its quiescence is thought to reduce hippocampal seizure activity. This characteristic of the DG is also considered to be important for normal hippocampal-dependent cognitive functions. It has been suggested that the brain insults which cause epilepsy do so because they cause the DG to be more easily activated. One type of brain insult that is commonly used is induction of severe seizures (status epilepticus; SE) by systemic injection of a convulsant drug. Here we describe an alteration in the DG after this type of experimental SE that may contribute to chronic seizures that has not been described before: large folds or gyri that develop in the DG by 1 month after SE. Large gyri appeared to increase network excitability because epileptiform discharges recorded in hippocampal slices after SE were longer in duration when recorded inside gyri relative to locations outside gyri. Large gyri may also increase excitability because immature adult-born neurons accumulated at the base of gyri with time after SE, and previous studies have suggested that abnormalities in adult-born DG neurons promote seizures after SE. In summary, large gyri after SE are a common finding in adult rats, show increased excitability, and are associated with the development of an abnormal spatial distribution of adult-born neurons. Together these alterations may contribute to chronic seizures and associated cognitive comorbidities after SE.
Collapse
Affiliation(s)
- Alejandra Magagna-Poveda
- The Nathan Kline Institute of Psychiatric Research, Center for Dementia Research, 140 Old Orangeburg Rd. Bldg. 35, Orangeburg, NY, 10962, USA
| | - Jillian N Moretto
- The Nathan Kline Institute of Psychiatric Research, Center for Dementia Research, 140 Old Orangeburg Rd. Bldg. 35, Orangeburg, NY, 10962, USA
| | - Helen E Scharfman
- The Nathan Kline Institute of Psychiatric Research, Center for Dementia Research, 140 Old Orangeburg Rd. Bldg. 35, Orangeburg, NY, 10962, USA.
- Department of Child and Adolescent Psychiatry, New York University Langone Medical Center, One Park Ave., New York, NY, 10016, USA.
- Department of Physiology and Neuroscience, New York University Langone Medical Center, One Park Ave., New York, NY, 10016, USA.
- Department of Psychiatry, New York University Langone Medical Center, One Park Ave., New York, NY, 10016, USA.
| |
Collapse
|
27
|
Leiser RJ, Rotstein HG. Emergence of localized patterns in globally coupled networks of relaxation oscillators with heterogeneous connectivity. Phys Rev E 2017; 96:022303. [PMID: 28950537 DOI: 10.1103/physreve.96.022303] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2017] [Indexed: 11/07/2022]
Abstract
Oscillations in far-from-equilibrium systems (e.g., chemical, biochemical, biological) are generated by the nonlinear interplay of positive and negative feedback effects operating at different time scales. Relaxation oscillations emerge when the time scales between the activators and the inhibitors are well separated. In addition to the large-amplitude oscillations (LAOs) or relaxation type, these systems exhibit small-amplitude oscillations (SAOs) as well as abrupt transitions between them (canard phenomenon). Localized cluster patterns in networks of relaxation oscillators consist of one cluster oscillating in the LAO regime or exhibiting mixed-mode oscillations (LAOs interspersed with SAOs), while the other oscillates in the SAO regime. Because the individual oscillators are monostable, localized patterns are a network phenomenon that involves the interplay of the connectivity and the intrinsic dynamic properties of the individual nodes. Motivated by experimental and theoretical results on the Belousov-Zhabotinsky reaction, we investigate the mechanisms underlying the generation of localized patterns in globally coupled networks of piecewise-linear relaxation oscillators where the global feedback term affects the rate of change of the activator (fast variable) and depends on the weighted sum of the inhibitor (slow variable) at any given time. We also investigate whether these patterns are affected by the presence of a diffusive type of coupling whose synchronizing effects compete with the symmetry-breaking global feedback effects.
Collapse
Affiliation(s)
- Randolph J Leiser
- Department of Mathematical Sciences, New Jersey Institute of Technology, Newark, New Jersey 07102, USA
| | - Horacio G Rotstein
- Department of Mathematical Sciences, New Jersey Institute of Technology, Newark, New Jersey 07102, USA.,Institute for Brain and Neuroscience Research, New Jersey Institute of Technology, Newark, New Jersey 07102, USA
| |
Collapse
|
28
|
Ephaptic Coupling of Cortical Neurons: Possible Contribution of Astroglial Magnetic Fields? Neuroscience 2017; 370:37-45. [PMID: 28793233 DOI: 10.1016/j.neuroscience.2017.07.072] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2017] [Revised: 06/17/2017] [Accepted: 07/31/2017] [Indexed: 02/08/2023]
Abstract
The close anatomical and functional relationship between neuronal circuits and the astroglial network in the neocortex has been demonstrated at several organization levels supporting the idea that neuron-astroglial crosstalk can play a key role in information processing. In addition to chemical and electrical neurotransmission, other non-synaptic mechanisms called ephaptic interactions seem to be important to understand neuronal coupling and cognitive functions. Recent interest in this issue comes from the fact that extra-cranial electric and magnetic field stimulations have shown therapeutic actions in the clinical practice. The present paper reviews the current knowledge regarding the ephaptic effects in mammalian neocortex and proposes that astroglial bio-magnetic fields associated with Ca2+ transients could be implicated in the ephaptic coupling of neurons by a direct magnetic modulation of the intercellular local field potentials.
Collapse
|
29
|
Proix T, Bartolomei F, Guye M, Jirsa VK. Individual brain structure and modelling predict seizure propagation. Brain 2017; 140:641-654. [PMID: 28364550 PMCID: PMC5837328 DOI: 10.1093/brain/awx004] [Citation(s) in RCA: 155] [Impact Index Per Article: 22.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2016] [Accepted: 12/03/2016] [Indexed: 01/03/2023] Open
Abstract
See Lytton (doi:10.1093/awx018) for a scientific commentary on this article.Neural network oscillations are a fundamental mechanism for cognition, perception and consciousness. Consequently, perturbations of network activity play an important role in the pathophysiology of brain disorders. When structural information from non-invasive brain imaging is merged with mathematical modelling, then generative brain network models constitute personalized in silico platforms for the exploration of causal mechanisms of brain function and clinical hypothesis testing. We here demonstrate with the example of drug-resistant epilepsy that patient-specific virtual brain models derived from diffusion magnetic resonance imaging have sufficient predictive power to improve diagnosis and surgery outcome. In partial epilepsy, seizures originate in a local network, the so-called epileptogenic zone, before recruiting other close or distant brain regions. We create personalized large-scale brain networks for 15 patients and simulate the individual seizure propagation patterns. Model validation is performed against the presurgical stereotactic electroencephalography data and the standard-of-care clinical evaluation. We demonstrate that the individual brain models account for the patient seizure propagation patterns, explain the variability in postsurgical success, but do not reliably augment with the use of patient-specific connectivity. Our results show that connectome-based brain network models have the capacity to explain changes in the organization of brain activity as observed in some brain disorders, thus opening up avenues towards discovery of novel clinical interventions.
Collapse
Affiliation(s)
- Timothée Proix
- Aix Marseille Univ, Inserm, INS, Institut de Neurosciences des Systèmes, Marseille, France
| | - Fabrice Bartolomei
- Aix Marseille Univ, Inserm, INS, Institut de Neurosciences des Systèmes, Marseille, France.,Assistance Publique - Hôpitaux de Marseille, Hôpital de la Timone, Service de Neurophysiologie Clinique, CHU, 13005 Marseille, France
| | - Maxime Guye
- Aix-Marseille Université, Centre de Résonance Magnétique et Biologique et Médicale (CRMBM, UMR CNRS-AMU 7339), Medical School of Marseille, 13005, Marseille, France.,Assistance Publique - Hôpitaux de Marseille, Hôpital de la Timone, CEMEREM, Pôle d'Imagerie Médicale, CHU, 13005, Marseille, France
| | - Viktor K Jirsa
- Aix Marseille Univ, Inserm, INS, Institut de Neurosciences des Systèmes, Marseille, France
| |
Collapse
|
30
|
Du M, Li J, Wang R, Wu Y. The influence of potassium concentration on epileptic seizures in a coupled neuronal model in the hippocampus. Cogn Neurodyn 2016; 10:405-14. [PMID: 27668019 PMCID: PMC5018011 DOI: 10.1007/s11571-016-9390-4] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2015] [Revised: 03/14/2016] [Accepted: 05/19/2016] [Indexed: 10/21/2022] Open
Abstract
Experiments on hippocampal slices have recorded that a novel pattern of epileptic seizures with alternating excitatory and inhibitory activities in the CA1 region can be induced by an elevated potassium ion (K(+)) concentration in the extracellular space between neurons and astrocytes (ECS-NA). To explore the intrinsic effects of the factors (such as glial K(+) uptake, Na(+)-K(+)-ATPase, the K(+) concentration of the bath solution, and K(+) lateral diffusion) influencing K(+) concentration in the ECS-NA on the epileptic seizures recorded in previous experiments, we present a coupled model composed of excitatory and inhibitory neurons and glia in the CA1 region. Bifurcation diagrams showing the glial K(+) uptake strength with either the Na(+)-K(+)-ATPase pump strength or the bath solution K(+) concentration are obtained for neural epileptic seizures. The K(+) lateral diffusion leads to epileptic seizure in neurons only when the synaptic conductance values of the excitatory and inhibitory neurons are within an appropriate range. Finally, we propose an energy factor to measure the metabolic demand during neuron firing, and the results show that different energy demands for the normal discharges and the pathological epileptic seizures of the coupled neurons.
Collapse
Affiliation(s)
- Mengmeng Du
- State Key Laboratory for Strength and Vibration of Mechanical Structures, School of Aerospace, Xi’an Jiaotong University, Xi’an, China
| | - Jiajia Li
- State Key Laboratory for Strength and Vibration of Mechanical Structures, School of Aerospace, Xi’an Jiaotong University, Xi’an, China
| | - Rong Wang
- State Key Laboratory for Strength and Vibration of Mechanical Structures, School of Aerospace, Xi’an Jiaotong University, Xi’an, China
| | - Ying Wu
- State Key Laboratory for Strength and Vibration of Mechanical Structures, School of Aerospace, Xi’an Jiaotong University, Xi’an, China
| |
Collapse
|
31
|
Lenk K, Priwitzer B, Ylä-Outinen L, Tietz LHB, Narkilahti S, Hyttinen JAK. Simulation of developing human neuronal cell networks. Biomed Eng Online 2016; 15:105. [PMID: 27576323 PMCID: PMC5006268 DOI: 10.1186/s12938-016-0226-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2015] [Accepted: 08/18/2016] [Indexed: 12/15/2022] Open
Abstract
Background Microelectrode array (MEA) is a widely used technique to study for example the functional properties of neuronal networks derived from human embryonic stem cells (hESC-NN). With hESC-NN, we can investigate the earliest developmental stages of neuronal network formation in the human brain. Methods In this paper, we propose an in silico model of maturating hESC-NNs based on a phenomenological model called INEX. We focus on simulations of the development of bursts in hESC-NNs, which are the main feature of neuronal activation patterns. The model was developed with data from developing hESC-NN recordings on MEAs which showed increase in the neuronal activity during the investigated six measurement time points in the experimental and simulated data. Results Our simulations suggest that the maturation process of hESC-NN, resulting in the formation of bursts, can be explained by the development of synapses. Moreover, spike and burst rate both decreased at the last measurement time point suggesting a pruning of synapses as the weak ones are removed. Conclusions To conclude, our model reflects the assumption that the interaction between excitatory and inhibitory neurons during the maturation of a neuronal network and the spontaneous emergence of bursts are due to increased connectivity caused by the forming of new synapses.
Collapse
Affiliation(s)
- Kerstin Lenk
- Department of Electronics and Communications Engineering, Tampere University of Technology, BioMediTech, PL100, Tampere, Finland.
| | - Barbara Priwitzer
- Faculty of Engineering and Computer Science, Brandenburg University of Technology Cottbus-Senftenberg, Platz der Deutschen Einheit 1, 03046, Cottbus, Germany
| | - Laura Ylä-Outinen
- NeuroGroup, Institute of Biomedical Technology, University of Tampere, BioMediTech, PL100, Tampere, Finland
| | - Lukas H B Tietz
- Department of Electronics and Communications Engineering, Tampere University of Technology, BioMediTech, PL100, Tampere, Finland
| | - Susanna Narkilahti
- NeuroGroup, Institute of Biomedical Technology, University of Tampere, BioMediTech, PL100, Tampere, Finland
| | - Jari A K Hyttinen
- Department of Electronics and Communications Engineering, Tampere University of Technology, BioMediTech, PL100, Tampere, Finland
| |
Collapse
|
32
|
Propagating Neural Source Revealed by Doppler Shift of Population Spiking Frequency. J Neurosci 2016; 36:3495-505. [PMID: 27013678 DOI: 10.1523/jneurosci.3525-15.2016] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2015] [Accepted: 01/28/2016] [Indexed: 11/21/2022] Open
Abstract
UNLABELLED Electrical activity in the brain during normal and abnormal function is associated with propagating waves of various speeds and directions. It is unclear how both fast and slow traveling waves with sometime opposite directions can coexist in the same neural tissue. By recording population spikes simultaneously throughout the unfolded rodent hippocampus with a penetrating microelectrode array, we have shown that fast and slow waves are causally related, so a slowly moving neural source generates fast-propagating waves at ∼0.12 m/s. The source of the fast population spikes is limited in space and moving at ∼0.016 m/s based on both direct and Doppler measurements among 36 different spiking trains among eight different hippocampi. The fact that the source is itself moving can account for the surprising direction reversal of the wave. Therefore, these results indicate that a small neural focus can move and that this phenomenon could explain the apparent wave reflection at tissue edges or multiple foci observed at different locations in neural tissue. SIGNIFICANCE STATEMENT The use of novel techniques with an unfolded hippocampus and penetrating microelectrode array to record and analyze neural activity has revealed the existence of a source of neural signals that propagates throughout the hippocampus. The source itself is electrically silent, but its location can be inferred by building isochrone maps of population spikes that the source generates. The movement of the source can also be tracked by observing the Doppler frequency shift of these spikes. These results have general implications for how neural signals are generated and propagated in the hippocampus; moreover, they have important implications for the understanding of seizure generation and foci localization.
Collapse
|
33
|
Wang L, Dufour S, Valiante TA, Carlen PL. Extracellular Potassium and Seizures: Excitation, Inhibition and the Role of Ih. Int J Neural Syst 2016; 26:1650044. [PMID: 27464853 DOI: 10.1142/s0129065716500441] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Seizure activity leads to increases in extracellular potassium concentration ([K[Formula: see text]]o), which can result in changes in neuronal passive and active membrane properties as well as in population activities. In this study, we examined how extracellular potassium modulates seizure activities using an acute 4-AP induced seizure model in the neocortex, both in vivo and in vitro. Moderately elevated [K[Formula: see text]]o up to 9[Formula: see text]mM prolonged seizure durations and shortened interictal intervals as well as depolarized the neuronal resting membrane potential (RMP). However, when [K[Formula: see text]]o reached higher than 9[Formula: see text]mM, seizure like events (SLEs) were blocked and neurons went into a depolarization-blocked state. Spreading depression was never observed as the blockade of ictal events could be reversed within 1-2[Formula: see text]min after the raised [K[Formula: see text]]o was changed back to control levels. This concentration-dependent dual effect of [K[Formula: see text]]o was observed using in vivo and in vitro mouse brain preparations as well as in human neocortical tissue resected during epilepsy surgery. Blocking the Ih current, mediated by hyperpolarization-activated cyclic nucleotide-gated (HCN) channels, modulated the elevated [K[Formula: see text]]o influence on SLEs by promoting the high [K[Formula: see text]]o inhibitory actions. These results demonstrate biphasic actions of raised [K[Formula: see text]]o on neuronal excitability and seizure activity.
Collapse
Affiliation(s)
- Lihua Wang
- 1 Departments of Medicine (Neurology) and Physiology, University Health Network, University of Toronto, Toronto, M5T 2S8, Ontario, Canada
| | - Suzie Dufour
- 1 Departments of Medicine (Neurology) and Physiology, University Health Network, University of Toronto, Toronto, M5T 2S8, Ontario, Canada
| | - Taufik A Valiante
- 2 Division of Neurosurgery, Department of Surgery, University Health Network, University of Toronto, Institute of Biomaterials and Biomedical Engineering, University of Toronto, Toronto, M5T 2S8, Ontario, Canada
| | - Peter L Carlen
- 3 Departments of Medicine (Neurology) and Physiology, University Health Network, University of Toronto, Institute of Biomaterials and Biomedical Engineering University of Toronto, Toronto, M5T 2S8, Ontario, Canada
| |
Collapse
|
34
|
Hirata T, Terai T, Yamamura H, Shimonishi M, Komatsu T, Hanaoka K, Ueno T, Imaizumi Y, Nagano T, Urano Y. Protein-Coupled Fluorescent Probe To Visualize Potassium Ion Transition on Cellular Membranes. Anal Chem 2016; 88:2693-700. [PMID: 26894407 DOI: 10.1021/acs.analchem.5b03970] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
K(+) is the most abundant metal ion in cells, and changes of [K(+)] around cell membranes play important roles in physiological events. However, there is no practical method to selectively visualize [K(+)] at the surface of cells. To address this issue, we have developed a protein-coupled fluorescent probe for K(+), TLSHalo. TLSHalo is responsive to [K(+)] in the physiological range, with good selectivity over Na(+) and retains its K(+)-sensing properties after covalent conjugation with HaloTag protein. By using cells expressing HaloTag on the plasma membrane, we successfully directed TLSHalo specifically to the outer surface of target cells. This enabled us to visualize localized extracellular [K(+)] change with TLSHalo under a fluorescence microscope in real time. To confirm the experimental value of this system, we used TLSHalo to monitor extracellular [K(+)] change induced by K(+) ionophores or by activation of a native Ca(2+)-dependent K(+) channel (BK channel). Further, we show that K(+) efflux via BK channel induced by electrical stimulation at the bottom surface of the cells can be visualized with TLSHalo by means of total internal reflection fluorescence microscope (TIRFM) imaging. Our methodology should be useful to analyze physiological K(+) dynamics with high spatiotemporal resolution.
Collapse
Affiliation(s)
| | | | - Hisao Yamamura
- Graduate School of Pharmaceutical Sciences, Nagoya City University , Nagoya 467-8603, Japan
| | | | | | | | | | - Yuji Imaizumi
- Graduate School of Pharmaceutical Sciences, Nagoya City University , Nagoya 467-8603, Japan
| | | | | |
Collapse
|
35
|
Slow Spatial Recruitment of Neocortex during Secondarily Generalized Seizures and Its Relation to Surgical Outcome. J Neurosci 2015; 35:9477-90. [PMID: 26109670 DOI: 10.1523/jneurosci.0049-15.2015] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Understanding the spatiotemporal dynamics of brain activity is crucial for inferring the underlying synaptic and nonsynaptic mechanisms of brain dysfunction. Focal seizures with secondary generalization are traditionally considered to begin in a limited spatial region and spread to connected areas, which can include both pathological and normal brain tissue. The mechanisms underlying this spread are important to our understanding of seizures and to improve therapies for surgical intervention. Here we study the properties of seizure recruitment-how electrical brain activity transitions to large voltage fluctuations characteristic of spike-and-wave seizures. We do so using invasive subdural electrode arrays from a population of 16 patients with pharmacoresistant epilepsy. We find an average delay of ∼30 s for a broad area of cortex (8 × 8 cm) to be recruited into the seizure, at an estimated speed of ∼4 mm/s. The spatiotemporal characteristics of recruitment reveal two categories of patients: one in which seizure recruitment of neighboring cortical regions follows a spatially organized pattern consistent from seizure to seizure, and a second group without consistent spatial organization of activity during recruitment. The consistent, organized recruitment correlates with a more regular, compared with small-world, connectivity pattern in simulation and successful surgical treatment of epilepsy. We propose that an improved understanding of how the seizure recruits brain regions into large amplitude voltage fluctuations provides novel information to improve surgical treatment of epilepsy and highlights the slow spread of massive local activity across a vast extent of cortex during seizure.
Collapse
|
36
|
Abstract
High-frequency deep brain stimulation (DBS) is an effective treatment for some movement disorders. Though mechanisms underlying DBS are still unclear, commonly accepted theories include a “functional inhibition” of neuronal cell bodies and the excitation of axonal projections near the electrodes. It is becoming clear, however, that the paradoxical dissociation “local inhibition” and “distant excitation” is far more complex than initially thought. Despite an initial increase in neuronal activity following stimulation, cells are often unable to maintain normal ionic concentrations, particularly those of sodium and potassium. Based on currently available evidence, we proposed an alternative hypothesis. Increased extracellular concentrations of potassium during DBS may change the dynamics of both cells and axons, contributing not only to the intermittent excitation and inhibition of these elements but also to interrupt abnormal pathological activity. In this article, we review mechanisms through which high extracellular potassium may mediate some of the effects of DBS.
Collapse
Affiliation(s)
- Gerson Florence
- Division of Functional Neurosurgery, Department of Neurology, Hospital das Clínicas, School of Medicine of the University of São Paulo, São Paulo, SP, Brazil
- Department of Radiology and Oncology, School of Medicine of the University of São Paulo, São Paulo, SP, Brazil
| | - Koichi Sameshima
- Department of Radiology and Oncology, School of Medicine of the University of São Paulo, São Paulo, SP, Brazil
| | - Erich T. Fonoff
- Division of Functional Neurosurgery, Department of Neurology, Hospital das Clínicas, School of Medicine of the University of São Paulo, São Paulo, SP, Brazil
| | - Clement Hamani
- Division of Neurosurgery, Toronto Western Hospital, University of Toronto, Toronto, Ontario, Canada
- Behavioural Neurobiology Laboratory and the Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, Ontario, Canada
| |
Collapse
|
37
|
Kano T, Inaba Y, D'Antuono M, Biagini G, Levésque M, Avoli M. Blockade of in vitro ictogenesis by low-frequency stimulation coincides with increased epileptiform response latency. J Neurophysiol 2015; 114:21-8. [PMID: 25925325 PMCID: PMC4493663 DOI: 10.1152/jn.00248.2015] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2015] [Accepted: 04/29/2015] [Indexed: 11/22/2022] Open
Abstract
Low-frequency stimulation, delivered through transcranial magnetic or deep-brain electrical procedures, reduces seizures in patients with pharmacoresistant epilepsy. A similar control of ictallike discharges is exerted by low-frequency electrical stimulation in rodent brain slices maintained in vitro during convulsant treatment. By employing field and "sharp" intracellular recordings, we analyzed here the effects of stimuli delivered at 0.1 or 1 Hz in the lateral nucleus of the amygdala on ictallike epileptiform discharges induced by the K(+) channel blocker 4-aminopyridine in the perirhinal cortex, in a rat brain slice preparation. We found that 1) ictal events were nominally abolished when the stimulus rate was brought from 0.1 to 1 Hz; 2) this effect was associated with an increased latency of the epileptiform responses recorded in perirhinal cortex following each stimulus; and 3) both changes recovered to control values following arrest of the 1-Hz stimulation protocol. The control of ictal activity by 1-Hz stimulation and the concomitant latency increase were significantly reduced by GABAB receptor antagonism. We propose that this frequency-dependent increase in latency represents a short-lasting, GABAB receptor-dependent adaptive mechanism that contributes to decrease epileptiform synchronization, thus blocking seizures in epileptic patients and animal models.
Collapse
Affiliation(s)
- Toshiyuki Kano
- Montreal Neurological Institute and Departments of Neurology & Neurosurgery and Physiology, McGill University, Montreal, Quebec, Canada
| | - Yuji Inaba
- Montreal Neurological Institute and Departments of Neurology & Neurosurgery and Physiology, McGill University, Montreal, Quebec, Canada; Shinshu University, School of Medicine, Matsumoto, Japan; and
| | - Margherita D'Antuono
- Montreal Neurological Institute and Departments of Neurology & Neurosurgery and Physiology, McGill University, Montreal, Quebec, Canada
| | - Giuseppe Biagini
- Montreal Neurological Institute and Departments of Neurology & Neurosurgery and Physiology, McGill University, Montreal, Quebec, Canada; Dipartimento di Scienze Biomediche, Metaboliche e Neuroscienze, Università di Modena e Reggio Emilia, Modena, Italy
| | - Maxime Levésque
- Montreal Neurological Institute and Departments of Neurology & Neurosurgery and Physiology, McGill University, Montreal, Quebec, Canada
| | - Massimo Avoli
- Montreal Neurological Institute and Departments of Neurology & Neurosurgery and Physiology, McGill University, Montreal, Quebec, Canada;
| |
Collapse
|
38
|
Wu XX, Shuai J. Effects of extracellular potassium diffusion on electrically coupled neuron networks. PHYSICAL REVIEW. E, STATISTICAL, NONLINEAR, AND SOFT MATTER PHYSICS 2015; 91:022712. [PMID: 25768536 DOI: 10.1103/physreve.91.022712] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2014] [Indexed: 06/04/2023]
Abstract
Potassium accumulation and diffusion during neuronal epileptiform activity have been observed experimentally, and potassium lateral diffusion has been suggested to play an important role in nonsynaptic neuron networks. We adopt a hippocampal CA1 pyramidal neuron network in a zero-calcium condition to better understand the influence of extracellular potassium dynamics on the stimulus-induced activity. The potassium concentration in the interstitial space for each neuron is regulated by potassium currents, Na(+)-K(+) pumps, glial buffering, and ion diffusion. In addition to potassium diffusion, nearby neurons are also coupled through gap junctions. Our results reveal that the latency of the first spike responding to stimulus monotonically decreases with increasing gap-junction conductance but is insensitive to potassium diffusive coupling. The duration of network oscillations shows a bell-like shape with increasing potassium diffusive coupling at weak gap-junction coupling. For modest electrical coupling, there is an optimal K(+) diffusion strength, at which the flow of potassium ions among the network neurons appropriately modulates interstitial potassium concentrations in a degree that provides the most favorable environment for the generation and continuance of the action potential waves in the network.
Collapse
Affiliation(s)
- Xing-Xing Wu
- Department of Physics, Xiamen University, Xiamen 361005, P. R. China
| | - Jianwei Shuai
- Department of Physics, State Key Lab of Cellular Stress Biology, Innovation Center for Cell Signaling Network, and Fujian Provincial Key Laboratory of Theoretical and Computational Chemistry, Xiamen University; Xiamen 361005, P. R. China
| |
Collapse
|
39
|
Biagini G, D'Antuono M, Inaba Y, Kano T, Ragsdale D, Avoli M. Activity-dependent changes in excitability of perirhinal cortex networks in vitro. Pflugers Arch 2014; 467:805-16. [PMID: 24903241 DOI: 10.1007/s00424-014-1545-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2014] [Revised: 05/12/2014] [Accepted: 05/26/2014] [Indexed: 11/28/2022]
Abstract
Rat brain slices comprising the perirhinal cortex (PC) and a portion of the lateral nucleus of the amygdala (LA), in standard medium, can generate synchronous oscillatory activity that is associated with action potential discharge and reflects the activation of glutamatergic and GABAergic receptors. We report here that similar synchronous oscillatory events are recorded in the PC in response to single-shock, electrical stimuli delivered in LA. In addition, we found that the latency of these responses progressively increased when the stimulus interval was varied from 10 to 1 s; for example, the response latency during stimuli delivered at 1 Hz was more than twofold longer than that seen during stimulation at 0.1 Hz. This prolongation in latency occurred after approximately 5 stimuli, attained a steady value after 24-35 stimuli, and recovered to control values 30 s after stimulation arrest. These frequency-dependent changes in latency continued to occur during NMDA receptor antagonism but weakened following application of GABAA and/or GABAB receptor blockers. Our findings identify a new type of short-term plasticity that is mediated by GABA receptor function and may play a role in decreasing neuronal network synchronization during repeated activation. We propose that this frequency-dependent adaptive mechanism influences the excitability of limbic networks, thus potentially controlling epileptiform synchronization.
Collapse
Affiliation(s)
- Giuseppe Biagini
- Montreal Neurological Institute, McGill University, 3801 Rue University, Montreal, QC, H3A 2B4, Canada
| | | | | | | | | | | |
Collapse
|
40
|
Propagation of epileptiform activity can be independent of synaptic transmission, gap junctions, or diffusion and is consistent with electrical field transmission. J Neurosci 2014; 34:1409-19. [PMID: 24453330 DOI: 10.1523/jneurosci.3877-13.2014] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
The propagation of activity in neural tissue is generally associated with synaptic transmission, but epileptiform activity in the hippocampus can propagate with or without synaptic transmission at a speed of ∼0.1 m/s. This suggests an underlying common nonsynaptic mechanism for propagation. To study this mechanism, we developed a novel unfolded hippocampus preparation, from CD1 mice of either sex, which preserves the transverse and longitudinal connections and recorded activity with a penetrating microelectrode array. Experiments using synaptic transmission and gap junction blockers indicated that longitudinal propagation is independent of chemical or electrical synaptic transmission. Propagation speeds of 0.1 m/s are not compatible with ionic diffusion or pure axonal conduction. The only other means of communication between neurons is through electric fields. Computer simulations revealed that activity can indeed propagate from cell to cell solely through field effects. These results point to an unexpected propagation mechanism for neural activity in the hippocampus involving endogenous field effect transmission.
Collapse
|
41
|
Muzika F, Schreiberová L, Schreiber I. Chemical computing based on Turing patterns in two coupled cells with equal transport coefficients. RSC Adv 2014. [DOI: 10.1039/c4ra08859j] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
Two diffusively coupled reaction cells with a nonlinear reaction are used to perform chemical computing based on targeted perturbations switching between two Turing patterns defining two states of a logical device.
Collapse
|
42
|
Muzika F, Schreiber I. Control of Turing patterns and their usage as sensors, memory arrays, and logic gates. J Chem Phys 2013; 139:164108. [PMID: 24182005 DOI: 10.1063/1.4825379] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
We study a model system of three diffusively coupled reaction cells arranged in a linear array that display Turing patterns with special focus on the case of equal coupling strength for all components. As a suitable model reaction we consider a two-variable core model of glycolysis. Using numerical continuation and bifurcation techniques we analyze the dependence of the system's steady states on varying rate coefficient of the recycling step while the coupling coefficients of the inhibitor and activator are fixed and set at the ratios 100:1, 1:1, and 4:5. We show that stable Turing patterns occur at all three ratios but, as expected, spontaneous transition from the spatially uniform steady state to the spatially nonuniform Turing patterns occurs only in the first case. The other two cases possess multiple Turing patterns, which are stabilized by secondary bifurcations and coexist with stable uniform periodic oscillations. For the 1:1 ratio we examine modular spatiotemporal perturbations, which allow for controllable switching between the uniform oscillations and various Turing patterns. Such modular perturbations are then used to construct chemical computing devices utilizing the multiple Turing patterns. By classifying various responses we propose: (a) a single-input resettable sensor capable of reading certain value of concentration, (b) two-input and three-input memory arrays capable of storing logic information, (c) three-input, three-output logic gates performing combinations of logical functions OR, XOR, AND, and NAND.
Collapse
Affiliation(s)
- František Muzika
- Department of Chemical Engineering, Institute of Chemical Technology, Prague, 16628 Prague 6, Czech Republic
| | | |
Collapse
|
43
|
Chung HW, Park JW, Lee EJ, Jung KH, Paik JY, Lee KH. 131I-MIBG targeting of neuroblastoma cells is acutely enhanced by KCl stimulation through the calcium/calmodulin-dependent kinase pathway. Cancer Biother Radiopharm 2013; 28:488-93. [PMID: 23763646 DOI: 10.1089/cbr.2012.1353] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
The efficacy of (131)I-metaiodobenzylguanidine (MIBG) therapy relies on norepinephrine transporter (NET) function. The ionic make-up of the extracellular fluid critically controls neuronal cell activity and can also affect substrate transport. In this study, we explored the effect of treatment with elevated KCl concentration on MIBG uptake in SK-N-SH neuroblastoma cells. KCl stimulation caused a rapid increase of (131)I-MIBG uptake in a manner that was calcium-dependent and accompanied by activation of calcium/calmodulin-dependent protein kinase (CaMK)II. The effect was completely abolished by KN93, an inhibitor of CaMKI, II, and IV. STO609, a selective inhibitor of CaMK kinase required for activation of CaMKI and IV, but not CaMKII, only modestly attenuated the response. The KCl effect was also completely abrogated by ML7, a selective inhibitor of myosin light chain kinase (MLCK). This restricted form of CaMK activates myosin, which is required for vesicle trafficking. Saturation kinetic analysis revealed KCl stimulation to increase maximal transport velocity without affecting substrate affinity. In conclusion, KCl stimulation rapidly upregulates NET function through the CaMK pathway via activation of CaMKII and MLCK. These findings allow a better understanding of how NET function is acutely modulated by the ionic environment, which in turn may ultimately help improve the efficacy of (131)I-MIBG therapy.
Collapse
Affiliation(s)
- Hyun Woo Chung
- Department of Nuclear Medicine, Konkuk University Medical Center, Research Institute of Biomedical Science, Konkuk University School of Medicine, Seoul, Korea
| | | | | | | | | | | |
Collapse
|
44
|
Rubin JJ, Rubin JE, Ermentrout GB. Analysis of synchronization in a slowly changing environment: how slow coupling becomes fast weak coupling. PHYSICAL REVIEW LETTERS 2013; 110:204101. [PMID: 25167415 DOI: 10.1103/physrevlett.110.204101] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/13/2013] [Revised: 04/07/2013] [Indexed: 06/03/2023]
Abstract
Many physical and biological oscillators are coupled indirectly through a slowly evolving dynamic medium. We present a perturbation method that shows that slow dynamics of a coupling medium is effectively equivalent to weak coupling of oscillators. Our methods first apply the theory of averaging to obtain a periodic solution to a single system and then exploit small fluctuations around the mean to analyze coupling between systems. We use this method to explain the spike-to-spike asynchrony seen in a model for bursting neurons coupled through extracellular potassium and to explore synchronization in a model for quorum sensing.
Collapse
Affiliation(s)
- Jonathan J Rubin
- Department of Mathematics, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, USA
| | - Jonathan E Rubin
- Department of Mathematics, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, USA
| | - G Bard Ermentrout
- Department of Mathematics, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, USA
| |
Collapse
|
45
|
Cammarota M, Losi G, Chiavegato A, Zonta M, Carmignoto G. Fast spiking interneuron control of seizure propagation in a cortical slice model of focal epilepsy. J Physiol 2012. [PMID: 23207591 DOI: 10.1113/jphysiol.2012.238154] [Citation(s) in RCA: 123] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
In different animal models of focal epilepsy, seizure-like ictal discharge propagation is transiently opposed by feedforward inhibition. The specific cellular source of this signal and the mechanism by which inhibition ultimately becomes ineffective are, however, undefined. We used a brain slice model to study how focal ictal discharges that were repetitively evoked from the same site, and at precise times, propagate across the cortex. We used Ca(2+) imaging and simultaneous single/dual cell recordings from pyramidal neurons (PyNs) and different classes of interneurons in rodents, including G42 and GIN transgenic mice expressing the green fluorescence protein in parvalbumin (Pv)-fast spiking (FS) and somatostatin (Som) interneurons, respectively. We found that these two classes of interneurons fired intensively shortly after ictal discharge generation at the focus. The inhibitory barrages that were recorded in PyNs occurred in coincidence with Pv-FS, but not with Som interneuron burst discharges. Furthermore, the strength of inhibitory barrages increased or decreased in parallel with increased or decreased firing in Pv-FS interneurons but not in Som interneurons. A firing impairment of Pv-FS interneurons caused by a membrane depolarization was found to precede ictal discharge onset in neighbouring pyramidal neurons. This event may account for the collapse of local inhibition that allows spatially defined clusters of PyNs to be recruited into propagating ictal discharges. Our study demonstrates that Pv-FS interneurons are a major source of the inhibitory barrages that oppose ictal discharge propagation and raises the possibility that targeting Pv-FS interneurons represents a new therapeutic strategy to prevent the generalization of human focal seizures.
Collapse
Affiliation(s)
- Mario Cammarota
- Institute of Neuroscience, National Research Council and Department of Biomedical Sciences, University of Padova, Padova, Italy
| | | | | | | | | |
Collapse
|
46
|
Rotstein HG, Wu H. Swing, release, and escape mechanisms contribute to the generation of phase-locked cluster patterns in a globally coupled FitzHugh-Nagumo model. PHYSICAL REVIEW. E, STATISTICAL, NONLINEAR, AND SOFT MATTER PHYSICS 2012; 86:066207. [PMID: 23368024 DOI: 10.1103/physreve.86.066207] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2012] [Revised: 08/31/2012] [Indexed: 06/01/2023]
Abstract
We investigate the mechanism of generation of phase-locked cluster patterns in a globally coupled FitzhHugh-Nagumo model where the fast variable (activator) receives global feedback from the slow variable (inhibitor). We identify three qualitatively different mechanisms (swing-and-release, hold-and-release, and escape-and-release) that contribute to the generation of these patterns. We describe these mechanisms and use this framework to explain under what circumstances two initially out-of-phase oscillatory clusters reach steady phase-locked and in-phase synchronized solutions, and how the phase difference between these steady state cluster patterns depends on the clusters relative size, the global coupling intensity, and other model parameters.
Collapse
Affiliation(s)
- Horacio G Rotstein
- Department of Mathematical Sciences, New Jersey Institute of Technology, Newark, New Jersey 07102, USA.
| | | |
Collapse
|
47
|
Özdemir MB, Akça H, Erdoğan Ç, Tokgün O, Demiray A, Semin F, Becerir C. Protective effect of insulin and glucose at different concentrations on penicillin-induced astrocyte death on the primer astroglial cell line. Neural Regen Res 2012; 7:1895-9. [PMID: 25624816 PMCID: PMC4298904 DOI: 10.3969/j.issn.1673-5374.2012.24.008] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2012] [Accepted: 06/13/2012] [Indexed: 11/18/2022] Open
Abstract
Astrocytes perform many functions in the brain and spinal cord. Glucose metabolism is important for astroglial cells and astrocytes are the only cells with insulin receptors in the brain. The common antibiotic penicillin is also a chemical agent that causes degenerative effect on neuronal cell. The aim of this study is to show the effect of insulin and glucose at different concentrations on the astrocyte death induced by penicillin on primer astroglial cell line. It is well known that intracranial penicillin treatment causes neuronal cell death and it is used for experimental epilepsy model commonly. Previous studies showed that insulin and glucose might protect neuronal cell in case of proper concentrations. But, the present study is about the effect of insulin and glucose against astrocyte death induced by penicillin. For this purpose, newborn rat brain was extracted and then mechanically dissociated to astroglial cell suspension and finally grown in culture medium. Clutters were maintained for 2 weeks prior to being used in these experiments. Different concentrations of insulin (0, 1, 3 nM) and glucose (0, 3, 30 mM) were used in media without penicillin and with 2 500 μM penicillin. Penicillin decreased the viability of astroglial cell seriously. The highest cell viability appeared in medium with 3 nM insulin and 3 mM glucose but without penicillin. However, in medium with penicillin, the best cell survival was in medium with 1 nM insulin but without glucose. We concluded that insulin and glucose show protective effects on the damage induced by penicillin to primer astroglial cell line. Interestingly, cell survival depends on concentrations of insulin and glucose strongly. The results of this study will help to explain cerebrovascular pathologies parallel to insulin and glucose conditions of patient after intracranial injuries.
Collapse
Affiliation(s)
- Mehmet Bülent Özdemir
- Department of Anatomy, Pamukkale University School of Medicine, Denizli 20070, Turkey
| | - Hakan Akça
- Department of Medical Biology, Pamukkale University School of Medicine, Denizli 20070, Turkey
| | - Çağdaş Erdoğan
- Department of Neurology, Pamukkale University School of Medicine, Denizli 20070, Turkey
| | - Onur Tokgün
- Department of Medical Biology, Pamukkale University School of Medicine, Denizli 20070, Turkey
| | - Aydın Demiray
- Department of Medical Biology, Pamukkale University School of Medicine, Denizli 20070, Turkey
| | - Fenkçi Semin
- Department of Endocrinology, Turkish Health Ministry, Denizli Hospital, Denizli 20070, Turkey
| | - Cem Becerir
- Department of Pediatrics, Pamukkale University School of Medicine, Denizli 20070, Turkey
| |
Collapse
|
48
|
Chang SY, Kim I, Marsh MP, Jang DP, Hwang SC, Van Gompel JJ, Goerss SJ, Kimble CJ, Bennet KE, Garris PA, Blaha CD, Lee KH. Wireless fast-scan cyclic voltammetry to monitor adenosine in patients with essential tremor during deep brain stimulation. Mayo Clin Proc 2012; 87:760-5. [PMID: 22809886 PMCID: PMC3538486 DOI: 10.1016/j.mayocp.2012.05.006] [Citation(s) in RCA: 78] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/03/2012] [Revised: 05/21/2012] [Accepted: 05/22/2012] [Indexed: 11/29/2022]
Abstract
Essential tremor is often markedly reduced during deep brain stimulation simply by implanting the stimulating electrode before activating neurostimulation. Referred to as the microthalamotomy effect, the mechanisms of this unexpected consequence are thought to be related to microlesioning targeted brain tissue, that is, a microscopic version of tissue ablation in thalamotomy. An alternate possibility is that implanting the electrode induces immediate neurochemical release. Herein, we report the experiment performing with real-time fast-scan cyclic voltammetry to quantify neurotransmitter concentrations in human subjects with essential tremor during deep brain stimulation. The results show that the microthalamotomy effect is accompanied by local neurochemical changes, including adenosine release.
Collapse
Affiliation(s)
- Su-Youne Chang
- Department of Neurologic Surgery, Mayo Clinic, Rochester, MN
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, MN
| | - Inyong Kim
- Department of Neurologic Surgery, Mayo Clinic, Rochester, MN
| | | | - Dong Pyo Jang
- Department of Biomedical Engineering, Hanyang University, Seoul, South Korea
| | - Sun-Chul Hwang
- Department of Neurosurgery, Soonchunhyang University, Bucheon Hospital, Bucheon, South Korea
| | | | | | | | | | - Paul A. Garris
- School of Biological Sciences, Illinois State University, Normal, IL
| | | | - Kendall H. Lee
- Department of Neurologic Surgery, Mayo Clinic, Rochester, MN
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, MN
- Correspondence: Address to Kendall H. Lee, MD, PhD, Department of Neurologic Surgery and Department of Physiology and Biomedical Engineering, Mayo Clinic, 200 First St SW, Rochester, MN 55905
| |
Collapse
|
49
|
Szczerbowska-Boruchowska M, Krygowska-Wajs A, Ziomber A, Thor P, Wrobel P, Bukowczan M, Zizak I. The influence of electrical stimulation of vagus nerve on elemental composition of dopamine related brain structures in rats. Neurochem Int 2012; 61:156-65. [DOI: 10.1016/j.neuint.2012.04.018] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2011] [Revised: 04/14/2012] [Accepted: 04/18/2012] [Indexed: 11/24/2022]
|
50
|
Igelström KM, Shirley CH, Heyward PM. Low-magnesium medium induces epileptiform activity in mouse olfactory bulb slices. J Neurophysiol 2011; 106:2593-605. [PMID: 21832029 DOI: 10.1152/jn.00601.2011] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Magnesium-free medium can be used in brain slice studies to enhance glutamate receptor function, but this manipulation causes seizure-like activity in many cortical areas. The rodent olfactory bulb (OB) slice is a popular preparation, and potentially ictogenic ionic conditions have often been used to study odor processing. We studied low Mg(2+)-induced epileptiform discharges in mouse OB slices using extracellular and whole cell electrophysiological recordings. Low-Mg(2+) medium induced two distinct types of epileptiform activity: an intraglomerular delta-frequency oscillation resembling slow sniff-induced activity and minute-long seizure-like events (SLEs) consisting of large negative-going field potentials accompanied by sustained depolarization of output neurons. SLEs were dependent on N-methyl-D-aspartate receptors and sodium currents and were facilitated by α-amino-3-hydroxy-5-methyl-4-isoxazole propionate receptors. The events were initiated in the glomerular layer and propagated laterally through the external plexiform layer at a slow time scale. Our findings confirm that low-Mg(2+) medium should be used with caution in OB slices. Furthermore, the SLEs resembled the so-called slow direct current (DC) shift of clinical and experimental seizures, which has recently been recognized as being of great clinical importance. The OB slice may therefore provide a robust and unique in vitro model of acute seizures in which mechanisms of epileptiform DC shifts can be studied in isolation from fast oscillations.
Collapse
Affiliation(s)
- Kajsa M Igelström
- Dept. of Physiology, Univ. of Otago, PO Box 913, Dunedin 9054, New Zealand.
| | | | | |
Collapse
|