1
|
Falo-Sanjuan J, Diaz-Tirado Y, Turner MA, Rourke O, Davis J, Medrano C, Haines J, McKenna J, Karshenas A, Eisen MB, Garcia HG. Targeted mutagenesis of specific genomic DNA sequences in animals for the in vivo generation of variant libraries. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.06.10.598328. [PMID: 38915503 PMCID: PMC11195090 DOI: 10.1101/2024.06.10.598328] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/26/2024]
Abstract
Understanding how the number, placement and affinity of transcription factor binding sites dictates gene regulatory programs remains a major unsolved challenge in biology, particularly in the context of multicellular organisms. To uncover these rules, it is first necessary to find the binding sites within a regulatory region with high precision, and then to systematically modulate this binding site arrangement while simultaneously measuring the effect of this modulation on output gene expression. Massively parallel reporter assays (MPRAs), where the gene expression stemming from 10,000s of in vitro-generated regulatory sequences is measured, have made this feat possible in high-throughput in single cells in culture. However, because of lack of technologies to incorporate DNA libraries, MPRAs are limited in whole organisms. To enable MPRAs in multicellular organisms, we generated tools to create a high degree of mutagenesis in specific genomic loci in vivo using base editing. Targeting GFP integrated in the genome of Drosophila cell culture and whole animals as a case study, we show that the base editor AIDevoCDA1 stemming from sea lamprey fused to nCas9 is highly mutagenic. Surprisingly, longer gRNAs increase mutation efficiency and expand the mutating window, which can allow the introduction of mutations in previously untargetable sequences. Finally, we demonstrate arrays of >20 gRNAs that can efficiently introduce mutations along a 200bp sequence, making it a promising tool to test enhancer function in vivo in a high throughput manner.
Collapse
Affiliation(s)
- Julia Falo-Sanjuan
- Department of Molecular and Cell Biology, University of California, Berkeley, CA, USA
| | - Yuliana Diaz-Tirado
- Department of Molecular and Cell Biology, University of California, Berkeley, CA, USA
| | - Meghan A. Turner
- Biophysics Graduate Group, University of California, Berkeley, CA, USA
| | - Olivia Rourke
- Department of Molecular and Cell Biology, University of California, Berkeley, CA, USA
| | - Julian Davis
- Department of Molecular and Cell Biology, University of California, Berkeley, CA, USA
| | - Claudia Medrano
- Department of Molecular and Cell Biology, University of California, Berkeley, CA, USA
| | - Jenna Haines
- Department of Molecular and Cell Biology, University of California, Berkeley, CA, USA
| | - Joey McKenna
- Department of Molecular and Cell Biology, University of California, Berkeley, CA, USA
| | - Arman Karshenas
- Biophysics Graduate Group, University of California, Berkeley, CA, USA
| | - Michael B. Eisen
- Department of Molecular and Cell Biology, University of California, Berkeley, CA, USA
- Department of Integrative Biology, University of California, Berkeley, CA, USA
- Howard Hughes Medical Institute, University of California, Berkeley, CA, USA
| | - Hernan G. Garcia
- Department of Molecular and Cell Biology, University of California, Berkeley, CA, USA
- Department of Physics, University of California, Berkeley, CA, USA
- Institute for Quantitative Biosciences-QB3, University of California, Berkeley, CA, USA
- Chan Zuckerberg Biohub – San Francisco, San Francisco, CA, USA
- Biophysics Graduate Group, University of California, Berkeley, CA, USA
| |
Collapse
|
2
|
Rojo D, Hael CE, Soria A, de Souza FSJ, Low MJ, Franchini LF, Rubinstein M. A mammalian tripartite enhancer cluster controls hypothalamic Pomc expression, food intake, and body weight. Proc Natl Acad Sci U S A 2024; 121:e2322692121. [PMID: 38652744 PMCID: PMC11067048 DOI: 10.1073/pnas.2322692121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Accepted: 03/12/2024] [Indexed: 04/25/2024] Open
Abstract
Food intake and energy balance are tightly regulated by a group of hypothalamic arcuate neurons expressing the proopiomelanocortin (POMC) gene. In mammals, arcuate-specific POMC expression is driven by two cis-acting transcriptional enhancers known as nPE1 and nPE2. Because mutant mice lacking these two enhancers still showed hypothalamic Pomc mRNA, we searched for additional elements contributing to arcuate Pomc expression. By combining molecular evolution with reporter gene expression in transgenic zebrafish and mice, here, we identified a mammalian arcuate-specific Pomc enhancer that we named nPE3, carrying several binding sites also present in nPE1 and nPE2 for transcription factors known to activate neuronal Pomc expression, such as ISL1, NKX2.1, and ERα. We found that nPE3 originated in the lineage leading to placental mammals and remained under purifying selection in all mammalian orders, although it was lost in Simiiformes (monkeys, apes, and humans) following a unique segmental deletion event. Interestingly, ablation of nPE3 from the mouse genome led to a drastic reduction (>70%) in hypothalamic Pomc mRNA during development and only moderate (<33%) in adult mice. Comparison between double (nPE1 and nPE2) and triple (nPE1, nPE2, and nPE3) enhancer mutants revealed the relative contribution of nPE3 to hypothalamic Pomc expression and its importance in the control of food intake and adiposity in male and female mice. Altogether, these results demonstrate that nPE3 integrates a tripartite cluster of partially redundant enhancers that originated upon a triple convergent evolutionary process in mammals and that is critical for hypothalamic Pomc expression and body weight homeostasis.
Collapse
Affiliation(s)
- Daniela Rojo
- Instituto de Investigaciones en Ingeniería Genética y Biología Molecular, Consejo Nacional de Investigaciones Científicas y Técnicas, Buenos Aires1428, Argentina
| | - Clara E. Hael
- Instituto de Investigaciones en Ingeniería Genética y Biología Molecular, Consejo Nacional de Investigaciones Científicas y Técnicas, Buenos Aires1428, Argentina
| | - Agustina Soria
- Instituto de Investigaciones en Ingeniería Genética y Biología Molecular, Consejo Nacional de Investigaciones Científicas y Técnicas, Buenos Aires1428, Argentina
- Departamento de Fisiología, Biología Molecular y Celular, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires1428, Argentina
| | - Flávio S. J. de Souza
- Departamento de Fisiología, Biología Molecular y Celular, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires1428, Argentina
- Instituto de Fisiología, Biología Molecular y Neurociencias, Universidad de Buenos Aires and Consejo Nacional de Investigaciones Científicas y Técnicas, Buenos Aires1428, Argentina
| | - Malcolm J. Low
- Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, MI48105
| | - Lucía F. Franchini
- Instituto de Investigaciones en Ingeniería Genética y Biología Molecular, Consejo Nacional de Investigaciones Científicas y Técnicas, Buenos Aires1428, Argentina
| | - Marcelo Rubinstein
- Instituto de Investigaciones en Ingeniería Genética y Biología Molecular, Consejo Nacional de Investigaciones Científicas y Técnicas, Buenos Aires1428, Argentina
- Departamento de Fisiología, Biología Molecular y Celular, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires1428, Argentina
- Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, MI48105
| |
Collapse
|
3
|
Lyubetsky VA, Rubanov LI, Tereshina MB, Ivanova AS, Araslanova KR, Uroshlev LA, Goremykina GI, Yang JR, Kanovei VG, Zverkov OA, Shitikov AD, Korotkova DD, Zaraisky AG. Wide-scale identification of novel/eliminated genes responsible for evolutionary transformations. Biol Direct 2023; 18:45. [PMID: 37568147 PMCID: PMC10416458 DOI: 10.1186/s13062-023-00405-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Accepted: 08/07/2023] [Indexed: 08/13/2023] Open
Abstract
BACKGROUND It is generally accepted that most evolutionary transformations at the phenotype level are associated either with rearrangements of genomic regulatory elements, which control the activity of gene networks, or with changes in the amino acid contents of proteins. Recently, evidence has accumulated that significant evolutionary transformations could also be associated with the loss/emergence of whole genes. The targeted identification of such genes is a challenging problem for both bioinformatics and evo-devo research. RESULTS To solve this problem we propose the WINEGRET method, named after the first letters of the title. Its main idea is to search for genes that satisfy two requirements: first, the desired genes were lost/emerged at the same evolutionary stage at which the phenotypic trait of interest was lost/emerged, and second, the expression of these genes changes significantly during the development of the trait of interest in the model organism. To verify the first requirement, we do not use existing databases of orthologs, but rely purely on gene homology and local synteny by using some novel quickly computable conditions. Genes satisfying the second requirement are found by deep RNA sequencing. As a proof of principle, we used our method to find genes absent in extant amniotes (reptiles, birds, mammals) but present in anamniotes (fish and amphibians), in which these genes are involved in the regeneration of large body appendages. As a result, 57 genes were identified. For three of them, c-c motif chemokine 4, eotaxin-like, and a previously unknown gene called here sod4, essential roles for tail regeneration were demonstrated. Noteworthy, we established that the latter gene belongs to a novel family of Cu/Zn-superoxide dismutases lost by amniotes, SOD4. CONCLUSIONS We present a method for targeted identification of genes whose loss/emergence in evolution could be associated with the loss/emergence of a phenotypic trait of interest. In a proof-of-principle study, we identified genes absent in amniotes that participate in body appendage regeneration in anamniotes. Our method provides a wide range of opportunities for studying the relationship between the loss/emergence of phenotypic traits and the loss/emergence of specific genes in evolution.
Collapse
Affiliation(s)
- Vassily A Lyubetsky
- Institute for Information Transmission Problems of the Russian Academy of Sciences (Kharkevich Institute), 19 Build. 1, Bolshoy Karetny per., Moscow, Russia, 127051
- Department of Mechanics and Mathematics, Lomonosov Moscow State University, Kolmogorova Str., 1, Moscow, Russia, 119234
| | - Lev I Rubanov
- Institute for Information Transmission Problems of the Russian Academy of Sciences (Kharkevich Institute), 19 Build. 1, Bolshoy Karetny per., Moscow, Russia, 127051
| | - Maria B Tereshina
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 16/10, Miklukho-Maklaya Str., Moscow, Russia, 117997
- Pirogov Russian National Research Medical University, Moscow, Russia
| | - Anastasiya S Ivanova
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 16/10, Miklukho-Maklaya Str., Moscow, Russia, 117997
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, USA
| | - Karina R Araslanova
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 16/10, Miklukho-Maklaya Str., Moscow, Russia, 117997
| | - Leonid A Uroshlev
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 32, Vavilova Str., Moscow, Russia, 119991
| | - Galina I Goremykina
- Plekhanov Russian University of Economics, Stremyanny Lane 36, Moscow, Russia
| | - Jian-Rong Yang
- Advanced Medical Technology Center, The First Affiliated Hospital, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, 510080, China
- Department of Genetics and Biomedical Informatics, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, 510080, China
| | - Vladimir G Kanovei
- Institute for Information Transmission Problems of the Russian Academy of Sciences (Kharkevich Institute), 19 Build. 1, Bolshoy Karetny per., Moscow, Russia, 127051
| | - Oleg A Zverkov
- Institute for Information Transmission Problems of the Russian Academy of Sciences (Kharkevich Institute), 19 Build. 1, Bolshoy Karetny per., Moscow, Russia, 127051
| | - Alexander D Shitikov
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 16/10, Miklukho-Maklaya Str., Moscow, Russia, 117997
| | - Daria D Korotkova
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 16/10, Miklukho-Maklaya Str., Moscow, Russia, 117997
- Global Health Institute, School of Life Sciences, EPFL, Lausanne, Switzerland
| | - Andrey G Zaraisky
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 16/10, Miklukho-Maklaya Str., Moscow, Russia, 117997.
- Pirogov Russian National Research Medical University, Moscow, Russia.
| |
Collapse
|
4
|
Gallego Romero I, Lea AJ. Leveraging massively parallel reporter assays for evolutionary questions. Genome Biol 2023; 24:26. [PMID: 36788564 PMCID: PMC9926830 DOI: 10.1186/s13059-023-02856-6] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2022] [Accepted: 01/17/2023] [Indexed: 02/16/2023] Open
Abstract
A long-standing goal of evolutionary biology is to decode how gene regulation contributes to organismal diversity. Doing so is challenging because it is hard to predict function from non-coding sequence and to perform molecular research with non-model taxa. Massively parallel reporter assays (MPRAs) enable the testing of thousands to millions of sequences for regulatory activity simultaneously. Here, we discuss the execution, advantages, and limitations of MPRAs, with a focus on evolutionary questions. We propose solutions for extending MPRAs to rare taxa and those with limited genomic resources, and we underscore MPRA's broad potential for driving genome-scale, functional studies across organisms.
Collapse
Affiliation(s)
- Irene Gallego Romero
- Melbourne Integrative Genomics, University of Melbourne, Royal Parade, Parkville, Victoria, 3010, Australia. .,School of BioSciences, The University of Melbourne, Royal Parade, Parkville, 3010, Australia. .,The Centre for Stem Cell Systems, Faculty of Medicine, Dentistry and Health Sciences, The University of Melbourne, 30 Royal Parade, Parkville, Victoria, 3010, Australia. .,Center for Genomics, Evolution and Medicine, Institute of Genomics, University of Tartu, Riia 23b, 51010, Tartu, Estonia.
| | - Amanda J. Lea
- grid.152326.10000 0001 2264 7217Department of Biological Sciences, Vanderbilt University, Nashville, TN 37240 USA ,grid.152326.10000 0001 2264 7217Vanderbilt Genetics Institute, Vanderbilt University, Nashville, TN 37240 USA ,grid.152326.10000 0001 2264 7217Evolutionary Studies Initiative, Vanderbilt University, Nashville, TN 37240 USA ,Child and Brain Development Program, Canadian Institute for Advanced Study, Toronto, Canada
| |
Collapse
|
5
|
Typical Enhancers, Super-Enhancers, and Cancers. Cancers (Basel) 2022; 14:cancers14184375. [PMID: 36139535 PMCID: PMC9496678 DOI: 10.3390/cancers14184375] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Revised: 08/29/2022] [Accepted: 09/05/2022] [Indexed: 11/21/2022] Open
Abstract
Simple Summary The cancer genome has been exhaustively studied upon the advent of Next-Generation Sequencing technologies. Coding and non-coding sequences have been defined as hotspots of genomic variations that affect the naïve gene expression programs established in normal cells, thus working as endogenous drivers of carcinogenesis. In this review, we comprehensively summarize fundamental aspects of gene expression regulation, with emphasis on the impact of sequence and structural variations mapped across non-coding cis-acting elements of genes encoding for tumor-related transcription factors. Chromatin architecture, epigenome reprogramming, transcriptional enhancers and Super-enhancers, oncogene regulation, cutting-edge technologies, and pharmacological treatment are substantially highlighted. Abstract Non-coding segments of the human genome are enriched in cis-regulatory modules that constitute functional elements, such as transcriptional enhancers and Super-enhancers. A hallmark of cancer pathogenesis is the dramatic dysregulation of the “archetype” gene expression profiles of normal human cells. Genomic variations can promote such deficiencies when occurring across enhancers and Super-enhancers, since they affect their mechanistic principles, their functional capacity and specificity, and the epigenomic features of the chromatin microenvironment across which these regulatory elements reside. Here, we comprehensively describe: fundamental mechanisms of gene expression dysregulation in cancers that involve genomic abnormalities within enhancers’ and Super-enhancers’ (SEs) sequences, which alter the expression of oncogenic transcription factors (TFs); cutting-edge technologies applied for the analysis of variation-enriched hotspots of the cancer genome; and pharmacological approaches for the treatment of Super-enhancers’ aberrant function. Finally, we provide an intratumor meta-analysis, which highlights that genomic variations in transcription-factor-driven tumors are accompanied overexpression of genes, a portion of which encodes for additional cancer-related transcription factors.
Collapse
|
6
|
Pizzollo J, Zintel TM, Babbitt CC. Differentially Active and Conserved Neural Enhancers Define Two Forms of Adaptive Noncoding Evolution in Humans. Genome Biol Evol 2022; 14:evac108. [PMID: 35866592 PMCID: PMC9348619 DOI: 10.1093/gbe/evac108] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/11/2022] [Indexed: 11/28/2022] Open
Abstract
The human and chimpanzee genomes are strikingly similar, but our neural phenotypes are very different. Many of these differences are likely driven by changes in gene expression, and some of those changes may have been adaptive during human evolution. Yet, the relative contributions of positive selection on regulatory regions or other functional regulatory changes are unclear. Where are these changes located throughout the human genome? Are functional regulatory changes near genes or are they in distal enhancer regions? In this study, we experimentally combined both human and chimpanzee cis-regulatory elements (CREs) that showed either (1) signs of accelerated evolution in humans or (2) that have been shown to be active in the human brain. Using a massively parallel reporter assay, we tested the ability of orthologous human and chimpanzee CREs to activate transcription in induced pluripotent stem-cell-derived neural progenitor cells and neurons. With this assay, we identified 179 CREs with differential activity between human and chimpanzee; in contrast, we found 722 CREs with signs of positive selection in humans. Selection and differentially expressed CREs strikingly differ in level of expression, size, and genomic location. We found a subset of 69 CREs in loci with genetic variants associated with neuropsychiatric diseases, which underscores the consequence of regulatory activity in these loci for proper neural development and function. By combining CREs that either experienced recent selection in humans or CREs that are functional brain enhancers, presents a novel way of studying the evolution of noncoding elements that contribute to human neural phenotypes.
Collapse
Affiliation(s)
- Jason Pizzollo
- Molecular and Cellular Biology Graduate Program, University of Massachusetts Amherst, Amherst, MA 01003, USA
- Department of Biology, University of Massachusetts Amherst, Amherst, MA 01003, USA
| | - Trisha M Zintel
- Molecular and Cellular Biology Graduate Program, University of Massachusetts Amherst, Amherst, MA 01003, USA
- Department of Biology, University of Massachusetts Amherst, Amherst, MA 01003, USA
| | - Courtney C Babbitt
- Department of Biology, University of Massachusetts Amherst, Amherst, MA 01003, USA
| |
Collapse
|
7
|
Espíndola-Hernández P, Mueller JC, Kempenaers B. Genomic signatures of the evolution of a diurnal lifestyle in Strigiformes. G3 GENES|GENOMES|GENETICS 2022; 12:6595023. [PMID: 35640557 PMCID: PMC9339318 DOI: 10.1093/g3journal/jkac135] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/22/2021] [Accepted: 05/17/2022] [Indexed: 11/25/2022]
Abstract
Understanding the targets of selection associated with changes in behavioral traits represents an important challenge of current evolutionary research. Owls (Strigiformes) are a diverse group of birds, most of which are considered nocturnal raptors. However, a few owl species independently adopted a diurnal lifestyle in their recent evolutionary history. We searched for signals of accelerated rates of evolution associated with a diurnal lifestyle using a genome-wide comparative approach. We estimated substitution rates in coding and noncoding conserved regions of the genome of seven owl species, including three diurnal species. Substitution rates of the noncoding elements were more accelerated than those of protein-coding genes. We identified new, owl-specific conserved noncoding elements as candidates of parallel evolution during the emergence of diurnality in owls. Our results shed light on the molecular basis of adaptation to a new niche and highlight the importance of regulatory elements for evolutionary changes in behavior. These elements were often involved in the neuronal development of the brain.
Collapse
Affiliation(s)
- Pamela Espíndola-Hernández
- Department of Behavioural Ecology and Evolutionary Genetics, Max Planck Institute for Ornithology , 82319 Seewiesen, Germany
| | - Jakob C Mueller
- Department of Behavioural Ecology and Evolutionary Genetics, Max Planck Institute for Ornithology , 82319 Seewiesen, Germany
| | - Bart Kempenaers
- Department of Behavioural Ecology and Evolutionary Genetics, Max Planck Institute for Ornithology , 82319 Seewiesen, Germany
| |
Collapse
|
8
|
Singh NP, Krumlauf R. Diversification and Functional Evolution of HOX Proteins. Front Cell Dev Biol 2022; 10:798812. [PMID: 35646905 PMCID: PMC9136108 DOI: 10.3389/fcell.2022.798812] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Accepted: 04/08/2022] [Indexed: 01/07/2023] Open
Abstract
Gene duplication and divergence is a major contributor to the generation of morphological diversity and the emergence of novel features in vertebrates during evolution. The availability of sequenced genomes has facilitated our understanding of the evolution of genes and regulatory elements. However, progress in understanding conservation and divergence in the function of proteins has been slow and mainly assessed by comparing protein sequences in combination with in vitro analyses. These approaches help to classify proteins into different families and sub-families, such as distinct types of transcription factors, but how protein function varies within a gene family is less well understood. Some studies have explored the functional evolution of closely related proteins and important insights have begun to emerge. In this review, we will provide a general overview of gene duplication and functional divergence and then focus on the functional evolution of HOX proteins to illustrate evolutionary changes underlying diversification and their role in animal evolution.
Collapse
Affiliation(s)
| | - Robb Krumlauf
- Stowers Institute for Medical Research, Kansas City, MO, United States
- Department of Anatomy and Cell Biology, Kansas University Medical Center, Kansas City, KS, United States
- *Correspondence: Robb Krumlauf,
| |
Collapse
|
9
|
Ni P, Su Z. PCRMS: a database of predicted cis-regulatory modules and constituent transcription factor binding sites in genomes. Database (Oxford) 2022; 2022:6572594. [PMID: 35452518 PMCID: PMC9216522 DOI: 10.1093/database/baac024] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2021] [Revised: 02/20/2022] [Accepted: 04/12/2022] [Indexed: 01/13/2023]
Abstract
More accurate and more complete predictions of cis-regulatory modules (CRMs) and constituent transcription factor (TF) binding sites (TFBSs) in genomes can facilitate characterizing functions of regulatory sequences. Here, we developed a database predicted cis-regulatory modules (PCRMS) (https://cci-bioinfo.uncc.edu) that stores highly accurate and unprecedentedly complete maps of predicted CRMs and TFBSs in the human and mouse genomes. The web interface allows the user to browse CRMs and TFBSs in an organism, find the closest CRMs to a gene, search CRMs around a gene and find all TFBSs of a TF. PCRMS can be a useful resource for the research community to characterize regulatory genomes. Database URL: https://cci-bioinfo.uncc.edu/.
Collapse
Affiliation(s)
- Pengyu Ni
- Department of Bioinformatics and Genomics, The University of North Carolina at Charlotte, 9201 University City Boulevard, Charlotte, NC 28223, USA
| | - Zhengchang Su
- Department of Bioinformatics and Genomics, The University of North Carolina at Charlotte, 9201 University City Boulevard, Charlotte, NC 28223, USA
| |
Collapse
|
10
|
Bourbon HMG, Benetah MH, Guillou E, Mojica-Vazquez LH, Baanannou A, Bernat-Fabre S, Loubiere V, Bantignies F, Cavalli G, Boube M. A shared ancient enhancer element differentially regulates the bric-a-brac tandem gene duplicates in the developing Drosophila leg. PLoS Genet 2022; 18:e1010083. [PMID: 35294439 PMCID: PMC8959175 DOI: 10.1371/journal.pgen.1010083] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Revised: 03/28/2022] [Accepted: 02/07/2022] [Indexed: 11/18/2022] Open
Abstract
Gene duplications and transcriptional enhancer emergence/modifications are thought having greatly contributed to phenotypic innovations during animal evolution. Nevertheless, little is known about how enhancers evolve after gene duplication and how regulatory information is rewired between duplicated genes. The Drosophila melanogaster bric-a-brac (bab) complex, comprising the tandem paralogous genes bab1 and bab2, provides a paradigm to address these issues. We previously characterized an intergenic enhancer (named LAE) regulating bab2 expression in the developing legs. We show here that bab2 regulators binding directly the LAE also govern bab1 expression in tarsal cells. LAE excision by CRISPR/Cas9-mediated genome editing reveals that this enhancer appears involved but not strictly required for bab1 and bab2 co-expression in leg tissues. Instead, the LAE enhancer is critical for paralog-specific bab2 expression along the proximo-distal leg axis. Chromatin features and phenotypic rescue experiments indicate that LAE functions partly redundantly with leg-specific regulatory information overlapping the bab1 transcription unit. Phylogenomics analyses indicate that (i) the bab complex originates from duplication of an ancestral singleton gene early on within the Cyclorrhapha dipteran sublineage, and (ii) LAE sequences have been evolutionarily-fixed early on within the Brachycera suborder thus predating the gene duplication event. This work provides new insights on enhancers, particularly about their emergence, maintenance and functional diversification during evolution.
Collapse
Affiliation(s)
- Henri-Marc G. Bourbon
- Center for Integrative Biology, Molecular Cellular and Developmental (MCD) Biology Unit, Federal University of Toulouse, Toulouse, France
| | - Mikhail H. Benetah
- Center for Integrative Biology, Molecular Cellular and Developmental (MCD) Biology Unit, Federal University of Toulouse, Toulouse, France
| | - Emmanuelle Guillou
- Center for Integrative Biology, Molecular Cellular and Developmental (MCD) Biology Unit, Federal University of Toulouse, Toulouse, France
| | - Luis Humberto Mojica-Vazquez
- Center for Integrative Biology, Molecular Cellular and Developmental (MCD) Biology Unit, Federal University of Toulouse, Toulouse, France
| | - Aissette Baanannou
- Center for Integrative Biology, Molecular Cellular and Developmental (MCD) Biology Unit, Federal University of Toulouse, Toulouse, France
| | - Sandra Bernat-Fabre
- Center for Integrative Biology, Molecular Cellular and Developmental (MCD) Biology Unit, Federal University of Toulouse, Toulouse, France
| | - Vincent Loubiere
- Institute of Human Genetics, University of Montpellier, CNRS Montpellier, France
| | - Frédéric Bantignies
- Institute of Human Genetics, University of Montpellier, CNRS Montpellier, France
| | - Giacomo Cavalli
- Institute of Human Genetics, University of Montpellier, CNRS Montpellier, France
| | - Muriel Boube
- Center for Integrative Biology, Molecular Cellular and Developmental (MCD) Biology Unit, Federal University of Toulouse, Toulouse, France
- * E-mail:
| |
Collapse
|
11
|
Abstract
DNA can determine where and when genes are expressed, but the full set of sequence determinants that control gene expression is unknown. Here, we measured the transcriptional activity of DNA sequences that represent an ~100 times larger sequence space than the human genome using massively parallel reporter assays (MPRAs). Machine learning models revealed that transcription factors (TFs) generally act in an additive manner with weak grammar and that most enhancers increase expression from a promoter by a mechanism that does not appear to involve specific TF–TF interactions. The enhancers themselves can be classified into three types: classical, closed chromatin and chromatin dependent. We also show that few TFs are strongly active in a cell, with most activities being similar between cell types. Individual TFs can have multiple gene regulatory activities, including chromatin opening and enhancing, promoting and determining transcription start site (TSS) activity, consistent with the view that the TF binding motif is the key atomic unit of gene expression. Analysis of massively parallel reporter assays measuring the transcriptional activity of DNA sequences indicates that most transcription factor (TF) activity is additive and does not rely on specific TF–TF interactions. Individual TFs can have different gene regulatory activities.
Collapse
|
12
|
Mahilkar A, Venkataraman P, Mall A, Saini S. Experimental Evolution of Anticipatory Regulation in Escherichia coli. Front Microbiol 2022; 12:796228. [PMID: 35087497 PMCID: PMC8787300 DOI: 10.3389/fmicb.2021.796228] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2021] [Accepted: 12/20/2021] [Indexed: 11/13/2022] Open
Abstract
Environmental cues in an ecological niche are often temporal in nature. For instance, in temperate climates, temperature is higher in daytime compared to during night. In response to these temporal cues, bacteria have been known to exhibit anticipatory regulation, whereby triggering response to a yet to appear cue. Such an anticipatory response in known to enhance Darwinian fitness, and hence, is likely an important feature of regulatory networks in microorganisms. However, the conditions under which an anticipatory response evolves as an adaptive response are not known. In this work, we develop a quantitative model to study response of a population to two temporal environmental cues, and predict variables which are likely important for evolution of anticipatory regulatory response. We follow this with experimental evolution of Escherichia coli in alternating environments of rhamnose and paraquat for ∼850 generations. We demonstrate that growth in this cyclical environment leads to evolution of anticipatory regulation. As a result, pre-exposure to rhamnose leads to a greater fitness in paraquat environment. Genome sequencing reveals that this anticipatory regulation is encoded via mutations in global regulators. Overall, our study contributes to understanding of how environment shapes the topology of regulatory networks in an organism.
Collapse
Affiliation(s)
- Anjali Mahilkar
- Department of Chemical Engineering, Indian Institute of Technology Bombay, Mumbai, India
| | - Pavithra Venkataraman
- Department of Chemical Engineering, Indian Institute of Technology Bombay, Mumbai, India
| | - Akshat Mall
- Department of Chemical Engineering, Indian Institute of Technology Bombay, Mumbai, India
| | - Supreet Saini
- Department of Chemical Engineering, Indian Institute of Technology Bombay, Mumbai, India
| |
Collapse
|
13
|
Erady C, Amin K, Onilogbo TOAE, Tomasik J, Jukes-Jones R, Umrania Y, Bahn S, Prabakaran S. Novel open reading frames in human accelerated regions and transposable elements reveal new leads to understand schizophrenia and bipolar disorder. Mol Psychiatry 2022; 27:1455-1468. [PMID: 34937870 PMCID: PMC9095477 DOI: 10.1038/s41380-021-01405-6] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Revised: 11/16/2021] [Accepted: 11/24/2021] [Indexed: 12/13/2022]
Abstract
Schizophrenia (SCZ) and bipolar disorder are debilitating neuropsychiatric disorders arising from a combination of environmental and genetic factors. Novel open reading frames (nORFs) are genomic loci that give rise to previously uncharacterized transcripts and protein products. In our previous work, we have shown that nORFs can be biologically regulated and that they may play a role in cancer and rare diseases. More importantly, we have shown that nORFs may emerge in accelerated regions of the genome giving rise to species-specific functions. We hypothesize that nORFs represent a potentially important group of biological factors that may contribute to SCZ and bipolar disorder pathophysiology. Human accelerated regions (HARs) are genomic features showing human-lineage-specific rapid evolution that may be involved in biological regulation and have additionally been found to associate with SCZ genes. Transposable elements (TEs) are another set of genomic features that have been shown to regulate gene expression. As with HARs, their relevance to SCZ has also been suggested. Here, nORFs are investigated in the context of HARs and TEs. This work shows that nORFs whose expression is disrupted in SCZ and bipolar disorder are in close proximity to HARs and TEs and that some of them are significantly associated with SCZ and bipolar disorder genomic hotspots. We also show that nORF encoded proteins can form structures and potentially constitute novel drug targets.
Collapse
Affiliation(s)
- Chaitanya Erady
- grid.5335.00000000121885934Department of Genetics, University of Cambridge, Cambridge, CB2 3EH UK
| | - Krishna Amin
- grid.5335.00000000121885934Department of Genetics, University of Cambridge, Cambridge, CB2 3EH UK
| | - Temiloluwa O. A. E. Onilogbo
- grid.5335.00000000121885934Department of Genetics, University of Cambridge, Cambridge, CB2 3EH UK ,grid.5335.00000000121885934Department of Chemical Engineering and Biotechnology, University of Cambridge, Cambridge, UK
| | - Jakub Tomasik
- grid.5335.00000000121885934Department of Chemical Engineering and Biotechnology, University of Cambridge, Cambridge, UK
| | - Rebekah Jukes-Jones
- grid.9918.90000 0004 1936 8411Leicester Cancer Research Centre, RKCSB, University of Leicester, University Road, Leicester, LE1 7RH UK
| | - Yagnesh Umrania
- grid.5335.00000000121885934Cambridge Centre for Proteomics, Department of Biochemistry, University of Cambridge, Tennis Court Road, Cambridge, CB2 1QR UK
| | - Sabine Bahn
- grid.5335.00000000121885934Department of Chemical Engineering and Biotechnology, University of Cambridge, Cambridge, UK
| | | |
Collapse
|
14
|
Mechanisms of Binding Specificity among bHLH Transcription Factors. Int J Mol Sci 2021; 22:ijms22179150. [PMID: 34502060 PMCID: PMC8431614 DOI: 10.3390/ijms22179150] [Citation(s) in RCA: 51] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Revised: 08/14/2021] [Accepted: 08/18/2021] [Indexed: 12/25/2022] Open
Abstract
The transcriptome of every cell is orchestrated by the complex network of interaction between transcription factors (TFs) and their binding sites on DNA. Disruption of this network can result in many forms of organism malfunction but also can be the substrate of positive natural selection. However, understanding the specific determinants of each of these individual TF-DNA interactions is a challenging task as it requires integrating the multiple possible mechanisms by which a given TF ends up interacting with a specific genomic region. These mechanisms include DNA motif preferences, which can be determined by nucleotide sequence but also by DNA’s shape; post-translational modifications of the TF, such as phosphorylation; and dimerization partners and co-factors, which can mediate multiple forms of direct or indirect cooperative binding. Binding can also be affected by epigenetic modifications of putative target regions, including DNA methylation and nucleosome occupancy. In this review, we describe how all these mechanisms have a role and crosstalk in one specific family of TFs, the basic helix-loop-helix (bHLH), with a very conserved DNA binding domain and a similar DNA preferred motif, the E-box. Here, we compile and discuss a rich catalog of strategies used by bHLH to acquire TF-specific genome-wide landscapes of binding sites.
Collapse
|
15
|
Judd J, Sanderson H, Feschotte C. Evolution of mouse circadian enhancers from transposable elements. Genome Biol 2021; 22:193. [PMID: 34187518 PMCID: PMC8240256 DOI: 10.1186/s13059-021-02409-9] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2020] [Accepted: 06/10/2021] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND Transposable elements are increasingly recognized as a source of cis-regulatory variation. Previous studies have revealed that transposons are often bound by transcription factors and some have been co-opted into functional enhancers regulating host gene expression. However, the process by which transposons mature into complex regulatory elements, like enhancers, remains poorly understood. To investigate this process, we examined the contribution of transposons to the cis-regulatory network controlling circadian gene expression in the mouse liver, a well-characterized network serving an important physiological function. RESULTS ChIP-seq analyses reveal that transposons and other repeats contribute ~ 14% of the binding sites for core circadian regulators (CRs) including BMAL1, CLOCK, PER1/2, and CRY1/2, in the mouse liver. RSINE1, an abundant murine-specific SINE, is the only transposon family enriched for CR binding sites across all datasets. Sequence analyses and reporter assays reveal that the circadian regulatory activity of RSINE1 stems from the presence of imperfect CR binding motifs in the ancestral RSINE1 sequence. These motifs matured into canonical motifs through point mutations after transposition. Furthermore, maturation occurred preferentially within elements inserted in the proximity of ancestral CR binding sites. RSINE1 also acquired motifs that recruit nuclear receptors known to cooperate with CRs to regulate circadian gene expression specifically in the liver. CONCLUSIONS Our results suggest that the birth of enhancers from transposons is predicated both by the sequence of the transposon and by the cis-regulatory landscape surrounding their genomic integration site.
Collapse
Affiliation(s)
- Julius Judd
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY, 14853, USA
| | - Hayley Sanderson
- Department of Human Genetics, University of Utah School of Medicine, Salt Lake City, UT, 84112, USA
| | - Cédric Feschotte
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY, 14853, USA.
| |
Collapse
|
16
|
Ni P, Su Z. Accurate prediction of cis-regulatory modules reveals a prevalent regulatory genome of humans. NAR Genom Bioinform 2021; 3:lqab052. [PMID: 34159315 PMCID: PMC8210889 DOI: 10.1093/nargab/lqab052] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Revised: 05/01/2021] [Accepted: 06/14/2021] [Indexed: 02/07/2023] Open
Abstract
cis-regulatory modules(CRMs) formed by clusters of transcription factor (TF) binding sites (TFBSs) are as important as coding sequences in specifying phenotypes of humans. It is essential to categorize all CRMs and constituent TFBSs in the genome. In contrast to most existing methods that predict CRMs in specific cell types using epigenetic marks, we predict a largely cell type agonistic but more comprehensive map of CRMs and constituent TFBSs in the gnome by integrating all available TF ChIP-seq datasets. Our method is able to partition 77.47% of genome regions covered by available 6092 datasets into a CRM candidate (CRMC) set (56.84%) and a non-CRMC set (43.16%). Intriguingly, the predicted CRMCs are under strong evolutionary constraints, while the non-CRMCs are largely selectively neutral, strongly suggesting that the CRMCs are likely cis-regulatory, while the non-CRMCs are not. Our predicted CRMs are under stronger evolutionary constraints than three state-of-the-art predictions (GeneHancer, EnhancerAtlas and ENCODE phase 3) and substantially outperform them for recalling VISTA enhancers and non-coding ClinVar variants. We estimated that the human genome might encode about 1.47M CRMs and 68M TFBSs, comprising about 55% and 22% of the genome, respectively; for both of which, we predicted 80%. Therefore, the cis-regulatory genome appears to be more prevalent than originally thought.
Collapse
Affiliation(s)
- Pengyu Ni
- Department of Bioinformatics and Genomics, the University of North Carolina at Charlotte, 9201 University City Boulevard, Charlotte, NC 28223, USA
| | - Zhengchang Su
- Department of Bioinformatics and Genomics, the University of North Carolina at Charlotte, 9201 University City Boulevard, Charlotte, NC 28223, USA
| |
Collapse
|
17
|
Na ES, Lam DD, Yokosawa E, Adams JM, Olson DP, Low MJ. Decreased sensitivity to the anorectic effects of leptin in mice that lack a Pomc-specific neural enhancer. PLoS One 2021; 15:e0244793. [PMID: 33382813 PMCID: PMC7775064 DOI: 10.1371/journal.pone.0244793] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2020] [Accepted: 11/24/2020] [Indexed: 11/18/2022] Open
Abstract
Enhancer redundancy has been postulated to provide a buffer for gene expression against genetic and environmental perturbations. While work in Drosophila has identified functionally overlapping enhancers, work in mammalian models has been limited. Recently, we have identified two partially redundant enhancers, nPE1 and nPE2, that drive proopiomelanocortin gene expression in the hypothalamus. Here we demonstrate that deletion of nPE1 produces mild obesity while knockout of nPE2 has no discernible metabolic phenotypes. Additionally, we show that acute leptin administration has significant effects on nPE1 knockout mice, with food intake and body weight change significantly impacted by peripheral leptin treatment. nPE1 knockout mice became less responsive to leptin treatment over time as percent body weight change increased over 2 week exposure to peripheral leptin. Both Pomc and Agrp mRNA were not differentially affected by chronic leptin treatment however we did see a decrease in Pomc and Agrp mRNA in both nPE1 and nPE2 knockout calorie restricted mice as compared to calorie restricted PBS-treated WT mice. Collectively, these data suggest dynamic regulation of Pomc by nPE1 such that mice with nPE1 knockout become less responsive to the anorectic effects of leptin treatment over time. Our results also support our earlier findings in which nPE2 may only be critical in adult mice that lack nPE1, indicating that these neural enhancers work synergistically to influence metabolism.
Collapse
Affiliation(s)
- Elisa S. Na
- Department of Psychology & Philosophy Texas Woman’s University, Denton, Texas, United States of America
- * E-mail: (ESN); (DDL)
| | - Daniel D. Lam
- Institute of Neurogenomics, Helmholtz Center Munich, German Research Center for Environmental Health, Neuherberg, Germany
- Chair of Neurogenetics, Neurological Clinic and Polyclinic, Klinikum rechts der Isar, School of Medicine, Technical University of Munich, Munich, Germany
- * E-mail: (ESN); (DDL)
| | - Eva Yokosawa
- Department of Molecular & Integrative Physiology, University of Michigan Medical School, Ann Arbor, Michigan, United States of America
| | - Jessica M. Adams
- Division of Endocrinology, Department of Pediatrics, University of Michigan Medical School, Ann Arbor, Michigan, United States of America
| | - David P. Olson
- Division of Endocrinology, Department of Pediatrics, University of Michigan Medical School, Ann Arbor, Michigan, United States of America
| | - Malcolm J. Low
- Department of Molecular & Integrative Physiology, University of Michigan Medical School, Ann Arbor, Michigan, United States of America
| |
Collapse
|
18
|
Hou QQ, Xiao Q, Sun XY, Ju XC, Luo ZG. TBC1D3 promotes neural progenitor proliferation by suppressing the histone methyltransferase G9a. SCIENCE ADVANCES 2021; 7:7/3/eaba8053. [PMID: 33523893 PMCID: PMC7810367 DOI: 10.1126/sciadv.aba8053] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/07/2020] [Accepted: 11/23/2020] [Indexed: 05/16/2023]
Abstract
Genomic changes during human linage evolution contribute to the expansion of the cerebral cortex to allow more advanced thought processes. The hominoid-specific gene TBC1D3 displays robust capacity of promoting the generation and proliferation of neural progenitors (NPs), which are thought to contribute to cortical expansion. However, the underlying mechanisms remain unclear. Here, we found that TBC1D3 interacts with G9a, a euchromatic histone lysine N-methyltransferase, which mediates dimethylation of histone 3 in lysine 9 (H3K9me2), a suppressive mark for gene expression. TBC1D3 displayed an inhibitory role in G9a's histone methyltransferase activity. Treatment with G9a inhibitor markedly increased NP proliferation and promoted human cerebral organoid expansion, mimicking the effects caused by TBC1D3 up-regulation. By contrast, blockade of TBC1D3/G9a interaction to disinhibit G9a caused up-regulation of H3K9me2, suppressed NP proliferation, and impaired organoid development. Together, this study has demonstrated a mechanism underlying the role of a hominoid-specific gene in promoting cortical expansion.
Collapse
Affiliation(s)
- Qiong-Qiong Hou
- School of Life Science and Technology, ShanghaiTech University, 201210 Shanghai, China
| | - Qi Xiao
- School of Life Science and Technology, ShanghaiTech University, 201210 Shanghai, China
- Institute of Neuroscience, Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, 200031 Shanghai, China
- University of Chinese Academy of Sciences, 100049 Beijing, China
| | - Xin-Yao Sun
- School of Life Science and Technology, ShanghaiTech University, 201210 Shanghai, China
- Institute of Neuroscience, Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, 200031 Shanghai, China
- University of Chinese Academy of Sciences, 100049 Beijing, China
| | - Xiang-Chun Ju
- Institute of Neuroscience, Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, 200031 Shanghai, China
| | - Zhen-Ge Luo
- School of Life Science and Technology, ShanghaiTech University, 201210 Shanghai, China.
| |
Collapse
|
19
|
Miller SW, Posakony JW. Disparate expression specificities coded by a shared Hox-C enhancer. eLife 2020; 9:39876. [PMID: 32342858 PMCID: PMC7188484 DOI: 10.7554/elife.39876] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2018] [Accepted: 04/09/2020] [Indexed: 12/13/2022] Open
Abstract
Can a single regulatory sequence be shared by two genes undergoing functional divergence? Here we describe a single promiscuous enhancer within the Drosophila Antennapedia Complex, EO053, that directs aspects of the expression of two adjacent genes, pb (a Hox2 ortholog) and zen2 (a divergent Hox3 paralog), with disparate spatial and temporal expression patterns. We were unable to separate the pb-like and zen2-like specificities within EO053, and we identify sequences affecting both expression patterns. Importantly, genomic deletion experiments demonstrate that EO053 cooperates with additional pb- and zen2-specific enhancers to regulate the mRNA expression of both genes. We examine sequence conservation of EO053 within the Schizophora, and show that patterns of synteny between the Hox2 and Hox3 orthologs in Arthropods are consistent with a shared regulatory relationship extending prior to the Hox3/zen divergence. Thus, EO053 represents an example of two genes having evolved disparate outputs while utilizing this shared regulatory region. Editorial note: This article has been through an editorial process in which the authors decide how to respond to the issues raised during peer review. The Reviewing Editor's assessment is that all the issues have been addressed (see decision letter).
Collapse
Affiliation(s)
- Steve W Miller
- Division of Biological Sciences, Section of Cell & Developmental Biology, University of California San Diego, La Jolla, United States
| | - James W Posakony
- Division of Biological Sciences, Section of Cell & Developmental Biology, University of California San Diego, La Jolla, United States
| |
Collapse
|
20
|
Nikitin D, Kolosov N, Murzina A, Pats K, Zamyatin A, Tkachev V, Sorokin M, Kopylov P, Buzdin A. Retroelement-Linked H3K4me1 Histone Tags Uncover Regulatory Evolution Trends of Gene Enhancers and Feature Quickly Evolving Molecular Processes in Human Physiology. Cells 2019; 8:cells8101219. [PMID: 31597351 PMCID: PMC6830109 DOI: 10.3390/cells8101219] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2019] [Revised: 09/25/2019] [Accepted: 10/01/2019] [Indexed: 12/20/2022] Open
Abstract
Background: Retroelements (REs) are mobile genetic elements comprising ~40% of human DNA. They can reshape expression patterns of nearby genes by providing various regulatory sequences. The proportion of regulatory sequences held by REs can serve a measure of regulatory evolution rate of the respective genes and molecular pathways. Methods: We calculated RE-linked enrichment scores for individual genes and molecular pathways based on ENCODE project epigenome data for enhancer-specific histone modification H3K4me1 in five human cell lines. We identified consensus groups of molecular processes that are enriched and deficient in RE-linked H3K4me1 regulation. Results: We calculated H3K4me1 RE-linked enrichment scores for 24,070 human genes and 3095 molecular pathways. We ranked genes and pathways and identified those statistically significantly enriched and deficient in H3K4me1 RE-linked regulation. Conclusion: Non-coding RNA genes were statistically significantly enriched by RE-linked H3K4me1 regulatory modules, thus suggesting their high regulatory evolution rate. The processes of gene silencing by small RNAs, DNA metabolism/chromatin structure, sensory perception/neurotransmission and lipids metabolism showed signs of the fastest regulatory evolution, while the slowest processes were connected with immunity, protein ubiquitination/degradation, cell adhesion, migration and interaction, metals metabolism/ion transport, cell death, intracellular signaling pathways.
Collapse
Affiliation(s)
- Daniil Nikitin
- Group for genomic analysis of cell signaling systems, Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, 117997 Moscow, Russia.
- Omicsway Corp., Walnut, CA 91789, USA.
| | | | | | - Karina Pats
- ITMO University, 195251 Saint-Petersburg, Russia.
| | | | | | - Maxim Sorokin
- Omicsway Corp., Walnut, CA 91789, USA.
- Institute of Personalized Medicine, I.M. Sechenov First Moscow State Medical University, 119991 Moscow, Russia.
| | - Philippe Kopylov
- Institute of Personalized Medicine, I.M. Sechenov First Moscow State Medical University, 119991 Moscow, Russia.
| | - Anton Buzdin
- Group for genomic analysis of cell signaling systems, Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, 117997 Moscow, Russia.
- Omicsway Corp., Walnut, CA 91789, USA.
- Institute of Personalized Medicine, I.M. Sechenov First Moscow State Medical University, 119991 Moscow, Russia.
| |
Collapse
|
21
|
Khor JM, Guerrero-Santoro J, Ettensohn CA. Genome-wide identification of binding sites and gene targets of Alx1, a pivotal regulator of echinoderm skeletogenesis. Development 2019; 146:dev.180653. [PMID: 31331943 DOI: 10.1242/dev.180653] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2019] [Accepted: 07/09/2019] [Indexed: 01/25/2023]
Abstract
Alx1 is a conserved regulator of skeletogenesis in echinoderms and evolutionary changes in Alx1 sequence and expression have played a pivotal role in modifying programs of skeletogenesis within the phylum. Alx1 regulates a large suite of effector genes that control the morphogenetic behaviors and biomineral-forming activities of skeletogenic cells. To better understand the gene regulatory control of skeletogenesis by Alx1, we used genome-wide ChIP-seq to identify Alx1-binding sites and direct gene targets. Our analysis revealed that many terminal differentiation genes receive direct transcriptional inputs from Alx1. In addition, we found that intermediate transcription factors previously shown to be downstream of Alx1 all receive direct inputs from Alx1. Thus, Alx1 appears to regulate effector genes by indirect, as well as direct, mechanisms. We tested 23 high-confidence ChIP-seq peaks using GFP reporters and identified 18 active cis-regulatory modules (CRMs); this represents a high success rate for CRM discovery. Detailed analysis of a representative CRM confirmed that a conserved, palindromic Alx1-binding site was essential for expression. Our work significantly advances our understanding of the gene regulatory circuitry that controls skeletogenesis in sea urchins and provides a framework for evolutionary studies.
Collapse
Affiliation(s)
- Jian Ming Khor
- Department of Biological Sciences, Carnegie Mellon University, 4400 Fifth Avenue, Pittsburgh, PA 15213, USA
| | - Jennifer Guerrero-Santoro
- Department of Biological Sciences, Carnegie Mellon University, 4400 Fifth Avenue, Pittsburgh, PA 15213, USA
| | - Charles A Ettensohn
- Department of Biological Sciences, Carnegie Mellon University, 4400 Fifth Avenue, Pittsburgh, PA 15213, USA
| |
Collapse
|
22
|
Signatures of Recent Positive Selection in Enhancers Across 41 Human Tissues. G3-GENES GENOMES GENETICS 2019; 9:2761-2774. [PMID: 31213516 PMCID: PMC6686946 DOI: 10.1534/g3.119.400186] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Evolutionary changes in enhancers are widely associated with variation in human traits and diseases. However, studies comprehensively quantifying levels of selection on enhancers at multiple evolutionary periods during recent human evolution and how enhancer evolution varies across human tissues are lacking. To address these questions, we integrated a dataset of 41,561 transcribed enhancers active in 41 different human tissues (FANTOM Consortium) with whole genome sequences of 1,668 individuals from the African, Asian, and European populations (1000 Genomes Project). Our analyses based on four different metrics (Tajima’s D, FST, H12, nSL) showed that ∼5.90% of enhancers showed evidence of recent positive selection and that genes associated with enhancers under very recent positive selection are enriched for diverse immune-related functions. The distributions of these metrics for brain and testis enhancers were often statistically significantly different and in the direction suggestive of less positive selection compared to those of other tissues; the same was true for brain and testis enhancers that are tissue-specific compared to those that are tissue-broad and for testis enhancers associated with tissue-enriched and non-tissue-enriched genes. These differences varied considerably across metrics and tissues and were generally in the form of changes in distributions’ shapes rather than shifts in their values. Collectively, these results suggest that many human enhancers experienced recent positive selection throughout multiple time periods in human evolutionary history, that this selection occurred in a tissue-dependent and immune-related functional context, and that much like the evolution of their protein-coding gene counterparts, the evolution of brain and testis enhancers has been markedly different from that of enhancers in other tissues.
Collapse
|
23
|
Redundant and Cryptic Enhancer Activities of the Drosophila yellow Gene. Genetics 2019; 212:343-360. [PMID: 30842209 DOI: 10.1534/genetics.119.301985] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2019] [Accepted: 02/25/2019] [Indexed: 11/18/2022] Open
Abstract
Cis-regulatory sequences known as enhancers play a key role in regulating gene expression. Evolutionary changes in these DNA sequences contribute to phenotypic evolution. The Drosophila yellow gene, which is required for pigmentation, has emerged as a model system for understanding how cis-regulatory sequences evolve, providing some of the most detailed insights available into how activities of orthologous enhancers have diverged between species. Here, we examine the evolution of yellow cis-regulatory sequences on a broader scale, by comparing the distribution and function of yellow enhancer activities throughout the 5' intergenic and intronic sequences of Drosophila melanogaster, D. pseudoobscura, and D. willistoni We find that cis-regulatory sequences driving expression in a particular tissue are not as modular as previously described, but rather have many redundant and cryptic enhancer activities distributed throughout the regions surveyed. Interestingly, cryptic enhancer activities of sequences from one species often drove patterns of expression observed in other species, suggesting that the frequent evolutionary changes in yellow expression observed among Drosophila species may be facilitated by gaining and losing repression of preexisting cis-regulatory sequences.
Collapse
|
24
|
Sapkota D, Lake AM, Yang W, Yang C, Wesseling H, Guise A, Uncu C, Dalal JS, Kraft AW, Lee JM, Sands MS, Steen JA, Dougherty JD. Cell-Type-Specific Profiling of Alternative Translation Identifies Regulated Protein Isoform Variation in the Mouse Brain. Cell Rep 2019; 26:594-607.e7. [PMID: 30650354 PMCID: PMC6392083 DOI: 10.1016/j.celrep.2018.12.077] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2018] [Revised: 10/23/2018] [Accepted: 12/18/2018] [Indexed: 12/27/2022] Open
Abstract
Alternative translation initiation and stop codon readthrough in a few well-studied cases have been shown to allow the same transcript to generate multiple protein variants. Because the brain shows a particularly abundant use of alternative splicing, we sought to study alternative translation in CNS cells. We show that alternative translation is widespread and regulated across brain transcripts. In neural cultures, we identify alternative initiation on hundreds of transcripts, confirm several N-terminal protein variants, and show the modulation of the phenomenon by KCl stimulation. We also detect readthrough in cultures and show differential levels of normal and readthrough versions of AQP4 in gliotic diseases. Finally, we couple translating ribosome affinity purification to ribosome footprinting (TRAP-RF) for cell-type-specific analysis of neuronal and astrocytic translational readthrough in the mouse brain. We demonstrate that this unappreciated mechanism generates numerous and diverse protein isoforms in a cell-type-specific manner in the brain.
Collapse
Affiliation(s)
- Darshan Sapkota
- Department of Genetics, Washington University School of Medicine, St. Louis, MO 63110, USA; Department of Psychiatry, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Allison M Lake
- Department of Genetics, Washington University School of Medicine, St. Louis, MO 63110, USA; Department of Psychiatry, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Wei Yang
- Department of Genetics, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Chengran Yang
- Department of Genetics, Washington University School of Medicine, St. Louis, MO 63110, USA; Department of Psychiatry, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Hendrik Wesseling
- Boston Children's Hospital, F.M. Kirby Center for Neurobiology, Harvard Medical School, Boston, MA 02115, USA
| | - Amanda Guise
- Boston Children's Hospital, F.M. Kirby Center for Neurobiology, Harvard Medical School, Boston, MA 02115, USA
| | - Ceren Uncu
- Boston Children's Hospital, F.M. Kirby Center for Neurobiology, Harvard Medical School, Boston, MA 02115, USA
| | - Jasbir S Dalal
- Boston Children's Hospital, F.M. Kirby Center for Neurobiology, Harvard Medical School, Boston, MA 02115, USA
| | - Andrew W Kraft
- Departments of Neurology, Radiology, and Biomedical Engineering, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Jin-Moo Lee
- Departments of Neurology, Radiology, and Biomedical Engineering, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Mark S Sands
- Department of Genetics, Washington University School of Medicine, St. Louis, MO 63110, USA; Deparment of Medicine, Washington University School of Medicine, St. Louis, MO 63112, USA
| | - Judith A Steen
- Boston Children's Hospital, F.M. Kirby Center for Neurobiology, Harvard Medical School, Boston, MA 02115, USA
| | - Joseph D Dougherty
- Department of Genetics, Washington University School of Medicine, St. Louis, MO 63110, USA; Department of Psychiatry, Washington University School of Medicine, St. Louis, MO 63110, USA.
| |
Collapse
|
25
|
Mehrotra R, Loake G, Mehrotra S. Promoter choice: Selection vs. rejection. GENE REPORTS 2018. [DOI: 10.1016/j.genrep.2018.08.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
26
|
Flores MA, Ovcharenko I. Enhancer reprogramming in mammalian genomes. BMC Bioinformatics 2018; 19:316. [PMID: 30200877 PMCID: PMC6131754 DOI: 10.1186/s12859-018-2343-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2018] [Accepted: 08/28/2018] [Indexed: 12/18/2022] Open
Abstract
Background Transcription factor binding site (TFBS) loss, gain, and reshuffling within the sequence of a regulatory element could alter the function of that regulatory element. Some of the changes will be detrimental to the fitness of the species and will result in gradual removal from a population, while other changes would be either beneficial or just a part of genetic drift and end up being fixed in a population. This “reprogramming” of regulatory elements results in modification of the gene regulatory landscape during evolution. Results We identified reprogrammed enhancers (RPEs) by comparing the distribution of tissue-specific enhancers in the human and mouse genomes. We observed that around 30% of mammalian enhancers have been reprogrammed after the human-mouse speciation. In 79% of cases, the reprogramming of an enhancer resulted in a quantifiably different expression of a flanking gene. In the case of the Thy-1 cell surface antigen gene, for example, enhancer reprogramming is associated with cortex to thymus change in gene expression. To understand the mechanisms of enhancer reprogramming, we profiled the evolutionary changes in the TFBS enhancer content and found that enhancer reprogramming took place through the acquisition of new TFBSs in 72% of reprogramming events. Conclusions Our results suggest that enhancer reprogramming takes place within well-established regulatory loci with RPEs contributing additively to fine-tuning of the gene regulatory program in mammals. We also found evidence for acquisition of novel gene function through enhancer reprogramming, which allows expansion of gene regulatory landscapes into new regulatory domains. Electronic supplementary material The online version of this article (10.1186/s12859-018-2343-7) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Mario A Flores
- Computational Biology Branch, National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, 8600 Rockville Pike, Bethesda, MD, 20894, USA
| | - Ivan Ovcharenko
- Computational Biology Branch, National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, 8600 Rockville Pike, Bethesda, MD, 20894, USA.
| |
Collapse
|
27
|
Niu M, Tabari E, Ni P, Su Z. Towards a map of cis-regulatory sequences in the human genome. Nucleic Acids Res 2018; 46:5395-5409. [PMID: 29733395 PMCID: PMC6009671 DOI: 10.1093/nar/gky338] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2018] [Revised: 04/14/2018] [Accepted: 04/19/2018] [Indexed: 01/10/2023] Open
Abstract
Accumulating evidence indicates that transcription factor (TF) binding sites, or cis-regulatory elements (CREs), and their clusters termed cis-regulatory modules (CRMs) play a more important role than do gene-coding sequences in specifying complex traits in humans, including the susceptibility to common complex diseases. To fully characterize their roles in deriving the complex traits/diseases, it is necessary to annotate all CREs and CRMs encoded in the human genome. However, the current annotations of CREs and CRMs in the human genome are still very limited and mostly coarse-grained, as they often lack the detailed information of CREs in CRMs. Here, we integrated 620 TF ChIP-seq datasets produced by the ENCODE project for 168 TFs in 79 different cell/tissue types and predicted an unprecedentedly completely map of CREs in CRMs in the human genome at single nucleotide resolution. The map includes 305 912 CRMs containing a total of 1 178 913 CREs belonging to 736 unique TF binding motifs. The predicted CREs and CRMs tend to be subject to either purifying selection or positive selection, thus are likely to be functional. Based on the results, we also examined the status of available ChIP-seq datasets for predicting the entire regulatory genome of humans.
Collapse
Affiliation(s)
- Meng Niu
- Department of Bioinformatics and Genomics, College of Computing and Informatics, The University of North Carolina at Charlotte, 9201 University City Blvd., Charlotte, NC 28223, USA
| | - Ehsan Tabari
- Department of Bioinformatics and Genomics, College of Computing and Informatics, The University of North Carolina at Charlotte, 9201 University City Blvd., Charlotte, NC 28223, USA
| | - Pengyu Ni
- Department of Bioinformatics and Genomics, College of Computing and Informatics, The University of North Carolina at Charlotte, 9201 University City Blvd., Charlotte, NC 28223, USA
| | - Zhengchang Su
- Department of Bioinformatics and Genomics, College of Computing and Informatics, The University of North Carolina at Charlotte, 9201 University City Blvd., Charlotte, NC 28223, USA
| |
Collapse
|
28
|
Enhancer adoption caused by genomic insertion elicits interdigital Shh expression and syndactyly in mouse. Proc Natl Acad Sci U S A 2017; 115:1021-1026. [PMID: 29255029 PMCID: PMC5798340 DOI: 10.1073/pnas.1713339115] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
In this study, we reexamined an old mouse mutant named Hammer toe (Hm), which arose spontaneously almost a half century ago and exhibits a limb phenotype with webbing. We revealed that a 150-kb noncoding genomic fragment that was originally located in chromosome 14 has been inserted into a genomic region proximal to Sonic hedgehog (Shh), located in chromosome 5. This inserted fragment possesses enhancer activity to induce Shh expression in the interdigital regions in Hm, which in turn down-regulates bone morphogenetic protein signaling and eventually results in syndactyly and web formation. Since the donor fragment residing in chromosome 14 has enhancer activity to induce interdigital gene expression, the Hm mutation appears to be an archetypal case of enhancer adoption. Acquisition of new cis-regulatory elements (CREs) can cause alteration of developmental gene regulation and may introduce morphological novelty in evolution. Although structural variation in the genome generated by chromosomal rearrangement is one possible source of new CREs, only a few examples are known, except for cases of retrotransposition. In this study, we show the acquisition of novel regulatory sequences as a result of large genomic insertion in the spontaneous mouse mutation Hammer toe (Hm). Hm mice exhibit syndactyly with webbing, due to suppression of interdigital cell death in limb development. We reveal that, in the Hm genome, a 150-kb noncoding DNA fragment from chromosome 14 is inserted into the region upstream of the Sonic hedgehog (Shh) promoter in chromosome 5. Phenotyping of mouse embryos with a series of CRISPR/Cas9-aided partial deletion of the 150-kb insert clearly indicated that two different regions are necessary for the syndactyly phenotype of Hm. We found that each of the two regions contains at least one enhancer for interdigital regulation. These results show that a set of enhancers brought by the large genomic insertion elicits the interdigital Shh expression and the Hm phenotype. Transcriptome analysis indicates that ectopic expression of Shh up-regulates Chordin (Chrd) that antagonizes bone morphogenetic protein signaling in the interdigital region. Indeed, Chrd-overexpressing transgenic mice recapitulated syndactyly with webbing. Thus, the Hm mutation provides an insight into enhancer acquisition as a source of creation of novel gene regulation.
Collapse
|
29
|
Khor JM, Ettensohn CA. Functional divergence of paralogous transcription factors supported the evolution of biomineralization in echinoderms. eLife 2017; 6:e32728. [PMID: 29154754 PMCID: PMC5758115 DOI: 10.7554/elife.32728] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2017] [Accepted: 11/16/2017] [Indexed: 12/12/2022] Open
Abstract
Alx1 is a pivotal transcription factor in a gene regulatory network that controls skeletogenesis throughout the echinoderm phylum. We performed a structure-function analysis of sea urchin Alx1 using a rescue assay and identified a novel, conserved motif (Domain 2) essential for skeletogenic function. The paralogue of Alx1, Alx4, was not functionally interchangeable with Alx1, but insertion of Domain 2 conferred robust skeletogenic function on Alx4. We used cross-species expression experiments to show that Alx1 proteins from distantly related echinoderms are not interchangeable, although the sequence and function of Domain 2 are highly conserved. We also found that Domain 2 is subject to alternative splicing and provide evidence that this domain was originally gained through exonization. Our findings show that a gene duplication event permitted the functional specialization of a transcription factor through changes in exon-intron organization and thereby supported the evolution of a major morphological novelty.
Collapse
Affiliation(s)
- Jian Ming Khor
- Department of Biological SciencesCarnegie Mellon UniversityPittsburghUnited States
| | - Charles A Ettensohn
- Department of Biological SciencesCarnegie Mellon UniversityPittsburghUnited States
| |
Collapse
|
30
|
Needhamsen M, Ewing E, Lund H, Gomez-Cabrero D, Harris RA, Kular L, Jagodic M. Usability of human Infinium MethylationEPIC BeadChip for mouse DNA methylation studies. BMC Bioinformatics 2017; 18:486. [PMID: 29141580 PMCID: PMC5688710 DOI: 10.1186/s12859-017-1870-y] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2017] [Accepted: 10/17/2017] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND The advent of array-based genome-wide DNA methylation methods has enabled quantitative measurement of single CpG methylation status at relatively low cost and sample input. Whereas the use of Infinium Human Methylation BeadChips has shown great utility in clinical studies, no equivalent tool is available for rodent animal samples. We examined the feasibility of using the new Infinium MethylationEPIC BeadChip for studying DNA methylation in mouse. RESULTS In silico, we identified 19,420 EPIC probes (referred as mEPIC probes), which align with a unique best alignment score to the bisulfite converted reference mouse genome mm10. Further annotation revealed that 85% of mEPIC probes overlapped with mm10.refSeq genes at different genomic features including promoters (TSS1500 and TSS200), 1st exons, 5'UTRs, 3'UTRs, CpG islands, shores, shelves, open seas and FANTOM5 enhancers. Hybridization of mouse samples to Infinium Human MethylationEPIC BeadChips showed successful measurement of mEPIC probes and reproducibility between inter-array biological replicates. Finally, we demonstrated the utility of mEPIC probes for data exploration such as hierarchical clustering. CONCLUSIONS Given the absence of cost and labor convenient genome-wide technologies in the murine system, our findings show that the Infinium MethylationEPIC BeadChip platform is suitable for investigation of the mouse methylome. Furthermore, we provide the "mEPICmanifest" with genomic features, available to users of Infinium Human MethylationEPIC arrays for mouse samples.
Collapse
Affiliation(s)
- Maria Needhamsen
- Department of Clinical Neuroscience, Center for Molecular Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Ewoud Ewing
- Department of Clinical Neuroscience, Center for Molecular Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Harald Lund
- Applied Immunology and Immunotherapy, Department of Clinical Neuroscience, Karolinska Institutet Center for Molecular Medicine, Karolinska Hospital at Solna, Stockholm, Sweden
| | - David Gomez-Cabrero
- Unit of Computational Medicine, Department of Medicine, Solna, Center for Molecular Medicine, Karolinska Institutet, Stockholm, Sweden.,Mucosal and Salivary Biology Division, King's College London, Dental Institute, London, UK
| | - Robert Adam Harris
- Applied Immunology and Immunotherapy, Department of Clinical Neuroscience, Karolinska Institutet Center for Molecular Medicine, Karolinska Hospital at Solna, Stockholm, Sweden
| | - Lara Kular
- Department of Clinical Neuroscience, Center for Molecular Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Maja Jagodic
- Department of Clinical Neuroscience, Center for Molecular Medicine, Karolinska Institutet, Stockholm, Sweden.
| |
Collapse
|
31
|
Abstract
What made us human? Gene expression changes clearly played a significant part in human evolution, but pinpointing the causal regulatory mutations is hard. Comparative genomics enabled the identification of human accelerated regions (HARs) and other human-specific genome sequences. The major challenge in the past decade has been to link diverged sequences to uniquely human biology. This review discusses approaches to this problem, progress made at the molecular level, and prospects for moving towards genetic causes for uniquely human biology.
Collapse
Affiliation(s)
- Lucía F Franchini
- Instituto de Investigaciones en Ingeniería Genética y Biología Molecular (INGEBI), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
| | - Katherine S Pollard
- Gladstone Institutes, San Francisco, CA, 94158, USA. .,Department of Epidemiology & Biostatistics, Institute for Human Genetics, Institute for Computational Health Sciences, University of California, San Francisco, CA, 94158, USA.
| |
Collapse
|
32
|
Vermunt MW, Creyghton MP. Transcriptional Dynamics at Brain Enhancers: from Functional Specialization to Neurodegeneration. Curr Neurol Neurosci Rep 2017; 16:94. [PMID: 27628759 PMCID: PMC5023742 DOI: 10.1007/s11910-016-0689-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Over the last decade, the noncoding part of the genome has been shown to harbour thousands of cis-regulatory elements, such as enhancers, that activate well-defined gene expression programs. Driven by the development of numerous techniques, many of these elements are now identified in multiple tissues and cell types, and their characteristics as well as importance in development and disease are becoming increasingly clear. Here, we provide an overview of the insights that were gained from the analysis of noncoding gene regulatory elements in the brain and describe their potential contribution to cell type specialization, brain function and neurodegenerative disease.
Collapse
Affiliation(s)
- Marit W Vermunt
- Hubrecht Institute-KNAW and University Medical Center Utrecht, Uppsalalaan 8, 3584CT, Utrecht, The Netherlands
| | - Menno P Creyghton
- Hubrecht Institute-KNAW and University Medical Center Utrecht, Uppsalalaan 8, 3584CT, Utrecht, The Netherlands.
| |
Collapse
|
33
|
Holló G. Demystification of animal symmetry: symmetry is a response to mechanical forces. Biol Direct 2017; 12:11. [PMID: 28514948 PMCID: PMC5436448 DOI: 10.1186/s13062-017-0182-5] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2016] [Accepted: 05/09/2017] [Indexed: 12/21/2022] Open
Abstract
ᅟ Symmetry is an eye-catching feature of animal body plans, yet its causes are not well enough understood. The evolution of animal form is mainly due to changes in gene regulatory networks (GRNs). Based on theoretical considerations regarding fundamental GRN properties, it has recently been proposed that the animal genome, on large time scales, should be regarded as a system which can construct both the main symmetries – radial and bilateral – simultaneously; and that the expression of any of these depends on functional constraints. Current theories explain biological symmetry as a pattern mostly determined by phylogenetic constraints, and more by chance than by necessity. In contrast to this conception, I suggest that physical effects, which in many cases act as proximate, direct, tissue-shaping factors during ontogenesis, are also the ultimate causes – i.e. the indirect factors which provide a selective advantage – of animal symmetry, from organs to body plan level patterns. In this respect, animal symmetry is a necessary product of evolution. This proposition offers a parsimonious view of symmetry as a basic feature of the animal body plan, suggesting that molecules and physical forces act in a beautiful harmony to create symmetrical structures, but that the concert itself is directed by the latter. Reviewers This article was reviewed by Eugene Koonin, Zoltán Varga and Michaël Manuel.
Collapse
Affiliation(s)
- Gábor Holló
- Institute of Psychology, University of Debrecen, H-4002, Debrecen, P.O. Box 400, Hungary.
| |
Collapse
|
34
|
Pérez-Rico YA, Boeva V, Mallory AC, Bitetti A, Majello S, Barillot E, Shkumatava A. Comparative analyses of super-enhancers reveal conserved elements in vertebrate genomes. Genome Res 2016; 27:259-268. [PMID: 27965291 PMCID: PMC5287231 DOI: 10.1101/gr.203679.115] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2015] [Accepted: 12/09/2016] [Indexed: 12/11/2022]
Abstract
Super-enhancers (SEs) are key transcriptional drivers of cellular, developmental, and disease states in mammals, yet the conservational and regulatory features of these enhancer elements in nonmammalian vertebrates are unknown. To define SEs in zebrafish and enable sequence and functional comparisons to mouse and human SEs, we used genome-wide histone H3 lysine 27 acetylation (H3K27ac) occupancy as a primary SE delineator. Our study determined the set of SEs in pluripotent state cells and adult zebrafish tissues and revealed both similarities and differences between zebrafish and mammalian SEs. Although the total number of SEs was proportional to the genome size, the genomic distribution of zebrafish SEs differed from that of the mammalian SEs. Despite the evolutionary distance separating zebrafish and mammals and the low overall SE sequence conservation, ∼42% of zebrafish SEs were located in close proximity to orthologs that also were associated with SEs in mouse and human. Compared to their nonassociated counterparts, higher sequence conservation was revealed for those SEs that have maintained orthologous gene associations. Functional dissection of two of these SEs identified conserved sequence elements and tissue-specific expression patterns, while chromatin accessibility analyses predicted transcription factors governing the function of pluripotent state zebrafish SEs. Our zebrafish annotations and comparative studies show the extent of SE usage and their conservation across vertebrates, permitting future gene regulatory studies in several tissues.
Collapse
Affiliation(s)
- Yuvia A Pérez-Rico
- Institut Curie, PSL Research University, INSERM U934, CNRS UMR 3215, F-75005, Paris, France.,INSERM, U900, F-75005, Paris, France.,Sorbonne Universités, UPMC Univ Paris 06, F-75005, Paris, France
| | - Valentina Boeva
- INSERM, U900, F-75005, Paris, France.,Institut Curie, Mines ParisTech, PSL Research University, F-75005, Paris, France.,Institut Cochin, INSERM U1016, CNRS UMR 8104, Université Paris Descartes UMR-S1016, F-75014 Paris, France
| | - Allison C Mallory
- Institut Curie, PSL Research University, INSERM U934, CNRS UMR 3215, F-75005, Paris, France
| | - Angelo Bitetti
- Institut Curie, PSL Research University, INSERM U934, CNRS UMR 3215, F-75005, Paris, France.,Sorbonne Universités, UPMC Univ Paris 06, F-75005, Paris, France
| | - Sara Majello
- Institut Curie, PSL Research University, INSERM U934, CNRS UMR 3215, F-75005, Paris, France
| | - Emmanuel Barillot
- INSERM, U900, F-75005, Paris, France.,Institut Curie, Mines ParisTech, PSL Research University, F-75005, Paris, France
| | - Alena Shkumatava
- Institut Curie, PSL Research University, INSERM U934, CNRS UMR 3215, F-75005, Paris, France
| |
Collapse
|
35
|
Lewis J, van der Burg K, Mazo-Vargas A, Reed R. ChIP-Seq-Annotated Heliconius erato Genome Highlights Patterns of cis -Regulatory Evolution in Lepidoptera. Cell Rep 2016; 16:2855-2863. [DOI: 10.1016/j.celrep.2016.08.042] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2016] [Revised: 07/14/2016] [Accepted: 08/12/2016] [Indexed: 12/11/2022] Open
|
36
|
Abstract
A new study compares DNA methylation profiles in developing zebrafish, Xenopus tropicalis and mice and suggests roles for Tet proteins in demethylating conserved gene enhancers during the phylotypic period of early development. These findings provide an epigenetic underpinning for the 'hourglass' model.
Collapse
|
37
|
Marcellini S, González F, Sarrazin AF, Pabón-Mora N, Benítez M, Piñeyro-Nelson A, Rezende GL, Maldonado E, Schneider PN, Grizante MB, Da Fonseca RN, Vergara-Silva F, Suaza-Gaviria V, Zumajo-Cardona C, Zattara EE, Casasa S, Suárez-Baron H, Brown FD. Evolutionary Developmental Biology (Evo-Devo) Research in Latin America. JOURNAL OF EXPERIMENTAL ZOOLOGY PART B-MOLECULAR AND DEVELOPMENTAL EVOLUTION 2016; 328:5-40. [PMID: 27491339 DOI: 10.1002/jez.b.22687] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/24/2016] [Revised: 06/16/2016] [Accepted: 06/20/2016] [Indexed: 12/29/2022]
Abstract
Famous for its blind cavefish and Darwin's finches, Latin America is home to some of the richest biodiversity hotspots of our planet. The Latin American fauna and flora inspired and captivated naturalists from the nineteenth and twentieth centuries, including such notable pioneers such as Fritz Müller, Florentino Ameghino, and Léon Croizat who made a significant contribution to the study of embryology and evolutionary thinking. But, what are the historical and present contributions of the Latin American scientific community to Evo-Devo? Here, we provide the first comprehensive overview of the Evo-Devo laboratories based in Latin America and describe current lines of research based on endemic species, focusing on body plans and patterning, systematics, physiology, computational modeling approaches, ecology, and domestication. Literature searches reveal that Evo-Devo in Latin America is still in its early days; while showing encouraging indicators of productivity, it has not stabilized yet, because it relies on few and sparsely distributed laboratories. Coping with the rapid changes in national scientific policies and contributing to solve social and health issues specific to each region are among the main challenges faced by Latin American researchers. The 2015 inaugural meeting of the Pan-American Society for Evolutionary Developmental Biology played a pivotal role in bringing together Latin American researchers eager to initiate and consolidate regional and worldwide collaborative networks. Such networks will undoubtedly advance research on the extremely high genetic and phenotypic biodiversity of Latin America, bound to be an almost infinite source of amazement and fascinating findings for the Evo-Devo community.
Collapse
Affiliation(s)
- Sylvain Marcellini
- Laboratorio de Desarrollo y Evolución, Departamento de Biología Celular, Facultad de Ciencias Biológicas, Universidad de Concepción, Concepción, Chile
| | - Favio González
- Facultad de Ciencias, Instituto de Ciencias Naturales, Universidad Nacional de Colombia, Bogotá, Colombia
| | - Andres F Sarrazin
- Instituto de Química, Pontificia Universidad Católica de Valparaíso, Valparaíso, Chile
| | | | - Mariana Benítez
- Laboratorio Nacional de Ciencias de la Sostenibilidad, Instituto de Ecología, Universidad Nacional Autónoma de México, Ciudad de México, México
| | - Alma Piñeyro-Nelson
- Departamento de Producción Agrícola y Animal, Universidad Autónoma Metropolitana, Xochimilco, Ciudad de México, México
| | - Gustavo L Rezende
- Universidade Estadual do Norte Fluminense, CBB, LQFPP, Campos dos Goytacazes, RJ, Brazil
| | - Ernesto Maldonado
- EvoDevo Lab, Unidad de Sistemas Arrecifales, Instituto de Ciencias del Mar y Limnología, Universidad Nacional Autónoma de México, Puerto Morelos, Quintana Roo, México
| | | | | | - Rodrigo Nunes Da Fonseca
- Núcleo em Ecologia e Desenvolvimento SócioAmbiental de Macaé (NUPEM), Campus Macaé, Universidade Federal do Rio de Janeiro, Macae, RJ, Brazil
| | | | | | | | | | - Sofia Casasa
- Department of Biology, Indiana University, Bloomington, IN, USA
| | | | - Federico D Brown
- Departamento de Zoologia, Instituto de Biociências, Universidade de São Paulo, São Paulo, SP, Brazil
| |
Collapse
|
38
|
Lowdon RF, Jang HS, Wang T. Evolution of Epigenetic Regulation in Vertebrate Genomes. Trends Genet 2016; 32:269-283. [PMID: 27080453 PMCID: PMC4842087 DOI: 10.1016/j.tig.2016.03.001] [Citation(s) in RCA: 49] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2015] [Revised: 03/02/2016] [Accepted: 03/03/2016] [Indexed: 12/31/2022]
Abstract
Empirical models of sequence evolution have spurred progress in the field of evolutionary genetics for decades. We are now realizing the importance and complexity of the eukaryotic epigenome. While epigenome analysis has been applied to genomes from single-cell eukaryotes to human, comparative analyses are still relatively few and computational algorithms to quantify epigenome evolution remain scarce. Accordingly, a quantitative model of epigenome evolution remains to be established. We review here the comparative epigenomics literature and synthesize its overarching themes. We also suggest one mechanism, transcription factor binding site (TFBS) turnover, which relates sequence evolution to epigenetic conservation or divergence. Lastly, we propose a framework for how the field can move forward to build a coherent quantitative model of epigenome evolution.
Collapse
Affiliation(s)
- Rebecca F Lowdon
- Department of Genetics, Center for Genome Sciences and Systems Biology, Washington University School of Medicine, St. Louis, MO, USA.
| | - Hyo Sik Jang
- Department of Genetics, Center for Genome Sciences and Systems Biology, Washington University School of Medicine, St. Louis, MO, USA
| | - Ting Wang
- Department of Genetics, Center for Genome Sciences and Systems Biology, Washington University School of Medicine, St. Louis, MO, USA.
| |
Collapse
|
39
|
Evolution of mammalian sound localization circuits: A developmental perspective. Prog Neurobiol 2016; 141:1-24. [PMID: 27032475 DOI: 10.1016/j.pneurobio.2016.02.003] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2015] [Revised: 02/27/2016] [Accepted: 02/27/2016] [Indexed: 01/06/2023]
Abstract
Localization of sound sources is a central aspect of auditory processing. A unique feature of mammals is the smooth, tonotopically organized extension of the hearing range to high frequencies (HF) above 10kHz, which likely induced positive selection for novel mechanisms of sound localization. How this change in the auditory periphery is accompanied by changes in the central auditory system is unresolved. I will argue that the major VGlut2(+) excitatory projection neurons of sound localization circuits (dorsal cochlear nucleus (DCN), lateral and medial superior olive (LSO and MSO)) represent serial homologs with modifications, thus being paramorphs. This assumption is based on common embryonic origin from an Atoh1(+)/Wnt1(+) cell lineage in the rhombic lip of r5, same cell birth, a fusiform cell morphology, shared genetic components such as Lhx2 and Lhx9 transcription factors, and similar projection patterns. Such a parsimonious evolutionary mechanism likely accelerated the emergence of neurons for sound localization in all three dimensions. Genetic analyses indicate that auditory nuclei in fish, birds, and mammals receive contributions from the same progenitor lineages. Anatomical and physiological differences and the independent evolution of tympanic ears in vertebrate groups, however, argue for convergent evolution of sound localization circuits in tetrapods (amphibians, reptiles, birds, and mammals). These disparate findings are discussed in the context of the genetic architecture of the developing hindbrain, which facilitates convergent evolution. Yet, it will be critical to decipher the gene regulatory networks underlying development of auditory neurons across vertebrates to explore the possibility of homologous neuronal populations.
Collapse
|
40
|
Epigenomic annotation of gene regulatory alterations during evolution of the primate brain. Nat Neurosci 2016; 19:494-503. [PMID: 26807951 DOI: 10.1038/nn.4229] [Citation(s) in RCA: 94] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2015] [Accepted: 12/21/2015] [Indexed: 12/16/2022]
Abstract
Although genome sequencing has identified numerous noncoding alterations between primate species, which of those are regulatory and potentially relevant to the evolution of the human brain is unclear. Here we annotated cis-regulatory elements (CREs) in the human, rhesus macaque and chimpanzee genomes using chromatin immunoprecipitation followed by sequencing (ChIP-seq) in different anatomical regions of the adult brain. We found high similarity in the genomic positioning of rhesus macaque and human CREs, suggesting that the majority of these elements were already present in a common ancestor 25 million years ago. Most of the observed regulatory changes between humans and rhesus macaques occurred before the ancestral separation of humans and chimpanzees, leaving a modest set of regulatory elements with predicted human specificity. Our data refine previous predictions and hypotheses on the consequences of genomic changes between primate species and allow the identification of regulatory alterations relevant to the evolution of the brain.
Collapse
|
41
|
Abstract
Recently evolved enhancers dominate mammalian gene regulatory landscapes. Mostly exapted from ancestral DNA sequences, many are linked to genes under positive selection. Just as RNA-seq some years ago, unbiased enhancer mapping is on the verge of changing evolutionary research.
Collapse
Affiliation(s)
- Claudius F Kratochwil
- Department of Biology, University of Konstanz, Konstanz, Germany; Zukunftskolleg, University of Konstanz, Konstanz, Germany.
| | - Axel Meyer
- Department of Biology, University of Konstanz, Konstanz, Germany.
| |
Collapse
|
42
|
Abstract
My aim in this article is to soften certain rigid concepts concerning the radial and bilateral symmetry of the animal body plan, and to offer a more flexible framework of thinking for them, based on recent understandings of how morphogenesis is regulated by the mosaically acting gene regulatory networks. Based on general principles of the genetic regulation of morphogenesis, it can be seen that the difference between the symmetry of the whole body and that of minor anatomical structures is only a question of a diverse timing during development. I propose that the animal genome, as such, is capable of expressing both radial and bilateral symmetries, and deploys them according to the functional requirements which must be satisfied by both the anatomical structure and body as a whole. Although it may seem paradoxical, this flexible view of symmetry, together with the idea that symmetry is strongly determined by function, bolsters the concept that the presence of the two main symmetries in the animal world is not due to chance: they are necessary biological patterns emerging in evolution.
Collapse
Affiliation(s)
- Gábor Holló
- Institute of Psychology , University of Debrecen , PO Box 28, 4010 Debrecen , Hungary
| |
Collapse
|
43
|
Grice J, Noyvert B, Doglio L, Elgar G. A Simple Predictive Enhancer Syntax for Hindbrain Patterning Is Conserved in Vertebrate Genomes. PLoS One 2015; 10:e0130413. [PMID: 26131856 PMCID: PMC4489388 DOI: 10.1371/journal.pone.0130413] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2015] [Accepted: 05/19/2015] [Indexed: 12/17/2022] Open
Abstract
Background Determining the function of regulatory elements is fundamental for our understanding of development, disease and evolution. However, the sequence features that mediate these functions are often unclear and the prediction of tissue-specific expression patterns from sequence alone is non-trivial. Previous functional studies have demonstrated a link between PBX-HOX and MEIS/PREP binding interactions and hindbrain enhancer activity, but the defining grammar of these sites, if any exists, has remained elusive. Results Here, we identify a shared sequence signature (syntax) within a heterogeneous set of conserved vertebrate hindbrain enhancers composed of spatially co-occurring PBX-HOX and MEIS/PREP transcription factor binding motifs. We use this syntax to accurately predict hindbrain enhancers in 89% of cases (67/75 predicted elements) from a set of conserved non-coding elements (CNEs). Furthermore, mutagenesis of the sites abolishes activity or generates ectopic expression, demonstrating their requirement for segmentally restricted enhancer activity in the hindbrain. We refine and use our syntax to predict over 3,000 hindbrain enhancers across the human genome. These sequences tend to be located near developmental transcription factors and are enriched in known hindbrain activating elements, demonstrating the predictive power of this simple model. Conclusion Our findings support the theory that hundreds of CNEs, and perhaps thousands of regions across the human genome, function to coordinate gene expression in the developing hindbrain. We speculate that deeply conserved sequences of this kind contributed to the co-option of new genes into the hindbrain gene regulatory network during early vertebrate evolution by linking patterns of hox expression to downstream genes involved in segmentation and patterning, and evolutionarily newer instances may have continued to contribute to lineage-specific elaboration of the hindbrain.
Collapse
Affiliation(s)
- Joseph Grice
- The Francis Crick Institute Mill Hill Laboratory, The Ridgeway, Mill Hill, London, NW7 1AA, United Kingdom
| | - Boris Noyvert
- The Francis Crick Institute Mill Hill Laboratory, The Ridgeway, Mill Hill, London, NW7 1AA, United Kingdom
| | - Laura Doglio
- The Francis Crick Institute Mill Hill Laboratory, The Ridgeway, Mill Hill, London, NW7 1AA, United Kingdom
| | - Greg Elgar
- The Francis Crick Institute Mill Hill Laboratory, The Ridgeway, Mill Hill, London, NW7 1AA, United Kingdom
- * E-mail:
| |
Collapse
|
44
|
Islet 1 specifies the identity of hypothalamic melanocortin neurons and is critical for normal food intake and adiposity in adulthood. Proc Natl Acad Sci U S A 2015; 112:E1861-70. [PMID: 25825735 DOI: 10.1073/pnas.1500672112] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Food intake and body weight regulation depend on proper expression of the proopiomelanocortin gene (Pomc) in a group of neurons located in the mediobasal hypothalamus of all vertebrates. These neurons release POMC-encoded melanocortins, which are potent anorexigenic neuropeptides, and their absence from mice or humans leads to hyperphagia and severe obesity. Although the pathophysiology of hypothalamic POMC neurons is well understood, the genetic program that establishes the neuronal melanocortinergic phenotype and maintains a fully functional neuronal POMC phenotype throughout adulthood remains unknown. Here, we report that the early expression of the LIM-homeodomain transcription factor Islet 1 (ISL1) in the developing hypothalamus promotes the terminal differentiation of melanocortinergic neurons and is essential for hypothalamic Pomc expression since its initial onset and throughout the entire lifetime. We detected ISL1 in the prospective hypothalamus just before the onset of Pomc expression and, from then on, Pomc and Isl1 coexpress. ISL1 binds in vitro and in vivo to critical homeodomain binding DNA motifs present in the neuronal Pomc enhancers nPE1 and nPE2, and mutations of these sites completely disrupt the ability of these enhancers to drive reporter gene expression to hypothalamic POMC neurons in transgenic mice and zebrafish. ISL1 is necessary for hypothalamic Pomc expression during mouse and zebrafish embryogenesis. Furthermore, conditional Isl1 inactivation from POMC neurons impairs Pomc expression, leading to hyperphagia and obesity. Our results demonstrate that ISL1 specifies the identity of hypothalamic melanocortin neurons and is required for melanocortin-induced satiety and normal adiposity throughout the entire lifespan.
Collapse
|
45
|
Suryamohan K, Halfon MS. Identifying transcriptional cis-regulatory modules in animal genomes. WILEY INTERDISCIPLINARY REVIEWS. DEVELOPMENTAL BIOLOGY 2015; 4:59-84. [PMID: 25704908 PMCID: PMC4339228 DOI: 10.1002/wdev.168] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/24/2014] [Revised: 11/04/2014] [Accepted: 11/16/2014] [Indexed: 11/08/2022]
Abstract
UNLABELLED Gene expression is regulated through the activity of transcription factors (TFs) and chromatin-modifying proteins acting on specific DNA sequences, referred to as cis-regulatory elements. These include promoters, located at the transcription initiation sites of genes, and a variety of distal cis-regulatory modules (CRMs), the most common of which are transcriptional enhancers. Because regulated gene expression is fundamental to cell differentiation and acquisition of new cell fates, identifying, characterizing, and understanding the mechanisms of action of CRMs is critical for understanding development. CRM discovery has historically been challenging, as CRMs can be located far from the genes they regulate, have few readily identifiable sequence characteristics, and for many years were not amenable to high-throughput discovery methods. However, the recent availability of complete genome sequences and the development of next-generation sequencing methods have led to an explosion of both computational and empirical methods for CRM discovery in model and nonmodel organisms alike. Experimentally, CRMs can be identified through chromatin immunoprecipitation directed against TFs or histone post-translational modifications, identification of nucleosome-depleted 'open' chromatin regions, or sequencing-based high-throughput functional screening. Computational methods include comparative genomics, clustering of known or predicted TF-binding sites, and supervised machine-learning approaches trained on known CRMs. All of these methods have proven effective for CRM discovery, but each has its own considerations and limitations, and each is subject to a greater or lesser number of false-positive identifications. Experimental confirmation of predictions is essential, although shortcomings in current methods suggest that additional means of validation need to be developed. For further resources related to this article, please visit the WIREs website. CONFLICT OF INTEREST The authors have declared no conflicts of interest for this article.
Collapse
Affiliation(s)
- Kushal Suryamohan
- Department of Biochemistry, University at Buffalo-State University of New York, Buffalo, NY 14203, USA
- NY State Center of Excellence in Bioinformatics and Life Sciences, Buffalo, NY 14203, USA
| | - Marc S. Halfon
- Department of Biochemistry, University at Buffalo-State University of New York, Buffalo, NY 14203, USA
- Department of Biological Sciences, University at Buffalo-State University of New York, Buffalo, NY 14203, USA
- Department of Biomedical Informatics, University at Buffalo-State University of New York, Buffalo, NY 14203, USA
- NY State Center of Excellence in Bioinformatics and Life Sciences, Buffalo, NY 14203, USA
- Molecular and Cellular Biology Department and Program in Cancer Genetics, Roswell Park Cancer Institute, Buffalo, NY 14263, USA
| |
Collapse
|
46
|
Lion M, Raimondi I, Donati S, Jousson O, Ciribilli Y, Inga A. Evolution of p53 transactivation specificity through the lens of a yeast-based functional assay. PLoS One 2015; 10:e0116177. [PMID: 25668429 PMCID: PMC4323202 DOI: 10.1371/journal.pone.0116177] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2014] [Accepted: 10/16/2014] [Indexed: 11/18/2022] Open
Abstract
Co-evolution of transcription factors (TFs) with their respective cis-regulatory network enhances functional diversity in the course of evolution. We present a new approach to investigate transactivation capacity of sequence-specific TFs in evolutionary studies. Saccharomyces cerevisiae was used as an in vivo test tube and p53 proteins derived from human and five commonly used animal models were chosen as proof of concept. p53 is a highly conserved master regulator of environmental stress responses. Previous reports indicated conserved p53 DNA binding specificity in vitro, even for evolutionary distant species. We used isogenic yeast strains where p53-dependent transactivation was measured towards chromosomally integrated p53 response elements (REs). Ten REs were chosen to sample a wide range of DNA binding affinity and transactivation capacity for human p53 and proteins were expressed at two levels using an inducible expression system. We showed that the assay is amenable to study thermo-sensitivity of frog p53, and that chimeric constructs containing an ectopic transactivation domain could be rapidly developed to enhance the activity of proteins, such as fruit fly p53, that are poorly effective in engaging the yeast transcriptional machinery. Changes in the profile of relative transactivation towards the ten REs were measured for each p53 protein and compared to the profile obtained with human p53. These results, which are largely independent from relative p53 protein levels, revealed widespread evolutionary divergence of p53 transactivation specificity, even between human and mouse p53. Fruit fly and human p53 exhibited the largest discrimination among REs while zebrafish p53 was the least selective.
Collapse
Affiliation(s)
- Mattia Lion
- Laboratory of Transcriptional Networks, Centre for Integrative Biology (CIBIO), University of Trento, Mattarello, Trento, Italy
| | - Ivan Raimondi
- Laboratory of Transcriptional Networks, Centre for Integrative Biology (CIBIO), University of Trento, Mattarello, Trento, Italy
| | - Stefano Donati
- Laboratory of Transcriptional Networks, Centre for Integrative Biology (CIBIO), University of Trento, Mattarello, Trento, Italy
| | - Olivier Jousson
- Laboratory of Microbial Genomics, Centre for Integrative Biology (CIBIO), University of Trento, Mattarello, Trento, Italy
| | - Yari Ciribilli
- Laboratory of Transcriptional Networks, Centre for Integrative Biology (CIBIO), University of Trento, Mattarello, Trento, Italy
| | - Alberto Inga
- Laboratory of Transcriptional Networks, Centre for Integrative Biology (CIBIO), University of Trento, Mattarello, Trento, Italy
- * E-mail:
| |
Collapse
|
47
|
Lam DD, de Souza FSJ, Nasif S, Yamashita M, López-Leal R, Otero-Corchon V, Meece K, Sampath H, Mercer AJ, Wardlaw SL, Rubinstein M, Low MJ. Partially redundant enhancers cooperatively maintain Mammalian pomc expression above a critical functional threshold. PLoS Genet 2015; 11:e1004935. [PMID: 25671638 PMCID: PMC4335486 DOI: 10.1371/journal.pgen.1004935] [Citation(s) in RCA: 83] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2014] [Accepted: 12/02/2014] [Indexed: 11/29/2022] Open
Abstract
Cell-specific expression of many genes is conveyed by multiple enhancers, with each individual enhancer controlling a particular expression domain. In contrast, multiple enhancers drive similar expression patterns of some genes involved in embryonic development, suggesting regulatory redundancy. Work in Drosophila has indicated that functionally overlapping enhancers canalize development by buffering gene expression against environmental and genetic disturbances. However, little is known about regulatory redundancy in vertebrates and in genes mainly expressed during adulthood. Here we study nPE1 and nPE2, two phylogenetically conserved mammalian enhancers that drive expression of the proopiomelanocortin gene (Pomc) to the same set of hypothalamic neurons. The simultaneous deletion of both enhancers abolished Pomc expression at all ages and induced a profound metabolic dysfunction including early-onset extreme obesity. Targeted inactivation of either nPE1 or nPE2 led to very low levels of Pomc expression during early embryonic development indicating that both enhancers function synergistically. In adult mice, however, Pomc expression is controlled additively by both enhancers, with nPE1 being responsible for ∼80% and nPE2 for ∼20% of Pomc transcription. Consequently, nPE1 knockout mice exhibit mild obesity whereas nPE2-deficient mice maintain a normal body weight. These results suggest that nPE2-driven Pomc expression is compensated by nPE1 at later stages of development, essentially rescuing the earlier phenotype of nPE2 deficiency. Together, these results reveal that cooperative interactions between the enhancers confer robustness of Pomc expression against gene regulatory disturbances and preclude deleterious metabolic phenotypes caused by Pomc deficiency in adulthood. Thus, our study demonstrates that enhancer redundancy can be used by genes that control adult physiology in mammals and underlines the potential significance of regulatory sequence mutations in common diseases.
Collapse
Affiliation(s)
- Daniel D. Lam
- Department of Molecular and Integrative Physiology, University of Michigan Medical School, Ann Arbor, Michigan, United States of America
| | - Flavio S. J. de Souza
- Instituto de Investigaciones en Ingeniería Genética y Biología Molecular, Consejo Nacional de Investigaciones Científicas y Técnicas, Buenos Aires, Argentina
- Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Sofia Nasif
- Instituto de Investigaciones en Ingeniería Genética y Biología Molecular, Consejo Nacional de Investigaciones Científicas y Técnicas, Buenos Aires, Argentina
| | - Miho Yamashita
- Department of Molecular and Integrative Physiology, University of Michigan Medical School, Ann Arbor, Michigan, United States of America
| | | | - Veronica Otero-Corchon
- Department of Molecular and Integrative Physiology, University of Michigan Medical School, Ann Arbor, Michigan, United States of America
| | - Kana Meece
- Department of Medicine, Columbia University College of Physicians and Surgeons, New York, New York, United States of America
| | - Harini Sampath
- Center for Research on Occupational and Environmental Toxicology, Oregon Health & Science University, Portland, Oregon, United States of America
| | - Aaron J. Mercer
- Department of Molecular and Integrative Physiology, University of Michigan Medical School, Ann Arbor, Michigan, United States of America
| | - Sharon L. Wardlaw
- Department of Medicine, Columbia University College of Physicians and Surgeons, New York, New York, United States of America
| | - Marcelo Rubinstein
- Department of Molecular and Integrative Physiology, University of Michigan Medical School, Ann Arbor, Michigan, United States of America
- Instituto de Investigaciones en Ingeniería Genética y Biología Molecular, Consejo Nacional de Investigaciones Científicas y Técnicas, Buenos Aires, Argentina
- Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Malcolm J. Low
- Department of Molecular and Integrative Physiology, University of Michigan Medical School, Ann Arbor, Michigan, United States of America
| |
Collapse
|
48
|
Cheatle Jarvela AM, Hinman VF. Evolution of transcription factor function as a mechanism for changing metazoan developmental gene regulatory networks. EvoDevo 2015; 6:3. [PMID: 25685316 PMCID: PMC4327956 DOI: 10.1186/2041-9139-6-3] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2014] [Accepted: 12/18/2014] [Indexed: 11/10/2022] Open
Abstract
The form that an animal takes during development is directed by gene regulatory networks (GRNs). Developmental GRNs interpret maternally deposited molecules and externally supplied signals to direct cell-fate decisions, which ultimately leads to the arrangements of organs and tissues in the organism. Genetically encoded modifications to these networks have generated the wide range of metazoan diversity that exists today. Most studies of GRN evolution focus on changes to cis-regulatory DNA, and it was historically theorized that changes to the transcription factors that bind to these cis-regulatory modules (CRMs) contribute to this process only rarely. A growing body of evidence suggests that changes to the coding regions of transcription factors play a much larger role in the evolution of developmental gene regulatory networks than originally imagined. Just as cis-regulatory changes make use of modular binding site composition and tissue-specific modules to avoid pleiotropy, transcription factor coding regions also predominantly evolve in ways that limit the context of functional effects. Here, we review the recent works that have led to this unexpected change in the field of Evolution and Development (Evo-Devo) and consider the implications these studies have had on our understanding of the evolution of developmental processes.
Collapse
Affiliation(s)
- Alys M Cheatle Jarvela
- Department of Biological Sciences, Carnegie Mellon University, 4400 5th Ave, Pittsburgh, PA 15213 USA
| | - Veronica F Hinman
- Department of Biological Sciences, Carnegie Mellon University, 4400 5th Ave, Pittsburgh, PA 15213 USA
| |
Collapse
|
49
|
Cheatle Jarvela AM, Brubaker L, Vedenko A, Gupta A, Armitage BA, Bulyk ML, Hinman VF. Modular evolution of DNA-binding preference of a Tbrain transcription factor provides a mechanism for modifying gene regulatory networks. Mol Biol Evol 2014; 31:2672-88. [PMID: 25016582 PMCID: PMC4166925 DOI: 10.1093/molbev/msu213] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Gene regulatory networks (GRNs) describe the progression of transcriptional states that take a single-celled zygote to a multicellular organism. It is well documented that GRNs can evolve extensively through mutations to cis-regulatory modules (CRMs). Transcription factor proteins that bind these CRMs may also evolve to produce novelty. Coding changes are considered to be rarer, however, because transcription factors are multifunctional and hence are more constrained to evolve in ways that will not produce widespread detrimental effects. Recent technological advances have unearthed a surprising variation in DNA-binding abilities, such that individual transcription factors may recognize both a preferred primary motif and an additional secondary motif. This provides a source of modularity in function. Here, we demonstrate that orthologous transcription factors can also evolve a changed preference for a secondary binding motif, thereby offering an unexplored mechanism for GRN evolution. Using protein-binding microarray, surface plasmon resonance, and in vivo reporter assays, we demonstrate an important difference in DNA-binding preference between Tbrain protein orthologs in two species of echinoderms, the sea star, Patiria miniata, and the sea urchin, Strongylocentrotus purpuratus. Although both orthologs recognize the same primary motif, only the sea star Tbr also has a secondary binding motif. Our in vivo assays demonstrate that this difference may allow for greater evolutionary change in timing of regulatory control. This uncovers a layer of transcription factor binding divergence that could exist for many pairs of orthologs. We hypothesize that this divergence provides modularity that allows orthologous transcription factors to evolve novel roles in GRNs through modification of binding to secondary sites.
Collapse
Affiliation(s)
| | - Lisa Brubaker
- Department of Biological Sciences, Carnegie Mellon University
| | - Anastasia Vedenko
- Division of Genetics, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA
| | - Anisha Gupta
- Department of Chemistry, Carnegie Mellon University
| | | | - Martha L Bulyk
- Division of Genetics, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA Department of Pathology, Brigham and Women's Hospital and Harvard Medical School, Boston, MA
| | | |
Collapse
|
50
|
Lema SC. Hormones and Phenotypic Plasticity in an Ecological Context: Linking Physiological Mechanisms to Evolutionary Processes. Integr Comp Biol 2014; 54:850-63. [DOI: 10.1093/icb/icu019] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
|