1
|
Mokhosoev IM, Astakhov DV, Terentiev AA, Moldogazieva NT. Cytochrome P450 monooxygenase systems: Diversity and plasticity for adaptive stress response. PROGRESS IN BIOPHYSICS AND MOLECULAR BIOLOGY 2024; 193:19-34. [PMID: 39245215 DOI: 10.1016/j.pbiomolbio.2024.09.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Revised: 08/21/2024] [Accepted: 09/04/2024] [Indexed: 09/10/2024]
Abstract
Superfamily of cytochromes P450 (CYPs) is composed of heme-thiolate-containing monooxygenase enzymes, which play crucial roles in the biosynthesis, bioactivation, and detoxification of a variety of organic compounds, both endogenic and exogenic. Majority of CYP monooxygenase systems are multi-component and contain various redox partners, cofactors and auxiliary proteins, which contribute to their diversity in both prokaryotes and eukaryotes. Recent progress in bioinformatics and computational biology approaches make it possible to undertake whole-genome and phylogenetic analyses of CYPomes of a variety of organisms. Considerable variations in sequences within and between CYP families and high similarity in secondary and tertiary structures between all CYPs along with dramatic conformational changes in secondary structure elements of a substrate binding site during catalysis have been reported. This provides structural plasticity and substrate promiscuity, which underlie functional diversity of CYPs. Gene duplication and mutation events underlie CYP evolutionary diversity and emergence of novel selectable functions, which provide the involvement of CYPs in high adaptability to changing environmental conditions and dietary restrictions. In our review, we discuss the recent advancements and challenges in the elucidating the evolutionary origin and mechanisms underlying the CYP monooxygenase system diversity and plasticity. Our review is in the view of hypothesis that diversity of CYP monooxygenase systems is translated into the broad metabolic profiles, and this has been acquired during the long evolutionary time to provide structural plasticity leading to high adaptative capabilities to environmental stress conditions.
Collapse
Affiliation(s)
| | - Dmitry V Astakhov
- Department of Biochemistry, I.M. Sechenov First Moscow State Medical University (Sechenov University), 119991, Moscow, Russia
| | - Alexander A Terentiev
- Department of Biochemistry and Molecular Biology, N.I. Pirogov Russian National Research Medical University, 117997, Moscow, Russia
| | | |
Collapse
|
2
|
Schoville SD, Burke RL, Dong DY, Ginsberg HS, Maestas L, Paskewitz SM, Tsao JI. Genome resequencing reveals population divergence and local adaptation of blacklegged ticks in the United States. Mol Ecol 2024; 33:e17460. [PMID: 38963031 DOI: 10.1111/mec.17460] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2023] [Revised: 03/12/2024] [Accepted: 04/15/2024] [Indexed: 07/05/2024]
Abstract
Tick vectors and tick-borne disease are increasingly impacting human populations globally. An important challenge is to understand tick movement patterns, as this information can be used to improve management and predictive modelling of tick population dynamics. Evolutionary analysis of genetic divergence, gene flow and local adaptation provides insight on movement patterns at large spatiotemporal scales. We develop low coverage, whole genome resequencing data for 92 blacklegged ticks, Ixodes scapularis, representing range-wide variation across the United States. Through analysis of population genomic data, we find that tick populations are structured geographically, with gradual isolation by distance separating three population clusters in the northern United States, southeastern United States and a unique cluster represented by a sample from Tennessee. Populations in the northern United States underwent population contractions during the last glacial period and diverged from southern populations at least 50 thousand years ago. Genome scans of selection provide strong evidence of local adaptation at genes responding to host defences, blood-feeding and environmental variation. In addition, we explore the potential of low coverage genome sequencing of whole-tick samples for documenting the diversity of microbial pathogens and recover important tick-borne pathogens such as Borrelia burgdorferi. The combination of isolation by distance and local adaptation in blacklegged ticks demonstrates that gene flow, including recent expansion, is limited to geographical scales of a few hundred kilometres.
Collapse
Affiliation(s)
- Sean D Schoville
- Department of Entomology, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Russell L Burke
- Department of Biology, Hofstra University, Hempstead, New York, USA
| | - Dahn-Young Dong
- Department of Integrative Biology, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Howard S Ginsberg
- United States Geological Survey, Eastern Ecological Science Center, Woodward Hall - PSE, Field Station at the University of Rhode Island, Kingston, Rhode Island, USA
| | - Lauren Maestas
- Cattle Fever Tick Research Laboratory, USDA, Agricultural Research Service, Edinburg, Texas, USA
| | - Susan M Paskewitz
- Department of Entomology, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Jean I Tsao
- Department of Fisheries and Wildlife, Michigan State University, East Lansing, Michigan, USA
- Department of Large Animal Clinical Sciences, Michigan State University, East Lansing, Michigan, USA
| |
Collapse
|
3
|
Ortiz-Álvarez J, Becerra S, Baroncelli R, Hernández-Rodríguez C, Sukno SA, Thon MR. Evolutionary history of the cytochrome P450s from Colletotrichum species and prediction of their putative functional roles during host-pathogen interactions. BMC Genomics 2024; 25:56. [PMID: 38216891 PMCID: PMC10785452 DOI: 10.1186/s12864-023-09858-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2023] [Accepted: 11/29/2023] [Indexed: 01/14/2024] Open
Abstract
The genomes of species belonging to the genus Colletotrichum harbor a substantial number of cytochrome P450 monooxygenases (CYPs) encoded by a broad diversity of gene families. However, the biological role of their CYP complement (CYPome) has not been elucidated. Here, we investigated the putative evolutionary scenarios that occurred during the evolution of the CYPome belonging to the Colletotrichum Graminicola species complex (s.c.) and their biological implications. The study revealed that most of the CYPome gene families belonging to the Graminicola s.c. experienced gene contractions. The reductive evolution resulted in species restricted CYPs are predominant in each CYPome of members from the Graminicola s.c., whereas only 18 families are absolutely conserved among these species. However, members of CYP families displayed a notably different phylogenetic relationship at the tertiary structure level, suggesting a putative convergent evolution scenario. Most of the CYP enzymes of the Graminicola s.c. share redundant functions in secondary metabolite biosynthesis and xenobiotic metabolism. Hence, this current work suggests that the presence of a broad CYPome in the genus Colletotrichum plays a critical role in the optimization of the colonization capability and virulence.
Collapse
Affiliation(s)
- Jossue Ortiz-Álvarez
- Institute for Agrobiotechnology Research (CIALE), Department of Microbiology and Genetics, University of Salamanca, Villamayor, Salamanca, Spain
- Present Address: Programa "Investigadoras e Investigadores por México" Consejo Nacional de Humanidades, Ciencias y Tecnologías (CONAHCyT), Mexico City, México
| | - Sioly Becerra
- Institute for Agrobiotechnology Research (CIALE), Department of Microbiology and Genetics, University of Salamanca, Villamayor, Salamanca, Spain
| | - Riccardo Baroncelli
- Institute for Agrobiotechnology Research (CIALE), Department of Microbiology and Genetics, University of Salamanca, Villamayor, Salamanca, Spain
- Department of Agricultural and Food Sciences, University of Bologna, Bologna, Italy
| | - César Hernández-Rodríguez
- Laboratorio de Biología Molecular de Bacterias y Levaduras, Departamento de Microbiología, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Ciudad de Mexico, México
| | - Serenella A Sukno
- Institute for Agrobiotechnology Research (CIALE), Department of Microbiology and Genetics, University of Salamanca, Villamayor, Salamanca, Spain.
| | - Michael R Thon
- Institute for Agrobiotechnology Research (CIALE), Department of Microbiology and Genetics, University of Salamanca, Villamayor, Salamanca, Spain.
| |
Collapse
|
4
|
Kanauchi M. Hydroxylation of Fatty Acids by Lactic Acid Bacteria. Methods Mol Biol 2024; 2851:107-114. [PMID: 39210175 DOI: 10.1007/978-1-0716-4096-8_9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/04/2024]
Abstract
Hydroxy fatty acids (HFAs) are fatty acids with hydroxyl functional groups attached to the main chain. HFAs are used in widely diverse industrial applications, healthy functional foods, artificial food flavorings, and alcoholic beverages. A lactic acid bacterium (LAB), Lactobacillus sakei, hydroxylates oleic acid. Furthermore, the hydroxyl fatty acid was identified by GC-MS as 10-hydroxystearic acid. The Lactobacillus sakei hydroxylated more than 90% of the oleic acid in the medium at 15 °C after 30-48 h. The hydroxyl enzyme needs a coenzyme for an electron donor as NADPH. The enzyme is useful for assay with monitoring NADPH concentration used an A340 device. The hydroxylate fatty acids are converted by LAB lactonize aroma lactone from commercial yeast strains, which can be detected directly by scent. Commercial beer brewing yeast T-58 produced the highest concentration of aroma lactone from hydroxyl fatty acids. Furthermore, the aroma lactone is identified by GC-MS as gamma-dodecalactone. The ratio of conversion is 87%. These results suggest that the lactonization conversion system is useful to hydroxylate fatty acids for alcoholic beverages.
Collapse
Affiliation(s)
- Makoto Kanauchi
- Department of Food Management, Miyagi University, Sendai, Japan.
| |
Collapse
|
5
|
Gao J, Ma L, Liu Y, Tu L, Wu X, Wang J, Li D, Zhang X, Gao W, Zhang Y, Liu C. CYP72D19 from Tripterygium wilfordii catalyzes C-2 hydroxylation of abietane-type diterpenoids. PLANT CELL REPORTS 2023; 42:1733-1744. [PMID: 37615706 DOI: 10.1007/s00299-023-03059-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Accepted: 08/07/2023] [Indexed: 08/25/2023]
Abstract
KEY MESSAGE CYP72D19, the first functional gene of the CYP72D subfamily, catalyzes the C-2 hydroxylation of abietane-type diterpenoids. The abietane-type diterpenoids, e.g., triptolide, tripdiolide, and 2-epitripdiolide, are the main natural products for the anti-tumor, anti-inflammatory, and immunosuppressive activities of Tripterygium wilfordii, while their biosynthetic pathways are not resolved. Here, we cloned and characterized the CYP72D19-catalyzed C-2 hydroxylation of dehydroabietic acid, a compound that has been proven to be a biosynthetic intermediate in triptolide biosynthesis. Through molecular docking and site-directed mutagenesis, L386, L387, and I493 near the active pocket were found to have an important effect on the enzyme activity, which also indicates that steric hindrance of residues plays an important role in function. In addition, CYP72D19 also catalyzed a variety of abietane-type diterpenoids with benzene ring, presumably because the benzene ring of the substrate molecule stabilized the C-ring, allowing the protein and the substrate to form a relatively stable spatial structure. This is the first demonstration of CYP72D subfamily gene function. Our research provides important genetic elements for the structural modification of active ingredients and the heterologous production of other 2-hydroxyl abietane-type natural products.
Collapse
Affiliation(s)
- Jie Gao
- School of Traditional Chinese Medicine, Capital Medical University, Beijing, 100069, China
- National Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, National Resource Center for Chinese Materia Medica, Chinese Academy of Chinese Medical Sciences, Beijing, 100700, China
| | - Lin Ma
- School of Traditional Chinese Medicine, Capital Medical University, Beijing, 100069, China
| | - Yuan Liu
- School of Traditional Chinese Medicine, Capital Medical University, Beijing, 100069, China
| | - Lichan Tu
- Key Laboratory of Novel Targets and Drug Study for Neural Repair of Zhejiang Province, School of Medicine, Hangzhou City University, Hangzhou, 310015, China
| | - Xiaoyi Wu
- School of Traditional Chinese Medicine, Capital Medical University, Beijing, 100069, China
| | - Jian Wang
- National Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, National Resource Center for Chinese Materia Medica, Chinese Academy of Chinese Medical Sciences, Beijing, 100700, China
| | - Dan Li
- School of Pharmaceutical Sciences, Capital Medical University, Beijing, 100069, China
| | - Xianan Zhang
- School of Traditional Chinese Medicine, Capital Medical University, Beijing, 100069, China
| | - Wei Gao
- School of Traditional Chinese Medicine, Capital Medical University, Beijing, 100069, China
| | - Yifeng Zhang
- National Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, National Resource Center for Chinese Materia Medica, Chinese Academy of Chinese Medical Sciences, Beijing, 100700, China.
| | - Changli Liu
- School of Traditional Chinese Medicine, Capital Medical University, Beijing, 100069, China.
| |
Collapse
|
6
|
Mori T, Abe I. Functional analysis of a fungal P450 enzyme. Methods Enzymol 2023; 693:171-190. [PMID: 37977730 DOI: 10.1016/bs.mie.2023.09.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2023]
Abstract
Fungal cytochrome P450s participate in various physiological reactions, including the synthesis of internal cellular components, metabolic detoxification of xenobiotic compounds, and oxidative modification of natural products. Although functional analysis reports of fungal P450s continue to grow, there are still some difficulties as compared to prokaryotic P450s, because most of these fungal enzymes are transmembrane proteins. In this chapter, we will describe the methods for heterologous expression, in vivo analysis, enzyme preparation, and in vitro enzyme assays of the fungal P450 enzyme Trt6 and isomerase Trt14, which play important roles in the divergence of the biosynthetic pathway of terretonins, as a model for the functional analysis of fungal P450 enzymes.
Collapse
Affiliation(s)
- Takahiro Mori
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, Tokyo, Japan; Collaborative Research Institute for Innovative Microbiology, The University of Tokyo, Tokyo, Japan; PRESTO, Japan Science and Technology Agency, Saitama, Japan
| | - Ikuro Abe
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, Tokyo, Japan; Collaborative Research Institute for Innovative Microbiology, The University of Tokyo, Tokyo, Japan.
| |
Collapse
|
7
|
Liu C, Li J, Qi X, Wang L, Sun D, Zhang J, Zhang K, Li J, Li Y, Wen H. Cytochrome P450 superfamily in spotted sea bass: Genome-wide identification and expression profiles under trichlorfon and environmental stresses. COMPARATIVE BIOCHEMISTRY AND PHYSIOLOGY. PART D, GENOMICS & PROTEOMICS 2023; 46:101078. [PMID: 37121223 DOI: 10.1016/j.cbd.2023.101078] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Revised: 04/10/2023] [Accepted: 04/11/2023] [Indexed: 05/02/2023]
Abstract
Cytochrome P450s (CYPs), as one of the most diverse enzyme superfamilies in nature, play critical functions in antioxidant reactions against endogenous and exogenous compounds. In this study, we performed genome-wide characterization of CYP superfamily members and analyzed their expression patterns under several abiotic stresses in spotted sea bass, which is known as an economically important fish species in the Chinese aquaculture industry. A total of 55 CYP genes were identified and divided into 17 families within 10 clans. The analysis of phylogeny, gene structure, and syntenic relationships provided evidence for the evolution of CYP genes and confirmed their annotation and orthology. The expression of CYP genes was examined in the liver during trichlorfon stress using quantitative real-time PCR. The results showed that 20 tested CYP genes displayed significant mRNA expression changes, indicating that they may play crucial roles in the metabolism of trichlorfon and can be potential biomarkers for trichlorfon pollution. Moreover, by screening transcriptomic databases, 10, 3 and 19 CYP genes exhibited differential expression patterns in response to hypoxia, alkalinity and heat stress, respectively. Taken together, this study provided insights into the regulation of CYP genes by toxicological and environmental stresses, laid basis for extensive functional studies of the CYP superfamily in spotted sea bass and other teleost species.
Collapse
Affiliation(s)
- Cong Liu
- Fisheries College, Ocean University of China, Qingdao, Shandong 266003, China; Key Laboratory of Mariculture, Ministry of Education (KLMME), Ocean University of China, Shandong 266003, China
| | - Junjie Li
- Fisheries College, Ocean University of China, Qingdao, Shandong 266003, China; Key Laboratory of Mariculture, Ministry of Education (KLMME), Ocean University of China, Shandong 266003, China
| | - Xin Qi
- Fisheries College, Ocean University of China, Qingdao, Shandong 266003, China; Key Laboratory of Mariculture, Ministry of Education (KLMME), Ocean University of China, Shandong 266003, China
| | - Lingyu Wang
- Fisheries College, Ocean University of China, Qingdao, Shandong 266003, China; Key Laboratory of Mariculture, Ministry of Education (KLMME), Ocean University of China, Shandong 266003, China
| | - Donglei Sun
- Fisheries College, Ocean University of China, Qingdao, Shandong 266003, China; Key Laboratory of Mariculture, Ministry of Education (KLMME), Ocean University of China, Shandong 266003, China
| | - Jingru Zhang
- Fisheries College, Ocean University of China, Qingdao, Shandong 266003, China; Key Laboratory of Mariculture, Ministry of Education (KLMME), Ocean University of China, Shandong 266003, China
| | - Kaiqiang Zhang
- Fisheries College, Ocean University of China, Qingdao, Shandong 266003, China; Key Laboratory of Mariculture, Ministry of Education (KLMME), Ocean University of China, Shandong 266003, China
| | - Jianshuang Li
- Fisheries College, Ocean University of China, Qingdao, Shandong 266003, China; Key Laboratory of Mariculture, Ministry of Education (KLMME), Ocean University of China, Shandong 266003, China
| | - Yun Li
- Fisheries College, Ocean University of China, Qingdao, Shandong 266003, China; Key Laboratory of Mariculture, Ministry of Education (KLMME), Ocean University of China, Shandong 266003, China.
| | - Haishen Wen
- Fisheries College, Ocean University of China, Qingdao, Shandong 266003, China; Key Laboratory of Mariculture, Ministry of Education (KLMME), Ocean University of China, Shandong 266003, China.
| |
Collapse
|
8
|
Gable JA, Poulos TL, Follmer AH. Cooperative Substrate Binding Controls Catalysis in Bacterial Cytochrome P450terp (CYP108A1). J Am Chem Soc 2023; 145:10.1021/jacs.2c12388. [PMID: 36779970 PMCID: PMC10576961 DOI: 10.1021/jacs.2c12388] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/14/2023]
Abstract
Despite being one of the most well-studied aspects of cytochrome P450 chemistry, important questions remain regarding the nature and ubiquity of allosteric regulation of catalysis. The crystal structure of a bacterial P450, P450terp, in the presence of substrate reveals two binding sites, one above the heme in position for regioselective hydroxylation and another in the substrate access channel. Unlike many bacterial P450s, P450terp does not exhibit an open to closed conformational change when substrate binds; instead, P450terp uses the second substrate molecule to hold the first substrate molecule in position for catalysis. Spectral titrations clearly show that substrate binding to P450terp is cooperative with a Hill coefficient of 1.4 and is supported by isothermal titration calorimetry. The importance of the allosteric site was explored by a series of mutations that weaken the second site and that help hold the first substrate in position for proper catalysis. We further measured the coupling efficiency of both the wild-type (WT) enzyme and the mutant enzymes. While the WT enzyme exhibits 97% efficiency, each of the variants showed lower catalytic efficiency. Additionally, the variants show decreased spin shifts upon binding of substrate. These results are the first clear example of positive homotropic allostery in a class 1 bacterial P450 with its natural substrate. Combined with our recent results from P450cam showing complex substrate allostery and conformational dynamics, our present study with P450terp indicates that bacterial P450s may not be as simple as once thought and share complex substrate binding properties usually associated with only mammalian P450s.
Collapse
Affiliation(s)
- Jessica A Gable
- Departments of Chemistry, University of California, Irvine, Irvine, California 92697-3900, United States
| | - Thomas L Poulos
- Departments of Molecular Biology & Biochemistry, University of California, Irvine, Irvine, California 92697-3900, United States
- Departments of Pharmaceutical Sciences, University of California, Irvine, Irvine, California 92697-3900, United States
- Departments of Chemistry, University of California, Irvine, Irvine, California 92697-3900, United States
| | - Alec H Follmer
- Departments of Chemistry, University of California, Irvine, Irvine, California 92697-3900, United States
| |
Collapse
|
9
|
Zhang Y, Ma L, Su P, Huang L, Gao W. Cytochrome P450s in plant terpenoid biosynthesis: discovery, characterization and metabolic engineering. Crit Rev Biotechnol 2023; 43:1-21. [PMID: 34865579 DOI: 10.1080/07388551.2021.2003292] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
As the largest family of natural products, terpenoids play valuable roles in medicine, agriculture, cosmetics and food. However, the traditional methods that rely on direct extraction from the original plants not only produce low yields, but also result in waste of resources, and are not applicable at all to endangered species. Modern heterologous biosynthesis is considered a promising, efficient, and sustainable production method, but it relies on the premise of a complete analysis of the biosynthetic pathway of terpenoids, especially the functionalization processes involving downstream cytochrome P450s. In this review, we systematically introduce the biotech approaches used to discover and characterize plant terpenoid-related P450s in recent years. In addition, we propose corresponding metabolic engineering approaches to increase the effective expression of P450 and improve the yield of terpenoids, and also elaborate on metabolic engineering strategies and examples of heterologous biosynthesis of terpenoids in Saccharomyces cerevisiae and plant hosts. Finally, we provide perspectives for the biotech approaches to be developed for future research on terpenoid-related P450.
Collapse
Affiliation(s)
- Yifeng Zhang
- Beijing Shijitan Hospital, Capital Medical University, Beijing, China.,School of Traditional Chinese Medicine, Capital Medical University, Beijing, China
| | - Lin Ma
- School of Traditional Chinese Medicine, Capital Medical University, Beijing, China
| | - Ping Su
- Department of Chemistry, The Scripps Research Institute, Jupiter, Florida, USA
| | - Luqi Huang
- State Key Laboratory Breeding Base of Dao-di Herbs, National Resource Center for Chinese Materia Medica, Chinese Academy of Chinese Medical Sciences, Beijing, China
| | - Wei Gao
- Beijing Shijitan Hospital, Capital Medical University, Beijing, China.,School of Traditional Chinese Medicine, Capital Medical University, Beijing, China.,Advanced Innovation Center for Human Brain Protection, Capital Medical University, Beijing, China
| |
Collapse
|
10
|
Shivaram S, Gao H, Qin S, Liu D, Weinshilboum RM, Wang L. Cytochrome P450 Transcriptional Regulation by Testis-Specific Y-Encoded-Like Protein: Identification of Novel Upstream Transcription Factors. Drug Metab Dispos 2023; 51:1-7. [PMID: 36153008 PMCID: PMC9832376 DOI: 10.1124/dmd.122.000945] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Revised: 07/05/2022] [Accepted: 07/05/2022] [Indexed: 01/14/2023] Open
Abstract
Cytochrome P450s (CYPs) display significant inter-individual variation in expression, much of which remains unexplained by known CYP single-nucleotide polymorphisms (SNPs). Testis-specific Y-encoded-like proteins (TSPYLs) are transcriptional regulators for several drug-metabolizing CYPs including CYP3A4 However, transcription factors (TFs) that might influence CYP expression through an effect on TSPYL expression are unknown. Therefore, we studied regulators of TSPYL expression in hepatic cell lines and their possible SNP-dependent variation. Specifically, we identified candidate TFs that might influence TSPYL expression using the ENCODE ChIPseq database. Subsequently, the expression of TSPYL1/2/4 as well as that of selected CYP targets for TSPYL regulation were assayed in hepatic cell lines before and after knockdown of TFs that might influence CYP expression through TSPYL-dependent mechanisms. Those results were confirmed by studies of TF binding to TSPYL1/2/4 gene promoter regions. In hepatic cell lines, knockdown of the REST and ZBTB7A TFs resulted in decreased TSPYL1 and TSPYL4 expression and increased CYP3A4 expression, changes reversed by TSPYL1/4 overexpression. Potential binding sites for REST and ZBTB7A on the promoters of TSPYL1 and TSPYL4 were confirmed by chromatin immunoprecipitation. Finally, common SNP variants in upstream binding sites on the TSPYL1/4 promoters were identified and luciferase reporter constructs confirmed SNP-dependent modulation of TSPYL1/4 gene transcription. In summary, we identified REST and ZBTB7A as regulators of the expression of TSPYL genes which themselves can contribute to regulation of CYP expression and-potentially-of drug metabolism. SNP-dependent modulation of TSPYL transcription may contribute to individual variation in both CYP expression and-downstream-drug response phenotypes. SIGNIFICANCE STATEMENT: Testis-specific Y-encoded-like proteins (TSPYLs) are transcriptional regulators of cytochrome P450 (CYP) gene expression. Here, we report that variation in TSPYL expression as a result of the effects of genetically regulated TSPYL transcription factors is an additional factor that could result in downstream variation in CYP expression and potentially, as a result, variation in drug biotransformation.
Collapse
Affiliation(s)
- Suganti Shivaram
- Division of Clinical Pharmacology, Department of Molecular Pharmacology and Therapeutics, Mayo Clinic, Rochester, Minnesota
| | - Huanyao Gao
- Division of Clinical Pharmacology, Department of Molecular Pharmacology and Therapeutics, Mayo Clinic, Rochester, Minnesota
| | - Sisi Qin
- Division of Clinical Pharmacology, Department of Molecular Pharmacology and Therapeutics, Mayo Clinic, Rochester, Minnesota
| | - Duan Liu
- Division of Clinical Pharmacology, Department of Molecular Pharmacology and Therapeutics, Mayo Clinic, Rochester, Minnesota
| | - Richard M Weinshilboum
- Division of Clinical Pharmacology, Department of Molecular Pharmacology and Therapeutics, Mayo Clinic, Rochester, Minnesota
| | - Liewei Wang
- Division of Clinical Pharmacology, Department of Molecular Pharmacology and Therapeutics, Mayo Clinic, Rochester, Minnesota
| |
Collapse
|
11
|
Zhang J, Luo Q, Hou J, Xiao W, Long P, Hu Y, Chen X, Wang H. Fatty acids and risk of dilated cardiomyopathy: A two-sample Mendelian randomization study. Front Nutr 2023; 10:1068050. [PMID: 36875854 PMCID: PMC9980906 DOI: 10.3389/fnut.2023.1068050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Accepted: 01/30/2023] [Indexed: 02/18/2023] Open
Abstract
Background Previous observational studies have shown intimate associations between fatty acids (FAs) and dilated cardiomyopathy (DCM). However, due to the confounding factors and reverse causal association found in observational epidemiological studies, the etiological explanation is not credible. Objective To exclude possible confounding factors and reverse causal associations found in observational epidemiological studies, we used the two-sample Mendelian randomization (MR) analysis to verify the causal relationship between FAs and DCM risk. Method All data of 54 FAs were downloaded from the genome-wide association studies (GWAS) catalog, and the summary statistics of DCM were extracted from the HF Molecular Epidemiology for Therapeutic Targets Consortium GWAS. Two-sample MR analysis was conducted to evaluate the causal effect of FAs on DCM risk through several analytical methods, including MR-Egger, inverse variance weighting (IVW), maximum likelihood, weighted median estimator (WME), and the MR pleiotropy residual sum and outlier test (MRPRESSO). Directionality tests using MR-Steiger to assess the possibility of reverse causation. Results Our analysis identified two FAs, oleic acid and fatty acid (18:1)-OH, that may have a significant causal effect on DCM. MR analyses indicated that oleic acid was suggestively associated with a heightened risk of DCM (OR = 1.291, 95%CI: 1.044-1.595, P = 0.018). As a probable metabolite of oleic acid, fatty acid (18:1)-OH has a suggestive association with a lower risk of DCM (OR = 0.402, 95%CI: 0.167-0.966, P = 0.041). The results of the directionality test suggested that there was no reverse causality between exposure and outcome (P < 0.001). In contrast, the other 52 available FAs were discovered to have no significant causal relationships with DCM (P > 0.05). Conclusion Our findings propose that oleic acid and fatty acid (18:1)-OH may have causal relationships with DCM, indicating that the risk of DCM from oleic acid may be decreased by encouraging the conversion of oleic acid to fatty acid (18:1)-OH.
Collapse
Affiliation(s)
- Jiexin Zhang
- Department of Laboratory Medicine, Affiliated Hospital of Southwest Jiaotong University, The Third People's Hospital of Chengdu, Chengdu, Sichuan, China.,Central Laboratory, The General Hospital of Western Theater Command, Chengdu, Sichuan, China
| | - Qiang Luo
- Department of Laboratory Medicine, Affiliated Hospital of Southwest Jiaotong University, The Third People's Hospital of Chengdu, Chengdu, Sichuan, China
| | - Jun Hou
- Department of Laboratory Medicine, Affiliated Hospital of Southwest Jiaotong University, The Third People's Hospital of Chengdu, Chengdu, Sichuan, China
| | - Wenjing Xiao
- Central Laboratory, The General Hospital of Western Theater Command, Chengdu, Sichuan, China
| | - Pan Long
- Central Laboratory, The General Hospital of Western Theater Command, Chengdu, Sichuan, China
| | - Yonghe Hu
- Central Laboratory, The General Hospital of Western Theater Command, Chengdu, Sichuan, China
| | - Xin Chen
- Department of Laboratory Medicine, Affiliated Hospital of Southwest Jiaotong University, The Third People's Hospital of Chengdu, Chengdu, Sichuan, China
| | - Han Wang
- Department of Cardiology, Affiliated Hospital of Southwest Jiaotong University, The Third People's Hospital of Chengdu, Chengdu, Sichuan, China
| |
Collapse
|
12
|
Abstract
Cytochrome P450 (CYP450) is a major drug-metabolizing enzyme system mainly distributed in liver microsomes and involved in the metabolism of many endogenous substances (such as fatty acids and arachidonic acids), and exogenous compounds (such as drugs, toxicants, carcinogens, and procarcinogens). Due to the similarity in structures and catalytic functions between CYP450 isoforms, the lack of effective selective detection tools greatly limits the understanding and the research of their respective physiological roles in living organisms. Until now, several small-molecular fluorescent probes have been employed for selective detection and monitoring of CYP450s (Cytochrome P450 enzymes) in vitro or in vivo owing to the tailored properties, biodegradability, and high temporal and spatial resolution imaging in situ. In this review, we summarize the recent advances in fluorescent probes for CYP450s (including CYP1, CYP2, and CYP3 families), and we discuss and focus on their identification mechanisms, general probe design strategies, and bioimaging applications. We also highlight the potential challenges and prospects of designing new generations of fluorescent probes in CYP450 studies, which will further enhance the diversity, practicality, and clinical feasibility of research into CYP450.
Collapse
|
13
|
Larigot L, Mansuy D, Borowski I, Coumoul X, Dairou J. Cytochromes P450 of Caenorhabditis elegans: Implication in Biological Functions and Metabolism of Xenobiotics. Biomolecules 2022; 12:biom12030342. [PMID: 35327534 PMCID: PMC8945457 DOI: 10.3390/biom12030342] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Revised: 02/17/2022] [Accepted: 02/17/2022] [Indexed: 02/01/2023] Open
Abstract
Caenorhabditis elegans is an important model used for many aspects of biological research. Its genome contains 76 genes coding for cytochromes P450 (P450s), and few data about the biochemical properties of those P450s have been published so far. However, an increasing number of articles have appeared on their involvement in the metabolism of xenobiotics and endobiotics such as fatty acid derivatives and steroids. Moreover, the implication of some P450s in various biological functions of C. elegans, such as survival, dauer formation, life span, fat content, or lipid metabolism, without mention of the precise reaction catalyzed by those P450s, has been reported in several articles. This review presents the state of our knowledge about C. elegans P450s.
Collapse
Affiliation(s)
- Lucie Larigot
- Campus Saint Germain, INSERM UMR-S 1124, Université de Paris, 45 rue des Saints-Pères, 75006 Paris, France;
| | - Daniel Mansuy
- Laboratoire de Chimie et de Biochimie Pharmacologiques et Toxicologiques, CNRS, Université de Paris, 75006 Paris, France; (D.M.); (I.B.)
| | - Ilona Borowski
- Laboratoire de Chimie et de Biochimie Pharmacologiques et Toxicologiques, CNRS, Université de Paris, 75006 Paris, France; (D.M.); (I.B.)
| | - Xavier Coumoul
- Campus Saint Germain, INSERM UMR-S 1124, Université de Paris, 45 rue des Saints-Pères, 75006 Paris, France;
- Correspondence: (X.C.) or (J.D.); Tel.: +331-76-53-42-35; Fax: + 331-42-86-43-84
| | - Julien Dairou
- Laboratoire de Chimie et de Biochimie Pharmacologiques et Toxicologiques, CNRS, Université de Paris, 75006 Paris, France; (D.M.); (I.B.)
- Correspondence: (X.C.) or (J.D.); Tel.: +331-76-53-42-35; Fax: + 331-42-86-43-84
| |
Collapse
|
14
|
Chen CC, Dai M, Zhang L, Zhao J, Zeng W, Shi M, Huang JW, Liu W, Guo RT, Li A. Molecular Basis for a Toluene Monooxygenase to Govern Substrate Selectivity. ACS Catal 2022. [DOI: 10.1021/acscatal.1c05845] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Affiliation(s)
- Chun-Chi Chen
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Hubei Collaborative Innovation Center for Green Transformation of Bio-Resources, Hubei Key Laboratory of Industrial Biotechnology, School of Life Sciences, Hubei University, Wuhan 430062, China
| | - Meng Dai
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Hubei Collaborative Innovation Center for Green Transformation of Bio-Resources, Hubei Key Laboratory of Industrial Biotechnology, School of Life Sciences, Hubei University, Wuhan 430062, China
| | - Lilan Zhang
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Hubei Collaborative Innovation Center for Green Transformation of Bio-Resources, Hubei Key Laboratory of Industrial Biotechnology, School of Life Sciences, Hubei University, Wuhan 430062, China
| | - Jing Zhao
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Hubei Collaborative Innovation Center for Green Transformation of Bio-Resources, Hubei Key Laboratory of Industrial Biotechnology, School of Life Sciences, Hubei University, Wuhan 430062, China
| | - Wei Zeng
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Hubei Collaborative Innovation Center for Green Transformation of Bio-Resources, Hubei Key Laboratory of Industrial Biotechnology, School of Life Sciences, Hubei University, Wuhan 430062, China
| | - Min Shi
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Hubei Collaborative Innovation Center for Green Transformation of Bio-Resources, Hubei Key Laboratory of Industrial Biotechnology, School of Life Sciences, Hubei University, Wuhan 430062, China
| | - Jian-Wen Huang
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Hubei Collaborative Innovation Center for Green Transformation of Bio-Resources, Hubei Key Laboratory of Industrial Biotechnology, School of Life Sciences, Hubei University, Wuhan 430062, China
| | - Weidong Liu
- Industrial Enzymes National Engineering Laboratory, Chinese Academy of Sciences, Tianjin Institute of Industrial Biotechnology, Tianjin 300308, China
| | - Rey-Ting Guo
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Hubei Collaborative Innovation Center for Green Transformation of Bio-Resources, Hubei Key Laboratory of Industrial Biotechnology, School of Life Sciences, Hubei University, Wuhan 430062, China
| | - Aitao Li
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Hubei Collaborative Innovation Center for Green Transformation of Bio-Resources, Hubei Key Laboratory of Industrial Biotechnology, School of Life Sciences, Hubei University, Wuhan 430062, China
| |
Collapse
|
15
|
Stanfield JK, Shoji O. The Power of Deception: Using Decoy Molecules to Manipulate P450BM3 Biotransformations. CHEM LETT 2021. [DOI: 10.1246/cl.210584] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Affiliation(s)
- Joshua Kyle Stanfield
- Department of Chemistry, Graduate School of Science, Nagoya University, Chikusa, Nagoya, Aichi 461-8602, Japan
| | - Osami Shoji
- Department of Chemistry, Graduate School of Science, Nagoya University, Chikusa, Nagoya, Aichi 461-8602, Japan
| |
Collapse
|
16
|
Kayastha S, Sagwan-Barkdoll L, Anterola A, Jayakody LN. Developing synthetic microbes to produce indirubin-derivatives. BIOCATALYSIS AND AGRICULTURAL BIOTECHNOLOGY 2021. [DOI: 10.1016/j.bcab.2021.102162] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
17
|
Oliw EH. Fatty acid dioxygenase-cytochrome P450 fusion enzymes of filamentous fungal pathogens. Fungal Genet Biol 2021; 157:103623. [PMID: 34520871 DOI: 10.1016/j.fgb.2021.103623] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2021] [Accepted: 09/07/2021] [Indexed: 11/27/2022]
Abstract
Oxylipins designate oxygenated unsaturated C18 fatty acids. Many filamentous fungi pathogens contain dioxygenases (DOX) in oxylipin biosynthesis with homology to human cyclooxygenases. They contain a DOX domain, which is often fused to a functional cytochrome P450 at the C-terminal end. A Tyr radical in the DOX domain initiates dioxygenation of linoleic acid by hydrogen abstraction with formation of 8-, 9-, or 10-hydroperoxy metabolites. The P450 domains can catalyze heterolytic cleavage of 8- and 10-hydroperoxides with oxidation of the heme thiolate iron for hydroxylation at C-5, C-7, C-9, or C-11 and for epoxidation of the 12Z double bond; thus displaying linoleate diol synthase (LDS) and epoxy alcohol synthase (EAS) activities. LSD activities are present in the rice blast pathogen Magnaporthe oryzae, Botrytis cinerea causing grey mold and the black scurf pathogen Rhizoctonia solani. 10R-DOX-EAS has been found in M. oryzae and Fusarium oxysporum. The P450 domains may also catalyze homolytic cleavage of 8- and 9-hydroperoxy fatty acids and dehydration to produce epoxides with an adjacent double bond, i.e., allene oxides, thus displaying 8- and 9-DOX-allene oxide synthases (AOS). F. oxysporum, F. graminearum, and R. solani express 9S-DOX-AOS and Zymoseptoria tritici 8S-and 9R-DOX-AOS. Homologues are present in endemic human-pathogenic fungi with extensive studies in Aspergillus fumigatus, A. flavus (also a plant pathogen) as well as the genetic model A. nidulans. 8R-and 10R-DOX appear to bind fatty acids "headfirst" in the active site, whereas 9S-DOX binds them "tail first" in analogy with cyclooxygenases. The biological relevance of 8R-DOX-5,8-LDS (also designated PpoA) was first discovered in relation to sporulation of A. nidulans and recently for development and programmed hyphal branching of A. fumigatus. Gene deletion DOX-AOS homologues in F. verticillioides, A. flavus, and A. nidulans alters, inter alia, mycotoxin production, sporulation, and gene expression.
Collapse
Affiliation(s)
- Ernst H Oliw
- Division of Biochemical Pharmacology, Department of Pharmaceutical Biosciences, Uppsala University, Box 591, SE-751 24 Uppsala, Sweden.
| |
Collapse
|
18
|
Putkaradze N, Hartz P, Hutter MC, Zapp J, Thevis M, Bernhardt R. Metabolism of oral turinabol by the human brain cholesterol 24-hydroxylase CYP46A1. J Steroid Biochem Mol Biol 2021; 212:105927. [PMID: 34089835 DOI: 10.1016/j.jsbmb.2021.105927] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/31/2021] [Revised: 05/20/2021] [Accepted: 05/20/2021] [Indexed: 11/26/2022]
Abstract
The human microsomal cytochrome P450 enzyme CYP46A1 plays a crucial role in cholesterol elimination from the brain. It performs a 24-hydroxylation of cholesterol and is of outstanding significance for memory and cognition. This study demonstrates the catalytic activity of human CYP46A1 towards an anabolic androgenic steroid, oral turinabol (dehydrochloromethyltestosterone, 4-chloro-17β-dihydroxy,17α-methylandrosta-1,4-dien-3-one), which is a doping substance. CYP46A1 is the first human microsomal steroid-converting P450 showing activity towards this xenobiotic compound. Furthermore, the inhibitory effect of oral turinabol on the cholesterol conversion has been investigated in vitro demonstrating competition of the two substrates on the active site of CYP46A1 which might be of importance for potential pathogenic effects of oral turinabol. The conversion of oral turinabol was found to be selective resulting in the formation of only one product, as shown by HPLC analysis. To produce sufficient amounts of this product for NMR analysis, a system expressing human full-length CYP46A1 and CPR on a bicistronic vector was successfully developed realizing the selective cholesterol 24-hydroxylation in E. coli in mg amounts. Using this novel whole-cell system, the conversion of oral turinabol was performed and the product of this conversion by CYP46A1 was isolated and identified as 16β-hydroxy oral turinabol by NMR.
Collapse
Affiliation(s)
- Natalia Putkaradze
- Institute of Biochemistry, Saarland University, D-66123, Saarbruecken, Germany
| | - Philip Hartz
- Institute of Biochemistry, Saarland University, D-66123, Saarbruecken, Germany
| | - Michael C Hutter
- Center for Bioinformatics, Saarland University, D-66123, Saarbruecken, Germany
| | - Josef Zapp
- Institute of Pharmaceutical Biology, Saarland University, D-66123, Saarbruecken, Germany
| | - Mario Thevis
- Institute of Biochemistry, German Sport University Cologne, D-50933, Cologne, Germany
| | - Rita Bernhardt
- Institute of Biochemistry, Saarland University, D-66123, Saarbruecken, Germany.
| |
Collapse
|
19
|
Enzymatic Production of 3-OH Phlorizin, a Possible Bioactive Polyphenol from Apples, by Bacillus megaterium CYP102A1 via Regioselective Hydroxylation. Antioxidants (Basel) 2021; 10:antiox10081327. [PMID: 34439575 PMCID: PMC8406095 DOI: 10.3390/antiox10081327] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Revised: 08/19/2021] [Accepted: 08/20/2021] [Indexed: 11/17/2022] Open
Abstract
Phlorizin is the most abundant glucoside of phloretin from the apple tree and its products. Phlorizin and its aglycone phloretin are currently considered health-beneficial polyphenols from apples useful in treating hyperglycemia and obesity. Recently, we showed that phloretin could be regioselectively hydroxylated to make 3-OH phloretin by Bacillus megaterium CYP102A1 and human P450 enzymes. The 3-OH phloretin has a potent inhibitory effect on differentiating 3T3-L1 preadipocytes into adipocytes and lipid accumulation. The glucoside of 3-OH phloretin would be a promising agent with increased bioavailability and water solubility compared with its aglycone. However, procedures to make 3-OH phlorizin, a glucoside of 3-OH phloretin, using chemical methods, are not currently available. Here, a biocatalytic strategy for the efficient synthesis of a possibly valuable hydroxylated product, 3-OH phlorizin, was developed via CYP102A1-catalyzed regioselective hydroxylation. The production of 3-OH phlorizin by CYP102A1 was confirmed by HPLC and LC–MS spectroscopy in addition to enzymatic removal of its glucose moiety for comparison to 3-OH phloretin. Taken together, in this study, we found a panel of mutants from B. megaterium CYP102A1 could catalyze regioselective hydroxylation of phlorizin to produce 3-OH phlorizin, a catechol product.
Collapse
|
20
|
Oliw EH. WITHDRAWN: Fatty acid dioxygenase-cytochrome P450 fusion enzymes of the top 10 fungal pathogens in molecular plant pathology and human-pathogenic fungi. Fungal Genet Biol 2021:103603. [PMID: 34214670 DOI: 10.1016/j.fgb.2021.103603] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2020] [Revised: 02/21/2021] [Accepted: 06/11/2021] [Indexed: 11/22/2022]
Abstract
This article has been withdrawn at the request of the author(s) and/or editor. The Publisher apologizes for any inconvenience this may cause. The full Elsevier Policy on Article Withdrawal can be found at https://www.elsevier.com/about/our-business/policies/article-withdrawal
Collapse
Affiliation(s)
- Ernst H Oliw
- Division of Biochemical Pharmacology, Department of Pharmaceutical Biosciences, Uppsala University, Box 591, SE-751 24 Uppsala, Sweden.
| |
Collapse
|
21
|
Sabiu S, Idowu K. An insight on the nature of biochemical interactions between glycyrrhizin, myricetin and CYP3A4 isoform. J Food Biochem 2021; 46:e13831. [PMID: 34164820 DOI: 10.1111/jfbc.13831] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2020] [Revised: 05/23/2021] [Accepted: 06/07/2021] [Indexed: 12/13/2022]
Abstract
Drug interaction studies are imperative to gain insights into the beneficial or harmful effects of therapeutic and dietary agents. This study investigated the mechanism of modulatory roles of glycyrrhizin (GLH) and myricetin (MYC) on the human CYP3A4 isoform using in silico and in vitro methods. While MYC had concentration-dependent inhibitory effect on CYP3A4 (IC50 : 10.5 ± 0.55 μM) with characteristic Km and Vmax values of 1.13 μM and 1.54 nM/min, respectively, GLH exhibited no inhibitory effect on CYP3A4 activity in vitro. These observations are consistent with the results of in silico evaluations where the effect of MYC compared well with that of ketoconazole (a known CYP3A4 inhibitor) against CYP3A4. Overall, the established interactions between the study compounds and CYP3A4 could potentiate clinically vital drug-drug interactions and has lent credence to the mechanism of modulatory effect of MYC and GLH on CYP3A4 that could guide their safe use as therapeutic agents. PRACTICAL IMPLICATIONS: Myricetin (MYR) and glycyrrhizin (GLH) occur freely in commonly ingested foods and their supplements are recommended for the treatment of several debilitating diseases such as diabetes, cancer, and cardiovascular complications. This study provided an insight on the possible interactions that could be established between these compounds (MYR and GLH) and CYP3A4 when ingested and metabolized by the liver. The results suggested possibilities of potential clinical drug-drug interactions and advocates for their cautious use within the therapeutic dose in food supplements or medications to avoid probable liver damage.
Collapse
Affiliation(s)
- Saheed Sabiu
- Department of Biotechnology and Food Technology, Faculty of Applied Sciences, Durban University of Technology, Durban, South Africa
| | - Kehinde Idowu
- School of Laboratory Medicine and Medical Sciences, College of Health Sciences, Nelson R Mandela School of Medicine, University of KwaZulu-Natal, Durban, South Africa
| |
Collapse
|
22
|
Zhang X, Guo J, Cheng F, Li S. Cytochrome P450 enzymes in fungal natural product biosynthesis. Nat Prod Rep 2021; 38:1072-1099. [PMID: 33710221 DOI: 10.1039/d1np00004g] [Citation(s) in RCA: 86] [Impact Index Per Article: 28.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Covering: 2015 to the end of 2020 Fungal-derived polyketides, non-ribosomal peptides, terpenoids and their hybrids contribute significantly to the chemical space of total natural products. Cytochrome P450 enzymes play essential roles in fungal natural product biosynthesis with their broad substrate scope, great catalytic versatility and high frequency of involvement. Due to the membrane-bound nature, the functional and mechanistic understandings for fungal P450s have been limited for quite a long time. However, recent technical advances, such as the efficient and precise genome editing techniques and the development of several filamentous fungal strains as heterologous P450 expression hosts, have led to remarkable achievements in fungal P450 studies. Here, we provide a comprehensive review to cover the most recent progresses from 2015 to 2020 on catalytic functions and mechanisms, research methodologies and remaining challenges in the fast-growing field of fungal natural product biosynthetic P450s.
Collapse
Affiliation(s)
- Xingwang Zhang
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, Shandong 266237, China. and Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, Shandong 266237, China
| | - Jiawei Guo
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, Shandong 266237, China.
| | - Fangyuan Cheng
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, Shandong 266237, China.
| | - Shengying Li
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, Shandong 266237, China. and Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, Shandong 266237, China
| |
Collapse
|
23
|
Chaney ME, Romine MG, Piontkivska H, Tosi AJ. Diversifying selection detected in only a minority of xenobiotic-metabolizing CYP1-3 genes among primate species. Xenobiotica 2020; 50:1406-1412. [PMID: 32558606 DOI: 10.1080/00498254.2020.1785580] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Revised: 06/16/2020] [Accepted: 06/17/2020] [Indexed: 10/24/2022]
Abstract
1. Primates exhibit a high degree of among-species dietary diversity, which likely exposes them to varying levels of xenobiotic compounds. Here, we examined the evolution of primate CYP1-3 gene families, and we classified the 15 CYP1-3 gene subfamilies as either xenobiotic-metabolizing (XM) or endogenous-metabolizing (EM) based on sources in the P450 literature. 2. We predicted that XM P450s would show (1) greater variability in gene-copy number and (2) more evidence of diversifying selection and, especially on codons that encode the substrate-recognition sites (SRSs) for the final enzymes. 3. Counter to our first prediction, EM and XM P450s showed similar levels of variation in gene-copy number. We did find, however, that four XM P450 subfamilies (CYP2C, CYP2D, CYP2E, and CYP3A) showed evidence of diversifying selection while no EM subfamilies demonstrated any consistent signal of diversifying selection. Of these four, CYP2C, CYP2D, and CYP3A showed significant links between SRSs and diversifying selection. 4. These results reveal an amount of evolutionary dynamism that would not be expected when viewing P450 subfamilies along a simple binary EM/XM spectrum. We recommend that comparative studies of cytochrome P450 evolution should focus on the CYP2C, CYP2D, CYP2E, and CYP3A subfamilies.
Collapse
Affiliation(s)
- Morgan E Chaney
- Department of Anthropology, Kent State University, Kent, OH, USA
- School of Biomedical Sciences, Kent State University, Kent, OH, USA
| | - Melia G Romine
- Department of Anthropology, Kent State University, Kent, OH, USA
| | - Helen Piontkivska
- School of Biomedical Sciences, Kent State University, Kent, OH, USA
- Department of Biological Sciences, Kent State University, Kent, OH, USA
| | - Anthony J Tosi
- Department of Anthropology, Kent State University, Kent, OH, USA
- School of Biomedical Sciences, Kent State University, Kent, OH, USA
| |
Collapse
|
24
|
Wu L, Yu Z, Jia Q, Zhang X, Ma E, Li S, Zhu KY, Feyereisen R, Zhang J. Knockdown of LmCYP303A1 alters cuticular hydrocarbon profiles and increases the susceptibility to desiccation and insecticides in Locusta migratoria. PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2020; 168:104637. [PMID: 32711771 DOI: 10.1016/j.pestbp.2020.104637] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Revised: 06/08/2020] [Accepted: 06/17/2020] [Indexed: 06/11/2023]
Abstract
Cytochrome P450 monooxygenases (CYPs) serve many functions in insects, from the regulation of development to xenobiotic detoxification. Several conserved CYPs have been shown to play a role in insect growth and development. CYP303A1 is a highly conserved CYP with a single ortholog in most insects, but its underlying molecular characteristics and specific physiological functions remain poorly understood. In Drosophila melanogaster and Locusta migratoria, CYP303A1 is indispensable for eclosion to adult. Here, we report additional functions of the locust gene LmCYP303A1 in nymphal molts, cuticular lipid deposition and insecticide penetration. RT-qPCR revealed that LmCYP303A1 had a high expression level before ecdysis and was highly expressed in integument, wing pads, foregut and hindgut. Suppression of LmCYP303A1 expression by RNA interference (RNAi) caused a lethal phenotype with molting defect from nymph to nymph. In addition, LmCYP303A1 RNAi resulted in locusts being more susceptible to desiccation and to insecticide toxicity. Furthermore, knockdown of LmCYP303A1 efficiently suppressed the transcript level of key genes (ELO7, FAR15 and CYP4G102) responsible for cuticular hydrocarbon (CHC) synthesis, which led to a decrease in some CHC levels. Taken together, our results suggest that one of the functions of LmCYP303A1 is to regulate the biosynthesis of CHC, which plays critical roles in protecting locusts from water loss and insecticide penetration.
Collapse
Affiliation(s)
- Lixian Wu
- Research Institute of Applied Biology, Shanxi University, Taiyuan, Shanxi 030006, China; College of Life Science, Shanxi University, Taiyuan, Shanxi 030006, China
| | - Zhitao Yu
- Research Institute of Applied Biology, Shanxi University, Taiyuan, Shanxi 030006, China
| | - Qiangqiang Jia
- Guangdong Provincial Key Laboratory of Insect Development Biology and Applied Technology, Institute of Insect Science and Technology, School of Life Sciences, South China Normal University, Guangzhou 510631, China
| | - Xueyao Zhang
- Research Institute of Applied Biology, Shanxi University, Taiyuan, Shanxi 030006, China
| | - Enbo Ma
- Research Institute of Applied Biology, Shanxi University, Taiyuan, Shanxi 030006, China
| | - Sheng Li
- Guangdong Provincial Key Laboratory of Insect Development Biology and Applied Technology, Institute of Insect Science and Technology, School of Life Sciences, South China Normal University, Guangzhou 510631, China
| | - Kun Yan Zhu
- Department of Entomology, Kansas State University, Manhattan, KS 66506, USA
| | - René Feyereisen
- Department of Plant and Environmental Sciences, University of Copenhagen, Copenhagen 1017, Denmark; Department of Plant and Crops, Ghent University, B-9000Ghent, Belgium
| | - Jianzhen Zhang
- Research Institute of Applied Biology, Shanxi University, Taiyuan, Shanxi 030006, China.
| |
Collapse
|
25
|
Phylogeny, evolution, and potential ecological relationship of cytochrome CYP52 enzymes in Saccharomycetales yeasts. Sci Rep 2020; 10:10269. [PMID: 32581293 PMCID: PMC7314818 DOI: 10.1038/s41598-020-67200-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2019] [Accepted: 05/07/2020] [Indexed: 01/16/2023] Open
Abstract
Cytochrome P450s from the CYP52 family participate in the assimilation of alkanes and fatty acids in fungi. In this work, the evolutionary history of a set of orthologous and paralogous CYP52 proteins from Saccharomycetales yeasts was inferred. Further, the phenotypic assimilation profiles were related with the distribution of cytochrome CYP52 members among species. The maximum likelihood phylogeny of CYP52 inferred proteins reveled a frequent ancient and modern duplication and loss events that generated orthologous and paralogous groups. Phylogeny and assimilation profiles of alkanes and fatty acids showed a family expansion in yeast isolated from hydrophobic-rich environments. Docking analysis of deduced ancient CYP52 proteins suggests that the most ancient function was the oxidation of C4-C11 alkanes, while the oxidation of >10 carbon alkanes and fatty acids is a derived character. The ancient CYP52 paralogs displayed partial specialization and promiscuous interaction with hydrophobic substrates. Additionally, functional optimization was not evident. Changes in the interaction of ancient CYP52 with different alkanes and fatty acids could be associated with modifications in spatial orientations of the amino acid residues that comprise the active site. The extended family of CYP52 proteins is likely evolving toward functional specialization, and certain redundancy for substrates is being maintained.
Collapse
|
26
|
Lee BY, Choi BS, Kim MS, Park JC, Jeong CB, Han J, Lee JS. The genome of the freshwater water flea Daphnia magna: A potential use for freshwater molecular ecotoxicology. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2019; 210:69-84. [PMID: 30826642 DOI: 10.1016/j.aquatox.2019.02.009] [Citation(s) in RCA: 77] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/11/2019] [Revised: 02/14/2019] [Accepted: 02/14/2019] [Indexed: 06/09/2023]
Abstract
The water flea Daphnia magna is a small planktonic cladoceran. D. magna has been used as a model species for ecotoxicology, as it is sensitive to environmental stressors and environmental changes. Since Daphnia is affected by culture environment and each population/strain has its own ecological and genetic characteristics, its population/strain-based genome information is useful for environmental genomic studies. In this study, we assembled and characterized the genome of D. magna. Using a high-density genetic map of D. magna xinb3, the draft genome was integrated to 10 linkage groups (LGs). The total length of the integrated genome was about 123 Mb with N50 = 10.1 Mb, and the number of scaffolds was 4193 including 10 LGs. A total of 15,721 genes were annotated after manual curation. Orthologous genes were characterized in the genome and compared with other genomes of Daphnia. In addition, we identified defense related genes such as cytochrome P450 (CYP) genes, glutathione S-transferase (GST) genes, and ATP-binding cassette (ABC) genes from the assembled D. magna genome for its potential use in molecular ecotoxicological studies in the freshwater environment. This genomic resource will be helpful to study for a better understanding on molecular mechanism in response to various pollutants.
Collapse
Affiliation(s)
- Bo-Young Lee
- Department of Biological Science, College of Science, Sungkyunkwan University, Suwon 16419, South Korea
| | | | - Min-Sub Kim
- Department of Biological Science, College of Science, Sungkyunkwan University, Suwon 16419, South Korea
| | - Jun Chul Park
- Department of Biological Science, College of Science, Sungkyunkwan University, Suwon 16419, South Korea
| | - Chang-Bum Jeong
- Department of Biological Science, College of Science, Sungkyunkwan University, Suwon 16419, South Korea
| | - Jeonghoon Han
- Department of Biological Science, College of Science, Sungkyunkwan University, Suwon 16419, South Korea
| | - Jae-Seong Lee
- Department of Biological Science, College of Science, Sungkyunkwan University, Suwon 16419, South Korea.
| |
Collapse
|
27
|
Kanauchi M. Screening the Lactic Acid Bacteria converting Hydroxy Fatty Acid from Unsaturated Fatty Acid. Methods Mol Biol 2019; 1887:119-127. [PMID: 30506254 DOI: 10.1007/978-1-4939-8907-2_11] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Hydroxyl fatty acids (HFAs) are used in widely diverse industrial applications, healthy functional foods, artificial food flavorings, and alcoholic beverages. A lactic acid bacterium (LAB), Lactobacillus sakei, hydroxylates oleic acid. Furthermore, the hydroxyl fatty acid was identified by GC-MS as 10-hydroxystearic acid. The Lactobacillus sakei hydroxylated more than 90% of the oleic acid in the medium at 15 °C after 30-48 h. The hydroxyl enzyme needs a coenzyme for an electron donor as NADPH. The enzyme is useful for assay with monitoring NADPH concentration used an A340 device. The hydroxylate fatty acids converted by LAB lactonize aroma lactone from commercial yeast strains, which can be detected directly by scent. Commercial beer brewing yeast T-58 produced the highest concentration of aroma lactone from hydroxyl fatty acids. Furthermore, the aroma lactone is identified by GC-MS as gamma-dodecalactone. The ratio of conversion is 87%. These results suggest that the lactonization conversion system is useful to hydroxylate fatty acids for alcoholic beverages.
Collapse
Affiliation(s)
- Makoto Kanauchi
- Department of Food Management, Miyagi University, Sendai, Miyagi, Japan.
| |
Collapse
|
28
|
Wang H, Shi Y, Wang L, Liu S, Wu S, Yang Y, Feyereisen R, Wu Y. CYP6AE gene cluster knockout in Helicoverpa armigera reveals role in detoxification of phytochemicals and insecticides. Nat Commun 2018; 9:4820. [PMID: 30446639 PMCID: PMC6240031 DOI: 10.1038/s41467-018-07226-6] [Citation(s) in RCA: 143] [Impact Index Per Article: 23.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2018] [Accepted: 10/17/2018] [Indexed: 11/09/2022] Open
Abstract
The cotton bollworm Helicoverpa armigera, is one of the world's major pest of agriculture, feeding on over 300 hosts in 68 plant families. Resistance cases to most insecticide classes have been reported for this insect. Management of this pest in agroecosystems relies on a better understanding of how it copes with phytochemical or synthetic toxins. We have used genome editing to knock out a cluster of nine P450 genes and show that this significantly reduces the survival rate of the insect when exposed to two classes of host plant chemicals and two classes of insecticides. Functional expression of all members of this gene cluster identified the P450 enzymes capable of metabolism of these xenobiotics. The CRISPR-Cas9-based reverse genetics approach in conjunction with in vitro metabolism can rapidly identify the contributions of insect P450s in xenobiotic detoxification and serve to identify candidate genes for insecticide resistance.
Collapse
Affiliation(s)
- Huidong Wang
- College of Plant Protection, Nanjing Agricultural University, 210095, Nanjing, China
| | - Yu Shi
- College of Plant Protection, Nanjing Agricultural University, 210095, Nanjing, China
| | - Lu Wang
- College of Plant Protection, Nanjing Agricultural University, 210095, Nanjing, China
| | - Shuai Liu
- College of Plant Protection, Nanjing Agricultural University, 210095, Nanjing, China
| | - Shuwen Wu
- College of Plant Protection, Nanjing Agricultural University, 210095, Nanjing, China
| | - Yihua Yang
- College of Plant Protection, Nanjing Agricultural University, 210095, Nanjing, China
| | - René Feyereisen
- Department of Plant and Environmental Sciences, University of Copenhagen, Copenhagen, 1017, Denmark
| | - Yidong Wu
- College of Plant Protection, Nanjing Agricultural University, 210095, Nanjing, China.
| |
Collapse
|
29
|
Talmann L, Wiesner J, Vilcinskas A. Strategies for the construction of insect P450 fusion enzymes. ACTA ACUST UNITED AC 2018; 72:405-415. [PMID: 28866653 DOI: 10.1515/znc-2017-0041] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2017] [Accepted: 06/08/2017] [Indexed: 12/18/2022]
Abstract
Cytochrome P450 monooxygenases (P450s) are ubiquitous enzymes with a broad substrate spectrum. Insect P450s are known to catalyze reactions such as the detoxification of insecticides and the synthesis of hydrocarbons, which makes them useful for many industrial processes. Unfortunately, it is difficult to utilize P450s effectively because they must be paired with cytochrome P450 reductases (CPRs) to facilitate electron transfer from reduced nicotinamide adenine dinucleotide phosphate (NADPH). Furthermore, eukaryotic P450s and CPRs are membrane-anchored proteins, which means they are insoluble and therefore difficult to purify when expressed in their native state. Both challenges can be addressed by creating fusion proteins that combine the P450 and CPR functions while eliminating membrane anchors, allowing the production and purification of soluble multifunctional polypeptides suitable for industrial applications. Here we discuss several strategies for the construction of fusion enzymes combining insect P450 with CPRs.
Collapse
|
30
|
Chaney ME, Piontkivska H, Tosi AJ. Retained duplications and deletions of CYP2C genes among primates. Mol Phylogenet Evol 2018; 125:204-212. [PMID: 29631055 DOI: 10.1016/j.ympev.2018.03.037] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2017] [Revised: 01/16/2018] [Accepted: 03/30/2018] [Indexed: 12/12/2022]
Abstract
The human genome encodes about 60 functional enzymes of the cytochrome P450 superfamily, including four functional enzymes of the cytochrome P450 2C (CYP2C) subfamily. These enzymes have been shown to metabolize drugs and xenobiotic toxins, such as those in the diet, and are therefore of great importance for biomedical research and applications. While the pharmacology of P450 enzymes has been studied extensively, our understanding of molecular evolution of this gene family is incomplete, in part because a great variation exists in the number of CYP2C homologs across genomes. In humans, the enzymes encoded by these genes are responsible for the metabolism of more than 20% of clinical drugs, but this is not the naturalistic function of these enzymes, which is the metabolism of xenobiotics such as plant secondary metabolites. In this paper, we sought to correlate evolutionary relationships among primate CYP2C genes with known dietary profiles from these species, testing the hypothesis that these genes have evolved under the pressure of dietary toxins. Aside from a small number of deeply divergent genes, primate CYP2C paralogs form three separate clades: CYP2C18, CYP2C9/CYP2C19, and CYP2C8/CYP2C20. Our results showed that the CYP2C18 gene has been separately lost in Nomascus leucogenys and the Panini genomes, and there is no evidence that this gene has been under any positive selection among primates. While CYP2C20 has been retained in cercopithecoids, orthologous loci were separately lost in platyrrhines and hominoids. Notably, nine codons exhibited signature of positive selection. Finally, the CYP2C19 locus was duplicated in basal catarrhines, resulting in the birth of CYP2C9; but the ancestral locus was only retained in hominoid taxa. Overall, our findings support the hypothesis that primate CYP2C genes have evolved in response to selective pressures provided by dietary toxins, although not all gene clusters have evolved in the same manner. Our results may indicate an evolutionarily deep difference in ecology or physiology among higher-order primate taxa.
Collapse
Affiliation(s)
- Morgan E Chaney
- Dept. of Anthropology, Kent State University, Kent, OH 44242, USA; School of Biomedical Sciences, Kent State University, Kent, OH 44242, USA.
| | - Helen Piontkivska
- School of Biomedical Sciences, Kent State University, Kent, OH 44242, USA; Dept. of Biological Sciences, Kent State University, Kent, OH 44242, USA.
| | - Anthony J Tosi
- Dept. of Anthropology, Kent State University, Kent, OH 44242, USA; School of Biomedical Sciences, Kent State University, Kent, OH 44242, USA.
| |
Collapse
|
31
|
A 6-week laboratory research rotation in pharmacogenomics: a model for preparing pharmacy students to practice precision medicine. THE PHARMACOGENOMICS JOURNAL 2018. [PMID: 29520079 DOI: 10.1038/s41397-018-0019-3] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Comparison of human genome sequences from different individuals has unraveled that genes involved in the drug efficacy and metabolism are polymorphic, harboring mutations, splicing variations and other alterations. These data provide a reasonable explanation for the inter-individual variations observed in drug therapy. Thus, a detailed molecular analysis and an in-depth knowledge of these genes is a prerequisite to practice pharmacogenomics-based medicine. We have introduced a 6-week laboratory research rotation to train students in the expression analysis of different pharmacogenes combined with bioinformatics tools. Students were first introduced to the bioinformatics tools to identify appropriate DNA primers to amplify specific pharmacogenes from the laboratory cancer cell lines. The amplified DNA fragments were sequenced. Finally, students were trained in bioinformatics tools to establish the identity of these DNA sequences. The possible implications of this laboratory training in developing problem-solving skills needed in the implementation of pharmacogenomics knowledge in the clinic, are discussed.
Collapse
|
32
|
Porter JL, Sabatini S, Manning J, Tavanti M, Galman JL, Turner NJ, Flitsch SL. Cloning, expression and characterisation of P450-Hal1 (CYP116B62) from Halomonas sp. NCIMB 172: A self-sufficient P450 with high expression and diverse substrate scope. Enzyme Microb Technol 2018; 113:1-8. [PMID: 29602381 DOI: 10.1016/j.enzmictec.2018.02.005] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2017] [Revised: 01/29/2018] [Accepted: 02/12/2018] [Indexed: 10/18/2022]
Abstract
Cytochrome P450 monooxygenases are able to catalyse a range of synthetically challenging reactions ranging from hydroxylation and demethylation to sulfoxidation and epoxidation. As such they have great potential for biocatalytic applications but are underutilised due to often-poor expression, stability and solubility in recombinant bacterial hosts. The use of self-sufficient P450 s with fused haem and reductase domains has already contributed heavily to improving catalytic efficiency and simplifying an otherwise more complex multi-component system of P450 and redox partners. Herein, we present a new addition to the class VII family with the cloning, sequencing and characterisation of the self-sufficient CYP116B62 Hal1 from Halomonas sp. NCIMB 172, the genome of which has not yet been sequenced. Hal1 exhibits high levels of expression in a recombinant E. coli host and can be utilised from cell lysate or used in purified form. Hal1 favours NADPH as electron donor and displays a diverse range of activities including hydroxylation, demethylation and sulfoxidation. These properties make Hal1 suitable for future biocatalytic applications or as a template for optimisation through engineering.
Collapse
Affiliation(s)
- Joanne L Porter
- School of Chemistry, Manchester Institute of Biotechnology, The University of Manchester, UK
| | - Selina Sabatini
- School of Chemistry, Manchester Institute of Biotechnology, The University of Manchester, UK
| | - Jack Manning
- School of Chemistry, Manchester Institute of Biotechnology, The University of Manchester, UK
| | - Michele Tavanti
- School of Chemistry, Manchester Institute of Biotechnology, The University of Manchester, UK
| | - James L Galman
- School of Chemistry, Manchester Institute of Biotechnology, The University of Manchester, UK
| | - Nicholas J Turner
- School of Chemistry, Manchester Institute of Biotechnology, The University of Manchester, UK
| | - Sabine L Flitsch
- School of Chemistry, Manchester Institute of Biotechnology, The University of Manchester, UK.
| |
Collapse
|
33
|
Suzuki Y, Matsuda M, Hatanaka S, Kanauchi M, Kasahara S, Shimoyamada M. Cloning and Sequence Analysis of Fatty Acid Hydroxylase Gene inLactobacillus SakeiY-20 Strain and Characteristics of Fatty Acid Hydroxylase. JOURNAL OF THE AMERICAN SOCIETY OF BREWING CHEMISTS 2018. [DOI: 10.1094/asbcj-2016-1227-01] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Affiliation(s)
- Yuka Suzuki
- Miyagi University, Department of Food Management, -2-1 Hatatate, Taihaku-ku, Sendai, Miyagi, Japan
| | - Mari Matsuda
- Miyagi University, Department of Food Management, -2-1 Hatatate, Taihaku-ku, Sendai, Miyagi, Japan
| | - Sakiko Hatanaka
- Industrial Technology Institute, Miyagi Prefectural Government, Japan
| | - Makoto Kanauchi
- Miyagi University, Department of Food Management, -2-1 Hatatate, Taihaku-ku, Sendai, Miyagi, Japan
| | - Shin Kasahara
- Miyagi University, Department of Food Management, -2-1 Hatatate, Taihaku-ku, Sendai, Miyagi, Japan
| | - Makoto Shimoyamada
- University of Shizuoka, School of Food and Nutritional Sciences, 52-1 Yada, Sugaru-ku, Shizuoka, Shizuoka, Japan
| |
Collapse
|
34
|
Lee BY, Kim DH, Kim HS, Kim BM, Han J, Lee JS. Identification of 74 cytochrome P450 genes and co-localized cytochrome P450 genes of the CYP2K, CYP5A, and CYP46A subfamilies in the mangrove killifish Kryptolebias marmoratus. BMC Genomics 2018; 19:7. [PMID: 29295707 PMCID: PMC5751882 DOI: 10.1186/s12864-017-4410-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2017] [Accepted: 12/21/2017] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND The mangrove killifish Kryptolebias marmoratus is the only vertebrate that reproduces by self-fertilizing and is an important model species in genetics and marine ecotoxicology. Using whole-genome and transcriptome sequences, we identified all members of the cytochrome P450 (CYP) family in this model teleost and compared them with those of other teleosts. RESULTS A total of 74 cytochrome P450 genes and one pseudogene were identified in K. marmoratus. Phylogenetic analysis indicated that the CYP genes in clan 2 were most expanded, while synteny analysis with other species showed orthologous relationships of CYP subfamilies among teleosts. In addition to the CYP2K expansions, five tandem duplicated gene copies of CYP5A were observed. These features were unique to K. marmoratus. CONCLUSIONS These results shed a light on CYP gene evolution, particularly the co-localized CYP2K, CYP5A, and CYP46A subfamilies in fish. Future studies of CYP expression could identify specific endogenous and exogenous environmental factors that triggered the evolution of tandem CYP duplication in K. marmoratus.
Collapse
Affiliation(s)
- Bo-Young Lee
- Department of Biological Science, College of Science, Sungkyunkwan University, Suwon, 16419, South Korea
| | - Duck-Hyun Kim
- Department of Biological Science, College of Science, Sungkyunkwan University, Suwon, 16419, South Korea
| | - Hui-Su Kim
- Department of Biological Science, College of Science, Sungkyunkwan University, Suwon, 16419, South Korea
| | - Bo-Mi Kim
- Department of Biological Science, College of Science, Sungkyunkwan University, Suwon, 16419, South Korea
| | - Jeonghoon Han
- Department of Biological Science, College of Science, Sungkyunkwan University, Suwon, 16419, South Korea
| | - Jae-Seong Lee
- Department of Biological Science, College of Science, Sungkyunkwan University, Suwon, 16419, South Korea.
| |
Collapse
|
35
|
Tabassum R. Molecular cloning and 3D model of first cytochrome P450 from CYP3A subfamily in saltwater crocodile (Crocodylus porosus). Biochem Biophys Res Commun 2017; 516:1046-1052. [PMID: 29054410 DOI: 10.1016/j.bbrc.2017.10.079] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2017] [Accepted: 10/15/2017] [Indexed: 10/18/2022]
Abstract
Cytochrome P450s (CYPs) play critical role in oxidative metabolism of numerous xenobiotics and endogenous compounds. The first CYP3A subfamily member in saltwater crocodile has been cloned and modelled for three-dimensional (3D) structure. The full-length cDNA was obtained employing reverse transcription polymerase chain reaction (RT-PCR) strategy and rapid amplification of cDNA ends (RACE). The cDNA sequence of 1659 nucleotides includes 132 nucleotides from 5' untranslated region (UTR), an open reading frame of 1527 nucleotides encoding 509 amino acids designated as CYP3A163. The alignment of CYP3A163 sequence with CYP3A subfamily across the lineages exhibit the loss of 1 residue in birds and 7 residues in mammals in comparison to reptiles suggesting the adaptation processes during evolution. The amino acid identity of CYP3A163 with Alligator mississippiensis CYP3A77 and Homo sapiens CYP3A4 is 91% and 62% respectively. The 3D structure of CYP3A163 modelled using human CYP3A4 structure as a template with Phyre2 software, represents high similarity with its functionally important motifs and catalytic domain. Both sequence and structure of CYP3A163 display the common and conserved features of CYP3A subfamily. Overall, this study provides primary molecular and structural data of CYP3A163 required to investigate the xenobiotic metabolism in saltwater crocodiles.
Collapse
Affiliation(s)
- Rabia Tabassum
- Faculty of Engineering, Health, Science and Environment, Charles Darwin University, Darwin, NT, 0909 Australia.
| |
Collapse
|
36
|
Matowane RG, Wieteska L, Bamal HD, Kgosiemang IKR, Van Wyk M, Manume NA, Abdalla SMH, Mashele SS, Gront D, Syed K. In silico analysis of cytochrome P450 monooxygenases in chronic granulomatous infectious fungus Sporothrix schenckii: Special focus on CYP51. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2017; 1866:166-177. [PMID: 28989052 DOI: 10.1016/j.bbapap.2017.10.003] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/23/2017] [Revised: 09/29/2017] [Accepted: 10/02/2017] [Indexed: 01/19/2023]
Abstract
Sporotrichosis is an emerging chronic, granulomatous, subcutaneous, mycotic infection caused by Sporothrix species. Sporotrichosis is treated with the azole drug itraconazole as ketoconazole is ineffective. It is a well-known fact that azole drugs act by inhibiting cytochrome P450 monooxygenases (P450s), heme-thiolate proteins. To date, nothing is known about P450s in Sporothrix schenckii and the molecular basis of its resistance to ketoconazole. Here we present genome-wide identification, annotation, phylogenetic analysis and comprehensive P450 family-level comparative analysis of S. schenckii P450s with pathogenic fungi P450s, along with a rationale for ketoconazole resistance by S. schenckii based on in silico structural analysis of CYP51. Genome data-mining of S. schenckii revealed 40 P450s in its genome that can be grouped into 32 P450 families and 39 P450 subfamilies. Comprehensive comparative analysis of P450s revealed that S. schenckii shares 11 P450 families with plant pathogenic fungi and has three unique P450 families: CYP5077, CYP5386 and CYP5696 (novel family). Among P450s, CYP51, the main target of azole drugs was also found in S. schenckii. 3D modeling of S. schenckii CYP51 revealed the presence of characteristic P450 motifs with exceptionally large reductase interaction site 2. In silico analysis revealed number of mutations that can be associated with ketoconazole resistance, especially at the channel entrance to the active site. One of possible reason for better stabilization of itraconazole, compared to ketoconazole, is that the more extended molecule of itraconazole may form a hydrogen bond with ASN-230. This in turn may explain its effectiveness against S. schenckii vis-a-vis resistant to ketoconazole. This article is part of a Special Issue entitled: Cytochrome P450 biodiversity and biotechnology, edited by Erika Plettner, Gianfranco Gilardi, Luet Wong, Vlada Urlacher, Jared Goldstone.
Collapse
Affiliation(s)
- Retshedisitswe Godfrey Matowane
- Unit for Drug Discovery Research, Department of Health Sciences, Faculty of Health and Environmental Sciences, Central University of Technology, Bloemfontein 9300, Free State, South Africa
| | - Lukasz Wieteska
- Laboratory of Theory of Biopolymers, University of Warsaw, Pasteura 1, 02-093 Warsaw, Poland
| | - Hans Denis Bamal
- Unit for Drug Discovery Research, Department of Health Sciences, Faculty of Health and Environmental Sciences, Central University of Technology, Bloemfontein 9300, Free State, South Africa
| | - Ipeleng Kopano Rosinah Kgosiemang
- Unit for Drug Discovery Research, Department of Health Sciences, Faculty of Health and Environmental Sciences, Central University of Technology, Bloemfontein 9300, Free State, South Africa
| | - Mari Van Wyk
- Unit for Drug Discovery Research, Department of Health Sciences, Faculty of Health and Environmental Sciences, Central University of Technology, Bloemfontein 9300, Free State, South Africa
| | - Nessie Agnes Manume
- Unit for Drug Discovery Research, Department of Health Sciences, Faculty of Health and Environmental Sciences, Central University of Technology, Bloemfontein 9300, Free State, South Africa
| | - Sara Mohamed Hasaan Abdalla
- Unit for Drug Discovery Research, Department of Health Sciences, Faculty of Health and Environmental Sciences, Central University of Technology, Bloemfontein 9300, Free State, South Africa
| | - Samson Sitheni Mashele
- Unit for Drug Discovery Research, Department of Health Sciences, Faculty of Health and Environmental Sciences, Central University of Technology, Bloemfontein 9300, Free State, South Africa
| | - Dominik Gront
- Laboratory of Theory of Biopolymers, University of Warsaw, Pasteura 1, 02-093 Warsaw, Poland
| | - Khajamohiddin Syed
- Unit for Drug Discovery Research, Department of Health Sciences, Faculty of Health and Environmental Sciences, Central University of Technology, Bloemfontein 9300, Free State, South Africa.
| |
Collapse
|
37
|
Yim B, Kim H, Kim J, Kim H, Won EJ, Lee YM. Identification and molecular characterization of cytochrome P450 (CYP450) family genes in the marine ciliate Euplotes crassus: The effect of benzo[a]pyrene and beta-naphthoflavone. Comp Biochem Physiol C Toxicol Pharmacol 2017; 196:71-80. [PMID: 28341215 DOI: 10.1016/j.cbpc.2017.03.012] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/12/2017] [Revised: 03/12/2017] [Accepted: 03/19/2017] [Indexed: 11/20/2022]
Abstract
Marine ciliate Euplotes crassus, a single-cell eukaryote, and has been considered as a model organism for monitoring of environmental pollutions in sediments. Cytochrome P450 (CYP450) monooxygenase are phase I enzyme involved in detoxification of environmental pollutants, such as polycyclic aromatic hydrocarbons (PAHs). However, little information on CYP450 family genes in ciliate is available. In the present study, acute toxicity of PAH, benzo[a]pyrene (B[a]P) and PAH-like model compound, beta-naphthoflavone (β-NF), was investigated; full-length cDNA sequences and genomic structure of five CYP450 genes (CYP5680A1, CYP5681A1, CYP5681B1, CYP5682A1, and CYP5683A1) were analyzed; and finally their activities and transcriptional changes were measured after exposure to PAHs for 48h. According to the results, B[a]P exposure showed a negative effect on E. crassus survival, whereas β-NF exposure showed no significant effect. The 8h-LC50 value of B[a]P was determined to be 2.449μM (95%-C.L., 7.726-3.619μM). Five genes belonging to the CYP450 family had conserved domains and clustered with those of ciliate group, as revealed in phylogenetic analysis. CYP activity did not change after exposure to B[a]P, whereas it was slightly, but significantly, induced after exposure to β-NF. The mRNA expression of five CYP450 genes was significantly modulated in a concentration- and time-dependent manner after exposure to both the chemicals. Our findings suggest that CYP450 genes in E. crassus may be involved in detoxification of B[a]P and β-NF. This study would give a better understanding about the mode of action of B[a]P and β-NF in marine ciliates at the molecular level.
Collapse
Affiliation(s)
- Bora Yim
- Department of Life Science, College of Natural Sciences, Sangmyung University, Seoul 03016, Republic of Korea
| | - Hokyun Kim
- Department of Life Science, College of Natural Sciences, Sangmyung University, Seoul 03016, Republic of Korea
| | - Jisoo Kim
- Department of Life Science, College of Natural Sciences, Sangmyung University, Seoul 03016, Republic of Korea
| | - Haeyeon Kim
- Department of Life Science, College of Natural Sciences, Sangmyung University, Seoul 03016, Republic of Korea
| | - Eun-Ji Won
- Marine Chemistry & Geochemistry Research Center, Korea Institute of Ocean Science & Technology, Ansan 15627, Republic of Korea
| | - Young-Mi Lee
- Department of Life Science, College of Natural Sciences, Sangmyung University, Seoul 03016, Republic of Korea.
| |
Collapse
|
38
|
Brixius-Anderko S, Hannemann F, Ringle M, Khatri Y, Bernhardt R. An indole-deficient Escherichia coli strain improves screening of cytochromes P450 for biotechnological applications. Biotechnol Appl Biochem 2017; 64:315-326. [PMID: 26913738 DOI: 10.1002/bab.1488] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2015] [Accepted: 02/18/2016] [Indexed: 11/09/2022]
Abstract
Escherichia coli has developed into an attractive organism for heterologous cytochrome P450 production, but, in some cases, was restricted as a host in view of a screening of orphan cytochromes P450 or mutant libraries in the context of molecular evolution due to the formation of the cytochrome P450 inhibitor indole by the enzyme tryptophanase (TnaA). To overcome this effect, we disrupted the tnaA gene locus of E. coli C43(DE3) and evaluated the new strain for whole-cell substrate conversions with three indole-sensitive cytochromes P450, myxobacterial CYP264A1, and CYP109D1 as well as bovine steroidogenic CYP21A2. For purified CYP264A1 and CYP21A2, the half maximal inhibitory indole concentration was determined to be 140 and 500 μM, which is within the physiological concentration range occurring during cultivation of E. coli in complex medium. Biotransformations with C43(DE3)_∆tnaA achieved a 30% higher product formation in the case of CYP21A2 and an even fourfold increase with CYP264A1 compared with C43(DE3) cells. In whole-cell conversion based on CYP109D1, which converts indole to indigo, we could successfully avoid this reaction. Results in microplate format indicate that our newly designed strain is a suitable host for a fast and efficient screening of indole-influenced cytochromes P450 in complex medium.
Collapse
Affiliation(s)
| | - Frank Hannemann
- Department of Biochemistry, Saarland University, Saarbrücken, Germany
| | - Michael Ringle
- Department of Biochemistry, Saarland University, Saarbrücken, Germany.,Lonza AG, Visp, Switzerland
| | - Yogan Khatri
- Department of Biochemistry, Saarland University, Saarbrücken, Germany
| | - Rita Bernhardt
- Department of Biochemistry, Saarland University, Saarbrücken, Germany
| |
Collapse
|
39
|
Pateraki I, Andersen-Ranberg J, Jensen NB, Wubshet SG, Heskes AM, Forman V, Hallström B, Hamberger B, Motawia MS, Olsen CE, Staerk D, Hansen J, Møller BL, Hamberger B. Total biosynthesis of the cyclic AMP booster forskolin from Coleus forskohlii. eLife 2017; 6:e23001. [PMID: 28290983 PMCID: PMC5388535 DOI: 10.7554/elife.23001] [Citation(s) in RCA: 77] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2016] [Accepted: 03/09/2017] [Indexed: 12/17/2022] Open
Abstract
Forskolin is a unique structurally complex labdane-type diterpenoid used in the treatment of glaucoma and heart failure based on its activity as a cyclic AMP booster. Commercial production of forskolin relies exclusively on extraction from its only known natural source, the plant Coleus forskohlii, in which forskolin accumulates in the root cork. Here, we report the discovery of five cytochrome P450s and two acetyltransferases which catalyze a cascade of reactions converting the forskolin precursor 13R-manoyl oxide into forskolin and a diverse array of additional labdane-type diterpenoids. A minimal set of three P450s in combination with a single acetyl transferase was identified that catalyzes the conversion of 13R-manoyl oxide into forskolin as demonstrated by transient expression in Nicotiana benthamiana. The entire pathway for forskolin production from glucose encompassing expression of nine genes was stably integrated into Saccharomyces cerevisiae and afforded forskolin titers of 40 mg/L.
Collapse
Affiliation(s)
- Irini Pateraki
- Plant Biochemistry Laboratory, Department of Plant and Environmental Sciences, University of Copenhagen, Copenhagen, Denmark
- Center for Synthetic Biology “bioSYNergy”, Copenhagen, Denmark
| | - Johan Andersen-Ranberg
- Plant Biochemistry Laboratory, Department of Plant and Environmental Sciences, University of Copenhagen, Copenhagen, Denmark
- Center for Synthetic Biology “bioSYNergy”, Copenhagen, Denmark
| | | | - Sileshi Gizachew Wubshet
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Allison Maree Heskes
- Plant Biochemistry Laboratory, Department of Plant and Environmental Sciences, University of Copenhagen, Copenhagen, Denmark
- Center for Synthetic Biology “bioSYNergy”, Copenhagen, Denmark
| | - Victor Forman
- Plant Biochemistry Laboratory, Department of Plant and Environmental Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Björn Hallström
- Science for Life Laboratory, KTH - Royal Institute of Technology, Stockholm, Sweden
| | - Britta Hamberger
- Plant Biochemistry Laboratory, Department of Plant and Environmental Sciences, University of Copenhagen, Copenhagen, Denmark
- Center for Synthetic Biology “bioSYNergy”, Copenhagen, Denmark
| | - Mohammed Saddik Motawia
- Plant Biochemistry Laboratory, Department of Plant and Environmental Sciences, University of Copenhagen, Copenhagen, Denmark
- Center for Synthetic Biology “bioSYNergy”, Copenhagen, Denmark
| | - Carl Erik Olsen
- Plant Biochemistry Laboratory, Department of Plant and Environmental Sciences, University of Copenhagen, Copenhagen, Denmark
- Center for Synthetic Biology “bioSYNergy”, Copenhagen, Denmark
| | - Dan Staerk
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | | | - Birger Lindberg Møller
- Plant Biochemistry Laboratory, Department of Plant and Environmental Sciences, University of Copenhagen, Copenhagen, Denmark
- Center for Synthetic Biology “bioSYNergy”, Copenhagen, Denmark
| | - Björn Hamberger
- Plant Biochemistry Laboratory, Department of Plant and Environmental Sciences, University of Copenhagen, Copenhagen, Denmark
- Center for Synthetic Biology “bioSYNergy”, Copenhagen, Denmark
| |
Collapse
|
40
|
The biosynthetic pathway of the nonsugar, high-intensity sweetener mogroside V from Siraitia grosvenorii. Proc Natl Acad Sci U S A 2016; 113:E7619-E7628. [PMID: 27821754 DOI: 10.1073/pnas.1604828113] [Citation(s) in RCA: 125] [Impact Index Per Article: 15.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The consumption of sweeteners, natural as well as synthetic sugars, is implicated in an array of modern-day health problems. Therefore, natural nonsugar sweeteners are of increasing interest. We identify here the biosynthetic pathway of the sweet triterpenoid glycoside mogroside V, which has a sweetening strength of 250 times that of sucrose and is derived from mature fruit of luo-han-guo (Siraitia grosvenorii, monk fruit). A whole-genome sequencing of Siraitia, leading to a preliminary draft of the genome, was combined with an extensive transcriptomic analysis of developing fruit. A functional expression survey of nearly 200 candidate genes identified the members of the five enzyme families responsible for the synthesis of mogroside V: squalene epoxidases, triterpenoid synthases, epoxide hydrolases, cytochrome P450s, and UDP-glucosyltransferases. Protein modeling and docking studies corroborated the experimentally proven functional enzyme activities and indicated the order of the metabolic steps in the pathway. A comparison of the genomic organization and expression patterns of these Siraitia genes with the orthologs of other Cucurbitaceae implicates a strikingly coordinated expression of the pathway in the evolution of this species-specific and valuable metabolic pathway. The genomic organization of the pathway genes, syntenously preserved among the Cucurbitaceae, indicates, on the other hand, that gene clustering cannot account for this novel secondary metabolic pathway.
Collapse
|
41
|
Evolution of camel CYP2E1 and its associated power of binding toxic industrial chemicals and drugs. Comput Biol Chem 2016; 64:271-280. [DOI: 10.1016/j.compbiolchem.2016.07.009] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2016] [Revised: 06/22/2016] [Accepted: 07/25/2016] [Indexed: 11/21/2022]
|
42
|
Prall W, Hendy O, Thornton LE. Utility of a Phylogenetic Perspective in Structural Analysis of CYP72A Enzymes from Flowering Plants. PLoS One 2016; 11:e0163024. [PMID: 27669508 PMCID: PMC5036807 DOI: 10.1371/journal.pone.0163024] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2016] [Accepted: 09/01/2016] [Indexed: 11/19/2022] Open
Abstract
Plant adaptation to external pressures depends on functional diversity in cytochrome P450 (CYP) enzymes. CYPs contain structural domains necessary for the characteristic P450 fold that allows monooxygenation, but they also have great variation in substrate binding affinity. Plant genomes typically contain hundreds of CYPs that contribute to essential functions and species-specific metabolism. The CYP72A subfamily is conserved in angiosperms but its contribution to physiological functions is largely unknown. With genomic information available for many plants, a focused analysis of CYP subfamily diversity is important to understand the contributions of these enzymes to plant evolution. This study examines the extent to which independent gene duplication and evolution have contributed to structural diversification of CYP72A enzymes in different plant lineages. CYP72A genes are prevalent across angiosperms, but the number of genes within each genome varies greatly. The prevalence of CYP72As suggest that the last common ancestor of flowering plants contained a CYP72A sequence, but gene duplication and retention has varied greatly for this CYP subfamily. Sequence comparisons show that CYP72As are involved in species-specific metabolic functions in some plants while there is likely functional conservation between closely related species. Analysis of structural and functional domains within groups of CYP72As reveals clade-specific residues that contribute to functional constraints within subsets of CYP72As. This study provides a phylogenetic framework that allows comparisons of structural features within subsets of the CYP72A subfamily. We examined a large number of sequences from a broad collection of plant species to detect patterns of functional conservation across the subfamily. The evolutionary relationships between CYPs in plant genomes are an important component in understanding the evolution of biochemical diversity in plants.
Collapse
Affiliation(s)
- Wil Prall
- Department of Biology, The College of New Jersey, Ewing, New Jersey, United States of America
| | - Oliver Hendy
- Department of Biology, The College of New Jersey, Ewing, New Jersey, United States of America
| | - Leeann E. Thornton
- Department of Biology, The College of New Jersey, Ewing, New Jersey, United States of America
- * E-mail:
| |
Collapse
|
43
|
Molecular evolutionary dynamics of cytochrome P450 monooxygenases across kingdoms: Special focus on mycobacterial P450s. Sci Rep 2016; 6:33099. [PMID: 27616185 PMCID: PMC5018878 DOI: 10.1038/srep33099] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2016] [Accepted: 08/19/2016] [Indexed: 12/27/2022] Open
Abstract
Since the initial identification of cytochrome P450 monooxygenases (CYPs/P450s), great progress has been made in understanding their structure-function relationship, diversity and application in producing compounds beneficial to humans. However, the molecular evolution of P450s in terms of their dynamics both at protein and DNA levels and functional conservation across kingdoms still needs investigation. In this study, we analyzed 17 598 P450s belonging to 113 P450 families (bacteria -42; fungi -19; plant -28; animal -22; plant and animal -1 and common P450 family -1) and found highly conserved and rapidly evolving P450 families. Results suggested that bacterial P450s, particularly P450s belonging to mycobacteria, are highly conserved both at protein and DNA levels. Mycobacteria possess the highest P450 diversity percentage compared to other microbes and have a high coverage of P450s (≥1%) in their genomes, as found in fungi and plants. Phylogenetic and functional analyses revealed the functional conservation of P450s despite belonging to different biological kingdoms, suggesting the adherence of P450s to their innate function such as their involvement in either generation or oxidation of steroids and structurally related molecules, fatty acids and terpenoids. This study's results offer new understanding of the dynamic structural nature of P450s.
Collapse
|
44
|
Kuzikov AV, Masamrekh RA, Khatri Y, Zavialova MG, Bernhardt R, Archakov AI, Shumyantseva VV. Scrutiny of electrochemically-driven electrocatalysis of C-19 steroid 1α-hydroxylase (CYP260A1) from Sorangium cellulosum So ce56. Anal Biochem 2016; 513:28-35. [PMID: 27567992 DOI: 10.1016/j.ab.2016.08.016] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2016] [Revised: 08/17/2016] [Accepted: 08/19/2016] [Indexed: 01/08/2023]
Abstract
Direct electrochemistry and bioelectrocatalysis of a newly discovered C-19 steroid 1α-hydroxylase (CYP260A1) from the myxobacterium Sorangium cellulosum So ce56 were investigated. CYP260A1 was immobilized on screen-printed graphite electrodes (SPE) modified with gold nanoparticles, stabilized by didodecyldimethylammonium bromide (SPE/DDAB/Au). Cyclic voltammograms in argon-saturated substrate free 0.1 M potassium phosphate buffer, pH 7.4, and in enzyme-substrate complex with androstenedione demonstrated a redox processes with a single redox couple of E(0') of -299 ± 16 mV and -297.5 ± 21 mV (vs. Ag/AgCl), respectively. CYP260A1 exhibited an electrocatalytic activity detected by an increase of the reduction current in the presence of dissolved oxygen and upon addition of the substrate (androstenedione) in the air-saturated buffer. The catalytic current of the enzyme correlated with substrate concentration in the electrochemical system and this dependence can be described by electrochemical Michaelis-Menten model. The products of CYP260A1-depended electrolysis at controlled working electrode potential of androstenedione were analyzed by mass-spectrometry. MS analysis revealed a mono-hydroxylated product of CYP260A1-dependent electrocatalytic reaction towards androstenedione.
Collapse
Affiliation(s)
- Alexey V Kuzikov
- Institute of Biomedical Chemistry, Pogodinskaya Street, 10, Moscow 119121, Russia; Pirogov Russian National Research Medical University, Ostrovitianov Street, 1, Moscow 117997, Russia
| | - Rami A Masamrekh
- Institute of Biomedical Chemistry, Pogodinskaya Street, 10, Moscow 119121, Russia; Pirogov Russian National Research Medical University, Ostrovitianov Street, 1, Moscow 117997, Russia
| | - Yogan Khatri
- Institute of Biochemistry, Saarland University, Saarbruecken 66123, Germany
| | - Maria G Zavialova
- Institute of Biomedical Chemistry, Pogodinskaya Street, 10, Moscow 119121, Russia
| | - Rita Bernhardt
- Institute of Biochemistry, Saarland University, Saarbruecken 66123, Germany
| | - Alexander I Archakov
- Institute of Biomedical Chemistry, Pogodinskaya Street, 10, Moscow 119121, Russia; Pirogov Russian National Research Medical University, Ostrovitianov Street, 1, Moscow 117997, Russia
| | - Victoria V Shumyantseva
- Institute of Biomedical Chemistry, Pogodinskaya Street, 10, Moscow 119121, Russia; Pirogov Russian National Research Medical University, Ostrovitianov Street, 1, Moscow 117997, Russia.
| |
Collapse
|
45
|
El-Garj FMA, Wajidi MFF, Avicor SW. Identification and analysis of a processed cytochrome P450 pseudogene of the disease vector Aedes aegypti. ASIAN PAC J TROP MED 2016; 9:973-978. [PMID: 27794391 DOI: 10.1016/j.apjtm.2016.07.024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2016] [Revised: 06/10/2016] [Accepted: 07/15/2016] [Indexed: 11/17/2022] Open
Abstract
OBJECTIVE To clone cytochrome P450 from Aedes aegypti (Ae. aegypti) and determine the characteristics using bioinformatics tools. METHODS Cytochrome P450 of Ae. aegypti was amplified using polymerase chain reaction, cloned and sequenced. Evolutionary relationship of the sequence was inferred and bioinformatics tools were used to predict subcellular localisation, signal peptide, transmembrane helix, phosphorylation, O-glycosylation, secondary and tertiary structures of the deduced protein. RESULTS Polymerase chain reaction rather amplified a cytochrome P450 pseudogene which was named CYP4H44P (GenBank accession number KF779932). The pseudogene has 1537 nucleotides and an open reading frame of 335 amino acids containing cytochrome P450 motifs except the WxxxR motif. It is highly homologous to CYP4H28 and CYP4H28v2. Phylogenetic analysis and evolutionary divergence showed strong clustering with CYP4H28 alleles and least divergence from the alleles respectively. The deduced protein was predicted to be found in the cytoplasm and likely to be phosphorylated but devoid of signal peptide, transmembrane helix and O-glycosylated sites. The secondary and tertiary structures were also generated. CONCLUSIONS A cytochrome P450 pseudogene, CYP4H44P was cloned from Ae. aegypti. The pseudogene is homologous with CYP4H28 alleles and seems to have recently diverged from this group. Isolating this pseudogene is an important step for evaluating its biological role in the mosquito and for the evolutionary analysis of Ae. aegypti CYPs.
Collapse
Affiliation(s)
- Fatma M A El-Garj
- Molecular Entomology Research Group, School of Distance Education, Universiti Sains Malaysia, 11800 Minden, Penang, Malaysia
| | - Mustafa F F Wajidi
- Molecular Entomology Research Group, School of Distance Education, Universiti Sains Malaysia, 11800 Minden, Penang, Malaysia
| | - Silas W Avicor
- Molecular Entomology Research Group, School of Distance Education, Universiti Sains Malaysia, 11800 Minden, Penang, Malaysia.
| |
Collapse
|
46
|
Salamanca-Pinzon SG, Khatri Y, Carius Y, Keller L, Müller R, Lancaster CRD, Bernhardt R. Structure-function analysis for the hydroxylation of Δ4 C21-steroids by the myxobacterial CYP260B1. FEBS Lett 2016; 590:1838-51. [DOI: 10.1002/1873-3468.12217] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2016] [Revised: 04/29/2016] [Accepted: 05/11/2016] [Indexed: 11/08/2022]
Affiliation(s)
| | - Yogan Khatri
- Institute of Biochemistry; Saarland University; Saarbrücken Germany
| | - Yvonne Carius
- Department of Structural Biology; Institute of Biophysics and Center of Human and Molecular Biology (ZHMB); Saarland University; Homburg Germany
| | - Lena Keller
- Department of Microbial Natural Products; Helmholtz Institute for Pharmaceutical Research Saarland (HIPS); Helmholtz Centre for Infection Research and Pharmaceutical Biotechnology; Saarland University; Saarbrücken Germany
| | - Rolf Müller
- Department of Microbial Natural Products; Helmholtz Institute for Pharmaceutical Research Saarland (HIPS); Helmholtz Centre for Infection Research and Pharmaceutical Biotechnology; Saarland University; Saarbrücken Germany
| | - C. Roy D. Lancaster
- Department of Structural Biology; Institute of Biophysics and Center of Human and Molecular Biology (ZHMB); Saarland University; Homburg Germany
| | - Rita Bernhardt
- Institute of Biochemistry; Saarland University; Saarbrücken Germany
| |
Collapse
|
47
|
Iwama R, Kobayashi S, Ishimaru C, Ohta A, Horiuchi H, Fukuda R. Functional roles and substrate specificities of twelve cytochromes P450 belonging to CYP52 family in n-alkane assimilating yeast Yarrowia lipolytica. Fungal Genet Biol 2016; 91:43-54. [PMID: 27039152 DOI: 10.1016/j.fgb.2016.03.007] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2015] [Revised: 03/16/2016] [Accepted: 03/29/2016] [Indexed: 11/26/2022]
Abstract
Yarrowia lipolytica possesses twelve ALK genes, which encode cytochromes P450 in the CYP52 family. In this study, using a Y. lipolytica strain from which all twelve ALK genes had been deleted, strains individually expressing each of the ALK genes were constructed and their roles and substrate specificities were determined by observing their growth on n-alkanes and analyzing fatty acid metabolism. The results suggested that the twelve Alk proteins can be categorized into four groups based on their substrate specificity: Alk1p, Alk2p, Alk9p, and Alk10p, which have significant activities to hydroxylate n-alkanes; Alk4p, Alk5p, and Alk7p, which have significant activities to hydroxylate the ω-terminal end of dodecanoic acid; Alk3p and Alk6p, which have significant activities to hydroxylate both n-alkanes and dodecanoic acid; and Alk8p, Alk11p, and Alk12p, which showed faint or no activities to oxidize these substrates. The involvement of Alk proteins in the oxidation of fatty alcohols and fatty aldehydes was also analyzed by measuring viability of the mutant deleted for twelve ALK genes in medium containing dodecanol and by observing growth on dodecanal of a mutant strain, in which twelve ALK genes were deleted along with four fatty aldehyde dehydrogenase genes. It was suggested that ALK gene(s) is/are involved in the detoxification of dodecanol and the assimilation of dodecanal. These results imply that genes encoding CYP52-family P450s have undergone multiplication and diversification in Y. lipolytica for assimilation of various hydrophobic compounds.
Collapse
Affiliation(s)
- Ryo Iwama
- Department of Biotechnology, The University of Tokyo, Yayoi 1-1-1, Bunkyo-ku, Tokyo 113-8657, Japan
| | - Satoshi Kobayashi
- Department of Biotechnology, The University of Tokyo, Yayoi 1-1-1, Bunkyo-ku, Tokyo 113-8657, Japan
| | - Chiaki Ishimaru
- Department of Biotechnology, The University of Tokyo, Yayoi 1-1-1, Bunkyo-ku, Tokyo 113-8657, Japan
| | - Akinori Ohta
- Department of Biological Chemistry, College of Bioscience and Biotechnology, Chubu University, 1200 Matsumoto-cho, Kasugai, Aichi 487-8501, Japan
| | - Hiroyuki Horiuchi
- Department of Biotechnology, The University of Tokyo, Yayoi 1-1-1, Bunkyo-ku, Tokyo 113-8657, Japan
| | - Ryouichi Fukuda
- Department of Biotechnology, The University of Tokyo, Yayoi 1-1-1, Bunkyo-ku, Tokyo 113-8657, Japan.
| |
Collapse
|
48
|
Mahmood K, Højland DH, Asp T, Kristensen M. Transcriptome Analysis of an Insecticide Resistant Housefly Strain: Insights about SNPs and Regulatory Elements in Cytochrome P450 Genes. PLoS One 2016; 11:e0151434. [PMID: 27019205 PMCID: PMC4809514 DOI: 10.1371/journal.pone.0151434] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2015] [Accepted: 02/28/2016] [Indexed: 11/25/2022] Open
Abstract
Background Insecticide resistance in the housefly, Musca domestica, has been investigated for more than 60 years. It will enter a new era after the recent publication of the housefly genome and the development of multiple next generation sequencing technologies. The genetic background of the xenobiotic response can now be investigated in greater detail. Here, we investigate the 454-pyrosequencing transcriptome of the spinosad-resistant 791spin strain in relation to the housefly genome with focus on P450 genes. Results The de novo assembly of clean reads gave 35,834 contigs consisting of 21,780 sequences of the spinosad resistant strain. The 3,648 sequences were annotated with an enzyme code EC number and were mapped to 124 KEGG pathways with metabolic processes as most highly represented pathway. One hundred and twenty contigs were annotated as P450s covering 44 different P450 genes of housefly. Eight differentially expressed P450s genes were identified and investigated for SNPs, CpG islands and common regulatory motifs in promoter and coding regions. Functional annotation clustering of metabolic related genes and motif analysis of P450s revealed their association with epigenetic, transcription and gene expression related functions. The sequence variation analysis resulted in 12 SNPs and eight of them found in cyp6d1. There is variation in location, size and frequency of CpG islands and specific motifs were also identified in these P450s. Moreover, identified motifs were associated to GO terms and transcription factors using bioinformatic tools. Conclusion Transcriptome data of a spinosad resistant strain provide together with genome data fundamental support for future research to understand evolution of resistance in houseflies. Here, we report for the first time the SNPs, CpG islands and common regulatory motifs in differentially expressed P450s. Taken together our findings will serve as a stepping stone to advance understanding of the mechanism and role of P450s in xenobiotic detoxification.
Collapse
Affiliation(s)
- Khalid Mahmood
- Department of Agroecology, Aarhus University, Slagelse, Denmark
| | | | - Torben Asp
- Department of Molecular Biology and Genetics, Aarhus University, Slagelse, Denmark
| | - Michael Kristensen
- Department of Agroecology, Aarhus University, Slagelse, Denmark
- * E-mail:
| |
Collapse
|
49
|
Hatakeyama M, Kitaoka T, Ichinose H. Heterologous expression of fungal cytochromes P450 (CYP5136A1 and CYP5136A3) from the white-rot basidiomycete Phanerochaete chrysosporium: Functionalization with cytochrome b5 in Escherichia coli. Enzyme Microb Technol 2016; 89:7-14. [PMID: 27233123 DOI: 10.1016/j.enzmictec.2016.03.004] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2015] [Revised: 02/14/2016] [Accepted: 03/08/2016] [Indexed: 12/21/2022]
Abstract
Cytochromes P450 from the white-rot basidiomycete Phanerochaete chrysosporium, CYP5136A1 and CYP5136A3, are capable of catalyzing oxygenation reactions of a wide variety of exogenous compounds, implying their significant roles in the metabolism of xenobiotics by the fungus. It is therefore interesting to explore their biochemistry to better understand fungal biology and to enable the use of fungal enzymes in the biotechnology sector. In the present study, we developed heterologous expression systems for CYP5136A1 and CYP5136A3 using the T7 RNA polymerase/promoter system in Escherichia coli. Expression levels of recombinant P450s were dramatically improved by modifications and optimization of their N-terminal amino acid sequences. A CYP5136A1 reaction system was reconstructed in E. coli whole cells by coexpression of CYP5136A1 and a redox partner, NADPH-dependent P450 reductase (CPR). The catalytic activity of CYP5136A1 was significantly increased when cytochrome b5 (Cyt-b5) was further coexpressed with CPR, indicating that Cyt-b5 supports electron transfer reactions from NAD(P)H to CYP5136A1. Notably, P450 reaction occurred in E. coli cells that harbored CYP5136A1 and Cyt-b5 but not CPR, implying that the reducing equivalents required for the P450 catalytic cycle were transferred via a CPR-independent pathway. Such an "alternative" electron transfer system in CYP5136A1 reaction was also demonstrated using purified enzymes in vitro. The fungal P450 reaction system may be associated with sophisticated electron transfer pathways.
Collapse
Affiliation(s)
- Mayumi Hatakeyama
- Faculty of Agriculture, Kyushu University, 6-10-(1) Hakozaki, Higashi-ku, Fukuoka 812-8581, Japan.
| | - Takuya Kitaoka
- Faculty of Agriculture, Kyushu University, 6-10-(1) Hakozaki, Higashi-ku, Fukuoka 812-8581, Japan.
| | - Hirofumi Ichinose
- Faculty of Agriculture, Kyushu University, 6-10-(1) Hakozaki, Higashi-ku, Fukuoka 812-8581, Japan.
| |
Collapse
|
50
|
Shumyantseva V, Kuzikov A, Masamrekh R, Khatri Y, Zavialova M, Bernhardt R, Archakov A. Direct electrochemistry of CYP109C1, CYP109C2 and CYP109D1 from Sorangium cellulosum So ce56. Electrochim Acta 2016. [DOI: 10.1016/j.electacta.2016.01.162] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|