1
|
Vitas M, Dobovišek A. A possible origin of life in nonpolar environments. Biosystems 2024; 247:105384. [PMID: 39725061 DOI: 10.1016/j.biosystems.2024.105384] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2024] [Revised: 12/08/2024] [Accepted: 12/20/2024] [Indexed: 12/28/2024]
Abstract
Explaining the emergence of life is perhaps the central and most challenging question in modern science. We are proposing a new hypothesis concerning the origins of life. The new hypothesis is based on the assumption that during the emergence of life, evolution had to first involve autocatalytic systems which only subsequently acquired the capacity of genetic heredity. Additionally, the key abiotic and early biotic molecules required in the formation of early life, like cofactors, coenzymes, nucleic bases, prosthetic groups, polycyclic aromatic hydrocarbons (PAHs), some pigments, etc. are poorly soluble in aqueous media. To avoid the latter concentration problem, the new hypothesis assumes that life could have emerged in the nonpolar environments or low water systems, or at the interphase of the nonpolar and polar water phase, from where it was subsequently transferred to the aqueous environment. To support our hypothesis, we assume that hydrocarbons and oil on the Earth have abiotic origins.
Collapse
Affiliation(s)
- Marko Vitas
- Laze pri Borovnici 38, 1353, Borovnica, Slovenia.
| | - Andrej Dobovišek
- University of Maribor, Faculty of Natural Sciences and Mathematics, Koroška Cesta 160, 2000, Maribor, Slovenia; University of Maribor, Faculty of Medicine, Taborska ulica 8, 2000, Maribor, Slovenia.
| |
Collapse
|
2
|
Mokhosoev IM, Astakhov DV, Terentiev AA, Moldogazieva NT. Cytochrome P450 monooxygenase systems: Diversity and plasticity for adaptive stress response. PROGRESS IN BIOPHYSICS AND MOLECULAR BIOLOGY 2024; 193:19-34. [PMID: 39245215 DOI: 10.1016/j.pbiomolbio.2024.09.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Revised: 08/21/2024] [Accepted: 09/04/2024] [Indexed: 09/10/2024]
Abstract
Superfamily of cytochromes P450 (CYPs) is composed of heme-thiolate-containing monooxygenase enzymes, which play crucial roles in the biosynthesis, bioactivation, and detoxification of a variety of organic compounds, both endogenic and exogenic. Majority of CYP monooxygenase systems are multi-component and contain various redox partners, cofactors and auxiliary proteins, which contribute to their diversity in both prokaryotes and eukaryotes. Recent progress in bioinformatics and computational biology approaches make it possible to undertake whole-genome and phylogenetic analyses of CYPomes of a variety of organisms. Considerable variations in sequences within and between CYP families and high similarity in secondary and tertiary structures between all CYPs along with dramatic conformational changes in secondary structure elements of a substrate binding site during catalysis have been reported. This provides structural plasticity and substrate promiscuity, which underlie functional diversity of CYPs. Gene duplication and mutation events underlie CYP evolutionary diversity and emergence of novel selectable functions, which provide the involvement of CYPs in high adaptability to changing environmental conditions and dietary restrictions. In our review, we discuss the recent advancements and challenges in the elucidating the evolutionary origin and mechanisms underlying the CYP monooxygenase system diversity and plasticity. Our review is in the view of hypothesis that diversity of CYP monooxygenase systems is translated into the broad metabolic profiles, and this has been acquired during the long evolutionary time to provide structural plasticity leading to high adaptative capabilities to environmental stress conditions.
Collapse
Affiliation(s)
| | - Dmitry V Astakhov
- Department of Biochemistry, I.M. Sechenov First Moscow State Medical University (Sechenov University), 119991, Moscow, Russia
| | - Alexander A Terentiev
- Department of Biochemistry and Molecular Biology, N.I. Pirogov Russian National Research Medical University, 117997, Moscow, Russia
| | | |
Collapse
|
3
|
Osaka Y, Onozato M, Okoshi K, Nishigaki A. Changes in the concentration of polycyclic aromatic hydrocarbons in fecal pellets of Marphysa sp. E and reduced mud in the Yoro tidal flat, Japan. MARINE POLLUTION BULLETIN 2024; 208:116977. [PMID: 39306966 DOI: 10.1016/j.marpolbul.2024.116977] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Revised: 09/09/2024] [Accepted: 09/10/2024] [Indexed: 10/23/2024]
Abstract
Marphysa sp. E (Annelida, Eunicidae), inhabiting the Yoro tidal flat (inner part of Tokyo Bay, Japan), ingests reduced mud comprising black and high viscosity sediments that contain high levels of polycyclic aromatic hydrocarbons (PAHs); these PAHs are excreted within the fecal pellets. PAH concentration in the fecal pellets rapidly decrease to half its quantity 2 h after its excretion. To investigate their specificity of change, we analyzed the PAHs in fecal pellets and reduced mud using gas chromatography-mass spectrometry. PAH concentration of the fecal pellets was observed to decrease by 46 % in 2 h, whereas that of reduced mud decreased by only 8 % in the same duration. This suggests that the PAH concentration of reduced mud decreases only after passing through the worm's digestive system. These results indicate that Marphysa sp. E contributes to the purification of the tidal flat environment.
Collapse
Affiliation(s)
- Yuichiro Osaka
- Department of Environmental Science, Faculty of Science, Toho University, 2-2-1 Miyama, Funabashi-shi, Chiba 274-8510, Japan
| | - Mayu Onozato
- Department of Analytical Chemistry, Faculty of Pharmaceutical Sciences, Toho University, 2-2-1 Miyama, Funabashi-shi, Chiba 274-8510, Japan
| | - Kenji Okoshi
- Department of Environmental Science, Faculty of Science, Toho University, 2-2-1 Miyama, Funabashi-shi, Chiba 274-8510, Japan; Toyo Institute of Food Technology, 4-23-2 Minami-Hanayashiki, Kawanishi-shi, Hyogo 666-0026, Japan
| | - Atsuko Nishigaki
- Department of Environmental Science, Faculty of Science, Toho University, 2-2-1 Miyama, Funabashi-shi, Chiba 274-8510, Japan.
| |
Collapse
|
4
|
Kuvek T, Marcher C, Berteotti A, Lopez Carrillo V, Schleifer KJ, Oostenbrink C. A Computational Pipeline Observes the Flexibility and Dynamics of Plant Cytochrome P450 Binding Sites. Int J Mol Sci 2024; 25:11381. [PMID: 39518933 PMCID: PMC11545509 DOI: 10.3390/ijms252111381] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2024] [Revised: 10/18/2024] [Accepted: 10/22/2024] [Indexed: 11/16/2024] Open
Abstract
Binding site flexibility and dynamics strongly affect the ability of proteins to accommodate substrates and inhibitors. The significance of these properties is particularly pronounced for proteins that are inherently flexible, such as cytochrome P450 enzymes (CYPs). While the research on human CYPs provides detailed knowledge on both structural and functional level, such analyses are still lacking for their plant counterparts. This study aims to bridge this gap. We developed a novel computational pipeline consisting of two steps. Firstly, we use molecular dynamics (MD) simulations to capture the full conformational ensemble for a certain plant CYP. Subsequently, we developed and applied a comprehensive methodology to analyze a number of binding site properties-size, flexibility, shape, hydrophobicity, and accessibility-using the fpocket and mdpocket packages on MD-generated trajectories. The workflow was validated on human CYPs 1A2, 2A6, and 3A4, as their binding site characteristics are well known. Not only could we confirm known binding site properties, but we also identified and named previously unseen binding site channels for CYPs 1A2 and 2A6. The pipeline was then applied to plant CYPs, leading to the first categorization of 15 chosen plant CYPs based on their binding site's (dis)similarities. This study provides a foundation for the largely uncharted fields of plant CYP substrate specificity and facilitates a more precise understanding of their largely unknown specific biological functions. It offers new insights into the structural and functional dynamics of plant CYPs, which may facilitate a more accurate understanding of the fate of agrochemicals or the biotechnological design and exploitation of enzymes with specific functions. Additionally, it serves as a reference for future structural-functional analyses of CYP enzymes across various biological kingdoms.
Collapse
Affiliation(s)
- Tea Kuvek
- Institute for Molecular Modeling and Simulation, BOKU University, Muthgasse 18, 1190 Vienna, Austria; (T.K.)
- Christian Doppler Laboratory for Molecular Informatics in the Biosciences, BOKU University, Muthgasse 18, 1190 Vienna, Austria
| | - Claudia Marcher
- Institute for Molecular Modeling and Simulation, BOKU University, Muthgasse 18, 1190 Vienna, Austria; (T.K.)
| | - Anna Berteotti
- BASF SE, Carl-Bosch-Strasse 38, 67056 Ludwigshafen, Germany
| | | | | | - Chris Oostenbrink
- Institute for Molecular Modeling and Simulation, BOKU University, Muthgasse 18, 1190 Vienna, Austria; (T.K.)
- Christian Doppler Laboratory for Molecular Informatics in the Biosciences, BOKU University, Muthgasse 18, 1190 Vienna, Austria
| |
Collapse
|
5
|
Wang Y, Shi Y, Li H, Wang S, Wang A. Whole Genome Identification and Biochemical Characteristics of the Tilletia horrida Cytochrome P450 Gene Family. Int J Mol Sci 2024; 25:10478. [PMID: 39408807 PMCID: PMC11476942 DOI: 10.3390/ijms251910478] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2024] [Revised: 09/24/2024] [Accepted: 09/26/2024] [Indexed: 10/20/2024] Open
Abstract
Rice kernel smut caused by the biotrophic basidiomycete fungus Tilletia horrida causes significant yield losses in hybrid rice-growing areas around the world. Cytochrome P450 (CYP) enzyme is a membrane-bound heme-containing monooxygenase. In fungi, CYPs play a role in cellular metabolism, adaptation, pathogenicity, decomposition, and biotransformation of hazardous chemicals. In this study, we identified 20 CYP genes based on complete sequence analysis and functional annotation from the T. horrida JY-521 genome. The subcellular localization, conserved motifs, and structures of these 20 CYP genes were further predicted. The ThCYP genes exhibit differences in gene structures and protein motifs. Subcellular localization showed that they were located in the plasma membrane, cytoplasm, nucleus, mitochondria, and extracellular space, indicating that they had multiple functions. Some cis-regulatory elements related to stress response and plant hormones were found in the promoter regions of these genes. Protein-protein interaction (PPI) analysis showed that several ThCYP proteins interact with multiple proteins involved in the ergosterol pathway. Moreover, the expression of 20 CYP genes had different responses to different infection time points and underwent dynamic changes during T. horrida JY-521 infection, indicating that these genes were involved in the interaction with rice and their potential role in the pathogenic mechanism. These results provided valuable resources for elucidating the structure of T. horrida CYP family proteins and laid an important foundation for further research of their roles in the pathogenesis.
Collapse
Affiliation(s)
- Yafei Wang
- College of Plant Protection, Henan Agricultural University, Zhengzhou 450002, China; (Y.S.); (H.L.); (S.W.)
| | | | | | | | - Aijun Wang
- College of Plant Protection, Henan Agricultural University, Zhengzhou 450002, China; (Y.S.); (H.L.); (S.W.)
| |
Collapse
|
6
|
Valitova J, Renkova A, Beckett R, Minibayeva F. Stigmasterol: An Enigmatic Plant Stress Sterol with Versatile Functions. Int J Mol Sci 2024; 25:8122. [PMID: 39125690 PMCID: PMC11311414 DOI: 10.3390/ijms25158122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Revised: 07/05/2024] [Accepted: 07/22/2024] [Indexed: 08/12/2024] Open
Abstract
Sterols play important structural and regulatory roles in numerous intracellular processes. Unlike animals, plants contain a distinctive and diverse variety of sterols. Recently, information has emerged showing that stigmasterol is a "stress sterol". Stigmasterol is synthesized via the mevalonate biosynthesis pathway and has structural similarity to β-sitosterol but differs in the presence of a trans-oriented double bond in the side chain. In plants, the accumulation of stigmasterol has been observed in response to various stresses. However, the precise ways that stigmasterol is involved in the stress responses of plants remain unclear. This comprehensive review provides an update on the biology of stigmasterol, particularly the physicochemical properties of this ethylsterol, its biosynthesis, and its occurrence in higher plants and extremophilic organisms, e.g., mosses and lichens. Special emphasis is given to the evolutionary aspects of stigmasterol biosynthesis, particularly the variations in the gene structure of C22-sterol desaturase, which catalyzes the formation of stigmasterol from β-sitosterol, in a diversity of evolutionarily distant organisms. The roles of stigmasterol in the tolerance of plants to hostile environments and the prospects for its biomedical applications are also discussed. Taken together, the available data suggest that stigmasterol plays important roles in plant metabolism, although in some aspects, it remains an enigmatic compound.
Collapse
Affiliation(s)
- Julia Valitova
- Kazan Institute of Biochemistry and Biophysics, FRC Kazan Scientific Center of RAS, P.O. Box 261, Kazan 420111, Russia; (J.V.); (A.R.)
| | - Albina Renkova
- Kazan Institute of Biochemistry and Biophysics, FRC Kazan Scientific Center of RAS, P.O. Box 261, Kazan 420111, Russia; (J.V.); (A.R.)
| | - Richard Beckett
- School of Life Sciences, University of KwaZulu-Natal, Private Bag X01, Scottsville 3209, South Africa;
| | - Farida Minibayeva
- Kazan Institute of Biochemistry and Biophysics, FRC Kazan Scientific Center of RAS, P.O. Box 261, Kazan 420111, Russia; (J.V.); (A.R.)
| |
Collapse
|
7
|
Schottlender G, Prieto JM, Clemente C, Schuster CD, Dumas V, Fernández Do Porto D, Martí MA. Bacterial cytochrome P450s: a bioinformatics odyssey of substrate discovery. Front Microbiol 2024; 15:1343029. [PMID: 38384262 PMCID: PMC10879549 DOI: 10.3389/fmicb.2024.1343029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Accepted: 01/23/2024] [Indexed: 02/23/2024] Open
Abstract
Bacterial P450 cytochromes (BacCYPs) are versatile heme-containing proteins responsible for oxidation reactions on a wide range of substrates, contributing to the production of valuable natural products with limitless biotechnological potential. While the sequencing of microbial genomes has provided a wealth of BacCYP sequences, functional characterization lags behind, hindering our understanding of their roles. This study employs a comprehensive approach to predict BacCYP substrate specificity, bridging the gap between sequence and function. We employed an integrated approach combining sequence and functional data analysis, genomic context exploration, 3D structural modeling with molecular docking, and phylogenetic clustering. The research begins with an in-depth analysis of BacCYP sequence diversity and structural characteristics, revealing conserved motifs and recurrent residues in the active site. Phylogenetic analysis identifies distinct groups within the BacCYP family based on sequence similarity. However, our study reveals that sequence alone does not consistently predict substrate specificity, necessitating additional perspectives. The study delves into the genetic context of BacCYPs, utilizing neighboring gene information to infer potential substrates, a method proven very effective in many cases. Molecular docking is employed to assess BacCYP-substrate interactions, confirming potential substrates and providing insights into selectivity. Finally, a comprehensive strategy is proposed for predicting BacCYP substrates, involving all the evaluated approaches. The effectiveness of this strategy is demonstrated with two case studies, highlighting its potential for substrate discovery.
Collapse
Affiliation(s)
- Gustavo Schottlender
- Facultad de Ciencias Exactas y Naturales, Instituto de Cálculo, Universidad de Buenos Aires, CONICET, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Juan Manuel Prieto
- Instituto de Química Biológica de la Facultad de Ciencias Exactas y Naturales (IQUIBICEN) CONICET, Buenos Aires, Argentina
| | - Camila Clemente
- Instituto de Química Biológica de la Facultad de Ciencias Exactas y Naturales (IQUIBICEN) CONICET, Buenos Aires, Argentina
| | - Claudio David Schuster
- Instituto de Química Biológica de la Facultad de Ciencias Exactas y Naturales (IQUIBICEN) CONICET, Buenos Aires, Argentina
| | - Victoria Dumas
- Departamento de Química Biológica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires (FCEyN-UBA), Buenos Aires, Argentina
| | - Darío Fernández Do Porto
- Facultad de Ciencias Exactas y Naturales, Instituto de Cálculo, Universidad de Buenos Aires, CONICET, Universidad de Buenos Aires, Buenos Aires, Argentina
- Departamento de Química Biológica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires (FCEyN-UBA), Buenos Aires, Argentina
| | - Marcelo Adrian Martí
- Instituto de Química Biológica de la Facultad de Ciencias Exactas y Naturales (IQUIBICEN) CONICET, Buenos Aires, Argentina
- Departamento de Química Biológica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires (FCEyN-UBA), Buenos Aires, Argentina
| |
Collapse
|
8
|
Padayachee T, Lamb DC, Nelson DR, Syed K. Structure-Function Analysis of the Biotechnologically Important Cytochrome P450 107 (CYP107) Enzyme Family. Biomolecules 2023; 13:1733. [PMID: 38136604 PMCID: PMC10741444 DOI: 10.3390/biom13121733] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Revised: 11/29/2023] [Accepted: 11/29/2023] [Indexed: 12/24/2023] Open
Abstract
Cytochrome P450 monooxygenases (CYPs; P450s) are a superfamily of heme-containing enzymes that are recognized for their vast substrate range and oxidative multifunctionality. CYP107 family members perform hydroxylation and epoxidation processes, producing a variety of biotechnologically useful secondary metabolites. Despite their biotechnological importance, a thorough examination of CYP107 protein structures regarding active site cavity dynamics and key amino acids interacting with bound ligands has yet to be undertaken. To address this research knowledge gap, 44 CYP107 crystal structures were investigated in this study. We demonstrate that the CYP107 active site cavity is very flexible, with ligand binding reducing the volume of the active site in some situations and increasing volume size in other instances. Polar interactions between the substrate and active site residues result in crucial salt bridges and the formation of proton shuttling pathways. Hydrophobic interactions, however, anchor the substrate within the active site. The amino acid residues within the binding pocket influence substrate orientation and anchoring, determining the position of the hydroxylation site and hence direct CYP107's catalytic activity. Additionally, the amino acid dynamics within and around the binding pocket determine CYP107's multifunctionality. This study serves as a reference for understanding the structure-function analysis of CYP107 family members precisely and the structure-function analysis of P450 enzymes in general. Finally, this work will aid in the genetic engineering of CYP107 enzymes to produce novel molecules of biotechnological interest.
Collapse
Affiliation(s)
- Tiara Padayachee
- Department of Biochemistry and Microbiology, Faculty of Science, Agriculture and Engineering, University of Zululand, KwaDlangezwa 3886, South Africa;
| | - David C. Lamb
- Faculty of Medicine, Health and Life Sciences, Swansea University, Swansea SA2 8PP, UK;
| | - David R. Nelson
- Department of Microbiology, Immunology and Biochemistry, University of Tennessee Health Science Center, Memphis, TN 38163, USA;
| | - Khajamohiddin Syed
- Department of Biochemistry and Microbiology, Faculty of Science, Agriculture and Engineering, University of Zululand, KwaDlangezwa 3886, South Africa;
| |
Collapse
|
9
|
Rogowska-van der Molen MA, Berasategui-Lopez A, Coolen S, Jansen RS, Welte CU. Microbial degradation of plant toxins. Environ Microbiol 2023; 25:2988-3010. [PMID: 37718389 DOI: 10.1111/1462-2920.16507] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Accepted: 09/05/2023] [Indexed: 09/19/2023]
Abstract
Plants produce a variety of secondary metabolites in response to biotic and abiotic stresses. Although they have many functions, a subclass of toxic secondary metabolites mainly serve plants as deterring agents against herbivores, insects, or pathogens. Microorganisms present in divergent ecological niches, such as soil, water, or insect and rumen gut systems have been found capable of detoxifying these metabolites. As a result of detoxification, microbes gain growth nutrients and benefit their herbivory host via detoxifying symbiosis. Here, we review current knowledge on microbial degradation of toxic alkaloids, glucosinolates, terpenes, and polyphenols with an emphasis on the genes and enzymes involved in breakdown pathways. We highlight that the insect-associated microbes might find application in biotechnology and become targets for an alternative microbial pest control strategy.
Collapse
Affiliation(s)
- Magda A Rogowska-van der Molen
- Department of Microbiology, Radboud Institute for Biological and Environmental Sciences, Radboud University, Nijmegen, The Netherlands
| | - Aileen Berasategui-Lopez
- Department of Microbiology and Biotechnology, University of Tübingen, Tübingen, Baden-Württemberg, Germany
- Amsterdam Institute for Life and Environment, Section Ecology and Evolution, Vrije Universiteit, Amsterdam, The Netherlands
| | - Silvia Coolen
- Department of Microbiology, Radboud Institute for Biological and Environmental Sciences, Radboud University, Nijmegen, The Netherlands
| | - Robert S Jansen
- Department of Microbiology, Radboud Institute for Biological and Environmental Sciences, Radboud University, Nijmegen, The Netherlands
| | - Cornelia U Welte
- Department of Microbiology, Radboud Institute for Biological and Environmental Sciences, Radboud University, Nijmegen, The Netherlands
| |
Collapse
|
10
|
Al-Theyab NS, Abuelizz HA, Al-Hamoud GA, Aldossary A, Liang M. Priestia megaterium Metabolism: Isolation, Identification of Naringenin Analogues and Genes Elevated Associated with Nanoparticle Intervention. Curr Issues Mol Biol 2023; 45:6704-6716. [PMID: 37623243 PMCID: PMC10453022 DOI: 10.3390/cimb45080424] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Revised: 07/27/2023] [Accepted: 08/05/2023] [Indexed: 08/26/2023] Open
Abstract
The impact of gold nanoparticles (AuNPs) on the biosynthetic manipulation of Priestia megaterium metabolism where an existing gene cluster is enhanced to produce and enrich bioactive secondary metabolites has been studied previously. In this research, we aimed to isolate and elucidate the structure of metabolites of compounds 1 and 2 which have been analyzed previously in P. megaterium crude extract. This was achieved through a PREP-ODS C18 column with an HPLC-UV/visible detector. Then, the compounds were subjected to nuclear magnetic resonance (NMR), electrospray ionization mass spectrometry (ESI-MS), and Fourier-transform infrared spectroscopy (FT-IR) techniques. Furthermore, bioinformatics and transcriptome analysis were used to examine the gene expression for which the secondary metabolites produced in the presence of AuNPs showed significant enhancement in transcriptomic responses. The metabolites of compounds 1 and 2 were identified as daidzein and genistein, respectively. The real-time polymerase chain reaction (RT-PCR) technique was used to assess the expression of three genes (csoR, CHS, and yjiB) from a panel of selected genes known to be involved in the biosynthesis of the identified secondary metabolites. The expression levels of two genes (csoR and yijB) increased in response to AuNP intervention, whereas CHS was unaffected.
Collapse
Affiliation(s)
- Nada S. Al-Theyab
- School of Biomedical Science and Pharmacy, University of Newcastle, Callaghan, NSW 2308, Australia;
- Department of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Hatem A. Abuelizz
- Department of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Gadah A. Al-Hamoud
- Department of Pharmacognosy, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia;
| | - Ahmad Aldossary
- Wellness and Preventative Medicine Institute, Health Sector, King Abdulaziz City for Science and Technology (KACST), Riyadh 11442, Saudi Arabia;
| | - Mingtao Liang
- School of Biomedical Science and Pharmacy, University of Newcastle, Callaghan, NSW 2308, Australia;
| |
Collapse
|
11
|
Nsele NN, Padayachee T, Nelson DR, Syed K. Pezizomycetes Genomes Reveal Diverse P450 Complements Characteristic of Saprotrophic and Ectomycorrhizal Lifestyles. J Fungi (Basel) 2023; 9:830. [PMID: 37623601 PMCID: PMC10455484 DOI: 10.3390/jof9080830] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Revised: 07/25/2023] [Accepted: 08/04/2023] [Indexed: 08/26/2023] Open
Abstract
Cytochrome P450 monooxygenases (CYPs/P450s) are heme proteins that play a role in organisms' primary and secondary metabolism. P450s play an important role in organism adaptation since lifestyle influences P450 composition in their genome. This phenomenon is well-documented in bacteria but less so in fungi. This study observed this phenomenon where diverse P450 complements were identified in saprophytic and ectomycorrhizal Pezizomycetes. Genome-wide data mining, annotation, and phylogenetic analysis of P450s in 19 Pezizomycetes revealed 668 P450s that can be grouped into 153 P450 families and 245 P450 subfamilies. Only four P450 families, namely, CYP51, CYP61, CYP5093, and CYP6001, are conserved across 19 Pezizomycetes, indicating their important role in these species. A total of 5 saprophyte Pezizomycetes have 103 P450 families, whereas 14 ectomycorrhizal Pezizomycetes have 89 P450 families. Only 39 P450 families were common, and 50 and 64 P450 families, respectively, were unique to ectomycorrhizal and saprophytic Pezizomycetes. These findings suggest that the switch from a saprophytic to an ectomycorrhizal lifestyle led to both the development of diverse P450 families as well as the loss of P450s, which led to the lowest P450 family diversity, despite the emergence of novel P450 families in ectomycorrhizal Pezizomycetes.
Collapse
Affiliation(s)
- Nomfundo Ntombizinhle Nsele
- Department of Biochemistry and Microbiology, Faculty of Science and Agriculture, University of Zululand, KwaDlangezwa 3886, South Africa; (N.N.N.); (T.P.)
| | - Tiara Padayachee
- Department of Biochemistry and Microbiology, Faculty of Science and Agriculture, University of Zululand, KwaDlangezwa 3886, South Africa; (N.N.N.); (T.P.)
| | - David R. Nelson
- Department of Microbiology, Immunology and Biochemistry, University of Tennessee Health Science Center, Memphis, TN 38163, USA
| | - Khajamohiddin Syed
- Department of Biochemistry and Microbiology, Faculty of Science and Agriculture, University of Zululand, KwaDlangezwa 3886, South Africa; (N.N.N.); (T.P.)
| |
Collapse
|
12
|
Frias J, Garriga A, Peñalver Á, Teixeira M, Beltrí R, Toubarro D, Simões N. Exploring Gut Microbiome Variations between Popillia japonica Populations of Azores. Microorganisms 2023; 11:1972. [PMID: 37630532 PMCID: PMC10459852 DOI: 10.3390/microorganisms11081972] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Revised: 07/26/2023] [Accepted: 07/29/2023] [Indexed: 08/27/2023] Open
Abstract
Popillia japonica (Coleoptera: Scarabaeidae), is an emerging invasive pest in Europe and America. In the Azores, this pest was first found on Terceira Island during the sixties and soon spread to other islands. The rate of infestation differs between islands, and we hypothesized that microbiome composition could play a role. Therefore, we sampled 3rd instar larvae and soil from sites with high and low infestation rates to analyze the microbiome using next-generation sequencing. We analyzed twenty-four 16S DNA libraries, which resulted in 3278 operational taxonomic units. The alpha and beta diversity of the soil microbiome was similar between sites. In contrast, the larvae from high-density sites presented a higher bacterial gut diversity than larvae from low-density sites, with biomarkers linked to plant digestion, nutrient acquisition, and detoxification. Consequently, larvae from high-density sites displayed several enriched molecular functions associated with the families Ruminococcaceae, Clostridiaceae and Rikenellaceae. These bacteria revealed a supportive function by producing several CAZyme families and other proteins. These findings suggest that the microbiome must be one drive for the increase in P. japonica populations, thus providing a checkpoint in the establishment and spread of this pest.
Collapse
Affiliation(s)
- Jorge Frias
- Centro de Biotecnologia dos Açores, Faculdade de Ciências e Tecnologia, Universidade dos Açores, 9500-321 Ponta Delgada, Portugal
| | - Anna Garriga
- Centro de Biotecnologia dos Açores, Faculdade de Ciências e Tecnologia, Universidade dos Açores, 9500-321 Ponta Delgada, Portugal
- Departament de Biologia Animal, Vegetal i Ecologia, Facultat de Biociències, Universitat Autònoma de Barcelona, 08193 Bellaterra, Spain
| | - Ángel Peñalver
- Centro de Biotecnologia dos Açores, Faculdade de Ciências e Tecnologia, Universidade dos Açores, 9500-321 Ponta Delgada, Portugal
| | - Mário Teixeira
- Centro de Biotecnologia dos Açores, Faculdade de Ciências e Tecnologia, Universidade dos Açores, 9500-321 Ponta Delgada, Portugal
| | - Rubén Beltrí
- Centro de Biotecnologia dos Açores, Faculdade de Ciências e Tecnologia, Universidade dos Açores, 9500-321 Ponta Delgada, Portugal
| | - Duarte Toubarro
- Centro de Biotecnologia dos Açores, Faculdade de Ciências e Tecnologia, Universidade dos Açores, 9500-321 Ponta Delgada, Portugal
| | - Nelson Simões
- Centro de Biotecnologia dos Açores, Faculdade de Ciências e Tecnologia, Universidade dos Açores, 9500-321 Ponta Delgada, Portugal
| |
Collapse
|
13
|
Cai X, Li B, Li X, Dang H, Wang D, Pei Z, Feng X, Ren X, Kong Q. Characteristic Structures of Different Stilbenes Distinguish the Impact on Ochratoxin A Biosynthesis Intermediate Pathway and Metabolites of Aspergillus carbonarius. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:7996-8007. [PMID: 37192315 DOI: 10.1021/acs.jafc.3c00717] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
In this paper, we accurately pinpointed the inhibition sites of ochratoxin A (OTA) synthesis pathway in Aspergillus carbonarius acted by stilbenes from the perspective of oxidative stress and comprehensively explored the relationship between the physical and chemical properties of natural polyphenolic substances and their biochemical properties of antitoxin. To facilitate the application of ultra-high-performance liquid chromatography and triple quadrupole mass spectrometry for real-time tracking of pathway intermediate metabolite content, the synergistic effect of Cu2+-stilbenes self-assembled carriers was utilized. Cu2+ increased the generation of reactive oxygen species to accumulate mycotoxin content, while stilbenes had the inhibitory effect. The impact of the m-methoxy structure of pterostilbene on A. carbonarius was found to be superior to that of resorcinol and catechol. The m-methoxy structure of pterostilbene acted on the key regulator Yap1, downregulated the expression of antioxidant enzymes, and accurately inhibited the halogenation step of the OTA synthesis pathway, thus accumulating the content of OTA precursors. This provided a theoretical basis for the extensive and efficient application of a wide range of natural polyphenolic substances for postharvest disease control and quality assurance of grape products.
Collapse
Affiliation(s)
- Xinyu Cai
- Xi'an Key Laboratory of Characteristic Fruit Storage and Preservation, College of Food Engineering and Nutritional Science, Shaanxi Normal University, Xi'an 710119, P. R. China
| | - Boqiang Li
- Chinese Academy Sciences, Institute of Botany, Key Lab Plant Resources, Beijing 100093, P. R. China
| | - Xue Li
- Xi'an Key Laboratory of Characteristic Fruit Storage and Preservation, College of Food Engineering and Nutritional Science, Shaanxi Normal University, Xi'an 710119, P. R. China
| | - Hui Dang
- College of Food Engineering and Nutritional Science, Shaanxi Normal University, Xi'an 710119, P. R. China
| | - Di Wang
- Xi'an Key Laboratory of Characteristic Fruit Storage and Preservation, College of Food Engineering and Nutritional Science, Shaanxi Normal University, Xi'an 710119, P. R. China
| | - Zhifei Pei
- Xi'an Key Laboratory of Characteristic Fruit Storage and Preservation, College of Food Engineering and Nutritional Science, Shaanxi Normal University, Xi'an 710119, P. R. China
| | - Xuan Feng
- Xi'an Key Laboratory of Characteristic Fruit Storage and Preservation, College of Food Engineering and Nutritional Science, Shaanxi Normal University, Xi'an 710119, P. R. China
| | - Xueyan Ren
- Xi'an Key Laboratory of Characteristic Fruit Storage and Preservation, College of Food Engineering and Nutritional Science, Shaanxi Normal University, Xi'an 710119, P. R. China
| | - Qingjun Kong
- Xi'an Key Laboratory of Characteristic Fruit Storage and Preservation, College of Food Engineering and Nutritional Science, Shaanxi Normal University, Xi'an 710119, P. R. China
| |
Collapse
|
14
|
Mohamed H, Ghith A, Bell SG. The binding of nitrogen-donor ligands to the ferric and ferrous forms of cytochrome P450 enzymes. J Inorg Biochem 2023; 242:112168. [PMID: 36870164 DOI: 10.1016/j.jinorgbio.2023.112168] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Revised: 01/24/2023] [Accepted: 02/21/2023] [Indexed: 02/27/2023]
Abstract
The cytochrome P450 superfamily of heme-thiolate monooxygenase enzymes can catalyse various oxidation reactions. The addition of a substrate or an inhibitor ligand induces changes in the absorption spectrum of these enzymes and UV-visible (UV-vis) absorbance spectroscopy is the most common and readily available technique used to interrogate their heme and active site environment. Nitrogen-containing ligands can inhibit the catalytic cycle of heme enzymes by interacting with the heme. Here we evaluate the binding of imidazole and pyridine-based ligands to the ferric and ferrous forms of a selection of bacterial cytochrome P450 enzymes using UV-visible absorbance spectroscopy. The majority of these ligands interact with the heme as one would expect for type II nitrogen directly coordinated to a ferric heme-thiolate species. However, the spectroscopic changes observed in the ligand-bound ferrous forms indicated differences in the heme environment across these P450 enzyme/ligand combinations. Multiple species were observed in the UV-vis spectra of the ferrous ligand-bound P450s. None of the enzymes gave rise to the isolation of a single species with a Soret band at ∼442-447 nm, indicative of a 6-coordinate ferrous thiolate species with a nitrogen-donor ligand. A ferrous species with Soret band at ∼427 nm coupled with an α-band of increased intensity was observed with the imidazole ligands. With some enzyme-ligand combinations reduction resulted in breaking of the iron‑nitrogen bond yielding a 5-coordinate high-spin ferrous species. In other instances, the ferrous form was readily oxidised back to the ferric form on addition of the ligand.
Collapse
Affiliation(s)
- Hebatalla Mohamed
- Department of Chemistry, University Adelaide, Adelaide, SA 5005, Australia
| | - Amna Ghith
- Department of Chemistry, University Adelaide, Adelaide, SA 5005, Australia
| | - Stephen G Bell
- Department of Chemistry, University Adelaide, Adelaide, SA 5005, Australia.
| |
Collapse
|
15
|
Evolution of Cytochrome P450 Enzymes and Their Redox Partners in Archaea. Int J Mol Sci 2023; 24:ijms24044161. [PMID: 36835573 PMCID: PMC9962201 DOI: 10.3390/ijms24044161] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 02/16/2023] [Accepted: 02/17/2023] [Indexed: 02/22/2023] Open
Abstract
Cytochrome P450 monooxygenases (CYPs/P450s) and their redox partners, ferredoxins, are ubiquitous in organisms. P450s have been studied in biology for over six decades owing to their distinct catalytic activities, including their role in drug metabolism. Ferredoxins are ancient proteins involved in oxidation-reduction reactions, such as transferring electrons to P450s. The evolution and diversification of P450s in various organisms have received little attention and no information is available for archaea. This study is aimed at addressing this research gap. Genome-wide analysis revealed 1204 P450s belonging to 34 P450 families and 112 P450 subfamilies, where some families and subfamilies are expanded in archaea. We also identified 353 ferredoxins belonging to the four types 2Fe-2S, 3Fe-4S, 7Fe-4S and 2[4Fe-4S] in 40 archaeal species. We found that bacteria and archaea shared the CYP109, CYP147 and CYP197 families, as well as several ferredoxin subtypes, and that these genes are co-present on archaeal plasmids and chromosomes, implying the plasmid-mediated lateral transfer of these genes from bacteria to archaea. The absence of ferredoxins and ferredoxin reductases in the P450 operons suggests that the lateral transfer of these genes is independent. We present different scenarios for the evolution and diversification of P450s and ferredoxins in archaea. Based on the phylogenetic analysis and high affinity to diverged P450s, we propose that archaeal P450s could have diverged from CYP109, CYP147 and CYP197. Based on this study's results, we propose that all archaeal P450s are bacterial in origin and that the original archaea had no P450s.
Collapse
|
16
|
Smit MS, Maseme MJ, van Marwijk J, Aschenbrenner JC, Opperman DJ. Delineation of the CYP505E subfamily of fungal self-sufficient in-chain hydroxylating cytochrome P450 monooxygenases. Appl Microbiol Biotechnol 2023; 107:735-747. [PMID: 36607403 DOI: 10.1007/s00253-022-12329-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2022] [Revised: 11/24/2022] [Accepted: 12/07/2022] [Indexed: 01/07/2023]
Abstract
Cytochrome P450 monooxygenases (CYP450s) are abundant in eukaryotes, specifically in plants and fungi where they play important roles in the synthesis and degradation of secondary metabolites. In eukaryotes, the best studied "self-sufficient" CYP450s, with a fused redox partner, belong to the CYP505 family. Members of the CYP505 family are generally considered sub-terminal fatty acid hydroxylases. CYP505E3 from Aspergillus terreus, however, gives remarkable in-chain hydroxylation at the ω-7 position of C10 to C16 alkanes and C12 and C14 fatty alcohols. Because CYP505E3 is a promising catalyst for the synthesis of δ-dodecalactone, we set out to delineate the unique ω-7 hydroxylase activity of CYP505E3. CYP505E3 and six additional CYP505Es as well as four closely related CYP505s from four different subfamilies were expressed in Pichia pastoris. Only the CYP505Es, sharing more than 70% amino acid identity, displayed significant ω-7 hydroxylase activity toward 1-dodecanol, dodecanoic acid, and tetradecanoic acid giving products that can readily be converted to δ-dodecalactone. Concentrations of δ-dodecalactone, directly extracted from dodecanoic acid biotransformations, were higher than previously obtained with E. coli. Searches of the UniProt and NCBI databases yielded a total of only 23 unique CYP505Es, all from the Aspergillaceae. Given that CYP505Es with this remarkable activity occur in only a few Aspergillus and Penicillium spp., we further explored the genetic environments in which they occur. These were found to be very distinct environments which include a specific ABC transporter but could not be linked to apparent secondary metabolite gene clusters. KEY POINTS: • Identified CYP505Es share > 70% amino acid identity. • CYP505Es hydroxylate 1-dodecanol, dodecanoic, and tetradecanoic acid at ω-7 position. • CYP505E genes occur in Aspergillus and Penicillium spp. near an ABC transporter.
Collapse
Affiliation(s)
- Martha Sophia Smit
- Department of Microbiology and Biochemistry, University of the Free State, Bloemfontein, South Africa. .,South African DST-NRF Centre of Excellence in Catalysis, c*change, University of Cape Town, Cape Town, South Africa.
| | - Mpeyake Jacob Maseme
- Department of Microbiology and Biochemistry, University of the Free State, Bloemfontein, South Africa.,South African DST-NRF Centre of Excellence in Catalysis, c*change, University of Cape Town, Cape Town, South Africa
| | - Jacqueline van Marwijk
- Department of Microbiology and Biochemistry, University of the Free State, Bloemfontein, South Africa.,South African DST-NRF Centre of Excellence in Catalysis, c*change, University of Cape Town, Cape Town, South Africa
| | - Jasmin Cara Aschenbrenner
- Department of Microbiology and Biochemistry, University of the Free State, Bloemfontein, South Africa.,South African DST-NRF Centre of Excellence in Catalysis, c*change, University of Cape Town, Cape Town, South Africa
| | - Diederik Johannes Opperman
- Department of Microbiology and Biochemistry, University of the Free State, Bloemfontein, South Africa.,South African DST-NRF Centre of Excellence in Catalysis, c*change, University of Cape Town, Cape Town, South Africa
| |
Collapse
|
17
|
Pardhe BD, Kwon KP, Park JK, Lee JH, Oh TJ. H 2O 2-Driven Hydroxylation of Steroids Catalyzed by Cytochrome P450 CYP105D18: Exploration of the Substrate Access Channel. Appl Environ Microbiol 2023; 89:e0158522. [PMID: 36511686 PMCID: PMC9888293 DOI: 10.1128/aem.01585-22] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Accepted: 11/04/2022] [Indexed: 12/15/2022] Open
Abstract
CYP105D18 supports H2O2 as an oxygen surrogate for catalysis well and shows high H2O2 resistance capacity. We report the hydroxylation of different steroids using H2O2 as a cosubstrate. Testosterone was regiospecifically hydroxylated to 2β-hydroxytestosterone. Based on the experimental data and molecular docking, we predicted that hydroxylation of methyl testosterone and nandrolone would occur at position 2 in the A-ring, while hydroxylation of androstenedione and adrenosterone was predicted to occur in the B-ring. Further, structure-guided rational design of the substrate access channel was performed with the mutagenesis of residues S63, R82, and F184. Among the mutants, S63A showed a marked decrease in product formation, while F184A showed a significant increase in product formation in testosterone, nandrolone, methyl testosterone, androstenedione, and adrenosterone. The catalytic efficiency (kcat/Km) toward testosterone was increased 1.36-fold in the F184A mutant over that in the wild-type enzyme. These findings might facilitate the potential use of CYP105D18 and further engineering to establish the basis of biotechnological applications. IMPORTANCE The structural modification of steroids is a challenging chemical reaction. Modifying the core ring and the side chain improves the biological activity of steroids. In particular, bacterial cytochrome P450s are used as promiscuous enzymes for the activation of nonreactive carbons of steroids. In the present work, we reported the H2O2-mediated hydroxylation of steroids by CYP105D18, which also overcomes the use of expensive cofactors. Further, exploring the substrate access channel and modifying the bulky amino acid F184A increase substrate conversion while modifying the substrate recognizing amino acid S63 markedly decreases product formation. Exploring the substrate access channel and the rational design of CYP105D18 can improve the substrate conversion, which facilitates the engineering of P450s for industrial application.
Collapse
Affiliation(s)
- Bashu Dev Pardhe
- Department of Life Science and Biochemical Engineering, Sunmoon University, Asan-si, Chungnam, Republic of Korea
| | - Kyoung Pyo Kwon
- Department of Pharmaceutical Engineering and Biotechnology, Sunmoon University, Asan-si, Chungnam, Republic of Korea
| | - Jong Kook Park
- Department of Biomedical Science and Research Institute for Bioscience & Biotechnology, Hallym University, Chuncheon, Gangwon-do, Republic of Korea
| | - Jun Hyuck Lee
- Research Unit of Cryogenic Novel Material, Korea Polar Research Institute, Incheon, Republic of Korea
- Department of Polar Sciences, University of Science and Technology, Incheon, Republic of Korea
| | - Tae-Jin Oh
- Department of Life Science and Biochemical Engineering, Sunmoon University, Asan-si, Chungnam, Republic of Korea
- Department of Pharmaceutical Engineering and Biotechnology, Sunmoon University, Asan-si, Chungnam, Republic of Korea
- Genome-based BioIT Convergence Institute, Asan-si, Chungnam, Republic of Korea
| |
Collapse
|
18
|
Dos Santos VHP, Dos Santos WT, Ionta M, de Paula ACC, Silva EDO. Biotransformation of hydroxychloroquine to evaluate the cytotoxicity of its metabolites and mimic mammalian metabolism. RESULTS IN CHEMISTRY 2023; 5:100761. [PMID: 36619209 PMCID: PMC9806929 DOI: 10.1016/j.rechem.2022.100761] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Accepted: 12/31/2022] [Indexed: 01/03/2023] Open
Abstract
Hydroxychloroquine (HCQ) displays attractive anti-inflammatory and antiviral effects. Because of that, such a drug made part of some clinical trials for combating Sars-CoV-2 during the COVID-19 pandemic. The present study aimed to conduct the biotransformation of HCQ by filamentous fungi reported as microbial models of mammalian drug metabolism to evaluate its cytotoxic after metabolization. Cunninghamella echinulata var. elegans ATCC 8688a could efficiently biotransform HCQ into one main metabolite identified as the new 4-(1,2,3,4-tetrahydroquinolin-4-ylamino)pentan-1-ol (HCQ-M). The microbial transformation occurred through N-dealkylation, 7-chloro-elimination, and reduction of the two conjugated double-bond from the quinoline system of HCQ. The cytotoxic profiles of HCQ and its metabolite were evaluated using CCD-1059Sk cells (human fibroblasts) through sulforhodamine B, trypan blue, and Live/Dead assays. Both HCQ and HCQ-M displayed cytotoxic activities in human fibroblasts, but HCQ-M was significantly more toxic than HCQ. The reported findings should be considered for further clinical studies of HCQ and will be important for guidance in achieving new derivatives from it.
Collapse
Affiliation(s)
| | | | - Marisa Ionta
- Institute of Biomedical Sciences, Federal University of Alfenas, Alfenas, MG, Brazil
| | | | - Eliane de Oliveira Silva
- Organic Chemistry Department, Chemistry Institute, Federal University of Bahia, Salvador, BA, Brazil
| |
Collapse
|
19
|
Saprophytic to Pathogenic Mycobacteria: Loss of Cytochrome P450s Vis a Vis Their Prominent Involvement in Natural Metabolite Biosynthesis. Int J Mol Sci 2022; 24:ijms24010149. [PMID: 36613600 PMCID: PMC9820752 DOI: 10.3390/ijms24010149] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Revised: 12/12/2022] [Accepted: 12/16/2022] [Indexed: 12/24/2022] Open
Abstract
Cytochrome P450 monooxygenases (P450s/CYPs) are ubiquitous enzymes with unique regio- and stereo-selective oxidation activities. Due to these properties, P450s play a key role in the biosynthesis of natural metabolites. Mycobacterial species are well-known producers of complex metabolites that help them survive in diverse ecological niches, including in the host. In this study, a comprehensive analysis of P450s and their role in natural metabolite synthesis in 2666 mycobacterial species was carried out. The study revealed the presence of 62,815 P450s that can be grouped into 182 P450 families and 345 subfamilies. Blooming (the presence of more than one copy of the same gene) and expansion (presence of the same gene in many species) were observed at the family and subfamily levels. CYP135 was the dominant family in mycobacterial species. The mycobacterial species have distinct P450 profiles, indicating that lifestyle impacts P450 content in their genome vis a vis P450s, playing a key role in organisms' adaptation. Analysis of the P450 profile revealed a gradual loss of P450s from non-pathogenic to pathogenic mycobacteria. Pathogenic mycobacteria have more P450s in biosynthetic gene clusters that produce natural metabolites. This indicates that P450s are recruited for the biosynthesis of unique metabolites, thus helping these pathogens survive in their niches. This study is the first to analyze P450s and their role in natural metabolite synthesis in many mycobacterial species.
Collapse
|
20
|
LaCourse KD, Zepeda-Rivera M, Kempchinsky AG, Baryiames A, Minot SS, Johnston CD, Bullman S. The cancer chemotherapeutic 5-fluorouracil is a potent Fusobacterium nucleatum inhibitor and its activity is modified by intratumoral microbiota. Cell Rep 2022; 41:111625. [PMID: 36384132 PMCID: PMC10790632 DOI: 10.1016/j.celrep.2022.111625] [Citation(s) in RCA: 67] [Impact Index Per Article: 22.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Revised: 08/26/2022] [Accepted: 10/17/2022] [Indexed: 11/17/2022] Open
Abstract
Fusobacterium nucleatum (Fn) is a dominant bacterial species in colorectal cancer (CRC) tissue that is associated with cancer progression and poorer patient prognosis. Following a small-molecule inhibitor screen of 1,846 bioactive compounds against a Fn CRC isolate, we find that 15% of inhibitors are antineoplastic agents including fluoropyrimidines. Validation of these findings reveals that 5-fluorouracil (5-FU), a first-line CRC chemotherapeutic, is a potent inhibitor of Fn CRC isolates. We also identify members of the intratumoral microbiota, including Escherichia coli, that are resistant to 5-FU. Further, CRC E. coli isolates can modify 5-FU and relieve 5-FU toxicity toward otherwise-sensitive Fn and human CRC epithelial cells. Lastly, we demonstrate that ex vivo patient CRC tumor microbiota undergo community disruption after 5-FU exposure and have the potential to deplete 5-FU levels, reducing local drug efficacy. Together, these observations argue for further investigation into the role of the CRC intratumoral microbiota in patient response to chemotherapy.
Collapse
Affiliation(s)
- Kaitlyn D LaCourse
- Human Biology Division, Fred Hutchinson Cancer Center, 1100 Fairview Ave N, Seattle, WA 98109, USA
| | - Martha Zepeda-Rivera
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Center, 1100 Fairview Ave N, Seattle, WA 98109, USA
| | - Andrew G Kempchinsky
- Human Biology Division, Fred Hutchinson Cancer Center, 1100 Fairview Ave N, Seattle, WA 98109, USA
| | - Alexander Baryiames
- Human Biology Division, Fred Hutchinson Cancer Center, 1100 Fairview Ave N, Seattle, WA 98109, USA
| | - Samuel S Minot
- Data Core, Fred Hutchinson Cancer Center, Seattle, WA 98109, USA
| | - Christopher D Johnston
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Center, 1100 Fairview Ave N, Seattle, WA 98109, USA.
| | - Susan Bullman
- Human Biology Division, Fred Hutchinson Cancer Center, 1100 Fairview Ave N, Seattle, WA 98109, USA.
| |
Collapse
|
21
|
Subedi P, Do H, Lee JH, Oh TJ. Crystal Structure and Biochemical Analysis of a Cytochrome P450 CYP101D5 from Sphingomonas echinoides. Int J Mol Sci 2022; 23:ijms232113317. [PMID: 36362105 PMCID: PMC9655578 DOI: 10.3390/ijms232113317] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2022] [Revised: 10/28/2022] [Accepted: 10/30/2022] [Indexed: 11/06/2022] Open
Abstract
Cytochrome P450 enzymes (CYPs) are heme-containing enzymes that catalyze hydroxylation with a variety of biological molecules. Despite their diverse activity and substrates, the structures of CYPs are limited to a tertiary structure that is similar across all the enzymes. It has been presumed that CYPs overcome substrate selectivity with highly flexible loops and divergent sequences around the substrate entrance region. Here, we report the newly identified CYP101D5 from Sphingomonas echinoides. CYP101D5 catalyzes the hydroxylation of β-ionone and flavonoids, including naringenin and apigenin, and causes the dehydrogenation of α-ionone. A structural investigation and comparison with other CYP101 families indicated that spatial constraints at the substrate-recognition site originate from the B/C loop. Furthermore, charge distribution at the substrate binding site may be important for substrate selectivity and the preference for CYP101D5.
Collapse
Affiliation(s)
- Pradeep Subedi
- Department of Life Science and Biochemical Engineering, Graduate School, Sun Moon University, Asan 31460, Korea
| | - Hackwon Do
- Research Unit of Cryogenic Novel Material, Korea Polar Research Institute, Incheon 21990, Korea
- Department of Polar Sciences, University of Science and Technology, Incheon 21990, Korea
| | - Jun Hyuck Lee
- Research Unit of Cryogenic Novel Material, Korea Polar Research Institute, Incheon 21990, Korea
- Department of Polar Sciences, University of Science and Technology, Incheon 21990, Korea
- Correspondence: (J.H.L.); (T.-J.O.); Tel.: +82-32-760-5555 (J.H.L.); +82-41-530-2677 (T.-J.O.); Fax: +82-32-760-5509 (J.H.L.); +82-41-530-2279 (T.-J.O.)
| | - Tae-Jin Oh
- Department of Life Science and Biochemical Engineering, Graduate School, Sun Moon University, Asan 31460, Korea
- Genome-Based BioIT Convergence Institute, Asan 31460, Korea
- Department of Pharmaceutical Engineering and Biotechnology, Sun Moon University, Asan 31460, Korea
- Correspondence: (J.H.L.); (T.-J.O.); Tel.: +82-32-760-5555 (J.H.L.); +82-41-530-2677 (T.-J.O.); Fax: +82-32-760-5509 (J.H.L.); +82-41-530-2279 (T.-J.O.)
| |
Collapse
|
22
|
Ghosh S, Moorthy B, Haribabu B, Jala VR. Cytochrome P450 1A1 is essential for the microbial metabolite, Urolithin A-mediated protection against colitis. Front Immunol 2022; 13:1004603. [PMID: 36159798 PMCID: PMC9493474 DOI: 10.3389/fimmu.2022.1004603] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Accepted: 08/19/2022] [Indexed: 12/02/2022] Open
Abstract
Background Cytochrome P450 Family 1 Subfamily A Member 1 (CYP1A1) pathway, which is regulated by aryl hydrocarbon receptor (AhR) plays an important role in chemical carcinogenesis and xenobiotic metabolism. Recently, we demonstrated that the microbial metabolite Urolithin A (UroA) mitigates colitis through its gut barrier protective and anti-inflammatory activities in an AhR-dependent manner. Here, we explored role of CYP1A1 in UroA-mediated gut barrier and immune functions in regulation of inflammatory bowel disease (IBD). Methods To determine the role of CYP1A1 in UroA-mediated protectives activities against colitis, we subjected C57BL/6 mice and Cyp1a1-/- mice to dextran sodium sulphate (DSS)-induced acute colitis model. The phenotypes of the mice were characterized by determining loss of body weight, intestinal permeability, systemic and colonic inflammation. Further, we evaluated the impact of UroA on regulation of immune cell populations by flow cytometry and confocal imaging using both in vivo and ex vivo model systems. Results UroA treatment mitigated DSS-induced acute colitis in the wildtype mice. However, UroA-failed to protect Cyp1a1-/- mice against colitis, as evident from non-recovery of body weight loss, shortened colon lengths and colon weight/length ratios. Further, UroA failed to reduce DSS-induced inflammation, intestinal permeability and upregulate tight junction proteins in Cyp1a1-/- mice. Interestingly, UroA induced the expansion of T-reg cells in a CYP1A1-dependent manner both in vivo and ex vivo models. Conclusion Our results suggest that CYP1A1 expression is essential for UroA-mediated enhanced gut barrier functions and protective activities against colitis. We postulate that CYP1A1 plays critical and yet unknown functions beyond xenobiotic metabolism in the regulation of gut epithelial integrity and immune systems to maintain gut homeostasis in IBD pathogenesis.
Collapse
Affiliation(s)
- Sweta Ghosh
- Department of Microbiology and Immunology, Brown Cancer Center, Center for Microbiomics, Inflammation and Pathogenicity, University of Louisville, Louisville, KY, United States
| | - Bhagavatula Moorthy
- Department of Pediatrics and Neonatology, Baylor College of Medicine, Houston, TX, United States
| | - Bodduluri Haribabu
- Department of Microbiology and Immunology, Brown Cancer Center, Center for Microbiomics, Inflammation and Pathogenicity, University of Louisville, Louisville, KY, United States
| | - Venkatakrishna Rao Jala
- Department of Microbiology and Immunology, Brown Cancer Center, Center for Microbiomics, Inflammation and Pathogenicity, University of Louisville, Louisville, KY, United States
- *Correspondence: Venkatakrishna Rao Jala,
| |
Collapse
|
23
|
Abstract
Heme (protoheme IX) is an essential cofactor for a large variety of proteins whose functions vary from one electron reactions to binding gases. While not ubiquitous, heme is found in the great majority of known life forms. Unlike most cofactors that are acquired from dietary sources, the vast majority of organisms that utilize heme possess a complete pathway to synthesize the compound. Indeed, dietary heme is most frequently utilized as an iron source and not as a source of heme. In Nature there are now known to exist three pathways to synthesize heme. These are the siroheme dependent (SHD) pathway which is the most ancient, but least common of the three; the coproporphyrin dependent (CPD) pathway which with one known exception is found only in gram positive bacteria; and the protoporphyrin dependent (PPD) pathway which is found in gram negative bacteria and all eukaryotes. All three pathways share a core set of enzymes to convert the first committed intermediate, 5-aminolevulinate (ALA) into uroporphyrinogen III. In the current review all three pathways are reviewed as well as the two known pathways to synthesize ALA. In addition, interesting features of some heme biosynthesis enzymes are discussed as are the regulation and disorders of heme biosynthesis.
Collapse
Affiliation(s)
- Harry A Dailey
- Department of Biochemistry and Molecular Biology, University of Georgia, Athens, GA 30602-1111, USA
- Department of Microbiology, University of Georgia, Athens, GA 30602-1111, USA
| | - Amy E Medlock
- Department of Biochemistry and Molecular Biology, University of Georgia, Athens, GA 30602-1111, USA
- Augusta University/University of Georgia Medical Partnership, University of Georgia, Athens, GA, USA
| |
Collapse
|
24
|
Melo de Almeida E, Tisserand F, Faria M, Chèvre N. Efficiency of Several Cytochrome P450 Biomarkers in Highlighting the Exposure of Daphnia magna to an Organophosphate Pesticide. TOXICS 2022; 10:482. [PMID: 36006161 PMCID: PMC9416226 DOI: 10.3390/toxics10080482] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Revised: 08/13/2022] [Accepted: 08/16/2022] [Indexed: 06/15/2023]
Abstract
The cytochromes P450 (CYP450) represent a major enzyme family operating mostly in the first step of xenobiotic detoxification in aquatic organisms. The ability to measure these CYP450 enzymes' activities provides a crucial tool to understand organisms' response to chemical stressors. However, research on CYP450 activity measurement is still limited and has had variable success. In the present study, we optimize, compile, and compare existing scientific information and techniques for a series of CYP450 biomarkers (EROD, MROD, ECOD, APND, and ERND) used on Daphnia magna. Additionally, we explored these CYP450 biomarkers' activities through the first 5 days of life of daphnids, providing a link between their age and sensitivity to chemicals. In the experiment, daphnids were exposed to an organophosphate pesticide (diazinon) from birth to measure the molecular response of the detoxification process. Our results suggest EROD as the most applicable biomarker for organisms such as D. magna, with a higher organophosphate detoxification rate in daphnids that are 2 and 5 days old. Additionally, a larger body size allowed a more accurate EROD measurement; hence, we emphasize the use of 5-day-old daphnids when analyzing their detoxification response.
Collapse
Affiliation(s)
- Elodie Melo de Almeida
- IDYST, Faculty of Geosciences and Environments, University of Lausanne, 1015 Lausanne, Switzerland
- School of Biology, Faculty of Biology and Medicine, University of Lausanne, 1015 Lausanne, Switzerland
| | - Floriane Tisserand
- IDYST, Faculty of Geosciences and Environments, University of Lausanne, 1015 Lausanne, Switzerland
| | - Micaela Faria
- IDYST, Faculty of Geosciences and Environments, University of Lausanne, 1015 Lausanne, Switzerland
| | - Nathalie Chèvre
- IDYST, Faculty of Geosciences and Environments, University of Lausanne, 1015 Lausanne, Switzerland
| |
Collapse
|
25
|
Kim V, Kim D, Lee S, Lee G, Lee SA, Kang LW, Kim D. Structural characterization and fatty acid epoxidation of CYP184A1 from Streptomyces avermitilis. Arch Biochem Biophys 2022; 727:109338. [PMID: 35779593 DOI: 10.1016/j.abb.2022.109338] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2022] [Revised: 06/22/2022] [Accepted: 06/23/2022] [Indexed: 11/02/2022]
Abstract
The genome of Streptomyces avermitilis contains 33 cytochrome P450 genes. Among the P450 gene products of S. avermitilis, we characterized the biochemical function and structural aspects of CYP184A1. Ultra-performance liquid chromatography-tandem mass spectrometry analysis showed that CYP184A1 induced an epoxidation reaction to produce 9,10-epoxystearic acid. Steady-state kinetic analysis yielded a kcat value of 0.0067 min-1 and a Km value 10 μM. The analysis of its crystal structures illustrated that the overall CYP184A1 structure adopts the canonical scaffold of cytochrome P450 and possesses a narrow and deep substrate pocket architecture that is required for binding to linear chain fatty acids. In the structure of the CYP184A1 oleic acid complex (CYP184A1-OA), C9-C10 of oleic acid was bound to heme for the productive epoxidation reaction. This study elucidates the roles of P450 enzymes in the oxidative metabolism of fatty acids in Streptomyces species.
Collapse
Affiliation(s)
- Vitchan Kim
- Department of Biological Sciences, Konkuk University, Seoul, 05025, South Korea
| | - Dogyeong Kim
- Department of Biological Sciences, Konkuk University, Seoul, 05025, South Korea
| | - Sunggyu Lee
- Department of Biological Sciences, Konkuk University, Seoul, 05025, South Korea
| | - Gyuhyeong Lee
- Department of Biological Sciences, Konkuk University, Seoul, 05025, South Korea
| | - Sang-A Lee
- Department of Biological Sciences, Konkuk University, Seoul, 05025, South Korea
| | - Lin-Woo Kang
- Department of Biological Sciences, Konkuk University, Seoul, 05025, South Korea
| | - Donghak Kim
- Department of Biological Sciences, Konkuk University, Seoul, 05025, South Korea.
| |
Collapse
|
26
|
Cai X, Qi J, Xu Z, Huang L, Li Y, Ren X, Kong Q. Three stilbenes make difference to the antifungal effects on ochratoxin A and its precursor production of Aspergillus carbonarius. Food Microbiol 2022; 103:103967. [DOI: 10.1016/j.fm.2021.103967] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2021] [Revised: 11/08/2021] [Accepted: 12/08/2021] [Indexed: 11/04/2022]
|
27
|
Malinga NA, Nzuza N, Padayachee T, Syed PR, Karpoormath R, Gront D, Nelson DR, Syed K. An Unprecedented Number of Cytochrome P450s Are Involved in Secondary Metabolism in Salinispora Species. Microorganisms 2022; 10:microorganisms10050871. [PMID: 35630316 PMCID: PMC9143469 DOI: 10.3390/microorganisms10050871] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Revised: 04/15/2022] [Accepted: 04/19/2022] [Indexed: 01/04/2023] Open
Abstract
Cytochrome P450 monooxygenases (CYPs/P450s) are heme thiolate proteins present in species across the biological kingdoms. By virtue of their broad substrate promiscuity and regio- and stereo-selectivity, these enzymes enhance or attribute diversity to secondary metabolites. Actinomycetes species are well-known producers of secondary metabolites, especially Salinispora species. Despite the importance of P450s, a comprehensive comparative analysis of P450s and their role in secondary metabolism in Salinispora species is not reported. We therefore analyzed P450s in 126 strains from three different species Salinispora arenicola, S. pacifica, and S. tropica. The study revealed the presence of 2643 P450s that can be grouped into 45 families and 103 subfamilies. CYP107 and CYP125 families are conserved, and CYP105 and CYP107 families are bloomed (a P450 family with many members) across Salinispora species. Analysis of P450s that are part of secondary metabolite biosynthetic gene clusters (smBGCs) revealed Salinispora species have an unprecedented number of P450s (1236 P450s-47%) part of smBGCs compared to other bacterial species belonging to the genera Streptomyces (23%) and Mycobacterium (11%), phyla Cyanobacteria (8%) and Firmicutes (18%) and the classes Alphaproteobacteria (2%) and Gammaproteobacteria (18%). A peculiar characteristic of up to six P450s in smBGCs was observed in Salinispora species. Future characterization Salinispora species P450s and their smBGCs have the potential for discovering novel secondary metabolites.
Collapse
Affiliation(s)
- Nsikelelo Allison Malinga
- Department of Biochemistry and Microbiology, Faculty of Science and Agriculture, University of Zululand, KwaDlangezwa 3886, South Africa; (N.A.M.); (N.N.); (T.P.)
| | - Nomfundo Nzuza
- Department of Biochemistry and Microbiology, Faculty of Science and Agriculture, University of Zululand, KwaDlangezwa 3886, South Africa; (N.A.M.); (N.N.); (T.P.)
| | - Tiara Padayachee
- Department of Biochemistry and Microbiology, Faculty of Science and Agriculture, University of Zululand, KwaDlangezwa 3886, South Africa; (N.A.M.); (N.N.); (T.P.)
| | - Puleng Rosinah Syed
- Department of Pharmaceutical Chemistry, College of Health Sciences, University of KwaZulu-Natal, Durban 4000, South Africa; (P.R.S.); (R.K.)
| | - Rajshekhar Karpoormath
- Department of Pharmaceutical Chemistry, College of Health Sciences, University of KwaZulu-Natal, Durban 4000, South Africa; (P.R.S.); (R.K.)
| | - Dominik Gront
- Faculty of Chemistry, Biological and Chemical Research Centre, University of Warsaw, Pasteura 1, 02-093 Warsaw, Poland;
| | - David R. Nelson
- Department of Microbiology, Immunology and Biochemistry, University of Tennessee Health Science Center, Memphis, TN 38163, USA
- Correspondence: (D.R.N.); (K.S.); Tel.: +19-014-488-303 (D.R.N.); +27-035-902-6857 (K.S.)
| | - Khajamohiddin Syed
- Department of Biochemistry and Microbiology, Faculty of Science and Agriculture, University of Zululand, KwaDlangezwa 3886, South Africa; (N.A.M.); (N.N.); (T.P.)
- Correspondence: (D.R.N.); (K.S.); Tel.: +19-014-488-303 (D.R.N.); +27-035-902-6857 (K.S.)
| |
Collapse
|
28
|
Dauda WP, Morumda D, Abraham P, Adetunji CO, Ghazanfar S, Glen E, Abraham SE, Peter GW, Ogra IO, Ifeanyi UJ, Musa H, Azameti MK, Paray BA, Gulnaz A. Genome-Wide Analysis of Cytochrome P450s of Alternaria Species: Evolutionary Origin, Family Expansion and Putative Functions. J Fungi (Basel) 2022; 8:jof8040324. [PMID: 35448554 PMCID: PMC9028179 DOI: 10.3390/jof8040324] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Revised: 03/01/2022] [Accepted: 03/11/2022] [Indexed: 12/02/2022] Open
Abstract
Cytochrome P450s are a group of monooxygenase enzymes involved in primary, secondary and xenobiotic metabolisms. They have a wide application in the agriculture sector where they could serve as a target for herbicides or fungicides, while they could function in the pharmaceutical industry as drugs or drugs structures or for bioconversions. Alternaria species are among the most commonly encountered fungal genera, with most of them living as saprophytes in different habitats, while others are parasites of plants and animals. This study was conducted to elucidate the diversity and abundance, evolutionary relationships and cellular localization of 372 cytochrome P450 in 13 Alternaria species. The 372 CYP proteins were phylogenetically clustered into ten clades. Forty (40) clans and seventy-one (71) cyp families were identified, of which eleven (11) families were found to appear in one species each. The majority of the CYP proteins were located in the endomembrane system. Polyketide synthase (PKS) gene cluster was the predominant secondary metabolic-related gene cluster in all the Alternaria species studied, except in A. porriof, where non-ribosomal peptide synthetase genes were dominant. This study reveals the expansion of cyps in these fungal genera, evident in the family and clan expansions, which is usually associated with the evolution of fungal characteristics, especially their lifestyle either as parasites or saprophytes, with the ability to metabolize a wide spectrum of substrates. This study can be used to understand the biology, physiology and toxigenic potentials of P450 in these fungal genera.
Collapse
Affiliation(s)
- Wadzani Palnam Dauda
- Crop Science Unit, Department of Agronomy, Federal University Gashua, Gashua P.M.B. 1005, Yobe State, Nigeria
- Correspondence:
| | - Daji Morumda
- Department of Microbiology, Federal University Wukari, Wukari P.M.B. 1020, Taraba State, Nigeria;
| | - Peter Abraham
- Department of Horticulture, Federal College of Horticulture, Dadin Kowa P.M.B. 108, Gombe State, Nigeria;
| | - Charles Oluwaseun Adetunji
- Applied Microbiology, Biotechnology and Nanotechnology Laboratory, Department of Microbiology, Edo University Iyamho, Auchi P.M.B. 04, Edo State, Nigeria;
| | - Shakira Ghazanfar
- National Agricultural Research Centre, National Institute of Genomics and Agriculture Biotechnology (NIGAB), Park Road, Islamabad 45500, Pakistan;
| | - Elkanah Glen
- Department of Biochemistry, Federal University Lokoja, Lokoja P.M.B. 1154, Kogi State, Nigeria;
| | | | - Grace Wabba Peter
- Department of Biochemistry, Ahmadu Bello University, Zaria 800001, Kaduna State, Nigeria; (G.W.P.); (I.O.O.)
| | - Israel Ogwuche Ogra
- Department of Biochemistry, Ahmadu Bello University, Zaria 800001, Kaduna State, Nigeria; (G.W.P.); (I.O.O.)
| | - Ulasi Joseph Ifeanyi
- Department of Crop Science, University of Uyo, Uyo P.M.B. 1071, Akwa Ibom State, Nigeria;
| | - Hannatu Musa
- Department of Botany, Ahmadu Bello University, Zaria 800001, Kaduna State, Nigeria;
| | - Mawuli Kwamla Azameti
- Division of Molecular Biology and Biotechnology, Indian Agricultural Research Institute, New Delhi 110012, India;
| | - Bilal Ahamad Paray
- Department of Zoology, College of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia;
| | - Aneela Gulnaz
- College of Pharmacy, Woosuk University, Wanju-gun 55338, Korea;
| |
Collapse
|
29
|
Latent potentials of the white-rot basidiomycete Phanerochaete chrysosporium responsible for sesquiterpene metabolism: CYP5158A1 and CYP5144C8 decorate (E)-α-bisabolene. Enzyme Microb Technol 2022; 158:110037. [DOI: 10.1016/j.enzmictec.2022.110037] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2021] [Revised: 03/25/2022] [Accepted: 03/26/2022] [Indexed: 12/15/2022]
|
30
|
Tooker BC, Kandel SE, Work HM, Lampe JN. Pseudomonas aeruginosa cytochrome P450 CYP168A1 is a fatty acid hydroxylase that metabolizes arachidonic acid to the vasodilator 19-HETE. J Biol Chem 2022; 298:101629. [PMID: 35085556 PMCID: PMC8913318 DOI: 10.1016/j.jbc.2022.101629] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Revised: 01/08/2022] [Accepted: 01/20/2022] [Indexed: 01/08/2023] Open
Abstract
Pseudomonas aeruginosa is a Gram-negative opportunistic human pathogen that is highly prevalent in individuals with cystic fibrosis (CF). A major problem in treating CF patients infected with P. aeruginosa is the development of antibiotic resistance. Therefore, the identification of novel P. aeruginosa antibiotic drug targets is of the utmost urgency. The genome of P. aeruginosa contains four putative cytochrome P450 enzymes (CYPs) of unknown function that have never before been characterized. Analogous to some of the CYPs from Mycobacterium tuberculosis, these P. aeruginosa CYPs may be important for growth and colonization of CF patients’ lungs. In this study, we cloned, expressed, and characterized CYP168A1 from P. aeruginosa and identified it as a subterminal fatty acid hydroxylase. Spectral binding data and computational modeling of substrates and inhibitors suggest that CYP168A1 has a large, expansive active site and preferentially binds long chain fatty acids and large hydrophobic inhibitors. Furthermore, metabolic experiments confirm that the enzyme is capable of hydroxylating arachidonic acid, an important inflammatory signaling molecule present in abundance in the CF lung, to 19-hydroxyeicosatetraenoic acid (19-HETE; Km = 41 μM, Vmax = 220 pmol/min/nmol P450), a potent vasodilator, which may play a role in the pathogen’s ability to colonize the lung. Additionally, we found that the in vitro metabolism of arachidonic acid is subject to substrate inhibition and is also inhibited by the presence of the antifungal agent ketoconazole. This study identifies a new metabolic pathway in this important human pathogen that may be of utility in treating P. aeruginosa infections.
Collapse
Affiliation(s)
- Brian C Tooker
- Department of Pharmaceutical Sciences, Skaggs School of Pharmacy, University of Colorado, Aurora, Colorado, USA
| | - Sylvie E Kandel
- Department of Pharmaceutical Sciences, Skaggs School of Pharmacy, University of Colorado, Aurora, Colorado, USA
| | - Hannah M Work
- Department of Pharmaceutical Sciences, Skaggs School of Pharmacy, University of Colorado, Aurora, Colorado, USA
| | - Jed N Lampe
- Department of Pharmaceutical Sciences, Skaggs School of Pharmacy, University of Colorado, Aurora, Colorado, USA.
| |
Collapse
|
31
|
Adi Wicaksono W, Reisenhofer-Graber T, Erschen S, Kusstatscher P, Berg C, Krause R, Cernava T, Berg G. Phyllosphere-associated microbiota in built environment: Do they have the potential to antagonize human pathogens? J Adv Res 2022; 43:109-121. [PMID: 36585101 PMCID: PMC9811327 DOI: 10.1016/j.jare.2022.02.003] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Revised: 02/01/2022] [Accepted: 02/09/2022] [Indexed: 02/06/2023] Open
Abstract
INTRODUCTION The plant microbiota is known to protect its host against invasion by plant pathogens. Recent studies have indicated that the microbiota of indoor plants is transmitted to the local built environment where it might fulfill yet unexplored functions. A better understanding of the interplay of such microbial communities with human pathogens might provide novel cues related to natural inhibition of them. OBJECTIVE We studied the plant microbiota of two model indoor plants, Musa acuminata and Chlorophytum comosum, and their effect on human pathogens. The main objective was to identify mechanisms by which the microbiota of indoor plants inhibits human-pathogenic bacteria. METHODS Microbial communities and functioning were investigated using a comprehensive set of experiments and methods combining amplicon and shotgun metagenomic analyses with results from interaction assays. RESULTS A diverse microbial community was found to be present on Musa and Chlorophytum grown in different indoor environments; the datasets comprised 1066 bacterial, 1261 fungal, and 358 archaeal ASVs. Bacterial communities were specific for each plant species, whereas fungal and archaeal communities were primarily shaped by the built environment. Sphingomonas and Bacillus were found to be prevalent components of a ubiquitous core microbiome in the two model plants; they are well-known for antagonistic activity towards plant pathogens. Interaction assays indicated that they can also antagonize opportunistic human pathogens. Moreover, the native plant microbiomes harbored a broad spectrum of biosynthetic gene clusters, and in parallel, a variety of antimicrobial resistance genes. By conducting comparative metagenomic analyses between plants and abiotic surfaces, we found that the phyllosphere microbiota harbors features that are clearly distinguishable from the surrounding abiotic surfaces. CONCLUSIONS Naturally occurring phyllosphere bacteria can potentially act as a protective shield against opportunistic human pathogens. This knowledge and the underlying mechanisms can provide an important basis to establish a healthy microbiome in built environments.
Collapse
Affiliation(s)
- Wisnu Adi Wicaksono
- Institute of Environmental Biotechnology, Graz University of Technology, Graz, Austria.
| | | | - Sabine Erschen
- Institute of Environmental Biotechnology, Graz University of Technology, Graz, Austria.
| | - Peter Kusstatscher
- Institute of Environmental Biotechnology, Graz University of Technology, Graz, Austria.
| | - Christian Berg
- Institute of Plant Sciences, Karl-Franzens-University, Graz, Austria.
| | - Robert Krause
- Department of Internal Medicine, Medical University of Graz, Graz, Austria; BioTechMed Graz, Inter-university Cooperation Platform, Graz, Austria.
| | - Tomislav Cernava
- Institute of Environmental Biotechnology, Graz University of Technology, Graz, Austria; BioTechMed Graz, Inter-university Cooperation Platform, Graz, Austria.
| | - Gabriele Berg
- Institute of Environmental Biotechnology, Graz University of Technology, Graz, Austria; BioTechMed Graz, Inter-university Cooperation Platform, Graz, Austria; Leibniz Institute for Agricultural Engineering and Bioeconomy Potsdam, Potsdam, Germany; Institute for Biochemistry and Biology, University of Potsdam, Potsdam, Germany.
| |
Collapse
|
32
|
Pinto ACSM, De Pierri CR, Evangelista AG, Gomes ASDLPB, Luciano FB. Deoxynivalenol: Toxicology, Degradation by Bacteria, and Phylogenetic Analysis. Toxins (Basel) 2022; 14:toxins14020090. [PMID: 35202118 PMCID: PMC8876347 DOI: 10.3390/toxins14020090] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Revised: 01/19/2022] [Accepted: 01/20/2022] [Indexed: 01/27/2023] Open
Abstract
Deoxynivalenol (DON) is a toxic secondary metabolite produced by fungi that contaminates many crops, mainly wheat, maize, and barley. It affects animal health, causing intestinal barrier impairment and immunostimulatory effect in low doses and emesis, reduction in feed conversion rate, and immunosuppression in high doses. As it is very hard to completely avoid DON’s production in the field, mitigatory methods have been developed. Biodegradation has become a promising method as new microorganisms are studied and new enzymatic routes are described. Understanding the common root of bacteria with DON degradation capability and the relationship with their place of isolation may bring insights for more effective ways to find DON-degrading microorganisms. The purpose of this review is to bring an overview of the occurrence, regulation, metabolism, and toxicology of DON as addressed in recent publications focusing on animal production, as well as to explore the enzymatic routes described for DON’s degradation by microorganisms and the phylogenetic relationship among them.
Collapse
Affiliation(s)
- Anne Caroline Schoch Marques Pinto
- Graduate Program in Animal Science, School of Life Sciences, Pontifícia Universidade Católica do Paraná, 1155 Imaculada Conceição Street, Prado Velho, Curitiba 80215-901, Brazil; (A.C.S.M.P.); (A.G.E.); (A.S.d.L.P.B.G.)
| | - Camilla Reginatto De Pierri
- Graduate Program in Sciences—Biochemistry, Department of Biochemistry and Molecular Biology, Federal University of Paraná, 100 Coronel Francisco H. dos Santos Avenue, Jardim das Américas, Curitiba 81530-000, Brazil;
| | - Alberto Gonçalves Evangelista
- Graduate Program in Animal Science, School of Life Sciences, Pontifícia Universidade Católica do Paraná, 1155 Imaculada Conceição Street, Prado Velho, Curitiba 80215-901, Brazil; (A.C.S.M.P.); (A.G.E.); (A.S.d.L.P.B.G.)
| | - Ana Silvia de Lara Pires Batista Gomes
- Graduate Program in Animal Science, School of Life Sciences, Pontifícia Universidade Católica do Paraná, 1155 Imaculada Conceição Street, Prado Velho, Curitiba 80215-901, Brazil; (A.C.S.M.P.); (A.G.E.); (A.S.d.L.P.B.G.)
| | - Fernando Bittencourt Luciano
- Graduate Program in Animal Science, School of Life Sciences, Pontifícia Universidade Católica do Paraná, 1155 Imaculada Conceição Street, Prado Velho, Curitiba 80215-901, Brazil; (A.C.S.M.P.); (A.G.E.); (A.S.d.L.P.B.G.)
- Correspondence:
| |
Collapse
|
33
|
Sousa Teixeira MV, Fernandes LM, Stefanelli de Paula V, Ferreira AG, Jacometti Cardoso Furtado NA. Ent-hardwickiic acid from C. pubiflora and its microbial metabolites are more potent than fluconazole in vitro against Candida glabrata. Lett Appl Microbiol 2022; 74:622-629. [PMID: 34995375 DOI: 10.1111/lam.13648] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Revised: 12/02/2021] [Accepted: 01/03/2022] [Indexed: 11/29/2022]
Abstract
The incidence of Candida glabrata infections has rapidly grown and this species is among those responsible for causing invasive candidiasis with a high mortality rate. The diterpene ent-hardwickiic acid is a major constituent in Copaifera pubiflora oleoresin and the ethnopharmacological uses of this oleoresin by people from Brazilian Amazonian region point to a potential use of this major constituent as an antimicrobial. Therefore, the goal of this study was to evaluate the antifungal activity of ent-hardwickiic acid against Candida species and to produce derivatives of this diterpene by using microbial models for simulating the mammalian metabolism. The microbial transformations of ent-hardwickiic acid were carried out by Aspergillus brasiliensis and Cunninghamella elegans and hydroxylated metabolites were isolated and their chemical structures were determined. The antifungal activity of ent-hardwickiic acid and its metabolites was assessed by using the microdilution broth method in 96-well microplates and compared with that of fluconazole. All the diterpenes showed fungistatic effects (ranging from 19·7 to 75·2 µmol l-1 ) against C. glabrata at lower concentrations than fluconazole (163·2 µmol l-1 ) and were more potent fungicides (ranging from 39·5 to 150·4 µmol l-1 ) than fluconazole, which showed fungicidal effect at the concentration of 326·5 µmol l-1 .
Collapse
Affiliation(s)
- M V Sousa Teixeira
- Department of Pharmaceutical Sciences, School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Ribeirão Preto, Brazil
| | - L M Fernandes
- Department of Pharmaceutical Sciences, School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Ribeirão Preto, Brazil
| | - V Stefanelli de Paula
- Department of Pharmaceutical Sciences, School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Ribeirão Preto, Brazil
| | - A G Ferreira
- Laboratory of Nuclear Magnetic Resonance, Chemistry Department, Federal University of São Carlos, São Carlos, Brazil
| | - N A Jacometti Cardoso Furtado
- Department of Pharmaceutical Sciences, School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Ribeirão Preto, Brazil
| |
Collapse
|
34
|
Hilberath T, Raffaele A, Windeln LM, Urlacher VB. Evaluation of P450 monooxygenase activity in lyophilized recombinant E. coli cells compared to resting cells. AMB Express 2021; 11:162. [PMID: 34865204 PMCID: PMC8643389 DOI: 10.1186/s13568-021-01319-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2021] [Accepted: 11/16/2021] [Indexed: 12/12/2022] Open
Abstract
Cytochromes P450 catalyze oxidation of chemically diverse compounds and thus offer great potential for biocatalysis. Due to the complexity of these enzymes, their dependency of nicotinamide cofactors and redox partner proteins, recombinant microbial whole cells appear most appropriate for effective P450-mediated biocatalysis. However, some drawbacks exist that require individual solutions also when P450 whole-cell catalysts are used. Herein, we compared wet resting cells and lyophilized cells of recombinant E. coli regarding P450-catalyzed oxidation and found out that lyophilized cells are well-appropriate as P450-biocatalysts. E. coli harboring CYP105D from Streptomyces platensis DSM 40041 was used as model enzyme and testosterone as model substrate. Conversion was first enhanced by optimized handling of resting cells. Co-expression of the alcohol dehydrogenase from Rhodococcus erythropolis for cofactor regeneration did not affect P450 activity of wet resting cells (46% conversion) but was crucial to obtain sufficient P450 activity with lyophilized cells reaching a conversion of 72% under the same conditions. The use of recombinant lyophilized E. coli cells for P450 mediated oxidations is a promising starting point towards broader application of these enzymes.
Collapse
|
35
|
Reddy B, Kumar A, Mehta S, Sheoran N, Chinnusamy V, Prakash G. Hybrid de novo genome-reassembly reveals new insights on pathways and pathogenicity determinants in rice blast pathogen Magnaporthe oryzae RMg_Dl. Sci Rep 2021; 11:22922. [PMID: 34824307 PMCID: PMC8616942 DOI: 10.1038/s41598-021-01980-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2021] [Accepted: 11/01/2021] [Indexed: 01/20/2023] Open
Abstract
Blast disease incited by Magnaporthe oryzae is a major threat to sustain rice production in all rice growing nations. The pathogen is widely distributed in all rice paddies and displays rapid aerial transmissions, and seed-borne latent infection. In order to understand the genetic variability, host specificity, and molecular basis of the pathogenicity-associated traits, the whole genome of rice infecting Magnaporthe oryzae (Strain RMg_Dl) was sequenced using the Illumina and PacBio (RSII compatible) platforms. The high-throughput hybrid assembly of short and long reads resulted in a total of 375 scaffolds with a genome size of 42.43 Mb. Furthermore, comparative genome analysis revealed 99% average nucleotide identity (ANI) with other oryzae genomes and 83% against M. grisea, and 73% against M. poe genomes. The gene calling identified 10,553 genes with 10,539 protein-coding sequences. Among the detected transposable elements, the LTR/Gypsy and Type LINE showed high occurrence. The InterProScan of predicted protein sequences revealed that 97% protein family (PFAM), 98% superfamily, and 95% CDD were shared among RMg_Dl and reference 70-15 genome, respectively. Additionally, 550 CAZymes with high GH family content/distribution and cell wall degrading enzymes (CWDE) such endoglucanase, beta-glucosidase, and pectate lyase were also deciphered in RMg_Dl. The prevalence of virulence factors determination revealed that 51 different VFs were found in the genome. The biochemical pathway such as starch and sucrose metabolism, mTOR signaling, cAMP signaling, MAPK signaling pathways related genes were identified in the genome. The 49,065 SNPs, 3267 insertions and 3611 deletions were detected, and majority of these varinats were located on downstream and upstream region. Taken together, the generated information will be useful to develop a specific marker for diagnosis, pathogen surveillance and tracking, molecular taxonomy, and species delineation which ultimately leads to device improved management strategies for blast disease.
Collapse
Affiliation(s)
- Bhaskar Reddy
- Division of Plant Pathology, ICAR-Indian Agricultural Research Institute, New Delhi, 110012, India
| | - Aundy Kumar
- Division of Plant Pathology, ICAR-Indian Agricultural Research Institute, New Delhi, 110012, India.
| | - Sahil Mehta
- Crop Improvement Group, International Centre for Genetic Engineering and Biotechnology, New Delhi, 110067, India
| | - Neelam Sheoran
- Division of Plant Pathology, ICAR-Indian Agricultural Research Institute, New Delhi, 110012, India
| | - Viswanathan Chinnusamy
- Division of Plant Physiology, ICAR-Indian Agricultural Research Institute, New Delhi, 110012, India
| | - Ganesan Prakash
- Division of Plant Pathology, ICAR-Indian Agricultural Research Institute, New Delhi, 110012, India
| |
Collapse
|
36
|
Rybczyńska-Tkaczyk K. Enhanced Efficiency of the Removal of Cytostatic Anthracycline Drugs Using Immobilized Mycelium of Bjerkandera adusta CCBAS 930. Molecules 2021; 26:6842. [PMID: 34833934 PMCID: PMC8624642 DOI: 10.3390/molecules26226842] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Revised: 11/08/2021] [Accepted: 11/09/2021] [Indexed: 12/07/2022] Open
Abstract
The aim of this study was to evaluate the bioremoval of anthracycline antibiotics (daunomycin-DNR, doxorubicin-DOX, and mitoxantrone-MTX) by immobilized mycelium of B. adusta CCBAS 930. The activity of oxidoreductases: versatile peroxidases (VP), superoxide dismutase (SOD), catalase (CAT), and glucose oxidase (GOX), and the levels of phenolic compounds (PhC) and free radicals (SOR) were determined during the biotransformation of anthracyclines by B. adusta strain CCBAS 930. Moreover, the phytotoxicity (Lepidium sativum L.), biotoxicity (MARA assay), and genotoxicity of anthracyclines were evaluated after biological treatment. After 120 h, more than 90% of anthracyclines were removed by the immobilized mycelium of B. adusta CCBAS 930. The effective biotransformation of anthracyclines was correlated with detoxification and reduced genotoxicity.
Collapse
Affiliation(s)
- Kamila Rybczyńska-Tkaczyk
- Department of Environmental Microbiology, The University of Life Sciences, Leszczyńskiego Street 7, 20-069 Lublin, Poland
| |
Collapse
|
37
|
Diversification of Ferredoxins across Living Organisms. Curr Issues Mol Biol 2021; 43:1374-1390. [PMID: 34698119 PMCID: PMC8928951 DOI: 10.3390/cimb43030098] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Revised: 09/23/2021] [Accepted: 09/23/2021] [Indexed: 12/17/2022] Open
Abstract
Ferredoxins, iron-sulfur (Fe-S) cluster proteins, play a key role in oxidoreduction reactions. To date, evolutionary analysis of these proteins across the domains of life have been confined to observing the abundance of Fe-S cluster types (2Fe-2S, 3Fe-4S, 4Fe-4S, 7Fe-8S (3Fe-4s and 4Fe-4S) and 2[4Fe-4S]) and the diversity of ferredoxins within these cluster types was not studied. To address this research gap, here we propose a subtype classification and nomenclature for ferredoxins based on the characteristic spacing between the cysteine amino acids of the Fe-S binding motif as a subtype signature to assess the diversity of ferredoxins across the living organisms. To test this hypothesis, comparative analysis of ferredoxins between bacterial groups, Alphaproteobacteria and Firmicutes and ferredoxins collected from species of different domains of life that are reported in the literature has been carried out. Ferredoxins were found to be highly diverse within their types. Large numbers of alphaproteobacterial species ferredoxin subtypes were found in Firmicutes species and the same ferredoxin subtypes across the species of Bacteria, Archaea, and Eukarya, suggesting shared common ancestral origin of ferredoxins between Archaea and Bacteria and lateral gene transfer of ferredoxins from prokaryotes (Archaea/Bacteria) to eukaryotes. This study opened new vistas for further analysis of diversity of ferredoxins in living organisms.
Collapse
|
38
|
Zhang L, Wang Q. Harnessing P450 Enzyme for Biotechnology and Synthetic Biology. Chembiochem 2021; 23:e202100439. [PMID: 34542923 DOI: 10.1002/cbic.202100439] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2021] [Revised: 09/18/2021] [Indexed: 12/29/2022]
Abstract
Cytochrome P450 enzymes (P450s, CYPs) catalyze the oxidative transformation of a wide range of organic substrates. Their functions are crucial to xenobiotic metabolism and steroid transformation in humans and other organisms. The enzymes are promising for synthetic biology applications but limited by several drawbacks including low turnover rates, poor stability, the dependance of expensive cofactors and redox partners, and the narrow substrate scope. To conquer these obstacles, emerging strategies including substrate engineering, usage of decoy and decoy-based small molecules auxiliaries, designing of artificial enzyme cascades and the incorporation of materials have been explored based on the unique properties of P450s. These strategies can be applied to a wide range of P450s and can be combined with protein engineering to improve the enzymatic activities. This minireview will focus on some recent developments of these strategies which have been used to leverage P450 catalysis. Remaining challenges and future opportunities will also be discussed.
Collapse
Affiliation(s)
- Libo Zhang
- Department of Chemistry and Biochemistry University of South Carolina, 631 Sumter Street, Columbia, SC 29208, USA.,Department of Chemistry, University of California, One Shields Avenue, Davis, CA 95616, USA
| | - Qian Wang
- Department of Chemistry and Biochemistry University of South Carolina, 631 Sumter Street, Columbia, SC 29208, USA
| |
Collapse
|
39
|
Fessner ND, Nelson DR, Glieder A. Evolution and enrichment of CYP5035 in Polyporales: functionality of an understudied P450 family. Appl Microbiol Biotechnol 2021; 105:6779-6792. [PMID: 34459954 PMCID: PMC8426240 DOI: 10.1007/s00253-021-11444-2] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Revised: 05/29/2021] [Accepted: 07/03/2021] [Indexed: 11/29/2022]
Abstract
Abstract Bioprospecting for innovative basidiomycete cytochrome P450 enzymes (P450s) is highly desirable due to the fungi’s enormous enzymatic repertoire and outstanding ability to degrade lignin and detoxify various xenobiotics. While fungal metagenomics is progressing rapidly, the biocatalytic potential of the majority of these annotated P450 sequences usually remains concealed, although functional profiling identified several P450 families with versatile substrate scopes towards various natural products. Functional knowledge about the CYP5035 family, for example, is largely insufficient. In this study, the families of the putative P450 sequences of the four white-rot fungi Polyporus arcularius, Polyporus brumalis, Polyporus squamosus and Lentinus tigrinus were assigned, and the CYPomes revealed an unusual enrichment of CYP5035, CYP5136 and CYP5150. By computational analysis of the phylogeny of the former two P450 families, the evolution of their enrichment could be traced back to the Ganoderma macrofungus, indicating their evolutionary benefit. In order to address the knowledge gap on CYP5035 functionality, a representative subgroup of this P450 family of P. arcularius was expressed and screened against a test set of substrates. Thereby, the multifunctional enzyme CYP5035S7 converting several plant natural product classes was discovered. Aligning CYP5035S7 to 102,000 putative P450 sequences of 36 fungal species from Joint Genome Institute-provided genomes located hundreds of further CYP5035 family members, which subfamilies were classified if possible. Exemplified by these specific enzyme analyses, this study gives valuable hints for future bioprospecting of such xenobiotic-detoxifying P450s and for the identification of their biocatalytic potential. Graphical abstract ![]()
Key points • The P450 families CYP5035 and CYP5136 are unusually enriched in P. arcularius. • Functional screening shows CYP5035 assisting in the fungal detoxification mechanism. • Some Polyporales encompass an unusually large repertoire of detoxification P450s. Supplementary Information The online version contains supplementary material available at 10.1007/s00253-021-11444-2.
Collapse
Affiliation(s)
- Nico D Fessner
- Institute of Molecular Biotechnology, Graz University of Technology, NAWI Graz, Petersgasse 14, 8010, Graz, Austria
| | - David R Nelson
- Department of Microbiology, Immunology and Biochemistry, University of Tennessee Health Science Center, Memphis, TN, 38163, USA
| | - Anton Glieder
- Institute of Molecular Biotechnology, Graz University of Technology, NAWI Graz, Petersgasse 14, 8010, Graz, Austria.
| |
Collapse
|
40
|
Rutere C, Posselt M, Ho A, Horn MA. Biodegradation of metoprolol in oxic and anoxic hyporheic zone sediments: unexpected effects on microbial communities. Appl Microbiol Biotechnol 2021; 105:6103-6115. [PMID: 34338804 PMCID: PMC8390428 DOI: 10.1007/s00253-021-11466-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Revised: 07/19/2021] [Accepted: 07/20/2021] [Indexed: 11/29/2022]
Abstract
Abstract Metoprolol is widely used as a beta-blocker and considered an emerging contaminant of environmental concern due to pseudo persistence in wastewater effluents that poses a potential ecotoxicological threat to aquatic ecosystems. Microbial removal of metoprolol in the redox-delineated hyporheic zone (HZ) was investigated using streambed sediments supplemented with 15 or 150 μM metoprolol in a laboratory microcosm incubation under oxic and anoxic conditions. Metoprolol disappeared from the aqueous phase under oxic and anoxic conditions within 65 and 72 days, respectively. Metoprolol was refed twice after initial depletion resulting in accelerated disappearance under both conditions. Metoprolol disappearance was marginal in sterile control microcosms with autoclaved sediment. Metoprolol was transformed mainly to metoprolol acid in oxic microcosms, while metoprolol acid and α-hydroxymetoprolol were formed in anoxic microcosms. Transformation products were transient and disappeared within 30 days under both conditions. Effects of metoprolol on the HZ bacterial community were evaluated using DNA- and RNA-based time-resolved amplicon Illumina MiSeq sequencing targeting the 16S rRNA gene and 16S rRNA, respectively, and were prominent on 16S rRNA rather than 16S rRNA gene level suggesting moderate metoprolol-induced activity-level changes. A positive impact of metoprolol on Sphingomonadaceae and Enterobacteriaceae under oxic and anoxic conditions, respectively, was observed. Nitrifiers were impaired by metoprolol under oxic and anoxic conditions. Collectively, our findings revealed high metoprolol biodegradation potentials in the hyporheic zone under contrasting redox conditions associated with changes in the active microbial communities, thus contributing to the attenuation of micropollutants. Key points • High biotic oxic and anoxic metoprolol degradation potentials in the hyporheic zone. • Key metoprolol-associated taxa included Sphingomonadaceae, Enterobacteraceae, and Promicromonosporaceae. • Negative impact of metoprolol on nitrifiers. Supplementary Information The online version contains supplementary material available at 10.1007/s00253-021-11466-w.
Collapse
Affiliation(s)
- Cyrus Rutere
- Department of Ecological Microbiology, University of Bayreuth, Bayreuth, Germany.,Institute of Microbiology, Leibniz University Hannover, Herrenhäuser Straße 2, Hannover, Germany
| | - Malte Posselt
- Department of Environmental Science, Stockholm University, Stockholm, Sweden
| | - Adrian Ho
- Institute of Microbiology, Leibniz University Hannover, Herrenhäuser Straße 2, Hannover, Germany
| | - Marcus A Horn
- Department of Ecological Microbiology, University of Bayreuth, Bayreuth, Germany. .,Institute of Microbiology, Leibniz University Hannover, Herrenhäuser Straße 2, Hannover, Germany.
| |
Collapse
|
41
|
Akapo OO, Macnar JM, Kryś JD, Syed PR, Syed K, Gront D. In Silico Structural Modeling and Analysis of Interactions of Tremellomycetes Cytochrome P450 Monooxygenases CYP51s with Substrates and Azoles. Int J Mol Sci 2021; 22:7811. [PMID: 34360577 PMCID: PMC8346148 DOI: 10.3390/ijms22157811] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Revised: 05/21/2021] [Accepted: 05/25/2021] [Indexed: 11/16/2022] Open
Abstract
Cytochrome P450 monooxygenase CYP51 (sterol 14α-demethylase) is a well-known target of the azole drug fluconazole for treating cryptococcosis, a life-threatening fungal infection in immune-compromised patients in poor countries. Studies indicate that mutations in CYP51 confer fluconazole resistance on cryptococcal species. Despite the importance of CYP51 in these species, few studies on the structural analysis of CYP51 and its interactions with different azole drugs have been reported. We therefore performed in silico structural analysis of 11 CYP51s from cryptococcal species and other Tremellomycetes. Interactions of 11 CYP51s with nine ligands (three substrates and six azoles) performed by Rosetta docking using 10,000 combinations for each of the CYP51-ligand complex (11 CYP51s × 9 ligands = 99 complexes) and hierarchical agglomerative clustering were used for selecting the complexes. A web application for visualization of CYP51s' interactions with ligands was developed (http://bioshell.pl/azoledocking/). The study results indicated that Tremellomycetes CYP51s have a high preference for itraconazole, corroborating the in vitro effectiveness of itraconazole compared to fluconazole. Amino acids interacting with different ligands were found to be conserved across CYP51s, indicating that the procedure employed in this study is accurate and can be automated for studying P450-ligand interactions to cater for the growing number of P450s.
Collapse
Affiliation(s)
- Olufunmilayo Olukemi Akapo
- Department of Biochemistry and Microbiology, Faculty of Science and Agriculture, University of Zululand, KwaDlangezwa 3886, South Africa;
| | - Joanna M. Macnar
- College of Inter-Faculty Individual Studies in Mathematics and Natural Sciences, University of Warsaw, Stefana Banacha 2C, 02-097 Warsaw, Poland;
- Biological and Chemical Research Center, Faculty of Chemistry, University of Warsaw, Pasteura 1, 02-093 Warsaw, Poland;
| | - Justyna D. Kryś
- Biological and Chemical Research Center, Faculty of Chemistry, University of Warsaw, Pasteura 1, 02-093 Warsaw, Poland;
| | - Puleng Rosinah Syed
- Department of Pharmaceutical Chemistry, College of Health Sciences, University of KwaZulu-Natal, Durban 4000, South Africa;
| | - Khajamohiddin Syed
- Department of Biochemistry and Microbiology, Faculty of Science and Agriculture, University of Zululand, KwaDlangezwa 3886, South Africa;
| | - Dominik Gront
- Biological and Chemical Research Center, Faculty of Chemistry, University of Warsaw, Pasteura 1, 02-093 Warsaw, Poland;
| |
Collapse
|
42
|
Choi Y, Jeon J, Kim SD. Identification of biotransformation products of organophosphate ester from various aquatic species by suspect and non-target screening approach. WATER RESEARCH 2021; 200:117201. [PMID: 34015574 DOI: 10.1016/j.watres.2021.117201] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Revised: 03/30/2021] [Accepted: 04/26/2021] [Indexed: 06/12/2023]
Abstract
Organic pollutants that are introduced into the aquatic ecosystem can transform by various mechanisms. Biotransformation is an important process for predicting the remaining structures of pollutants in the ecosystem, and their toxicity. This study focused on triphenyl phosphate (TPHP), which is a commonly used organophosphate flame retardant and plasticizer. Since TPHP is particularly toxic to aquatic organisms, it is essential to understand its biotransformation in the aquatic environment. In the aquatic ecosystem, based on consideration of the producer-consumer-decomposer relationship, the biotransformation products of TPHP were identified, and their toxicity was predicted. Liquid chromatography-high resolution mass spectrometry was used for target, suspect, and non-target analysis. The obtained biotransformation products were estimated for toxicity based on the prediction model. As a result, 29 kinds of TPHP biotransformation products were identified in the aquatic ecosystem. Diphenyl phosphate was detected as a common biotransformation product through a hydrolysis reaction. In addition, products were identified by the biotransformation mechanisms of green algae, daphnid, fish, and microorganism. Most of the biotransformation products were observed to be less toxic than the parent compound due to detoxification except some products (hydroquinone, beta-lyase products, palmitoyl/stearyl conjugated products). Since various species exist in a close relationship with each other in an ecosystem, an integrated approach for not only single species but also various connected species is essential.
Collapse
Affiliation(s)
- Yeowool Choi
- Convergence Technology Research Center, Korea Institute of Industrial Technology (KITECH), Ansan 15588, Republic of Korea
| | - Junho Jeon
- Graduate School of FEED of Eco-Friendly Offshore Structure, Changwon National University, Changwon, Gyeongsangnamdo 51140, Republic of Korea; School of Civil, Environmental and Chemical Engineering, Changwon National University, Changwon, Gyeongsangnamdo 51140, Republic of Korea; Dept. of Smart Ocean Environmental Energy
| | - Sang Don Kim
- School of Earth Sciences and Environmental Engineering, Gwangju Institute of Science and Technology, 123 Cheomdangwagi-ro, Buk-gu, Gwangju 61005, Republic of Korea.
| |
Collapse
|
43
|
Gach J, Olejniczak T, Krężel P, Boratyński F. Microbial Synthesis and Evaluation of Fungistatic Activity of 3-Butyl-3-hydroxyphthalide, the Mammalian Metabolite of 3- n-Butylidenephthalide. Int J Mol Sci 2021; 22:ijms22147600. [PMID: 34299220 PMCID: PMC8304955 DOI: 10.3390/ijms22147600] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2021] [Revised: 06/25/2021] [Accepted: 07/13/2021] [Indexed: 01/05/2023] Open
Abstract
Phthalides are bioactive compounds that naturally occur in the family Apiaceae. Considering their potentially versatile applications, it is desirable to determine their physical properties, activity and metabolic pathways. This study aimed to examine the utility of whole-cell biocatalysts for obtaining 3-butyl-3-hydroxyphthalide, which is the metabolite formulated during mammalian metabolism of 3-n-butylidenephthalide. We performed transformations using 10 strains of fungi, five of which efficiently produced 3-butyl-3-hydroxyphthalide. The product yield, determined by high-performance liquid chromatography, reached 97.6% when Aspergillus candidus AM 386 was used as the biocatalyst. Increasing the scale of the process resulted in isolation yields of 29–45% after purification via reversed-phase thin layer chromatography, depending on the strain of the microorganism used. We proposed different mechanisms for product formation; however, hydration of 3-n-butylidenephthalide seems to be the most probable. Additionally, all phthalides were tested against clinical strains of Candida albicans using the microdilution method. Two phthalides showed a minimum inhibitory concentration, required to inhibit the growth of 50% of organisms, below 50 µg/mL. The 3-n-butylidenephthalide metabolite was generally inactive, and this feature in combination with its low lipophilicity suggests its involvement in the detoxification pathway. The log P value of tested compounds was in the range of 2.09–3.38.
Collapse
|
44
|
Nanjani S, Paul D, Keharia H. Genome analysis to decipher syntrophy in the bacterial consortium 'SCP' for azo dye degradation. BMC Microbiol 2021; 21:177. [PMID: 34116639 PMCID: PMC8194134 DOI: 10.1186/s12866-021-02236-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2020] [Accepted: 05/20/2021] [Indexed: 11/16/2022] Open
Abstract
Background A bacterial consortium SCP comprising three bacterial members, viz. Stenotrophomonas acidaminiphila APG1, Pseudomonas stutzeri APG2 and Cellulomonas sp. APG4 was developed for degradation of the mono-azo dye, Reactive Blue 28. The genomic analysis of each member of the SCP consortium was done to elucidate the catabolic potential and role of the individual organism in dye degradation. Results The genes for glycerol utilization were detected in the genomes of APG2 and APG4, which corroborated with their ability to grow on a minimal medium containing glycerol as the sole co-substrate. The genes for azoreductase were identified in the genomes of APG2 and APG4, while no such trait could be determined in APG1. In addition to co-substrate oxidation and dye reduction, several other cellular functions like chemotaxis, signal transduction, stress-tolerance, repair mechanisms, aromatic degradation, and copper tolerance associated with dye degradation were also annotated. A model for azo dye degradation is postulated, representing the predominant role of APG4 and APG2 in dye metabolism while suggesting an accessory role of APG1. Conclusions This exploratory study is the first-ever attempt to divulge the genetic basis of azo-dye co-metabolism by cross-genome comparisons and can be harnessed as an example for demonstrating microbial syntrophy. Supplementary Information The online version contains supplementary material available at 10.1186/s12866-021-02236-9.
Collapse
Affiliation(s)
- Sandhya Nanjani
- Post Graduate Department of Biosciences, UGC Centre of Advanced Study, Sardar Patel University, Satellite Campus, Vadtal Road, Bakrol, Anand, Gujarat, 388 315, India
| | - Dhiraj Paul
- Microbial Culture Collection, National Centre for Microbial Resource, National Centre for Cell Science, Savitribai Phule University of Pune Campus, Pune, India
| | - Hareshkumar Keharia
- Post Graduate Department of Biosciences, UGC Centre of Advanced Study, Sardar Patel University, Satellite Campus, Vadtal Road, Bakrol, Anand, Gujarat, 388 315, India.
| |
Collapse
|
45
|
Ancient Bacterial Class Alphaproteobacteria Cytochrome P450 Monooxygenases Can Be Found in Other Bacterial Species. Int J Mol Sci 2021; 22:ijms22115542. [PMID: 34073951 PMCID: PMC8197338 DOI: 10.3390/ijms22115542] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2021] [Revised: 05/19/2021] [Accepted: 05/20/2021] [Indexed: 12/12/2022] Open
Abstract
Cytochrome P450 monooxygenases (CYPs/P450s), heme-thiolate proteins, are well-known players in the generation of chemicals valuable to humans and as a drug target against pathogens. Understanding the evolution of P450s in a bacterial population is gaining momentum. In this study, we report comprehensive analysis of P450s in the ancient group of the bacterial class Alphaproteobacteria. Genome data mining and annotation of P450s in 599 alphaproteobacterial species belonging to 164 genera revealed the presence of P450s in only 241 species belonging to 82 genera that are grouped into 143 P450 families and 214 P450 subfamilies, including 77 new P450 families. Alphaproteobacterial species have the highest average number of P450s compared to Firmicutes species and cyanobacterial species. The lowest percentage of alphaproteobacterial species P450s (2.4%) was found to be part of secondary metabolite biosynthetic gene clusters (BGCs), compared other bacterial species, indicating that during evolution large numbers of P450s became part of BGCs in other bacterial species. Our study identified that some of the P450 families found in alphaproteobacterial species were passed to other bacterial species. This is the first study to report on the identification of CYP125 P450, cholesterol and cholest-4-en-3-one hydroxylase in alphaproteobacterial species (Phenylobacterium zucineum) and to predict cholesterol side-chain oxidation capability (based on homolog proteins) by P. zucineum.
Collapse
|
46
|
Identification of functional cytochrome P450 and ferredoxin from Streptomyces sp. EAS-AB2608 by transcriptional analysis and their heterologous expression. Appl Microbiol Biotechnol 2021; 105:4177-4187. [PMID: 33944982 DOI: 10.1007/s00253-021-11304-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2020] [Revised: 03/21/2021] [Accepted: 04/18/2021] [Indexed: 01/02/2023]
Abstract
Bioconversion using microorganisms and their enzymes is an important tool in many industrial fields. The discovery of useful new microbial enzymes contributes to the development of industries utilizing bioprocesses. Streptomyces sp. EAS-AB2608, isolated from a soil sample collected in Japan, can convert the tetrahydrobenzotriazole CPD-1 (a selective positive allosteric modulator of metabotropic glutamate receptor 5) to its hydroxylated form at the C4-(R) position. The current study was performed to identify the genes encoding the enzymes involved in CPD-1 bioconversion and to verify their function. To identify gene products responsible for the conversion of CPD-1, we used RNA sequencing to analyze EAS-AB2608; from its 8333 coding sequences, we selected two genes, one encoding cytochrome P450 (easab2608_00800) and the other encoding ferredoxin (easab2608_00799), as encoding desirable gene products involved in the bioconversion of CPD-1. The validity of this selection was tested by using a heterologous expression approach. A bioconversion assay using genetically engineered Streptomyces avermitilis SUKA24 ∆saverm3882 ∆saverm7246 co-expressing the two selected genes (strain ES_SUKA_63) confirmed that these gene products had hydroxylation activity with respect to CPD-1, indicating that they are responsible for the conversion of CPD-1. Strain ES_SUKA_63 also showed oxidative activity toward other compounds and therefore might be useful not only for bioconversion of CPD-1 but also as a tool for synthesis of drug metabolites and in optimization studies of various pharmaceutical lead compounds. We expect that this approach will be useful for bridging the gap between the latest enzyme optimization technologies and conventional enzyme screening using microorganisms. KEY POINTS: • Genes easab2608_00800 (cyp) and easab2608_00799 (fdx) were selected by RNA-Seq. • Selection validity was evaluated by an engineered S. avermitilis expression system. • Strain ES_SUKA_63 showed oxidative activity toward CPD-1 and other compounds.
Collapse
|
47
|
Pervasive cooperative mutational effects on multiple catalytic enzyme traits emerge via long-range conformational dynamics. Nat Commun 2021; 12:1621. [PMID: 33712579 PMCID: PMC7955134 DOI: 10.1038/s41467-021-21833-w] [Citation(s) in RCA: 68] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2020] [Accepted: 01/29/2021] [Indexed: 12/11/2022] Open
Abstract
Multidimensional fitness landscapes provide insights into the molecular basis of laboratory and natural evolution. To date, such efforts usually focus on limited protein families and a single enzyme trait, with little concern about the relationship between protein epistasis and conformational dynamics. Here, we report a multiparametric fitness landscape for a cytochrome P450 monooxygenase that was engineered for the regio- and stereoselective hydroxylation of a steroid. We develop a computational program to automatically quantify non-additive effects among all possible mutational pathways, finding pervasive cooperative signs and magnitude epistasis on multiple catalytic traits. By using quantum mechanics and molecular dynamics simulations, we show that these effects are modulated by long-range interactions in loops, helices and β-strands that gate the substrate access channel allowing for optimal catalysis. Our work highlights the importance of conformational dynamics on epistasis in an enzyme involved in secondary metabolism and offers insights for engineering P450s. Connecting conformational dynamics and epistasis has so far been limited to a few proteins and a single fitness trait. Here, the authors provide evidence of positive epistasis on multiple catalytic traits in the evolution and dynamics of engineered cytochrome P450 monooxygenase, offering insights for in silico protein design.
Collapse
|
48
|
Chandra A, Singh D, Joshi D, Pathak AD, Singh RK, Kumar S. A highly contiguous reference genome assembly for Colletotrichum falcatum pathotype Cf08 causing red rot disease in sugarcane. 3 Biotech 2021; 11:148. [PMID: 33732569 DOI: 10.1007/s13205-021-02695-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Accepted: 02/15/2021] [Indexed: 11/24/2022] Open
Abstract
Among the biotic factors, which affect the productivity and quality of sugarcane, red rot disease caused by the fungal pathogen, Colletotrichum falcatum is the most devastating that cause enormous loss to millers as well as cane growers. We present a highly contiguous genome assembly of C. falcatum pathotype Cf08 which is virulent to popular sugarcane varieties grown in more than 3 million hectares in sub-tropical India. By performing long read sequencing on PacBio RSII system, 56.06 Mb assemblies with 238 contigs having N50 of 0.51 Mb and L50 of 34 was produced. A BUSCO completeness score of 97.24% (including 4.1% fragmented) of the entire C. falcatum Cf08 nuclear genome, greatly improved contiguity compared to an existing highly fragmented draft of C. falcatum Cf671 genome (48.13 Mb) was obtained. This Cf08 assembly had 54.14% GC content and possessed < 1% repetitive elements. A total of 18,635 protein-coding genes were predicted compared with 12,270 for Cf671. Among 617 CAZymes predicted, glycoside hydrolases were the predominant (298), and among 7264 genes associated with pathogenicity/virulence, 77 genes having effector functions were identified. The assembled genome showed its similarity with the genome of C. graminicola and C. higginsianum, the causal organisms of anthracnose in maize and in members of Brassicaceae, respectively. A total of 94 large sequences (> 100 kb) of Cf08 were mapped over C. higginsianum 10 of 12 chromosomes with 106 synteny blocks. Results discussed here would provide an important tool for future studies of evolutionary and functional genomics in C. falcatum. SUPPLEMENTARY INFORMATION The online version contains supplementary material available at 10.1007/s13205-021-02695-x.
Collapse
Affiliation(s)
- Amaresh Chandra
- ICAR-Indian Institute of Sugarcane Research, Raibareli Road, P.O. Dilkusha, Lucknow, 226002 India
| | - Dinesh Singh
- ICAR-Indian Institute of Sugarcane Research, Raibareli Road, P.O. Dilkusha, Lucknow, 226002 India
| | - Deeksha Joshi
- ICAR-Indian Institute of Sugarcane Research, Raibareli Road, P.O. Dilkusha, Lucknow, 226002 India
| | - Ashwini D Pathak
- ICAR-Indian Institute of Sugarcane Research, Raibareli Road, P.O. Dilkusha, Lucknow, 226002 India
| | - Ram K Singh
- ICAR-Indian Institute of Sugarcane Research, Raibareli Road, P.O. Dilkusha, Lucknow, 226002 India
- Indian Council of Agricultural Research, Krishi Bhawan, New Delhi, 110001 India
| | - Sanjeev Kumar
- ICAR-Indian Institute of Sugarcane Research, Raibareli Road, P.O. Dilkusha, Lucknow, 226002 India
| |
Collapse
|
49
|
|
50
|
Stevanović NL, Aleksic I, Kljun J, Skaro Bogojevic S, Veselinovic A, Nikodinovic-Runic J, Turel I, Djuran MI, Glišić BĐ. Copper(II) and Zinc(II) Complexes with the Clinically Used Fluconazole: Comparison of Antifungal Activity and Therapeutic Potential. Pharmaceuticals (Basel) 2020; 14:24. [PMID: 33396681 PMCID: PMC7823955 DOI: 10.3390/ph14010024] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2020] [Revised: 12/24/2020] [Accepted: 12/25/2020] [Indexed: 01/18/2023] Open
Abstract
Copper(II) and zinc(II) complexes with clinically used antifungal drug fluconazole (fcz), {[CuCl2(fcz)2].5H2O}n, 1, and {[ZnCl2(fcz)2]·2C2H5OH}n, 2, were prepared and characterized by spectroscopic and crystallographic methods. The polymeric structure of the complexes comprises four fluconazole molecules monodentately coordinated via the triazole nitrogen and two chlorido ligands. With respect to fluconazole, complex 2 showed significantly higher antifungal activity against Candida krusei and Candida parapsilosis. All tested compounds reduced the total amount of ergosterol at subinhibitory concentrations, indicating that the mode of activity of fluconazole was retained within the complexes, which was corroborated via molecular docking with cytochrome P450 sterol 14α-demethylase (CYP51) as a target. Electrostatic, steric and internal energy interactions between the complexes and enzyme showed that 2 has higher binding potency to this target. Both complexes showed strong inhibition of C. albicans filamentation and biofilm formation at subinhibitory concentrations, with 2 being able to reduce the adherence of C. albicans to A549 cells in vitro. Complex 2 was able to reduce pyocyanin production in Pseudomonas aeruginosa between 10% and 25% and to inhibit its biofilm formation by 20% in comparison to the untreated control. These results suggest that complex 2 may be further examined in the mixed Candida-P. aeruginosa infections.
Collapse
Affiliation(s)
- Nevena Lj. Stevanović
- Department of Chemistry, Faculty of Science, University of Kragujevac, R. Domanovića 12, 34000 Kragujevac, Serbia;
| | - Ivana Aleksic
- Institute of Molecular Genetics and Genetic Engineering, University of Belgrade, Vojvode Stepe 444a, 11042 Belgrade, Serbia; (I.A.); (S.S.B.)
| | - Jakob Kljun
- Faculty of Chemistry and Chemical Technology, University of Ljubljana, Večna pot 113, SI-1000 Ljubljana, Slovenia;
| | - Sanja Skaro Bogojevic
- Institute of Molecular Genetics and Genetic Engineering, University of Belgrade, Vojvode Stepe 444a, 11042 Belgrade, Serbia; (I.A.); (S.S.B.)
| | - Aleksandar Veselinovic
- Department of Chemistry, Faculty of Medicine, University of Niš, Blvd. Dr Zorana Djindjica 81, 18108 Niš, Serbia;
| | - Jasmina Nikodinovic-Runic
- Institute of Molecular Genetics and Genetic Engineering, University of Belgrade, Vojvode Stepe 444a, 11042 Belgrade, Serbia; (I.A.); (S.S.B.)
| | - Iztok Turel
- Faculty of Chemistry and Chemical Technology, University of Ljubljana, Večna pot 113, SI-1000 Ljubljana, Slovenia;
| | - Miloš I. Djuran
- Department of Chemical and Biological Sciences, Serbian Academy of Sciences and Arts, Knez Mihailova 35, 11000 Belgrade, Serbia
| | - Biljana Đ. Glišić
- Department of Chemistry, Faculty of Science, University of Kragujevac, R. Domanovića 12, 34000 Kragujevac, Serbia;
| |
Collapse
|