1
|
Mercier MS, Magloire V, Cornford JH, Kullmann DM. Long-term potentiation in neurogliaform interneurons modulates excitation-inhibition balance in the temporoammonic pathway. J Physiol 2022; 600:4001-4017. [PMID: 35876215 PMCID: PMC9540908 DOI: 10.1113/jp282753] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Accepted: 07/19/2022] [Indexed: 11/08/2022] Open
Abstract
Apical dendrites of pyramidal neurons integrate information from higher-order cortex and thalamus, and gate signalling and plasticity at proximal synapses. In the hippocampus, neurogliaform cells and other interneurons located within stratum lacunosum-moleculare (SLM) mediate powerful inhibition of CA1 pyramidal neuron distal dendrites. Is the recruitment of such inhibition itself subject to use-dependent plasticity, and if so, what induction rules apply? Here we show that interneurons in mouse SLM exhibit Hebbian NMDA receptor-dependent long-term potentiation (LTP). Such plasticity can be induced by selective optogenetic stimulation of afferents in the temporoammonic pathway from the entorhinal cortex (EC), but not by equivalent stimulation of afferents from the thalamic nucleus reuniens. We further show that theta-burst patterns of afferent firing induces LTP in neurogliaform interneurons identified using neuron-derived neurotrophic factor (Ndnf)-Cre mice. Theta-burst activity of EC afferents led to an increase in disynaptic feed-forward inhibition, but not monosynaptic excitation, of CA1 pyramidal neurons. Activity-dependent synaptic plasticity in SLM interneurons thus alters the excitation-inhibition balance at EC inputs to the apical dendrites of pyramidal neurons, implying a dynamic role for these interneurons in gating CA1 dendritic computations. KEY POINTS: Electrogenic phenomena in distal dendrites of principal neurons in the hippocampus have a major role in gating synaptic plasticity at afferent synapses on proximal dendrites. Apical dendrites also receive powerful feed-forward inhibition, mediated in large part by neurogliaform neurons. Here we show that theta-burst activity in afferents from the entorhinal cortex (EC) induces 'Hebbian' long-term potentiation (LTP) at excitatory synapses recruiting these GABAergic cells. LTP in interneurons innervating apical dendrites increases disynaptic inhibition of principal neurons, thus shifting the excitation-inhibition balance in the temporoammonic (TA) pathway in favour of inhibition, with implications for computations and learning rules in proximal dendrites.
Collapse
Affiliation(s)
- Marion S. Mercier
- UCL Queen Square Institute of NeurologyDepartment of Clinical and Experimental EpilepsyUniversity College LondonLondonUK
| | - Vincent Magloire
- UCL Queen Square Institute of NeurologyDepartment of Clinical and Experimental EpilepsyUniversity College LondonLondonUK
| | - Jonathan H. Cornford
- UCL Queen Square Institute of NeurologyDepartment of Clinical and Experimental EpilepsyUniversity College LondonLondonUK
| | - Dimitri M. Kullmann
- UCL Queen Square Institute of NeurologyDepartment of Clinical and Experimental EpilepsyUniversity College LondonLondonUK
| |
Collapse
|
2
|
Hwang JY, Monday HR, Yan J, Gompers A, Buxbaum AR, Sawicka KJ, Singer RH, Castillo PE, Zukin RS. CPEB3-dependent increase in GluA2 subunits impairs excitatory transmission onto inhibitory interneurons in a mouse model of fragile X. Cell Rep 2022; 39:110853. [PMID: 35675768 PMCID: PMC9671216 DOI: 10.1016/j.celrep.2022.110853] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Revised: 10/05/2021] [Accepted: 05/01/2022] [Indexed: 01/29/2023] Open
Abstract
Fragile X syndrome (FXS) is a leading cause of inherited intellectual disability and autism. Whereas dysregulated RNA translation in Fmr1 knockout (KO) mice, a model of FXS, is well studied, little is known about aberrant transcription. Using single-molecule mRNA detection, we show that mRNA encoding the AMPAR subunit GluA2 (but not GluA1) is elevated in dendrites and at transcription sites of hippocampal neurons of Fmr1 KO mice, indicating elevated GluA2 transcription. We identify CPEB3, a protein implicated in memory consolidation, as an upstream effector critical to GluA2 mRNA expression in FXS. Increased GluA2 mRNA is translated into an increase in GluA2 subunits, a switch in synaptic AMPAR phenotype from GluA2-lacking, Ca2+-permeable to GluA2-containing, Ca2+-impermeable, reduced inhibitory synaptic transmission, and loss of NMDAR-independent LTP at glutamatergic synapses onto CA1 inhibitory interneurons. These factors could contribute to an excitatory/inhibitory imbalance-a common theme in FXS and other autism spectrum disorders.
Collapse
Affiliation(s)
- Jee-Yeon Hwang
- Dominick P. Purpura Department of Neuroscience, Albert Einstein College of Medicine, New York, NY 10461, USA,Department of Pharmacology and Neuroscience, Creighton University School of Medicine, Omaha, NE 68178, USA,These authors contributed equally,Lead contact,Correspondence: (J.-Y.H.), (R.S.Z.)
| | - Hannah R. Monday
- Dominick P. Purpura Department of Neuroscience, Albert Einstein College of Medicine, New York, NY 10461, USA,Present address: Department of Molecular and Cellular Biology and Helen Wills Neuroscience Institute, University of California, Berkeley, Berkeley, CA 94720, USA,These authors contributed equally
| | - Jingqi Yan
- Dominick P. Purpura Department of Neuroscience, Albert Einstein College of Medicine, New York, NY 10461, USA,Center for Gene Regulation in Health and Disease, Department of Biological, Geological, and Environmental Sciences, Cleveland State University, Cleveland, OH 44115, USA,These authors contributed equally
| | - Andrea Gompers
- Dominick P. Purpura Department of Neuroscience, Albert Einstein College of Medicine, New York, NY 10461, USA,Center for Immunology and Infectious Diseases, University of California, Davis, Davis, CA 95616, USA,These authors contributed equally
| | - Adina R. Buxbaum
- Dominick P. Purpura Department of Neuroscience, Albert Einstein College of Medicine, New York, NY 10461, USA,Department of Structural & Cell Biology, Albert Einstein College of Medicine, New York, NY 10461, USA,Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA 20147, USA,Present address: Department of Neurosciences, University of California, San Diego, La Jolla, CA 92093, USA
| | - Kirsty J. Sawicka
- Dominick P. Purpura Department of Neuroscience, Albert Einstein College of Medicine, New York, NY 10461, USA,Present address: Cancer Research UK Cambridge Institute, Li Ka Shing Centre, University of Cambridge, Cambridge, UK
| | - Robert H. Singer
- Dominick P. Purpura Department of Neuroscience, Albert Einstein College of Medicine, New York, NY 10461, USA,Department of Structural & Cell Biology, Albert Einstein College of Medicine, New York, NY 10461, USA,Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA 20147, USA,These authors contributed equally
| | - Pablo E. Castillo
- Dominick P. Purpura Department of Neuroscience, Albert Einstein College of Medicine, New York, NY 10461, USA,Department of Psychiatry and Behavioral Sciences, Albert Einstein College of Medicine, New York, NY 10461, USA,These authors contributed equally
| | - R. Suzanne Zukin
- Dominick P. Purpura Department of Neuroscience, Albert Einstein College of Medicine, New York, NY 10461, USA,These authors contributed equally,Correspondence: (J.-Y.H.), (R.S.Z.)
| |
Collapse
|
3
|
Alkadhi KA. NMDA receptor-independent LTP in mammalian nervous system. Prog Neurobiol 2021; 200:101986. [PMID: 33400965 DOI: 10.1016/j.pneurobio.2020.101986] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Revised: 12/16/2020] [Accepted: 12/28/2020] [Indexed: 11/17/2022]
Abstract
Long-term potentiation (LTP) of synaptic transmission is a form of activity-dependent synaptic plasticity that exists at most synapses in the nervous system. In the central nervous system (CNS), LTP has been recorded at numerous synapses and is a prime candidate mechanism associating activity-dependent plasticity with learning and memory. LTP involves long-lasting increase in synaptic strength with various underlying mechanisms. In the CNS, the predominant type of LTP is believed to be dependent on activation of the ionotropic glutamate N-methyl-D-aspartate receptor (NMDAR), which is highly calcium-permeable. However, various forms of NMDAR-independent LTP have been identified in diverse areas of the nervous system. The NMDAR-independent LTP may require activation of glutamate metabotropic receptors (mGluR) or ionotropic receptors other than NMDAR such as nicotinic acetylcholine receptor (α7-nAChR), serotonin 5-HT3 receptor or calcium-permeable AMPA receptor (CP-AMPAR). In this review, NMDAR-independent LTP of various areas of the central and peripheral nervous systems are discussed.
Collapse
Affiliation(s)
- Karim A Alkadhi
- Department of Pharmacological and Pharmaceutical Sciences, College of Pharmacy, University of Houston, Houston, TX, 77204, USA.
| |
Collapse
|
4
|
Nicholson E, Kullmann DM. Nicotinic receptor activation induces NMDA receptor independent long-term potentiation of glutamatergic signalling in hippocampal oriens interneurons. J Physiol 2021; 599:667-676. [PMID: 33251594 PMCID: PMC7839446 DOI: 10.1113/jp280397] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2020] [Accepted: 11/23/2020] [Indexed: 12/19/2022] Open
Abstract
KEY POINTS Long-term potentiation of glutamatergic transmission to hippocampal interneurons in stratum oriens does not require NMDA receptors and the induction mechanisms are incompletely understood. Extracellular stimulation, conventionally used to monitor synaptic strength and induce long-term potentiation (LTP), does not exclusively recruit glutamatergic axons. We used optogenetic stimulation of either glutamatergic or cholinergic afferents to probe the relative roles of different signalling mechanisms in LTP induction. Selective stimulation of cholinergic axons was sufficient to induce LTP, which was prevented by chelating postsynaptic Ca2+ or blocking nicotinic receptors. The present study adds nicotinic receptors to the list of sources of Ca2+ that induce NMDA receptor independent LTP in hippocampal oriens interneurons. ABSTRACT Many interneurons located in stratum oriens of the rodent hippocampus exhibit a form of long-term potentiation (LTP) of glutamatergic transmission that does not depend on NMDA receptors for its induction but, instead, requires Ca2+ -permeable AMPA receptors and group I metabotropic glutamate receptors. A role for cholinergic signalling has also been reported. However, electrical stimulation of presynaptic axons, conventionally used to evoke synaptic responses, does not allow the relative roles of glutamatergic and cholinergic synapses in the induction of LTP to be distinguished. Here, we show that repetitive optogenetic stimulation confined to cholinergic axons is sufficient to trigger a lasting potentiation of glutamatergic signalling. This phenomenon shows partial occlusion with LTP induced by electrical stimulation, and is sensitive to postsynaptic Ca2+ chelation and blockers of nicotinic receptors. ACh release from cholinergic axons is thus sufficient to trigger heterosynaptic potentiation of glutamatergic signalling to oriens interneurons in the hippocampus.
Collapse
|
5
|
Bannon NM, Chistiakova M, Volgushev M. Synaptic Plasticity in Cortical Inhibitory Neurons: What Mechanisms May Help to Balance Synaptic Weight Changes? Front Cell Neurosci 2020; 14:204. [PMID: 33100968 PMCID: PMC7500144 DOI: 10.3389/fncel.2020.00204] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2020] [Accepted: 06/10/2020] [Indexed: 01/29/2023] Open
Abstract
Inhibitory neurons play a fundamental role in the normal operation of neuronal networks. Diverse types of inhibitory neurons serve vital functions in cortical networks, such as balancing excitation and taming excessive activity, organizing neuronal activity in spatial and temporal patterns, and shaping response selectivity. Serving these, and a multitude of other functions effectively requires fine-tuning of inhibition, mediated by synaptic plasticity. Plasticity of inhibitory systems can be mediated by changes at inhibitory synapses and/or by changes at excitatory synapses at inhibitory neurons. In this review, we consider that latter locus: plasticity at excitatory synapses to inhibitory neurons. Despite the fact that plasticity of excitatory synaptic transmission to interneurons has been studied in much less detail than in pyramids and other excitatory cells, an abundance of forms and mechanisms of plasticity have been observed in interneurons. Specific requirements and rules for induction, while exhibiting a broad diversity, could correlate with distinct sources of excitatory inputs and distinct types of inhibitory neurons. One common requirement for the induction of plasticity is the rise of intracellular calcium, which could be mediated by a variety of ligand-gated, voltage-dependent, and intrinsic mechanisms. The majority of the investigated forms of plasticity can be classified as Hebbian-type associative plasticity. Hebbian-type learning rules mediate adaptive changes of synaptic transmission. However, these rules also introduce intrinsic positive feedback on synaptic weight changes, making plastic synapses and learning networks prone to runaway dynamics. Because real inhibitory neurons do not express runaway dynamics, additional plasticity mechanisms that counteract imbalances introduced by Hebbian-type rules must exist. We argue that weight-dependent heterosynaptic plasticity has a number of characteristics that make it an ideal candidate mechanism to achieve homeostatic regulation of synaptic weight changes at excitatory synapses to inhibitory neurons.
Collapse
Affiliation(s)
- Nicholas M Bannon
- Department of Psychological Sciences, University of Connecticut, Storrs, CT, United States
| | - Marina Chistiakova
- Department of Psychological Sciences, University of Connecticut, Storrs, CT, United States
| | - Maxim Volgushev
- Department of Psychological Sciences, University of Connecticut, Storrs, CT, United States
| |
Collapse
|
6
|
Fuenzalida M, Chiu CQ, Chávez AE. Muscarinic Regulation of Spike Timing Dependent Synaptic Plasticity in the Hippocampus. Neuroscience 2020; 456:50-59. [PMID: 32828940 DOI: 10.1016/j.neuroscience.2020.08.015] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2019] [Revised: 08/01/2020] [Accepted: 08/11/2020] [Indexed: 11/18/2022]
Abstract
Long-term changes in synaptic transmission between neurons in the brain are considered the cellular basis of learning and memory. Over the last few decades, many studies have revealed that the precise order and timing of activity between pre- and post-synaptic cells ("spike-timing-dependent plasticity; STDP") is crucial for the sign and magnitude of long-term changes at many central synapses. Acetylcholine (ACh) via the recruitment of diverse muscarinic receptors is known to influence STDP in a variety of ways, enabling flexibility and adaptability in brain network activity during complex behaviors. In this review, we will summarize and discuss different mechanistic aspects of muscarinic modulation of timing-dependent plasticity at both excitatory and inhibitory synapses in the hippocampus to shape learning and memory.
Collapse
Affiliation(s)
- Marco Fuenzalida
- Center of Neurobiology and Integrative Physiopathology, Institute of Physiology, Faculty of Science, Universidad de Valparaíso, Chile.
| | - Chiayu Q Chiu
- Interdisciplinary Center of Neuroscience of Valparaiso, Institute of Neuroscience, Faculty of Science, Universidad de Valparaíso, Chile
| | - Andrés E Chávez
- Interdisciplinary Center of Neuroscience of Valparaiso, Institute of Neuroscience, Faculty of Science, Universidad de Valparaíso, Chile
| |
Collapse
|
7
|
Friend LN, Williamson RC, Merrill CB, Newton ST, Christensen MT, Petersen J, Wu B, Ostlund I, Edwards JG. Hippocampal Stratum Oriens Somatostatin-Positive Cells Undergo CB1-Dependent Long-Term Potentiation and Express Endocannabinoid Biosynthetic Enzymes. Molecules 2019; 24:molecules24071306. [PMID: 30987110 PMCID: PMC6479520 DOI: 10.3390/molecules24071306] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2018] [Revised: 03/29/2019] [Accepted: 03/30/2019] [Indexed: 11/28/2022] Open
Abstract
The hippocampus is thought to encode information by altering synaptic strength via synaptic plasticity. Some forms of synaptic plasticity are induced by lipid-based endocannabinoid signaling molecules that act on cannabinoid receptors (CB1). Endocannabinoids modulate synaptic plasticity of hippocampal pyramidal cells and stratum radiatum interneurons; however, the role of endocannabinoids in mediating synaptic plasticity of stratum oriens interneurons is unclear. These feedback inhibitory interneurons exhibit presynaptic long-term potentiation (LTP), but the exact mechanism is not entirely understood. We examined whether oriens interneurons produce endocannabinoids, and whether endocannabinoids are involved in presynaptic LTP. Using patch-clamp electrodes to extract single cells, we analyzed the expression of endocannabinoid biosynthetic enzyme mRNA by reverse transcription and then real-time PCR (RT-PCR). The cellular expression of calcium-binding proteins and neuropeptides were used to identify interneuron subtype. RT-PCR results demonstrate that stratum oriens interneurons express mRNA for both endocannabinoid biosynthetic enzymes and the type I metabotropic glutamate receptors (mGluRs), necessary for endocannabinoid production. Immunohistochemical staining further confirmed the presence of diacylglycerol lipase alpha, an endocannabinoid-synthesizing enzyme, in oriens interneurons. To test the role of endocannabinoids in synaptic plasticity, we performed whole-cell experiments using high-frequency stimulation to induce long-term potentiation in somatostatin-positive cells. This plasticity was blocked by AM-251, demonstrating CB1-dependence. In addition, in the presence of a fatty acid amide hydrolase inhibitor (URB597; 1 µM) and MAG lipase inhibitor (JZL184; 1 µM) that increase endogenous anandamide and 2-arachidonyl glycerol, respectively, excitatory current responses were potentiated. URB597-induced potentiation was blocked by CB1 antagonist AM-251 (2 µM). Collectively, this suggests somatostatin-positive oriens interneuron LTP is CB1-dependent.
Collapse
Affiliation(s)
- Lindsey N Friend
- Neuroscience Center, Brigham Young University, Provo, UT 84602, USA.
| | - Ryan C Williamson
- Neuroscience Center, Brigham Young University, Provo, UT 84602, USA.
| | - Collin B Merrill
- Department of Physiology and Developmental Biology, Brigham Young University, Provo, UT 84602, USA.
| | - Scott T Newton
- Neuroscience Center, Brigham Young University, Provo, UT 84602, USA.
| | - Michael T Christensen
- Department of Physiology and Developmental Biology, Brigham Young University, Provo, UT 84602, USA.
| | - Jake Petersen
- Department of Physiology and Developmental Biology, Brigham Young University, Provo, UT 84602, USA.
| | - Bridget Wu
- Department of Physiology and Developmental Biology, Brigham Young University, Provo, UT 84602, USA.
| | - Isaac Ostlund
- Department of Physiology and Developmental Biology, Brigham Young University, Provo, UT 84602, USA.
| | - Jeffrey G Edwards
- Neuroscience Center, Brigham Young University, Provo, UT 84602, USA.
- Department of Physiology and Developmental Biology, Brigham Young University, Provo, UT 84602, USA.
| |
Collapse
|
8
|
Lamsa K, Lau P. Long-term plasticity of hippocampal interneurons during in vivo memory processes. Curr Opin Neurobiol 2019; 54:20-27. [DOI: 10.1016/j.conb.2018.08.006] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2018] [Revised: 08/17/2018] [Accepted: 08/19/2018] [Indexed: 12/12/2022]
|
9
|
Stevenson TK, Lawrence DA. Characterization of Tissue Plasminogen Activator Expression and Trafficking in the Adult Murine Brain. eNeuro 2018; 5:ENEURO.0119-18.2018. [PMID: 30090852 PMCID: PMC6080846 DOI: 10.1523/eneuro.0119-18.2018] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2018] [Revised: 05/24/2018] [Accepted: 07/02/2018] [Indexed: 02/03/2023] Open
Abstract
Tissue plasminogen activator (tPA) is an immediate-early gene important for regulating physiological processes like synaptic plasticity and neurovascular coupling. It has also been implicated in several pathological processes including blood-brain barrier (BBB) permeability, seizure progression, and stroke. These varied reports suggest that tPA is a pleiotropic mediator whose actions are highly compartmentalized in space and time. The specific localization of tPA, therefore, can provide useful information about its function. Accordingly, the goal of this study was to provide a detailed characterization of tPA's regional, cellular, and subcellular localization in the brain. To achieve this, two new transgenic mouse lines were utilized: (1) a PlatβGAL reporter mouse, which houses the β-galactosidase gene in the tPA locus and (2) a tPABAC-Cerulean mouse, which has a cerulean-fluorescent protein fused in-frame to the tPA C-terminus. Using these two transgenic reporters, we show that while tPA is expressed throughout most regions of the adult murine brain, it appears to be preferentially targeted to fiber tracts in the limbic system. In the hippocampus, confocal microscopy revealed tPA-Cerulean (tPA-Cer) puncta localized to giant mossy fiber boutons (MFBs) and astrocytes in stratum lucidum. With amplification of the tPA-Cer signal, somatically localized tPA was also observed in the stratum oriens (SO)/alveus layer of both CA1 and CA3 subfields. Coimmunostaining of tPA-Cer and interneuronal markers indicates that these tPA-positive cell bodies belong to a subclass of somatostatin (SST)/oriens-lacunosum moleculare (O-LM) interneurons. Together, these data imply that tPA's localization is differentially regulated, suggesting that its neuromodulatory effects may be compartmentalized and specialized to cell type.
Collapse
Affiliation(s)
- Tamara K. Stevenson
- Department of Molecular and Integrative Physiology, University of Michigan Medical School, Ann Arbor, MI 48109
| | - Daniel A. Lawrence
- Department of Molecular and Integrative Physiology, University of Michigan Medical School, Ann Arbor, MI 48109
- Department of Internal Medicine, Division of Cardiovascular Medicine, University of Michigan Medical School, Ann Arbor, MI 48109
| |
Collapse
|
10
|
Govindaiah G, Kang YJ, Lewis HES, Chung L, Clement EM, Greenfield LJ, Garcia-Rill E, Lee SH. Group I metabotropic glutamate receptors generate two types of intrinsic membrane oscillations in hippocampal oriens/alveus interneurons. Neuropharmacology 2018; 139:150-162. [PMID: 29964095 DOI: 10.1016/j.neuropharm.2018.06.035] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2018] [Revised: 06/16/2018] [Accepted: 06/27/2018] [Indexed: 12/21/2022]
Abstract
GABAergic interneurons in the hippocampus are critically involved in almost all hippocampal circuit functions including coordinated network activity. Somatostatin-expressing oriens-lacunosum moleculare (O-LM) interneurons are a major subtype of dendritically projecting interneurons in hippocampal subregions (e.g., CA1), and express group I metabotropic glutamate receptors (mGluRs), specifically mGluR1 and mGluR5. Group I mGluRs are thought to regulate hippocampal circuit functions partially through GABAergic interneurons. Previous studies suggest that a group I/II mGluR agonist produces slow supra-threshold membrane oscillations (<0.1 Hz), which are associated with high-frequency action potential (AP) discharges in O-LM interneurons. However, the properties and underlying mechanisms of these slow oscillations remain largely unknown. We performed whole-cell patch-clamp recordings from mouse interneurons in the stratum oriens/alveus (O/A interneurons) including CA1 O-LM interneurons. Our study revealed that the selective mGluR1/5 agonist (S)-3,5-dihydroxyphenylglycine (DHPG) induced slow membrane oscillations (<0.1 Hz), which were associated with gamma frequency APs followed by AP-free perithreshold gamma oscillations. The selective mGluR1 antagonist (S)-(+)-α-Amino-4-carboxy-2-methylbenzeneacetic acid (LY367385) reduced the slow oscillations, and the selective mGluR5 antagonist 2-methyl-6-(phenylethynyl)pyridine hydrochloride (MPEP) partially blocked them. Blockade of nonselective cation-conducting transient receptor potential channels, L-type Ca2+ channels, or ryanodine receptors all abolished the slow oscillations, suggesting the involvement of multiple mechanisms. Our findings suggest that group I mGluR activation in O/A interneurons may play an important role in coordinated network activity, and O/A interneuron vulnerability to excitotoxicity, in disease states like seizures, is at least in part due to an excessive rise in intracellular Ca2+.
Collapse
Affiliation(s)
- Gubbi Govindaiah
- Department of Neurology, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA
| | - Young-Jin Kang
- Department of Neurology, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA
| | | | - Leeyup Chung
- Department of Neurobiology, Duke University School of Medicine, Durham, NC 27710, USA
| | - Ethan M Clement
- Department of Neurology, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA
| | - Lazar John Greenfield
- Department of Neurology, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA; Department of Neurology, University of Connecticut Health Center, Farmington, CT 06030, USA
| | - Edgar Garcia-Rill
- Center for Translational Neuroscience, Department of Neurobiology and Developmental Sciences, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA
| | - Sang-Hun Lee
- Department of Neurology, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA; Center for Translational Neuroscience, Department of Neurobiology and Developmental Sciences, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA.
| |
Collapse
|
11
|
Booker SA, Loreth D, Gee AL, Watanabe M, Kind PC, Wyllie DJ, Kulik Á, Vida I. Postsynaptic GABABRs Inhibit L-Type Calcium Channels and Abolish Long-Term Potentiation in Hippocampal Somatostatin Interneurons. Cell Rep 2018; 22:36-43. [DOI: 10.1016/j.celrep.2017.12.021] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2017] [Revised: 10/14/2017] [Accepted: 12/06/2017] [Indexed: 11/24/2022] Open
|
12
|
Pelkey KA, Chittajallu R, Craig MT, Tricoire L, Wester JC, McBain CJ. Hippocampal GABAergic Inhibitory Interneurons. Physiol Rev 2017; 97:1619-1747. [PMID: 28954853 DOI: 10.1152/physrev.00007.2017] [Citation(s) in RCA: 495] [Impact Index Per Article: 70.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2017] [Revised: 05/16/2017] [Accepted: 05/26/2017] [Indexed: 12/11/2022] Open
Abstract
In the hippocampus GABAergic local circuit inhibitory interneurons represent only ~10-15% of the total neuronal population; however, their remarkable anatomical and physiological diversity allows them to regulate virtually all aspects of cellular and circuit function. Here we provide an overview of the current state of the field of interneuron research, focusing largely on the hippocampus. We discuss recent advances related to the various cell types, including their development and maturation, expression of subtype-specific voltage- and ligand-gated channels, and their roles in network oscillations. We also discuss recent technological advances and approaches that have permitted high-resolution, subtype-specific examination of their roles in numerous neural circuit disorders and the emerging therapeutic strategies to ameliorate such pathophysiological conditions. The ultimate goal of this review is not only to provide a touchstone for the current state of the field, but to help pave the way for future research by highlighting where gaps in our knowledge exist and how a complete appreciation of their roles will aid in future therapeutic strategies.
Collapse
Affiliation(s)
- Kenneth A Pelkey
- Porter Neuroscience Center, Eunice Kennedy-Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland; Institute of Biomedical and Clinical Sciences, University of Exeter Medical School, Hatherly Laboratories, University of Exeter, Exeter, United Kingdom; and Sorbonne Universités, UPMC University of Paris, INSERM, CNRS, Neurosciences Paris Seine-Institut de Biologie Paris Seine, Paris, France
| | - Ramesh Chittajallu
- Porter Neuroscience Center, Eunice Kennedy-Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland; Institute of Biomedical and Clinical Sciences, University of Exeter Medical School, Hatherly Laboratories, University of Exeter, Exeter, United Kingdom; and Sorbonne Universités, UPMC University of Paris, INSERM, CNRS, Neurosciences Paris Seine-Institut de Biologie Paris Seine, Paris, France
| | - Michael T Craig
- Porter Neuroscience Center, Eunice Kennedy-Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland; Institute of Biomedical and Clinical Sciences, University of Exeter Medical School, Hatherly Laboratories, University of Exeter, Exeter, United Kingdom; and Sorbonne Universités, UPMC University of Paris, INSERM, CNRS, Neurosciences Paris Seine-Institut de Biologie Paris Seine, Paris, France
| | - Ludovic Tricoire
- Porter Neuroscience Center, Eunice Kennedy-Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland; Institute of Biomedical and Clinical Sciences, University of Exeter Medical School, Hatherly Laboratories, University of Exeter, Exeter, United Kingdom; and Sorbonne Universités, UPMC University of Paris, INSERM, CNRS, Neurosciences Paris Seine-Institut de Biologie Paris Seine, Paris, France
| | - Jason C Wester
- Porter Neuroscience Center, Eunice Kennedy-Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland; Institute of Biomedical and Clinical Sciences, University of Exeter Medical School, Hatherly Laboratories, University of Exeter, Exeter, United Kingdom; and Sorbonne Universités, UPMC University of Paris, INSERM, CNRS, Neurosciences Paris Seine-Institut de Biologie Paris Seine, Paris, France
| | - Chris J McBain
- Porter Neuroscience Center, Eunice Kennedy-Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland; Institute of Biomedical and Clinical Sciences, University of Exeter Medical School, Hatherly Laboratories, University of Exeter, Exeter, United Kingdom; and Sorbonne Universités, UPMC University of Paris, INSERM, CNRS, Neurosciences Paris Seine-Institut de Biologie Paris Seine, Paris, France
| |
Collapse
|
13
|
Nicholson E, Kullmann DM. T-type calcium channels contribute to NMDA receptor independent synaptic plasticity in hippocampal regular-spiking oriens-alveus interneurons. J Physiol 2017; 595:3449-3458. [PMID: 28134447 PMCID: PMC5451714 DOI: 10.1113/jp273695] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2016] [Accepted: 01/06/2017] [Indexed: 11/08/2022] Open
Abstract
KEY POINTS Regular-spiking interneurons in the hippocampal stratum oriens exhibit a form of long-term potentiation of excitatory transmission that is independent of NMDA receptors but requires co-activation of Ca2+ -permeable AMPA receptors and group I metabotropic glutamate receptors. We show that T-type Ca2+ channels are present in such interneurons. Blockade of T-type currents prevents the induction of long-term potentiation, and also interferes with long-lasting potentiation induced either by postsynaptic trains of action potentials or by pairing postsynaptic hyperpolarization with activation of group I metabotropic receptors. Several Ca2+ sources thus converge on the induction of NMDA receptor independent synaptic plasticity. ABSTRACT NMDA receptor independent long-term potentiation (LTP) in hippocampal stratum oriens-alveus (O/A) interneurons requires co-activation of postsynaptic group I metabotropic glutamate receptors (mGluRs) and Ca2+ -permeable AMPA receptors. The rectification properties of such AMPA receptors contribute to the preferential induction of LTP at hyperpolarized potentials. A persistent increase in excitatory transmission can also be triggered by exogenous activation of group I mGluRs at the same time as the interneuron is hyperpolarized, or by postsynaptic trains of action potentials in the absence of presynaptic stimulation. In the present study, we identify low-threshold transient (T-type) channels as a further source of Ca2+ that contributes to synaptic plasticity. T-type Ca2+ currents were detected in mouse regular-spiking O/A interneurons. Blocking T-type currents pharmacologically prevented LTP induced by high-frequency stimulation of glutamatergic axons, or by application of the group I mGluR agonist dihydroxyphenylglycine, paired with postsynaptic hyperpolarization. T-type current blockade also prevented synaptic potentiation induced by postsynaptic action potential trains. Several sources of Ca2+ thus converge on NMDA receptor independent LTP induction in O/A interneurons.
Collapse
|
14
|
Lau PYP, Katona L, Saghy P, Newton K, Somogyi P, Lamsa KP. Long-term plasticity in identified hippocampal GABAergic interneurons in the CA1 area in vivo. Brain Struct Funct 2016; 222:1809-1827. [PMID: 27783219 PMCID: PMC5406446 DOI: 10.1007/s00429-016-1309-7] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2016] [Accepted: 09/11/2016] [Indexed: 12/24/2022]
Abstract
Long-term plasticity is well documented in synapses between glutamatergic principal cells in the cortex both in vitro and in vivo. Long-term potentiation (LTP) and -depression (LTD) have also been reported in glutamatergic connections to hippocampal GABAergic interneurons expressing parvalbumin (PV+) or nitric oxide synthase (NOS+) in brain slices, but plasticity in these cells has not been tested in vivo. We investigated synaptically-evoked suprathreshold excitation of identified hippocampal neurons in the CA1 area of urethane-anaesthetized rats. Neurons were recorded extracellularly with glass microelectrodes, and labelled with neurobiotin for anatomical analyses. Single-shock electrical stimulation of afferents from the contralateral CA1 elicited postsynaptic action potentials with monosynaptic features showing short delay (9.95 ± 0.41 ms) and small jitter in 13 neurons through the commissural pathway. Theta-burst stimulation (TBS) generated LTP of the synaptically-evoked spike probability in pyramidal cells, and in a bistratified cell and two unidentified fast-spiking interneurons. On the contrary, PV+ basket cells and NOS+ ivy cells exhibited either LTD or LTP. An identified axo-axonic cell failed to show long-term change in its response to stimulation. Discharge of the cells did not explain whether LTP or LTD was generated. For the fast-spiking interneurons, as a group, no correlation was found between plasticity and local field potential oscillations (1-3 or 3-6 Hz components) recorded immediately prior to TBS. The results demonstrate activity-induced long-term plasticity in synaptic excitation of hippocampal PV+ and NOS+ interneurons in vivo. Physiological and pathological activity patterns in vivo may generate similar plasticity in these interneurons.
Collapse
Affiliation(s)
| | - Linda Katona
- MRC Brain Network Dynamics Unit, Department of Pharmacology, University of Oxford, Oxford, OX1 3TH, UK
| | - Peter Saghy
- MRC Brain Network Dynamics Unit, Department of Pharmacology, University of Oxford, Oxford, OX1 3TH, UK
| | - Kathryn Newton
- Department of Pharmacology, University of Oxford, Oxford, OX1 3QT, UK.,MRC Brain Network Dynamics Unit, Department of Pharmacology, University of Oxford, Oxford, OX1 3TH, UK
| | - Peter Somogyi
- MRC Brain Network Dynamics Unit, Department of Pharmacology, University of Oxford, Oxford, OX1 3TH, UK.
| | - Karri P Lamsa
- Department of Pharmacology, University of Oxford, Oxford, OX1 3QT, UK. .,Department of Anatomy, Physiology and Neuroscience, University of Szeged, Közép fasor, Szeged, 6720, Hungary.
| |
Collapse
|
15
|
Goldberg JM, Loas A, Lippard SJ. Metalloneurochemistry and the Pierian Spring: 'Shallow Draughts Intoxicate the Brain'. Isr J Chem 2016; 56:791-802. [PMID: 28190893 DOI: 10.1002/ijch.201600034] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
Metal ions perform critical and diverse functions in nervous system physiology and pathology. The field of metalloneurochemistry aims to understand the mechanistic bases for these varied roles at the molecular level. Here, we review several areas of research that illustrate progress toward achieving this ambitious goal and identify key challenges for the future. We examine the use of lithium as a mood stabilizer, the roles of mobile zinc and copper in the synapse, the interplay of nitric oxide and metals in retrograde signaling, and the regulation of iron homeostasis in the brain. These topics were chosen to demonstrate not only the breadth of the field, but also to highlight opportunities for discovery by studying such complex systems in greater detail. We are beginning to uncover the principles by which receptors and transmitters utilize metal ions to modulate neurotransmission. These advances have revealed exciting new insights into the intricate mechanisms that give rise to learning, memory, and sensory perception, while opening many new avenues for further exploration.
Collapse
Affiliation(s)
- Jacob M Goldberg
- Department of Chemistry, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA 02139 (U.S.A.)
| | - Andrei Loas
- Department of Chemistry, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA 02139 (U.S.A.)
| | - Stephen J Lippard
- Department of Chemistry, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA 02139 (U.S.A.)
| |
Collapse
|
16
|
Abstract
Fear memory is the best-studied form of memory. It was thoroughly investigated in the past 60 years mostly using two classical conditioning procedures (contextual fear conditioning and fear conditioning to a tone) and one instrumental procedure (one-trial inhibitory avoidance). Fear memory is formed in the hippocampus (contextual conditioning and inhibitory avoidance), in the basolateral amygdala (inhibitory avoidance), and in the lateral amygdala (conditioning to a tone). The circuitry involves, in addition, the pre- and infralimbic ventromedial prefrontal cortex, the central amygdala subnuclei, and the dentate gyrus. Fear learning models, notably inhibitory avoidance, have also been very useful for the analysis of the biochemical mechanisms of memory consolidation as a whole. These studies have capitalized on in vitro observations on long-term potentiation and other kinds of plasticity. The effect of a very large number of drugs on fear learning has been intensively studied, often as a prelude to the investigation of effects on anxiety. The extinction of fear learning involves to an extent a reversal of the flow of information in the mentioned structures and is used in the therapy of posttraumatic stress disorder and fear memories in general.
Collapse
Affiliation(s)
- Ivan Izquierdo
- National Institute of Translational Neuroscience, National Research Council of Brazil, and Memory Center, Brain Institute, Pontifical Catholic University of Rio Grande do Sul, Porto Alegre, Rio Grande do Sul, Brazil
| | - Cristiane R. G. Furini
- National Institute of Translational Neuroscience, National Research Council of Brazil, and Memory Center, Brain Institute, Pontifical Catholic University of Rio Grande do Sul, Porto Alegre, Rio Grande do Sul, Brazil
| | - Jociane C. Myskiw
- National Institute of Translational Neuroscience, National Research Council of Brazil, and Memory Center, Brain Institute, Pontifical Catholic University of Rio Grande do Sul, Porto Alegre, Rio Grande do Sul, Brazil
| |
Collapse
|
17
|
Induction of Anti-Hebbian LTP in CA1 Stratum Oriens Interneurons: Interactions between Group I Metabotropic Glutamate Receptors and M1 Muscarinic Receptors. J Neurosci 2016; 35:13542-54. [PMID: 26446209 DOI: 10.1523/jneurosci.0956-15.2015] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
UNLABELLED An anti-Hebbian form of LTP is observed at excitatory synapses made with some hippocampal interneurons. LTP induction is facilitated when postsynaptic interneurons are hyperpolarized, presumably because Ca(2+) entry through Ca(2+)-permeable glutamate receptors is enhanced. The contribution of modulatory transmitters to anti-Hebbian LTP induction remains to be established. Activation of group I metabotropic receptors (mGluRs) is required for anti-Hebbian LTP induction in interneurons with cell bodies in the CA1 stratum oriens. This region receives a strong cholinergic innervation from the septum, and muscarinic acetylcholine receptors (mAChRs) share some signaling pathways and cooperate with mGluRs in the control of neuronal excitability.We therefore examined possible interactions between group I mGluRs and mAChRs in anti-Hebbian LTP at synapses which excite oriens interneurons in rat brain slices. We found that blockade of either group I mGluRs or M1 mAChRs prevented the induction of anti-Hebbian LTP by pairing presynaptic activity with postsynaptic hyperpolarization. Blocking either receptor also suppressed long-term effects of activation of the other G-protein coupled receptor on interneuron membrane potential. However, no crossed blockade was detected for mGluR or mAchR effects on interneuron after-burst potentials or on the frequency of miniature EPSPs. Paired recordings between pyramidal neurons and oriens interneurons were obtained to determine whether LTP could be induced without concurrent stimulation of cholinergic axons. Exogenous activation of mAChRs led to LTP, with changes in EPSP amplitude distributions consistent with a presynaptic locus of expression. LTP, however, required noninvasive presynaptic and postsynaptic recordings. SIGNIFICANCE STATEMENT In the hippocampus, a form of NMDA receptor-independent long-term potentiation (LTP) occurs at excitatory synapses made on some inhibitory neurons. This is preferentially induced when postsynaptic interneurons are hyperpolarized, depends on Ca(2+) entry through Ca(2+)-permeable AMPA receptors, and has been labeled anti-Hebbian LTP. Here we show that this form of LTP also depends on activation of both group I mGluR and M1 mAChRs. We demonstrate that these G-protein coupled receptors (GPCRs) interact, because the blockade of one receptor suppresses long-term effects of activation of the other GPCR on both LTP and interneuron membrane potential. This LTP was also detected in paired recordings, although only when both presynaptic and postsynaptic recordings did not perturb the intracellular medium. Changes in EPSP amplitude distributions in dual recordings were consistent with a presynaptic locus of expression.
Collapse
|
18
|
Willshaw DJ, Dayan P, Morris RGM. Memory, modelling and Marr: a commentary on Marr (1971) 'Simple memory: a theory of archicortex'. Philos Trans R Soc Lond B Biol Sci 2015; 370:rstb.2014.0383. [PMID: 25750246 PMCID: PMC4360131 DOI: 10.1098/rstb.2014.0383] [Citation(s) in RCA: 59] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
David Marr's theory of the archicortex, a brain structure now more commonly known as the hippocampus and hippocampal formation, is an epochal contribution to theoretical neuroscience. Addressing the problem of how information about 10 000 events could be stored in the archicortex during the day so that they can be retrieved using partial information and then transferred to the neocortex overnight, the paper presages a whole wealth of later empirical and theoretical work, proving impressively prescient. Despite this impending success, Marr later apparently grew dissatisfied with this style of modelling, but he went on to make seminal suggestions that continue to resonate loudly throughout the field of theoretical neuroscience. We describe Marr's theory of the archicortex and his theory of theories, setting them into their original and a contemporary context, and assessing their impact. This commentary was written to celebrate the 350th anniversary of the journal Philosophical Transactions of the Royal Society.
Collapse
Affiliation(s)
- D J Willshaw
- School of Informatics, University of Edinburgh, Edinburgh EH8 9LE, UK
| | - P Dayan
- Gatsby Computational Neuroscience Unit, University College London, London WC1N 3AR, UK
| | - R G M Morris
- Centre for Cognitive and Neural Systems, University of Edinburgh, Edinburgh EH8 9JZ, UK
| |
Collapse
|
19
|
Bliss TVP, Collingridge GL, Morris RGM. Synaptic plasticity in health and disease: introduction and overview. Philos Trans R Soc Lond B Biol Sci 2013; 369:20130129. [PMID: 24298133 DOI: 10.1098/rstb.2013.0129] [Citation(s) in RCA: 102] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
We summarize the reviews and research papers submitted by speakers at a discussion meeting on Synaptic Plasticity in Health and Disease held at the Royal Society, London on 2-3 December 2013, and a subsequent satellite meeting convened at the Royal Society/Kavli Centre at Chicheley Hall on 4-5 December 2013. Together, these contributions give an overview of current research and controversies in a vibrant branch of neuroscience with important implications for the understanding of many forms of learning and memory, and a wide spectrum of neurological and cognitive disorders.
Collapse
Affiliation(s)
- T V P Bliss
- Division of Neurophysiology, MRC National Institute for Medical Research, , London NW7 1AA, UK
| | | | | |
Collapse
|