1
|
Rateb A, Save H, Sun AY, Scanlon BR. Rapid mapping of global flood precursors and impacts using novel five-day GRACE solutions. Sci Rep 2024; 14:13841. [PMID: 38879658 PMCID: PMC11180122 DOI: 10.1038/s41598-024-64491-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2024] [Accepted: 06/10/2024] [Indexed: 06/19/2024] Open
Abstract
Floods affect communities and ecosystems worldwide, emphasizing the importance of identifying their precursors and enhancing resilience to these events. Here, we calculated Antecedent Total Water Storage (ATWS) anomalies from the new 5-day (5D) Gravity Recovery and Climate Experiment (GRACE) and its Follow-On (GRACE-FO) satellite solutions to enhance the detection of pre-flood and active flood conditions and to map post-flood storage anomalies. The GRACE data were compared with ~ 3300 flood events reported by the Dartmouth Flood Observatory (2002-2021), revealing distinct ATWS precursor signals in 5D solutions, in contrast to the monthly solutions. Specifically, floods caused by saturation-excess runoff-triggered by persistent rainfall, monsoonal patterns, snowmelt, or rain-on-snow events-show detectable ATWS increases 15 to 50 days before and during floods, providing a valuable opportunity to improve flood monitoring. These 5D solutions also facilitate a more rapid mapping of post-flood storage changes to assess flood recovery from tropical cyclones and sub-monthly weather extremes. Our findings show the promising potential of 5D GRACE solutions, which are still in the development phase, for future integration into operational frameworks to enhance flood detection and recovery, facilitating the rapid analysis of storage changes relative to monthly solutions.
Collapse
Affiliation(s)
- Ashraf Rateb
- Bureau of Economic Geology, Jackson School of Geosciences, The University of Texas at Austin, Austin, TX, 78758, USA.
| | - Himanshu Save
- Center for Space Research, University of Texas at Austin, Austin, TX, 78759, USA
| | - Alexander Y Sun
- Bureau of Economic Geology, Jackson School of Geosciences, The University of Texas at Austin, Austin, TX, 78758, USA
| | - Bridget R Scanlon
- Bureau of Economic Geology, Jackson School of Geosciences, The University of Texas at Austin, Austin, TX, 78758, USA
| |
Collapse
|
2
|
Singh N, Pradhan R, Singh RP, Gupta PK. The role of continental evapotranspiration on water vapour isotopic variability in the troposphere. ISOTOPES IN ENVIRONMENTAL AND HEALTH STUDIES 2023; 59:248-268. [PMID: 37210706 DOI: 10.1080/10256016.2023.2212834] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Accepted: 04/18/2023] [Indexed: 05/23/2023]
Abstract
Rainforests play an important role in hydrological and carbon cycles, both at regional and global scales. They pump large quantities of moisture from the soil to the atmosphere and are major rainfall hotspots of the world. Satellite-observed stable water isotope ratios have played an essential role in determining sources of moisture in the atmosphere. Satellites provide information about the processes involving vapour transport in different zones of the world, identifying sources of rainfall and distinguishing moisture transport in monsoonal systems. This paper focuses on major rainforests of the world (Southern Amazon, Congo and Northeast India) to understand the role of continental evapotranspiration in influencing tropospheric water vapour. We have used satellite measurements of 1H2H16O/1H216O from Atmospheric InfraRed Sounder (AIRS), evapotranspiration (ET), solar-induced fluorescence (SIF), precipitation (P), atmospheric reanalysis-derived moisture flux convergence (MFC) and wind to discern the role of ET in influencing water vapour isotopes. A global map of the correlation between δ2Hv and ET-P flux indicates that densely vegetated regions in the tropics show the highest positive correlation (r > 0.5). Using mixing models and observations of specific humidity and isotopic ratio over these forested regions, we discern the source of moisture in pre-wet and wet seasons.
Collapse
Affiliation(s)
- Nimisha Singh
- Land Hydrology Division, Space Applications Centre (ISRO), Ahmedabad, India
| | - Rohit Pradhan
- Land Hydrology Division, Space Applications Centre (ISRO), Ahmedabad, India
| | | | - Praveen K Gupta
- Land Hydrology Division, Space Applications Centre (ISRO), Ahmedabad, India
| |
Collapse
|
3
|
Munday C, Savage N, Jones RG, Washington R. Valley formation aridifies East Africa and elevates Congo Basin rainfall. Nature 2023; 615:276-279. [PMID: 36859546 DOI: 10.1038/s41586-022-05662-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Accepted: 12/09/2022] [Indexed: 03/03/2023]
Abstract
East African aridification during the past 8 million years is frequently invoked as a driver of large-scale shifts in vegetation1 and the evolution of new animal lineages, including hominins2-4. However, evidence for increasing aridity is debated5 and, crucially, the mechanisms leading to dry conditions are unclear6. Here, numerical model experiments show that valleys punctuating the 6,000-km-long East African Rift System (EARS) are central to the development of dry conditions in East Africa. These valleys, including the Turkana Basin in Kenya, cause East Africa to dry by channelling water vapour towards Central Africa, a process that simultaneously enhances rainfall in the Congo Basin rainforest. Without the valleys, the uplift of the rift system leads to a wetter climate in East Africa and a drier climate in the Congo Basin. Results from climate model experiments demonstrate that the detailed tectonic development of Africa has shaped the rainfall distribution, with profound implications for the evolution of African plant and animal lineages.
Collapse
Affiliation(s)
- Callum Munday
- Climate Research Lab, School of Geography and the Environment, University of Oxford, Oxford, UK.
| | | | | | - Richard Washington
- Climate Research Lab, School of Geography and the Environment, University of Oxford, Oxford, UK
| |
Collapse
|
4
|
Mushimbei M, Libanda B. Adapting to a changing climate: indigenous biotic rainfall forecasting in Western Zambia. INTERNATIONAL JOURNAL OF BIOMETEOROLOGY 2023; 67:253-263. [PMID: 36539624 DOI: 10.1007/s00484-022-02402-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/03/2022] [Revised: 10/11/2022] [Accepted: 10/28/2022] [Indexed: 06/17/2023]
Abstract
Forecasting rainfall at the local scale to inform farm-level decisions is complex and it remains an unresolved problem with dire implications for food security. Here, we examine indigenous knowledge forecasting systems used by smallholder farmers in Maondo Agriculture Camp (MAC) of Sesheke District in the Western Province of Zambia to increase their climate change adaptive capacity at the farm level. We adopted a qualitative approach that uses an exploratory-descriptive design. We then used purposive sampling, a non-probability methodological approach, to choose respondents. We applied semi-structured interviews and questionnaires as data collection tools and examined the data using thematic content analysis. We found that > 50% of small-scale farmers receive forecasts produced by the Zambia Meteorological Department (ZMD) through stakeholders' meetings. Farmers who do not receive ZMD forecasts depend on indigenous knowledge systems. Results further indicate that farmers in the MAC combine several indicators to predict rainfall. Prominent among them include plants, weather-related parameters, and astrological indicators. A cursory inspection of these rainfall predictors revealed several points specifically highlighting three salient thematic contents, i.e. biological, meteorological, and astrological. Results further showed that both conventional science and indigenous knowledge used to forecast rainfall have strengths and weaknesses. We, therefore, conclude that the integration of the two methods has the potential to significantly improve rainfall forecasts and ultimately agricultural productivity at the farm level.
Collapse
Affiliation(s)
| | - Brigadier Libanda
- School of Geosciences, The University of Edinburgh, Edinburgh, EH9 3FF, UK.
| |
Collapse
|
5
|
Te Wierik SA, Keune J, Miralles DG, Gupta J, Artzy‐Randrup YA, Gimeno L, Nieto R, Cammeraat LH. The Contribution of Transpiration to Precipitation Over African Watersheds. WATER RESOURCES RESEARCH 2022; 58:e2021WR031721. [PMID: 36582769 PMCID: PMC9786354 DOI: 10.1029/2021wr031721] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 09/09/2022] [Accepted: 10/09/2022] [Indexed: 06/17/2023]
Abstract
The redistribution of biological (transpiration) and non-biological (interception loss, soil evaporation) fluxes of terrestrial evaporation via atmospheric circulation and precipitation is an important Earth system process. In vegetated ecosystems, transpiration dominates terrestrial evaporation and is thought to be crucial for regional moisture recycling and ecosystem functioning. However, the spatial and temporal variability in the dependency of precipitation on transpiration remains understudied, particularly in sparsely sampled regions like Africa. Here, we investigate how biological and non-biological sources of evaporation in Africa contribute to rainfall over the major watersheds in the continent. Our study is based on simulated atmospheric moisture trajectories derived from the Lagrangian model FLEXPART, driven by 1° resolution reanalysis data over 1981-2016. Using daily satellite-based fractions of transpiration over terrestrial evaporation, we isolate the contribution of vegetation to monthly rainfall. Furthermore, we highlight two watersheds (Congo and Senegal) for which we explore intra- and interannual variability of different precipitation sources, and where we find contrasting patterns of vegetation-sourced precipitation within and between years. Overall, our results show that almost 50% of the annual rainfall in Africa originates from transpiration, although the variability between watersheds is large (5%-68%). We conclude that, considering the current and projected patterns of land use change in Africa, a better understanding of the implications for continental-scale water availability is needed.
Collapse
Affiliation(s)
- S. A. Te Wierik
- Institute for Biodiversity and Ecosystem DynamicsUniversity of AmsterdamAmsterdamThe Netherlands
- Governance and Inclusive DevelopmentUniversity of AmsterdamAmsterdamThe Netherlands
| | - J. Keune
- Hydro‐Climate Extremes LabGhent UniversityGhentBelgium
| | | | - J. Gupta
- Governance and Inclusive DevelopmentUniversity of AmsterdamAmsterdamThe Netherlands
| | - Y. A. Artzy‐Randrup
- Institute for Biodiversity and Ecosystem DynamicsUniversity of AmsterdamAmsterdamThe Netherlands
| | - L. Gimeno
- Environmental Physics Laboratory (EPhysLab)Centro de Investigación MariñaUniversidade de VigoVigoSpain
| | - R. Nieto
- Environmental Physics Laboratory (EPhysLab)Centro de Investigación MariñaUniversidade de VigoVigoSpain
| | - L. H. Cammeraat
- Institute for Biodiversity and Ecosystem DynamicsUniversity of AmsterdamAmsterdamThe Netherlands
| |
Collapse
|
6
|
Climate Change Perceptions and Adaptations among Smallholder Farmers in the Mountains of Eastern Democratic Republic of Congo. LAND 2022. [DOI: 10.3390/land11050628] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
The warming rates in many mountain areas are higher than the global average, negatively impacting crop systems. Little is known about the climatic changes which are already being observed in eastern Democratic Republic (DR) of Congo, due to the lack of long-term meteorological data. Local perceptions could help us to understand not only the climatic changes and impacts but also which adaptation strategies are already being used by local smallholder farmers. Semi-structured questionnaires were administered to 300 smallholder Bafuliru (n = 150) and Lega (n = 150) farmers living in the Itombwe Mountains. The respondents reported climatic changes and impacts, with the Bafuliru—living on the eastern drier slopes—reporting more changes and impacts. While the Bafuliru were implementing several adaptation strategies (e.g., increased irrigation and use of inputs, more soil conservation, more income diversification), the Lega were implementing very few, due to soft limits (access to inputs, markets, and information) and culture (less interest in farming, less capacity to organize into groups). The results highlight important differences in sociocultural contexts, even for one ‘remote’ mountain, calling for a more collaborative approach to adaptation planning and action.
Collapse
|
7
|
Núñez CL, Poulsen JR, White LJT, Medjibe V, Clark JS. Distinct Community-Wide Responses to Forecasted Climate Change in Afrotropical Forests. Front Ecol Evol 2022. [DOI: 10.3389/fevo.2021.742626] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
More refined knowledge of how tropical forests respond to changes in the abiotic environment is necessary to mitigate climate change, maintain biodiversity, and preserve ecosystem services. To evaluate the unique response of diverse Afrotropical forest communities to disturbances in the abiotic environment, we employ country-wide tree species inventories, remotely sensed climate data, and future climate predictions collected from 104 1-ha plots in the central African country of Gabon. We predict a 3–8% decrease in Afrotropical forest species richness by the end of the century, in contrast to the 30–50% loss of plant diversity predicted to occur with equivalent warming in the Neotropics. This work reveals that forecasts of community species composition are not generalizable across regions, and more representative studies are needed in understudied diverse biomes. This study serves as an important counterpoint to work done in the Neotropics by providing contrasting predictions for Afrotropical forests with substantially different ecological, evolutionary, and anthropogenic histories.
Collapse
|
8
|
De Benedetti M, Moore GWK, Xu X. Representation of Spatial Variability of the Water Fluxes over the Congo Basin Region. SENSORS (BASEL, SWITZERLAND) 2021; 22:84. [PMID: 35009625 PMCID: PMC8747179 DOI: 10.3390/s22010084] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/12/2021] [Revised: 12/20/2021] [Accepted: 12/21/2021] [Indexed: 06/14/2023]
Abstract
The Congo Basin, being one of the major basins in the tropics, is important to the global climate, yet its hydrology is perhaps the least understood. Although various reanalysis/analysis datasets have been used to improve our understanding of the basin's hydroclimate, they have been historically difficult to validate due to sparse in situ measurements. This study analyzes the impact of model resolution on the spatial variability of the Basin's hydroclimate using the Decorrelation Length Scale (DLCS) technique, as it is not subject to uniform model bias. The spatial variability within the precipitation (P), evaporation/evapotranspiration (E), and precipitation-minus-evaporation (P-E) fields were investigated across four spatial resolutions using reanalysis/analysis datasets from the ECMWF ranging from 9-75 km. Results show that the representation of P and P-E fields over the Basin and the equatorial Atlantic Ocean are sensitive to model resolution, as the spatial patterns of their DCLS results are resolution-dependent. However, the resolution-independent features are predominantly found in the E field. Furthermore, the P field is the dominant source of spatial variability of P-E, occurring over the land and the equatorial Atlantic Ocean, while over the Southern Atlantic, P-E is mainly governed by the E field, with both showing weak spatial variability.
Collapse
Affiliation(s)
- Marc De Benedetti
- Department of Physics, University of Toronto, Toronto, ON M5S 1A7, Canada
| | - G. W. K. Moore
- Department of Physics, University of Toronto, Toronto, ON M5S 1A7, Canada
| | - Xiaoyong Xu
- Department of Chemical and Physical Sciences, University of Toronto Mississauga, Mississauga, ON L5L 1C6, Canada;
| |
Collapse
|
9
|
Assessing the Reliability of Satellite and Reanalysis Estimates of Rainfall in Equatorial Africa. REMOTE SENSING 2021. [DOI: 10.3390/rs13183609] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
This article examines the reliability of satellite and reanalysis estimates of rainfall in the Congo Basin and over Lake Victoria and its catchment. Nine satellite products and five reanalysis products are considered. They are assessed by way of inter-comparison and by comparison with observational data sets. The three locations considered include a region with little observational gauge data (the Congo), a region with extensive gauge data (Lake Victoria catchment), and an inland water body. Several important results emerge: for one, the diversity of estimates is generally very large, except for the Lake Victoria catchment. Reanalysis products show little relationship with observed rainfall or with the satellite estimates, and thus should not be used to assess rainfall in these regions. Most of the products either overestimate or underestimate rainfall over the lake. The diversity of estimates makes it difficult to assess the factors governing the interannual variability of rainfall in these regions. This is shown by way of correlation with sea-surface temperatures, particularly with the Niño 3.4 temperatures and with the Dipole Mode Index over the Indian Ocean. Some guidance is given as to the best products to utilize. Overall, any user must establish that the is product reliable in the region studied.
Collapse
|
10
|
Assessing Freshwater Changes over Southern and Central Africa (2002–2017). REMOTE SENSING 2021. [DOI: 10.3390/rs13132543] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
In large freshwater river basins across the globe, the composite influences of large-scale climatic processes and human activities (e.g., deforestation) on hydrological processes have been studied. However, the knowledge of these processes in this era of the Anthropocene in the understudied hydrologically pristine South Central African (SCA) region is limited. This study employs satellite observations of evapotranspiration (ET), precipitation and freshwater between 2002 and 2017 to explore the hydrological patterns of this region, which play a crucial role in global climatology. Multivariate methods, including the rotated principal component analysis (rPCA) were used to assess the relationship of terrestrial water storage (TWS) in response to climatic units (precipitation and ET). The use of the rPCA technique in assessing changes in TWS is warranted to provide more information on hydrological changes that are usually obscured by other dominant naturally-driven fluxes. Results show a low trend in vegetation transpiration due to deforestation around the Congo basin. Overall, the Congo (r2 = 76%) and Orange (r2 = 72%) River basins maintained an above-average consistency between precipitation and TWS throughout the study region and period. Consistent loss in freshwater is observed in the Zambezi (−9.9 ± 2.6 mm/year) and Okavango (−9.1 ± 2.5 mm/year) basins from 2002 to 2008. The Limpopo River basin is observed to have a 6% below average reduction in rainfall rates which contributed to its consistent loss in freshwater (−4.6 ± 3.2 mm/year) from 2006 to 2012.Using multi-linear regression and correlation analysis we show that ET contributes to the variability and distribution of TWS in the region. The relationship of ET with TWS (r = 0.5) and rainfall (r = 0.8) over SCA provides insight into the role of ET in regulating fluxes and the mechanisms that drive precipitation in the region. The moderate ET–TWS relationship also shows the effect of climate and anthropogenic influence in their interactions.
Collapse
|
11
|
Couvreur TL, Dauby G, Blach‐Overgaard A, Deblauwe V, Dessein S, Droissart V, Hardy OJ, Harris DJ, Janssens SB, Ley AC, Mackinder BA, Sonké B, Sosef MS, Stévart T, Svenning J, Wieringa JJ, Faye A, Missoup AD, Tolley KA, Nicolas V, Ntie S, Fluteau F, Robin C, Guillocheau F, Barboni D, Sepulchre P. Tectonics, climate and the diversification of the tropical African terrestrial flora and fauna. Biol Rev Camb Philos Soc 2021; 96:16-51. [PMID: 32924323 PMCID: PMC7821006 DOI: 10.1111/brv.12644] [Citation(s) in RCA: 68] [Impact Index Per Article: 22.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2020] [Revised: 08/07/2020] [Accepted: 08/13/2020] [Indexed: 12/30/2022]
Abstract
Tropical Africa is home to an astonishing biodiversity occurring in a variety of ecosystems. Past climatic change and geological events have impacted the evolution and diversification of this biodiversity. During the last two decades, around 90 dated molecular phylogenies of different clades across animals and plants have been published leading to an increased understanding of the diversification and speciation processes generating tropical African biodiversity. In parallel, extended geological and palaeoclimatic records together with detailed numerical simulations have refined our understanding of past geological and climatic changes in Africa. To date, these important advances have not been reviewed within a common framework. Here, we critically review and synthesize African climate, tectonics and terrestrial biodiversity evolution throughout the Cenozoic to the mid-Pleistocene, drawing on recent advances in Earth and life sciences. We first review six major geo-climatic periods defining tropical African biodiversity diversification by synthesizing 89 dated molecular phylogeny studies. Two major geo-climatic factors impacting the diversification of the sub-Saharan biota are highlighted. First, Africa underwent numerous climatic fluctuations at ancient and more recent timescales, with tectonic, greenhouse gas, and orbital forcing stimulating diversification. Second, increased aridification since the Late Eocene led to important extinction events, but also provided unique diversification opportunities shaping the current tropical African biodiversity landscape. We then review diversification studies of tropical terrestrial animal and plant clades and discuss three major models of speciation: (i) geographic speciation via vicariance (allopatry); (ii) ecological speciation impacted by climate and geological changes, and (iii) genomic speciation via genome duplication. Geographic speciation has been the most widely documented to date and is a common speciation model across tropical Africa. We conclude with four important challenges faced by tropical African biodiversity research: (i) to increase knowledge by gathering basic and fundamental biodiversity information; (ii) to improve modelling of African geophysical evolution throughout the Cenozoic via better constraints and downscaling approaches; (iii) to increase the precision of phylogenetic reconstruction and molecular dating of tropical African clades by using next generation sequencing approaches together with better fossil calibrations; (iv) finally, as done here, to integrate data better from Earth and life sciences by focusing on the interdisciplinary study of the evolution of tropical African biodiversity in a wider geodiversity context.
Collapse
Affiliation(s)
| | - Gilles Dauby
- AMAP Lab, IRD, CIRAD, CNRS, INRAUniversity of MontpellierMontpellierFrance
- Laboratoire d'évolution Biologique et Ecologie, Faculté des SciencesUniversité Libre de BruxellesCP160/12, Avenue F.D. Roosevelt 50Brussels1050Belgium
| | - Anne Blach‐Overgaard
- Section for Ecoinformatics & Biodiversity, Department of BiologyAarhus UniversityNy Munkegade 114Aarhus CDK‐8000Denmark
- Center for Biodiversity Dynamics in a Changing World (BIOCHANGE), Department of BiologyAarhus UniversityNy Munkegade 114Aarhus CDK‐8000Denmark
| | - Vincent Deblauwe
- Center for Tropical Research (CTR), Institute of the Environment and SustainabilityUniversity of California, Los Angeles (UCLA)Los AngelesCA90095U.S.A.
- International Institute of Tropical Agriculture (IITA)YaoundéCameroon
| | | | - Vincent Droissart
- AMAP Lab, IRD, CIRAD, CNRS, INRAUniversity of MontpellierMontpellierFrance
- Laboratoire de Botanique Systématique et d'Écologie, École Normale SupérieureUniversité de Yaoundé IPO Box 047YaoundéCameroon
- Herbarium et Bibliothèque de Botanique AfricaineUniversité Libre de BruxellesBoulevard du TriompheBrusselsB‐1050Belgium
- Africa & Madagascar DepartmentMissouri Botanical GardenSt. LouisMOU.S.A.
| | - Oliver J. Hardy
- Laboratoire d'évolution Biologique et Ecologie, Faculté des SciencesUniversité Libre de BruxellesCP160/12, Avenue F.D. Roosevelt 50Brussels1050Belgium
| | - David J. Harris
- Royal Botanic Garden Edinburgh20A Inverleith RowEdinburghU.K.
| | | | - Alexandra C. Ley
- Institut für Geobotanik und Botanischer GartenUniversity Halle‐WittenbergNeuwerk 21Halle06108Germany
| | | | - Bonaventure Sonké
- Laboratoire de Botanique Systématique et d'Écologie, École Normale SupérieureUniversité de Yaoundé IPO Box 047YaoundéCameroon
| | | | - Tariq Stévart
- Herbarium et Bibliothèque de Botanique AfricaineUniversité Libre de BruxellesBoulevard du TriompheBrusselsB‐1050Belgium
- Africa & Madagascar DepartmentMissouri Botanical GardenSt. LouisMOU.S.A.
| | - Jens‐Christian Svenning
- Section for Ecoinformatics & Biodiversity, Department of BiologyAarhus UniversityNy Munkegade 114Aarhus CDK‐8000Denmark
- Center for Biodiversity Dynamics in a Changing World (BIOCHANGE), Department of BiologyAarhus UniversityNy Munkegade 114Aarhus CDK‐8000Denmark
| | - Jan J. Wieringa
- Naturalis Biodiversity CenterDarwinweg 2Leiden2333 CRThe Netherlands
| | - Adama Faye
- Laboratoire National de Recherches sur les Productions Végétales (LNRPV)Institut Sénégalais de Recherches Agricoles (ISRA)Route des Hydrocarbures, Bel Air BP 1386‐ CP18524DakarSenegal
| | - Alain D. Missoup
- Zoology Unit, Laboratory of Biology and Physiology of Animal Organisms, Faculty of ScienceUniversity of DoualaPO Box 24157DoualaCameroon
| | - Krystal A. Tolley
- South African National Biodiversity InstituteKirstenbosch Research CentrePrivate Bag X7, ClaremontCape Town7735South Africa
- School of Animal, Plant and Environmental SciencesUniversity of the WitwatersrandPrivate Bag 3Wits2050South Africa
| | - Violaine Nicolas
- Institut de Systématique, Evolution, Biodiversité (ISYEB), Muséum national d'Histoire naturelle, CNRS, Sorbonne Université, EPHEUniversité des AntillesCP51, 57 rue CuvierParis75005France
| | - Stéphan Ntie
- Département de Biologie, Faculté des SciencesUniversité des Sciences et Techniques de MasukuFrancevilleBP 941Gabon
| | - Frédiéric Fluteau
- Institut de Physique du Globe de Paris, CNRSUniversité de ParisParisF‐75005France
| | - Cécile Robin
- CNRS, Géosciences Rennes, UMR6118University of RennesRennes35042France
| | | | - Doris Barboni
- CEREGE, Aix‐Marseille University, CNRS, IRD, Collège de France, INRA, Technopole Arbois MéditerranéeBP80Aix‐en‐Provence cedex413545France
| | - Pierre Sepulchre
- Laboratoire des Sciences du Climat et de l'Environnement, LSCE/IPSL, CEA‐CNRS‐UVSQUniversité Paris‐SaclayGif‐sur‐YvetteF‐91191France
| |
Collapse
|
12
|
Bush ER, Jeffery K, Bunnefeld N, Tutin C, Musgrave R, Moussavou G, Mihindou V, Malhi Y, Lehmann D, Edzang Ndong J, Makaga L, Abernethy K. Rare ground data confirm significant warming and drying in western equatorial Africa. PeerJ 2020; 8:e8732. [PMID: 32328343 PMCID: PMC7164428 DOI: 10.7717/peerj.8732] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2019] [Accepted: 02/11/2020] [Indexed: 11/20/2022] Open
Abstract
BACKGROUND The humid tropical forests of Central Africa influence weather worldwide and play a major role in the global carbon cycle. However, they are also an ecological anomaly, with evergreen forests dominating the western equatorial region despite less than 2,000 mm total annual rainfall. Meteorological data for Central Africa are notoriously sparse and incomplete and there are substantial issues with satellite-derived data because of persistent cloudiness and inability to ground-truth estimates. Long-term climate observations are urgently needed to verify regional climate and vegetation models, shed light on the mechanisms that drive climatic variability and assess the viability of evergreen forests under future climate scenarios. METHODS We have the rare opportunity to analyse a 34 year dataset of rainfall and temperature (and shorter periods of absolute humidity, wind speed, solar radiation and aerosol optical depth) from Lopé National Park, a long-term ecological research site in Gabon, western equatorial Africa. We used (generalized) linear mixed models and spectral analyses to assess seasonal and inter-annual variation, long-term trends and oceanic influences on local weather patterns. RESULTS Lopé's weather is characterised by a cool, light-deficient, long dry season. Long-term climatic means have changed significantly over the last 34 years, with warming occurring at a rate of +0.25 °C per decade (minimum daily temperature) and drying at a rate of -75 mm per decade (total annual rainfall). Inter-annual climatic variability at Lopé is highly influenced by global weather patterns. Sea surface temperatures of the Pacific and Atlantic oceans have strong coherence with Lopé temperature and rainfall on multi-annual scales. CONCLUSIONS The Lopé long-term weather record has not previously been made public and is of high value in such a data poor region. Our results support regional analyses of climatic seasonality, long-term warming and the influences of the oceans on temperature and rainfall variability. However, warming has occurred more rapidly than the regional products suggest and while there remains much uncertainty in the wider region, rainfall has declined over the last three decades at Lopé. The association between rainfall and the Atlantic cold tongue at Lopé lends some support for the 'dry' models of climate change for the region. In the context of a rapidly warming and drying climate, urgent research is needed into the sensitivity of dry season clouds to ocean temperatures and the viability of humid evergreen forests in this dry region should the clouds disappear.
Collapse
Affiliation(s)
- Emma R. Bush
- Faculty of Natural Sciences, University of Stirling, Stirling, UK
| | - Kathryn Jeffery
- Faculty of Natural Sciences, University of Stirling, Stirling, UK
- Agence Nationale des Parcs Nationaux (ANPN), Libreville, Gabon
| | - Nils Bunnefeld
- Faculty of Natural Sciences, University of Stirling, Stirling, UK
| | - Caroline Tutin
- Faculty of Natural Sciences, University of Stirling, Stirling, UK
| | | | - Ghislain Moussavou
- Agence Gabonaise d’Études et d’Observation Spatiale (AGEOS), Libreville, Gabon
| | - Vianet Mihindou
- Agence Nationale des Parcs Nationaux (ANPN), Libreville, Gabon
- Ministère des Eaux et Forêts, Charge de l’Environnement et du Développement Durable, Libreville, Gabon
| | - Yadvinder Malhi
- Environmental Change Institute, School of Geography and the Environment, University of Oxford, Oxford, UK
| | - David Lehmann
- Faculty of Natural Sciences, University of Stirling, Stirling, UK
- Agence Nationale des Parcs Nationaux (ANPN), Libreville, Gabon
| | | | - Loïc Makaga
- Agence Nationale des Parcs Nationaux (ANPN), Libreville, Gabon
| | - Katharine Abernethy
- Faculty of Natural Sciences, University of Stirling, Stirling, UK
- Institut de Recherche en Écologie Tropicale, CENAREST, Libreville, Gabon
| |
Collapse
|
13
|
Bongers F, Ewango CEN, van der Sande MT, Poorter L. Liana species decline in Congo basin contrasts with global patterns. Ecology 2020; 101:e03004. [PMID: 32100291 PMCID: PMC7317384 DOI: 10.1002/ecy.3004] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/21/2018] [Revised: 06/24/2019] [Accepted: 10/18/2019] [Indexed: 11/11/2022]
Abstract
Lianas, woody climbing plants, are increasing in many tropical forests, with cascading effects such as decreased forest productivity, carbon sequestration, and resilience. Possible causes are increasing forest fragmentation, CO2 fertilization, and drought. Determining the primary changing species and their underlying vital rates help explain the liana trends. We monitored over 17,000 liana stems for 13 yr in 20 ha of old‐growth forest in the Congo Basin, and here we report changes and vital rates for the community and for the 87 most abundant species. The total liana abundance declined from 15,007 lianas in 1994 to 11,090 in 2001 to 9,978 in 2007. Over half (52%) of the evaluated species have significantly declining populations, showing that the community response is not the result of changes in a few dominant species only. Species density change (i.e., the change in number of individuals per hectare) decreased with mortality rate, tended to increase with recruitment rate, but was independent of growth rate. Species change was independent of functional characteristics important for plant responses to fragmentation, CO2, and drought, such as lifetime light requirements, climbing and dispersal mechanism, and leaf size. These results indicate that in Congo lianas do not show the reputed global liana increase, but rather a decline, and that elements of the reputed drivers underlying global liana change do not apply to this DR Congo forest. We suggest warfare in the Congo Basin to have decimated the elephant population, leading to less disturbance, forest closure, and declining liana numbers. Our results imply that, in this tropical forest, local causes (i.e., disturbance) override more global causes of liana change resulting in liana decline, which sharply contrasts with the liana increase observed elsewhere.
Collapse
Affiliation(s)
- Frans Bongers
- Forest Ecology and Forest Management Group, Wageningen University & Research, P.O. Box 47, Wageningen, NL-6700 AA, The Netherlands
| | - Corneille E N Ewango
- Forest Ecology and Forest Management Group, Wageningen University & Research, P.O. Box 47, Wageningen, NL-6700 AA, The Netherlands.,Faculty of Renewable Natural Resources Management, University of Kisangani, B.P.O. 2012, Kisangani, DR Congo.,Biosystematics Group, Wageningen University, P.O. Box 67, Wageningen, NL-6700 AP, The Netherlands
| | - Masha T van der Sande
- Forest Ecology and Forest Management Group, Wageningen University & Research, P.O. Box 47, Wageningen, NL-6700 AA, The Netherlands.,Institute for Global Ecology, Florida Institute of Technology, Melbourne, Florida, USA.,Institute for Biodiversity & Ecosystem Dynamics, University of Amsterdam, Amsterdam, The Netherlands
| | - Lourens Poorter
- Forest Ecology and Forest Management Group, Wageningen University & Research, P.O. Box 47, Wageningen, NL-6700 AA, The Netherlands
| |
Collapse
|
14
|
Abstract
A large population relies on water input to the Indus basin, yet basinwide precipitation amounts and trends are not well quantified. Gridded precipitation data sets covering different time periods and based on either station observations, satellite remote sensing, or reanalysis were compared with available station observations and analyzed for basinwide precipitation trends. Compared to observations, some data sets tended to greatly underestimate precipitation, while others overestimate it. Additionally, the discrepancies between data set and station precipitation showed significant time trends in such cases, suggesting that the precipitation trends of those data sets were not consistent with station data. Among the data sets considered, the station-based Global Precipitation Climatology Centre (GPCC) gridded data set showed good agreement with observations in terms of mean amount, trend, and spatial and temporal pattern. GPCC had average precipitation of about 500 mm per year over the basin and an increase in mean precipitation of about 15% between 1891 and 2016. For the more recent past, since 1958 or 1979, no significant precipitation trend was seen. Among the remote sensing based data sets, the Tropical Rainfall Measuring Mission Multi-Satellite Precipitation Analysis (TMPA) compared best to station observations and, though available for a shorter time period than station-based data sets such as GPCC, may be especially valuable for parts of the basin without station data. The reanalyses tended to have substantial biases in precipitation mean amount or trend relative to the station data. This assessment of precipitation data set quality and precipitation trends over the Indus basin may be helpful for water planning and management.
Collapse
|
15
|
Abstract
Annual precipitation inputs to the Lake Mweru basin, Zambia, were computed from historic data and recent gridded data sets to determine historic (1925–2013) changes in lake level and their potential impacts on the important fisheries of the lake. The results highlight a period from the early 1940s to the mid-1960s when interannual variability of inputs doubled. Existing lake level data did not capture this period but they did indicate that levels were positively correlated with precipitation one to three years previously, reflecting the hydrologic storage of the lake, the inflowing Luapula River and the upstream Bangweulu wetland complex. Lag cross-correlations of rainfall to El Niño-Southern Oscillation (ENSO) and the Indian Ocean Dipole were weak and spatially and temporally discontinuous. The two drivers were generally positively correlated and induced opposing effects upon annual precipitation and lagged lake levels. This correlation became non-significant during the time of high observed interannual variability and basin inputs were prone to the vagaries of either driver independently or reinforcing drought/excess conditions. During times of high flows and persistent elevated lake levels, breeding habitat for fish increased markedly, as did nutrition supplied from the upstream wetlands. High hydrologic storage ensures that lake levels change slowly, despite contemporary precipitation totals. Therefore, good conditions for the growth of fish populations persisted for several years and populations boomed. Statistical models of biological populations indicated that such temporally autocorrelated conditions, combined with abundant habitat and nutrition can lead the “boom and bust” of fish populations witnessed historically in Lake Mweru.
Collapse
|
16
|
Ndehedehe CE, Anyah RO, Alsdorf D, Agutu NO, Ferreira VG. Modelling the impacts of global multi-scale climatic drivers on hydro-climatic extremes (1901-2014) over the Congo basin. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 651:1569-1587. [PMID: 30360284 DOI: 10.1016/j.scitotenv.2018.09.203] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/02/2018] [Revised: 09/11/2018] [Accepted: 09/16/2018] [Indexed: 06/08/2023]
Abstract
The knowledge of interactions between oceanic and atmospheric processes and associated influence on drought episodes is a key step toward designing robust measure that could support government and institutional measures for drought preparedness to promote region-specific drought risk-management policy solutions. This has become necessary for the Congo basin where the preponderance of evidence from few case studies shows long-term drying and hydro-climatic extremes attributed to perturbations of the nearby oceans. In this study, statistical relationships are developed between observed standardised precipitation index (SPI) and global sea surface temperature using principal component analysis as a regularization tool prior to the implementation of a canonical scheme. The connectivity between SPI patterns and global ocean-atmosphere phenomena was thereafter examined using the output from this scheme in a predictive framework based on non-linear autoregressive standard neural network. The Congo basin is shown to have been characterized by persistent and severe multi-year droughts during the earlier (1901-1930) and latter (1991-2014) decades of the last century. The impacts of these droughts were extensive affecting more than 50% of the basin between 1901 and 1930 and about 40% during the 1994-2006 period. Analysis of the latest decades (1994-2014) shows that relative to the two climatological periods between 1931 and 1990, the Congo basin has somewhat become drier. This likely contributed to the observed change in the hydrological regimes of the Congo river (after 1994) as indicated by the relationship between SPI and runoff index (r = 0.69 and 0.64 for 1931-1990 and 1961-1990 periods, respectively as opposed to r = 0.38 for 1991-2010 period). Pacific ENSO influences large departures in precipitation (r = 0.89) but prediction skill metrics demonstrate that multi-scale ocean-atmosphere phenomena (R2 = 84%, 78%, and 77% for QBO, AMO, and ENSO, respectively) significantly impact on hydro-climatic extremes, especially droughts over the Congo basin.
Collapse
Affiliation(s)
- Christopher E Ndehedehe
- Australian Rivers Institute and Griffith School of Environment & Science, Griffith University, Nathan, Queensland 4111, Australia.
| | - Richard O Anyah
- Department of Natural Resources & the Environment, University of Connecticut, USA
| | | | - Nathan O Agutu
- School of Earth and Planetary Sciences, Spatial Sciences, Curtin University, Perth, Western Australia, Australia
| | - Vagner G Ferreira
- School of Earth Sciences and Engineering, Hohai University, Nanjing, China
| |
Collapse
|
17
|
Drought Effects on Photosynthesis and Implications of Photoassimilate Distribution in 11C-Labeled Leaves in the African Tropical Tree Species Maesopsis eminii Engl. FORESTS 2018. [DOI: 10.3390/f9030109] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
18
|
|
19
|
Characterizing Land Cover Impacts on the Responses of Land Surface Phenology to the Rainy Season in the Congo Basin. REMOTE SENSING 2017. [DOI: 10.3390/rs9050461] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
20
|
Robertson FR, Bosilovich MG, Roberts JB. Reconciling land / ocean moisture transport variability in reanalyses with P-ET in observationally-driven land surface models. JOURNAL OF CLIMATE 2016; 29:8625-8646. [PMID: 32848293 PMCID: PMC7447045 DOI: 10.1175/jcli-d-16-0379.1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Vertically-integrated atmospheric moisture transport from ocean to land, VMFC, is a dynamic component of the global climate system but remains problematic in atmospheric reanalyses with current estimates having significant multi-decadal global trends differing even in sign. Regional VMFC trends over continents are especially uncertain. Continual evolution of the global observing system, particularly step-wise improvements in satellite observations, has introduced discrete changes in the ability of data assimilation to correct systematic model biases, manifesting as non-physical variability. Land Surface Models (LSMs) forced with observed precipitation, P, and near-surface meteorology and radiation provide estimates of evapotranspiration, ET. Since variability of atmospheric moisture storage is small on interannual and longer time scales, VMFC = P-ET is a good approximation and LSMs can provide an alternative estimate. However, heterogeneous density of rain gauge coverage, especially the sparse coverage over tropical continents, remains a serious concern. Rotated Principal Component Analysis (RPCA) with pre-filtering of VMFC to isolate the artificial variability is used to investigate artifacts in five reanalysis systems. This procedure, though ad hoc, enables useful VMFC corrections over global land. P-ET estimates from seven different LSMs are evaluated and subsequently used to confirm the efficacy of the RPCA-based adjustments. Global VMFC trends over the period 1979-2012 ranging from 0.07 to -0.03 mmd-1 decade-1 are reduced by the adjustments to 0.016 mmd-1 decade-1, much closer to the LSM P-ET estimate (0.007 mmd-1 decade-1). Neither is significant at the 90 percent level. ENSO-related modulation of VMFC and P-ET remains the largest global interannual signal with mean LSM and adjusted reanalysis time series correlating at 0.86.
Collapse
Affiliation(s)
| | | | - Jason B. Roberts
- NASA / Marshall Space Flight Center, Earth Science Office MSFC, AL 35812
| |
Collapse
|
21
|
Humphrey V, Gudmundsson L, Seneviratne SI. Assessing Global Water Storage Variability from GRACE: Trends, Seasonal Cycle, Subseasonal Anomalies and Extremes. SURVEYS IN GEOPHYSICS 2016; 37:357-395. [PMID: 27471333 PMCID: PMC4944666 DOI: 10.1007/s10712-016-9367-1] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/11/2015] [Accepted: 01/29/2016] [Indexed: 05/05/2023]
Abstract
Throughout the past decade, the Gravity Recovery and Climate Experiment (GRACE) has given an unprecedented view on global variations in terrestrial water storage. While an increasing number of case studies have provided a rich overview on regional analyses, a global assessment on the dominant features of GRACE variability is still lacking. To address this, we survey key features of temporal variability in the GRACE record by decomposing gridded time series of monthly equivalent water height into linear trends, inter-annual, seasonal, and subseasonal (intra-annual) components. We provide an overview of the relative importance and spatial distribution of these components globally. A correlation analysis with precipitation and temperature reveals that both the inter-annual and subseasonal anomalies are tightly related to fluctuations in the atmospheric forcing. As a novelty, we show that for large regions of the world high-frequency anomalies in the monthly GRACE signal, which have been partly interpreted as noise, can be statistically reconstructed from daily precipitation once an adequate averaging filter is applied. This filter integrates the temporally decaying contribution of precipitation to the storage changes in any given month, including earlier precipitation. Finally, we also survey extreme dry anomalies in the GRACE record and relate them to documented drought events. This global assessment sets regional studies in a broader context and reveals phenomena that had not been documented so far.
Collapse
Affiliation(s)
- Vincent Humphrey
- Institute for Atmospheric and Climate Science, ETH Zurich, Universitaetstrasse 16, 8092 Zurich, Switzerland
| | - Lukas Gudmundsson
- Institute for Atmospheric and Climate Science, ETH Zurich, Universitaetstrasse 16, 8092 Zurich, Switzerland
| | - Sonia I. Seneviratne
- Institute for Atmospheric and Climate Science, ETH Zurich, Universitaetstrasse 16, 8092 Zurich, Switzerland
| |
Collapse
|
22
|
Malhi Y, Adu-Bredu S, Asare RA, Lewis SL, Mayaux P. African rainforests: past, present and future. Philos Trans R Soc Lond B Biol Sci 2013; 368:20120312. [PMID: 23878339 PMCID: PMC3720030 DOI: 10.1098/rstb.2012.0312] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
The rainforests are the great green heart of Africa, and present a unique combination of ecological, climatic and human interactions. In this synthesis paper, we review the past and present state processes of change in African rainforests, and explore the challenges and opportunities for maintaining a viable future for these biomes. We draw in particular on the insights and new analyses emerging from the Theme Issue on 'African rainforests: past, present and future' of Philosophical Transactions of the Royal Society B. A combination of features characterize the African rainforest biome, including a history of climate variation; forest expansion and retreat; a long history of human interaction with the biome; a relatively low plant species diversity but large tree biomass; a historically exceptionally high animal biomass that is now being severely hunted down; the dominance of selective logging; small-scale farming and bushmeat hunting as the major forms of direct human pressure; and, in Central Africa, the particular context of mineral- and oil-driven economies that have resulted in unusually low rates of deforestation and agricultural activity. We conclude by discussing how this combination of factors influences the prospects for African forests in the twenty-first century.
Collapse
Affiliation(s)
- Yadvinder Malhi
- Environmental Change Institute, School of Geography and the Environment, University of Oxford, UK.
| | | | | | | | | |
Collapse
|
23
|
Malhi Y, Adu-Bredu S, Asare RA, Lewis SL, Mayaux P. The past, present and future of Africa's rainforests. Philos Trans R Soc Lond B Biol Sci 2013; 368:20120293. [PMID: 23878326 DOI: 10.1098/rstb.2012.0293] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Affiliation(s)
- Yadvinder Malhi
- Environmental Change Institute, School of Geography and the Environment, University of Oxford, UK.
| | | | | | | | | |
Collapse
|
24
|
Fisher JB, Sikka M, Sitch S, Ciais P, Poulter B, Galbraith D, Lee JE, Huntingford C, Viovy N, Zeng N, Ahlström A, Lomas MR, Levy PE, Frankenberg C, Saatchi S, Malhi Y. African tropical rainforest net carbon dioxide fluxes in the twentieth century. Philos Trans R Soc Lond B Biol Sci 2013; 368:20120376. [PMID: 23878340 PMCID: PMC3720031 DOI: 10.1098/rstb.2012.0376] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
The African humid tropical biome constitutes the second largest rainforest region, significantly impacts global carbon cycling and climate, and has undergone major changes in functioning owing to climate and land-use change over the past century. We assess changes and trends in CO2 fluxes from 1901 to 2010 using nine land surface models forced with common driving data, and depict the inter-model variability as the uncertainty in fluxes. The biome is estimated to be a natural (no disturbance) net carbon sink (−0.02 kg C m−2 yr−1 or −0.04 Pg C yr−1, p < 0.05) with increasing strength fourfold in the second half of the century. The models were in close agreement on net CO2 flux at the beginning of the century (σ1901 = 0.02 kg C m−2 yr−1), but diverged exponentially throughout the century (σ2010 = 0.03 kg C m−2 yr−1). The increasing uncertainty is due to differences in sensitivity to increasing atmospheric CO2, but not increasing water stress, despite a decrease in precipitation and increase in air temperature. However, the largest uncertainties were associated with the most extreme drought events of the century. These results highlight the need to constrain modelled CO2 fluxes with increasing atmospheric CO2 concentrations and extreme climatic events, as the uncertainties will only amplify in the next century.
Collapse
Affiliation(s)
- Joshua B Fisher
- Jet Propulsion Laboratory, California Institute of Technology, 4800 Oak Grove Drive, Pasadena, CA 91109, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|