1
|
Woodhouse A, Swain A, Smith J, Sibert E, Lam A, Dunne J, Auderset A. The Micropaleoecology Framework: Evaluating Biotic Responses to Global Change Through Paleoproxy, Microfossil, and Ecological Data Integration. Ecol Evol 2024; 14:e70470. [PMID: 39493613 PMCID: PMC11525056 DOI: 10.1002/ece3.70470] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Revised: 10/01/2024] [Accepted: 10/03/2024] [Indexed: 11/05/2024] Open
Abstract
The microfossil record contains abundant, diverse, and well-preserved fossils spanning multiple trophic levels from primary producers to apex predators. In addition, microfossils often constitute and are preserved in high abundances alongside continuous high-resolution geochemical proxy records. These characteristics mean that microfossils can provide valuable context for understanding the modern climate and biodiversity crises by allowing for the interrogation of spatiotemporal scales well beyond what is available in neo-ecological research. Here, we formalize a research framework of "micropaleoecology," which builds on a holistic understanding of global change from the environment to ecosystem level. Location: Global. Time period: Neoproterozoic-Phanerozoic. Taxa studied: Fossilizing organisms/molecules. Our framework seeks to integrate geochemical proxy records with microfossil records and metrics, and draws on mechanistic models and systems-level statistical analyses to integrate disparate records. Using multiple proxies and mechanistic mathematical frameworks extends analysis beyond traditional correlation-based studies of paleoecological associations and builds a greater understanding of past ecosystem dynamics. The goal of micropaleoecology is to investigate how environmental changes impact the component and emergent properties of ecosystems through the integration of multi-trophic level body fossil records (primarily using microfossils, and incorporating additional macrofossil data where possible) with contemporaneous environmental (biogeochemical, geochemical, and sedimentological) records. Micropaleoecology, with its focus on integrating ecological metrics within the context of paleontological records, facilitates a deeper understanding of the response of ecosystems across time and space to better prepare for a future Earth under threat from anthropogenic climate change.
Collapse
Affiliation(s)
- Adam Woodhouse
- School of Earth SciencesUniversity of BristolBristolUK
- University of Texas Institute for GeophysicsUniversity of Texas at AustinAustinTexasUSA
| | - Anshuman Swain
- Department of Organismic and Evolutionary BiologyHarvard UniversityCambridgeMassachusettsUSA
- Museum of Comparative ZoologyHarvard UniversityCambridgeMassachusettsUSA
| | - Jansen A. Smith
- Department of Earth and Environmental SciencesUniversity of Minnesota DuluthDuluthMinnesotaUSA
| | - Elizabeth C. Sibert
- Department of Geology and GeophysicsWoods Hole Oceanographic InstitutionWoods HoleMassachusettsUSA
| | - Adriane R. Lam
- Department of Earth SciencesBinghamton UniversityBinghamtonNew YorkUSA
| | | | | |
Collapse
|
2
|
Swain A, Woodhouse A, Fagan WF, Fraass AJ, Lowery CM. Biogeographic response of marine plankton to Cenozoic environmental changes. Nature 2024; 629:616-623. [PMID: 38632405 DOI: 10.1038/s41586-024-07337-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Accepted: 03/20/2024] [Indexed: 04/19/2024]
Abstract
In palaeontological studies, groups with consistent ecological and morphological traits across a clade's history (functional groups)1 afford different perspectives on biodiversity dynamics than do species and genera2,3, which are evolutionarily ephemeral. Here we analyse Triton, a global dataset of Cenozoic macroperforate planktonic foraminiferal occurrences4, to contextualize changes in latitudinal equitability gradients1, functional diversity, palaeolatitudinal specialization and community equitability. We identify: global morphological communities becoming less specialized preceding the richness increase after the Cretaceous-Palaeogene extinction; ecological specialization during the Early Eocene Climatic Optimum, suggesting inhibitive equatorial temperatures during the peak of the Cenozoic hothouse; increased specialization due to circulation changes across the Eocene-Oligocene transition, preceding the loss of morphological diversity; changes in morphological specialization and richness about 19 million years ago, coeval with pelagic shark extinctions5; delayed onset of changing functional group richness and specialization between hemispheres during the mid-Miocene plankton diversification. The detailed nature of the Triton dataset permits a unique spatiotemporal view of Cenozoic pelagic macroevolution, in which global biogeographic responses of functional communities and richness are decoupled during Cenozoic climate events. The global response of functional groups to similar abiotic selection pressures may depend on the background climatic state (greenhouse or icehouse) to which a group is adapted.
Collapse
Affiliation(s)
- Anshuman Swain
- Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, MA, USA.
- Museum of Comparative Zoology, Harvard University, Cambridge, MA, USA.
- Department of Paleobiology, National Museum of Natural History, Washington, DC, USA.
- Department of Biology, University of Maryland, College Park, MD, USA.
| | - Adam Woodhouse
- University of Texas Institute for Geophysics, University of Texas at Austin, Austin, TX, USA
- School of Earth Sciences, University of Bristol, Bristol, UK
| | - William F Fagan
- Department of Biology, University of Maryland, College Park, MD, USA
| | - Andrew J Fraass
- School of Earth and Ocean Sciences, University of Victoria, Victoria, British Columbia, Canada
| | - Christopher M Lowery
- University of Texas Institute for Geophysics, University of Texas at Austin, Austin, TX, USA
| |
Collapse
|
3
|
Jonkers L, Mix A, Voelker A, Risebrobakken B, Smart CW, Ivanova E, Arellano-Torres E, Eynaud F, Naoufel H, Max L, Rossignol L, Simon MH, Martins MVA, Petró S, Caley T, Dokken T, Howard W, Kucera M. ForCenS-LGM: a dataset of planktonic foraminifera species assemblage composition for the Last Glacial Maximum. Sci Data 2024; 11:361. [PMID: 38600091 PMCID: PMC11006933 DOI: 10.1038/s41597-024-03166-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Accepted: 03/20/2024] [Indexed: 04/12/2024] Open
Abstract
Species assemblage composition of marine microfossils offers the possibility to investigate ecological and climatological change on time scales inaccessible using conventional observations. Planktonic foraminifera - calcareous zooplankton - have an excellent fossil record and are used extensively in palaeoecology and palaeoceanography. During the Last Glacial Maximum (LGM; 19,000 - 23,000 years ago), the climate was in a radically different state. This period is therefore a key target to investigate climate and biodiversity under different conditions than today. Studying LGM climate and ecosystems indeed has a long history, yet the most recent global synthesis of planktonic foraminifera assemblage composition is now nearly two decades old. Here we present the ForCenS-LGM dataset with 2,365 species assemblage samples collected using standardised methods and with harmonised taxonomy. The data originate from marine sediments from 664 sites and present a more than 50% increase in coverage compared to previous work. The taxonomy is compatible with the most recent global core top dataset, enabling direct investigation of temporal changes in foraminifera biogeography and facilitating seawater temperature reconstructions.
Collapse
Affiliation(s)
- Lukas Jonkers
- MARUM Center for Marine Environmental Sciences, University of Bremen, 28359, Bremen, Germany.
| | - Alan Mix
- College of Earth, Ocean, and Atmospheric Sciences, Oregon State University, Corvallis, OR, 97331-5503, USA
| | - Antje Voelker
- Instituto Português do Mar e da Atmosfera (IPMA), Divisão de Geologia e Georecursos Marinhos. Av. Doutor Alfredo Magalhães Ramalho, 6, 1495-165, Alges, Portugal
- Centro de Ciências do Mar do Algarve (CCMAR), Universidade do Algarve, 8005-139, Faro, Portugal
| | - Bjørg Risebrobakken
- NORCE Norwegian Research Centre, Bjerknes Centre for Climate Change, Jahnebakken 5. NO-5007, Bergen, Norway
| | - Christopher W Smart
- School of Geography, Earth and Environmental Sciences, University of Plymouth, Drake Circus, Plymouth, PL4 8AA, UK
| | - Elena Ivanova
- Shirshov Institute of Oceanology, Russian Academy of Sciences, Moscow, Russia
| | - Elsa Arellano-Torres
- Escuela Nacional de Ciencias de la Tierra (ENCiT), Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Frédérique Eynaud
- Univ. Bordeaux, CNRS, Bordeaux INP, EPOC, UMR 5805, F-33600, Pessac, France
| | - Haddam Naoufel
- GEOPS Géosciences Paris-Sud, CNRS, Université de Paris Sud Paris Saclay, Orsay, Cedex, France
- LSCE/IPSL Laboratoire des Sciences du Climat et de l'Environnement, CEA-CNRS-UVSQ, Orme des Merisiers, Saint-Aubin, France
| | - Lars Max
- MARUM Center for Marine Environmental Sciences, University of Bremen, 28359, Bremen, Germany
| | - Linda Rossignol
- Univ. Bordeaux, CNRS, Bordeaux INP, EPOC, UMR 5805, F-33600, Pessac, France
| | - Margit H Simon
- NORCE Norwegian Research Centre, Bjerknes Centre for Climate Change, Jahnebakken 5. NO-5007, Bergen, Norway
| | - Maria Virgínia Alves Martins
- Universidade do Estado do Rio de Janeiro, UERJ, Faculdade de Geologia, Av. São Francisco Xavier 24, Lab. 4037F, Maracanã, 20550-013, Rio de Janeiro, Brazil
- Universidade de Aveiro, GeoBioTec, Departamento de Geociências, Campus de Santiago, 3810-193, Aveiro, Portugal
| | - Sandro Petró
- itt OCEANEON - Instituto Tecnológico de Paleoceanografia e Mudanças Climáticas, UNISINOS - Universidade do Vale do Rio dos Sinos, São Leopoldo, Brazil
| | - Thibaut Caley
- Univ. Bordeaux, CNRS, Bordeaux INP, EPOC, UMR 5805, F-33600, Pessac, France
| | - Trond Dokken
- NORCE Norwegian Research Centre, Bjerknes Centre for Climate Change, Jahnebakken 5. NO-5007, Bergen, Norway
| | - Will Howard
- Fenner School of Environment & Society, Australian National University, Canberra, ACT, Australia
| | - Michal Kucera
- MARUM Center for Marine Environmental Sciences, University of Bremen, 28359, Bremen, Germany
| |
Collapse
|
4
|
Crichton KA, Wilson JD, Ridgwell A, Boscolo-Galazzo F, John EH, Wade BS, Pearson PN. What the geological past can tell us about the future of the ocean's twilight zone. Nat Commun 2023; 14:2376. [PMID: 37105972 PMCID: PMC10140295 DOI: 10.1038/s41467-023-37781-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2021] [Accepted: 03/30/2023] [Indexed: 04/29/2023] Open
Abstract
Paleontological reconstructions of plankton community structure during warm periods of the Cenozoic (last 66 million years) reveal that deep-dwelling 'twilight zone' (200-1000 m) plankton were less abundant and diverse, and lived much closer to the surface, than in colder, more recent climates. We suggest that this is a consequence of temperature's role in controlling the rate that sinking organic matter is broken down and metabolized by bacteria, a process that occurs faster at warmer temperatures. In a warmer ocean, a smaller fraction of organic matter reaches the ocean interior, affecting food supply and dissolved oxygen availability at depth. Using an Earth system model that has been evaluated against paleo observations, we illustrate how anthropogenic warming may impact future carbon cycling and twilight zone ecology. Our findings suggest that significant changes are already underway, and without strong emissions mitigation, widespread ecological disruption in the twilight zone is likely by 2100, with effects spanning millennia thereafter.
Collapse
Affiliation(s)
- Katherine A Crichton
- School of Earth and Environmental Science, Cardiff University, Cardiff, UK.
- Now at Department of Geography, University of Exeter, Exeter, UK.
| | - Jamie D Wilson
- School of Earth Sciences, University of Bristol, Bristol, UK
- Department of Earth, Ocean and Ecological Sciences, University of Liverpool, Liverpool, UK
| | - Andy Ridgwell
- Department of Earth and Planetary Sciences, University of California, Riverside, CA, USA
| | - Flavia Boscolo-Galazzo
- School of Earth and Environmental Science, Cardiff University, Cardiff, UK
- Now at MARUM, University of Bremen, Bremen, Germany
| | - Eleanor H John
- School of Earth and Environmental Science, Cardiff University, Cardiff, UK
| | - Bridget S Wade
- Department of Earth Sciences, University College London, London, UK
| | - Paul N Pearson
- School of Earth and Environmental Science, Cardiff University, Cardiff, UK
| |
Collapse
|
5
|
Fenton IS, Aze T, Farnsworth A, Valdes P, Saupe EE. Origination of the modern-style diversity gradient 15 million years ago. Nature 2023; 614:708-712. [PMID: 36792825 DOI: 10.1038/s41586-023-05712-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Accepted: 01/06/2023] [Indexed: 02/17/2023]
Abstract
The latitudinal diversity gradient (LDG) is a prevalent feature of modern ecosystems across diverse clades1-4. Recognized for well over a century, the causal mechanisms for LDGs remain disputed, in part because numerous putative drivers simultaneously covary with latitude1,3,5. The past provides the opportunity to disentangle LDG mechanisms because the relationships among biodiversity, latitude and possible causal factors have varied over time6-9. Here we quantify the emergence of the LDG in planktonic foraminifera at high spatiotemporal resolution over the past 40 million years, finding that a modern-style gradient arose only 15 million years ago. Spatial and temporal models suggest that LDGs for planktonic foraminifera may be controlled by the physical structure of the water column. Steepening of the latitudinal temperature gradient over 15 million years ago, associated with an increased vertical temperature gradient at low latitudes, may have enhanced niche partitioning and provided more opportunities for speciation at low latitudes. Supporting this hypothesis, we find that higher rates of low-latitude speciation steepened the diversity gradient, consistent with spatiotemporal patterns of depth partitioning by planktonic foraminifera. Extirpation of species from high latitudes also strengthened the LDG, but this effect tended to be weaker than speciation. Our results provide a step change in understanding the evolution of marine LDGs over long timescales.
Collapse
Affiliation(s)
- Isabel S Fenton
- Department of Earth Sciences, University of Oxford, Oxford, UK
| | - Tracy Aze
- School of Earth and Environment, University of Leeds, Leeds, UK
| | - Alexander Farnsworth
- School of Geographical Sciences, University of Bristol, Bristol, UK.,State Key Laboratory of Tibetan Plateau Earth System, Environment and Resources, Institute of Tibetan Plateau Research, Chinese Academy of Sciences, Beijing, China
| | - Paul Valdes
- School of Geographical Sciences, University of Bristol, Bristol, UK
| | - Erin E Saupe
- Department of Earth Sciences, University of Oxford, Oxford, UK.
| |
Collapse
|
6
|
Woodhouse A, Swain A, Fagan WF, Fraass AJ, Lowery CM. Late Cenozoic cooling restructured global marine plankton communities. Nature 2023; 614:713-718. [PMID: 36792824 DOI: 10.1038/s41586-023-05694-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2022] [Accepted: 01/03/2023] [Indexed: 02/17/2023]
Abstract
The geographic ranges of marine organisms, including planktonic foraminifera1, diatoms, dinoflagellates2, copepods3 and fish4, are shifting polewards owing to anthropogenic climate change5. However, the extent to which species will move and whether these poleward range shifts represent precursor signals that lead to extinction is unclear6. Understanding the development of marine biodiversity patterns over geological time and the factors that influence them are key to contextualizing these current trends. The fossil record of the macroperforate planktonic foraminifera provides a rich and phylogenetically resolved dataset that provides unique opportunities for understanding marine biogeography dynamics and how species distributions have responded to ancient climate changes. Here we apply a bipartite network approach to quantify group diversity, latitudinal specialization and latitudinal equitability for planktonic foraminifera over the past eight million years using Triton, a recently developed high-resolution global dataset of planktonic foraminiferal occurrences7. The results depict a global, clade-wide shift towards the Equator in ecological and morphological community equitability over the past eight million years in response to temperature changes during the late Cenozoic bipolar ice sheet formation. Collectively, the Triton data indicate the presence of a latitudinal equitability gradient among planktonic foraminiferal functional groups which is coupled to the latitudinal biodiversity gradient only through the geologically recent past (the past two million years). Before this time, latitudinal equitability gradients indicate that higher latitudes promoted community equitability across ecological and morphological groups. Observed range shifts among marine planktonic microorganisms1,2,8 in the recent and geological past suggest substantial poleward expansion of marine communities even under the most conservative future global warming scenarios.
Collapse
Affiliation(s)
- Adam Woodhouse
- University of Texas Institute for Geophysics, University of Texas at Austin, Austin, TX, USA.
| | - Anshuman Swain
- Department of Biology, University of Maryland, College Park, MD, USA.,Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, MA, USA.,Museum of Comparative Zoology, Harvard University, Cambridge, MA, USA.,Department of Paleobiology, National Museum of Natural History, Washington, DC, USA
| | - William F Fagan
- Department of Biology, University of Maryland, College Park, MD, USA
| | - Andrew J Fraass
- School of Earth and Ocean Sciences, University of Victoria, Victoria, British Columbia, Canada.,Invertebrate Paleontology, The Academy of Natural Sciences of Drexel University, Philadelphia, PA, USA.,School of Earth Science, University of Bristol, Bristol, UK
| | - Christopher M Lowery
- University of Texas Institute for Geophysics, University of Texas at Austin, Austin, TX, USA
| |
Collapse
|
7
|
Brodie JF, Mannion PD. The hierarchy of factors predicting the latitudinal diversity gradient. Trends Ecol Evol 2023; 38:15-23. [PMID: 36089412 DOI: 10.1016/j.tree.2022.07.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2020] [Revised: 07/26/2022] [Accepted: 07/29/2022] [Indexed: 12/24/2022]
Abstract
The numerous explanations for why Earth's biodiversity is concentrated at low latitudes fail to explain variation in the strength and even direction of the gradient through deep time. Consequently, we do not know if today's gradient is representative of what might be expected on other planets or is merely an idiosyncrasy of Earth's history. We propose a hierarchy of factors driving the latitudinal distribution of diversity: (i) over geologically long time spans, diversity is largely predicted by climate; (ii) when climatic gradients are shallow, diversity tracks habitat area; and (iii) historical contingencies linked to niche conservatism have geologically short-term, transient influence at most. Thus, latitudinal diversity gradients, although variable in strength and direction, are largely predictable on our planet and possibly others.
Collapse
Affiliation(s)
- Jedediah F Brodie
- Division of Biological Sciences & Wildlife Biology Program, University of Montana, Missoula, MT 59812, USA; Institute of Biodiversity and Environmental Conservation, Universiti Malaysia Sarawak, 94 300 Kota Samarahan, Malaysia.
| | - Philip D Mannion
- Department of Earth Sciences, University College London, Gower Street, London, WC1E 6BT, UK
| |
Collapse
|
8
|
Strack T, Jonkers L, C Rillo M, Hillebrand H, Kucera M. Plankton response to global warming is characterized by non-uniform shifts in assemblage composition since the last ice age. Nat Ecol Evol 2022; 6:1871-1880. [PMID: 36216906 PMCID: PMC9715429 DOI: 10.1038/s41559-022-01888-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Accepted: 08/11/2022] [Indexed: 12/15/2022]
Abstract
Biodiversity is expected to change in response to future global warming. However, it is difficult to predict how species will track the ongoing climate change. Here we use the fossil record of planktonic foraminifera to assess how biodiversity responded to climate change with a magnitude comparable to future anthropogenic warming. We compiled time series of planktonic foraminifera assemblages, covering the time from the last ice age across the deglaciation to the current warm period. Planktonic foraminifera assemblages shifted immediately when temperature began to rise at the end of the last ice age and continued to change until approximately 5,000 years ago, even though global temperature remained relatively stable during the last 11,000 years. The biotic response was largest in the mid latitudes and dominated by range expansion, which resulted in the emergence of new assemblages without analogues in the glacial ocean. Our results indicate that the plankton response to global warming was spatially heterogeneous and did not track temperature change uniformly over the past 24,000 years. Climate change led to the establishment of new assemblages and possibly new ecological interactions, which suggests that current anthropogenic warming may lead to new, different plankton community composition.
Collapse
Affiliation(s)
- Tonke Strack
- MARUM - Center for Marine Environmental Sciences, University of Bremen, Bremen, Germany.
| | - Lukas Jonkers
- MARUM - Center for Marine Environmental Sciences, University of Bremen, Bremen, Germany
| | - Marina C Rillo
- Institute for Chemistry and Biology of the Marine Environments (ICBM), University of Oldenburg, Wilhelmshaven, Germany
| | - Helmut Hillebrand
- Institute for Chemistry and Biology of the Marine Environments (ICBM), University of Oldenburg, Wilhelmshaven, Germany
- Helmholtz Institute for Functional Marine Biodiversity at the University of Oldenburg (HIFMB), Oldenburg, Germany
- Alfred Wegener Institute (AWI), Helmholtz-Centre for Polar and Marine Research, Bremerhaven, Germany
| | - Michal Kucera
- MARUM - Center for Marine Environmental Sciences, University of Bremen, Bremen, Germany
| |
Collapse
|
9
|
Climatic and tectonic drivers shaped the tropical distribution of coral reefs. Nat Commun 2022; 13:3120. [PMID: 35701413 PMCID: PMC9198051 DOI: 10.1038/s41467-022-30793-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Accepted: 05/06/2022] [Indexed: 11/08/2022] Open
Abstract
Today, warm-water coral reefs are limited to tropical-to-subtropical latitudes. These diverse ecosystems extended further poleward in the geological past, but the mechanisms driving these past distributions remain uncertain. Here, we test the role of climate and palaeogeography in shaping the distribution of coral reefs over geological timescales. To do so, we combine habitat suitability modelling, Earth System modelling and the ~247-million-year geological record of scleractinian coral reefs. A broader latitudinal distribution of climatically suitable habitat persisted throughout much of the Mesozoic-early Paleogene due to an expanded tropical belt and more equable distribution of shallow marine substrate. The earliest Cretaceous might be an exception, with reduced shallow marine substrate during a 'cold-snap' interval. Climatically suitable habitat area became increasingly skewed towards the tropics from the late Paleogene, likely steepening the latitudinal biodiversity gradient of reef-associated taxa. This was driven by global cooling and increases in tropical shallow marine substrate resulting from the tectonic evolution of the Indo-Australian Archipelago. Although our results suggest global warming might permit long-term poleward range expansions, coral reef ecosystems are unlikely to keep pace with the rapid rate of anthropogenic climate change.
Collapse
|
10
|
Diachroneity Rules the Mid-Latitudes: A Test Case Using Late Neogene Planktic Foraminifera across the Western Pacific. GEOSCIENCES 2022. [DOI: 10.3390/geosciences12050190] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Planktic foraminifera are commonly used for first-order age control in deep-sea sediments from low-latitude regions based on a robust tropical–subtropical zonation scheme. Although multiple Neogene planktic foraminiferal biostratigraphic zonations for mid-latitude regions exist, quantification of diachroneity for the species used as datums to test paleobiogeographic patterns of origination and dispersal is lacking. Here, we update the age models for seven southwest-Pacific deep-sea sites using calcareous nannofossil and bolboform biostratigraphy and magnetostratigraphy, and use 11 sites between 37.9° N and 40.6° S in the western Pacific to correlate existing planktic foraminiferal biozonations and quantify the diachroneity of species used as datums. For the first time, northwest and southwest Pacific biozones are correlated and compared to the global tropical planktic foraminiferal biozonation. We find a high degree of diachroneity in the western Pacific, within and between the northwest and southwest regions, and between the western Pacific and the tropical zonation. Importantly, some datums that are found to be diachronous between regions have reduced diachroneity within regions. Much work remains to refine regional planktic foraminiferal biozonations and more fully understand diachroneity between the tropics and mid-latitudes. This study indicates that diachroneity is the rule for Late Neogene planktic foraminifera, rather than the exception, in mid-latitude regions.
Collapse
|
11
|
Fenton IS, Woodhouse A, Aze T, Lazarus D, Renaudie J, Dunhill AM, Young JR, Saupe EE. Triton, a new species-level database of Cenozoic planktonic foraminiferal occurrences. Sci Data 2021; 8:160. [PMID: 34183675 PMCID: PMC8239019 DOI: 10.1038/s41597-021-00942-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Accepted: 04/26/2021] [Indexed: 12/03/2022] Open
Abstract
Planktonic foraminifera are a major constituent of ocean floor sediments, and thus have one of the most complete fossil records of any organism. Expeditions to sample these sediments have produced large amounts of spatiotemporal occurrence records throughout the Cenozoic, but no single source exists to house these data. We have therefore created a comprehensive dataset that integrates numerous sources for spatiotemporal records of planktonic foraminifera. This new dataset, Triton, contains >500,000 records and is four times larger than the previous largest database, Neptune. To ensure comparability among data sources, we have cleaned all records using a unified set of taxonomic concepts and have converted age data to the GTS 2020 timescale. Where ages were not absolute (e.g. based on biostratigraphic or magnetostratigraphic zones), we have used generalised additive models to produce continuous estimates. This dataset is an excellent resource for macroecological and macroevolutionary studies, particularly for investigating how species responded to past climatic changes.
Collapse
Affiliation(s)
- Isabel S Fenton
- Department of Earth Sciences, University of Oxford, Oxford, UK.
| | - Adam Woodhouse
- School of Earth and Environment, University of Leeds, Leeds, UK
| | - Tracy Aze
- School of Earth and Environment, University of Leeds, Leeds, UK
| | - David Lazarus
- Museum für Naturkunde, Leibniz-Institut für Evolutions- und Biodiversitätsforschung, Berlin, Germany
| | - Johan Renaudie
- Museum für Naturkunde, Leibniz-Institut für Evolutions- und Biodiversitätsforschung, Berlin, Germany
| | | | - Jeremy R Young
- Department of Earth Sciences, University College London, London, UK
| | - Erin E Saupe
- Department of Earth Sciences, University of Oxford, Oxford, UK
| |
Collapse
|
12
|
Weppe R, Orliac MJ, Guinot G, Condamine FL. Evolutionary drivers, morphological evolution and diversity dynamics of a surviving mammal clade: cainotherioids at the Eocene-Oligocene transition. Proc Biol Sci 2021; 288:20210173. [PMID: 34074121 PMCID: PMC8170207 DOI: 10.1098/rspb.2021.0173] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2021] [Accepted: 05/10/2021] [Indexed: 11/12/2022] Open
Abstract
The Eocene-Oligocene transition (EOT) represents a period of global environmental changes particularly marked in Europe and coincides with a dramatic biotic turnover. Here, using an exceptional fossil preservation, we document and analyse the diversity dynamics of a mammal clade, Cainotherioidea (Artiodactyla), that survived the EOT and radiated rapidly immediately after. We infer their diversification history from Quercy Konzentrat-Lagerstätte (south-west France) at the species level using Bayesian birth-death models. We show that cainotherioid diversity fluctuated through time, with extinction events at the EOT and in the late Oligocene, and a major speciation burst in the early Oligocene. The latter is in line with our finding that cainotherioids had a high morphological adaptability following environmental changes throughout the EOT, which probably played a key role in the survival and evolutionary success of this clade in the aftermath. Speciation is positively associated with temperature and continental fragmentation in a time-continuous way, while extinction seems to synchronize with environmental change in a punctuated way. Within-clade interactions negatively affected the cainotherioid diversification, while inter-clade competition might explain their final decline during the late Oligocene. Our results provide a detailed dynamic picture of the evolutionary history of a mammal clade in a context of global change.
Collapse
Affiliation(s)
- R. Weppe
- Institut des Sciences de l’évolution de Montpellier, Université de Montpellier, CNRS, IRD, EPHE, Place Eugène Bataillon, 34095 Montpellier Cedex 5, France
| | - M. J. Orliac
- Institut des Sciences de l’évolution de Montpellier, Université de Montpellier, CNRS, IRD, EPHE, Place Eugène Bataillon, 34095 Montpellier Cedex 5, France
| | - G. Guinot
- Institut des Sciences de l’évolution de Montpellier, Université de Montpellier, CNRS, IRD, EPHE, Place Eugène Bataillon, 34095 Montpellier Cedex 5, France
| | - F. L. Condamine
- Institut des Sciences de l’évolution de Montpellier, Université de Montpellier, CNRS, IRD, EPHE, Place Eugène Bataillon, 34095 Montpellier Cedex 5, France
| |
Collapse
|
13
|
S Meseguer A, Condamine FL. Ancient tropical extinctions at high latitudes contributed to the latitudinal diversity gradient. Evolution 2020; 74:1966-1987. [PMID: 32246727 DOI: 10.1111/evo.13967] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2019] [Revised: 03/04/2020] [Accepted: 03/21/2020] [Indexed: 01/15/2023]
Abstract
Global biodiversity currently peaks at the equator and decreases toward the poles. Growing fossil evidence suggest this hump-shaped latitudinal diversity gradient (LDG) has not been persistent through time, with similar diversity across latitudes flattening out the LDG during past greenhouse periods. However, when and how diversity declined at high latitudes to generate the modern LDG remains an open question. Although diversity-loss scenarios have been proposed, they remain mostly undemonstrated. We outline the "asymmetric gradient of extinction and dispersal" framework that contextualizes previous ideas behind the LDG under a time-variable scenario. Using phylogenies and fossils of Testudines, Crocodilia, and Lepidosauria, we find that the hump-shaped LDG could be explained by (1) disproportionate extinctions of high-latitude tropical-adapted clades when climate transitioned from greenhouse to icehouse, and (2) equator-ward biotic dispersals tracking their climatic preferences when tropical biomes became restricted to the equator. Conversely, equivalent diversification rates across latitudes can account for the formation of an ancient flat LDG. The inclusion of fossils in macroevolutionary studies allows revealing time-dependent extinction rates hardly detectable from phylogenies only. This study underscores that the prevailing evolutionary processes generating the LDG during greenhouses differed from those operating during icehouses.
Collapse
Affiliation(s)
- Andrea S Meseguer
- INRA, UMR 1062 Centre de Biologie pour la Gestion des Populations (INRA | IRD | CIRAD | Montpellier SupAgro), Montferrier-sur-Lez, France
- CNRS, UMR 5554 Institut des Sciences de l'Evolution de Montpellier (Université de Montpellier | CNRS | IRD | EPHE), Montpellier, France
- Real Jardín Botánico de Madrid (RJB-CSIC), Madrid, Spain
| | - Fabien L Condamine
- CNRS, UMR 5554 Institut des Sciences de l'Evolution de Montpellier (Université de Montpellier | CNRS | IRD | EPHE), Montpellier, France
| |
Collapse
|
14
|
A deep-time perspective on the latitudinal diversity gradient. Proc Natl Acad Sci U S A 2020; 117:17479-17481. [PMID: 32669439 DOI: 10.1073/pnas.2011997117] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
|
15
|
Abstract
A major research question concerning global pelagic biodiversity remains unanswered: when did the apparent tropical biodiversity depression (i.e., bimodality of latitudinal diversity gradient [LDG]) begin? The bimodal LDG may be a consequence of recent ocean warming or of deep-time evolutionary speciation and extinction processes. Using rich fossil datasets of planktonic foraminifers, we show here that a unimodal (or only weakly bimodal) diversity gradient, with a plateau in the tropics, occurred during the last ice age and has since then developed into a bimodal gradient through species distribution shifts driven by postglacial ocean warming. The bimodal LDG likely emerged before the Anthropocene and industrialization, and perhaps ∼15,000 y ago, indicating a strong environmental control of tropical diversity even before the start of anthropogenic warming. However, our model projections suggest that future anthropogenic warming further diminishes tropical pelagic diversity to a level not seen in millions of years.
Collapse
|
16
|
Gaboriau T, Albouy C, Descombes P, Mouillot D, Pellissier L, Leprieur F. Ecological constraints coupled with deep-time habitat dynamics predict the latitudinal diversity gradient in reef fishes. Proc Biol Sci 2019; 286:20191506. [PMID: 31530148 DOI: 10.1098/rspb.2019.1506] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
We develop a spatially explicit model of diversification based on palaeohabitat to explore the predictions of four major hypotheses potentially explaining the latitudinal diversity gradient (LDG), namely, the 'time-area', 'tropical niche conservatism', 'ecological limits' and 'evolutionary speed' hypotheses. We compare simulation outputs to observed diversity gradients in the global reef fish fauna. Our simulations show that these hypotheses are non-mutually exclusive and that their relative influence depends on the time scale considered. Simulations suggest that reef habitat dynamics produced the LDG during deep geological time, while ecological constraints shaped the modern LDG, with a strong influence of the reduction in the latitudinal extent of tropical reefs during the Neogene. Overall, this study illustrates how mechanistic models in ecology and evolution can provide a temporal and spatial understanding of the role of speciation, extinction and dispersal in generating biodiversity patterns.
Collapse
Affiliation(s)
- Théo Gaboriau
- MARBEC, Université de Montpellier, CNRS, Ifremer, IRD, Montpellier, France.,Department of Computational Biology, University of Lausanne, Rue du Bugnon 27, 1011 Lausanne, Switzerland
| | - Camille Albouy
- IFREMER, Unité Ecologie et Modèles pour l'Halieutique, Rue de l'Ile d'Yeu, BP21105, 44311 Nantes cedex 3, France
| | - Patrice Descombes
- Unit of Ecology and Evolution, University of Fribourg, Chemin du Musée 10, 1700 Fribourg, Switzerland.,Swiss Federal Research Institute WSL, 8903 Birmensdorf, Switzerland.,Landscape Ecology, Institute of Terrestrial Ecosystems, ETH Zürich, 8044 Zürich, Switzerland
| | - David Mouillot
- MARBEC, Université de Montpellier, CNRS, Ifremer, IRD, Montpellier, France.,Australian Research Council Centre of Excellence for Coral Reef Studies, James Cook University, Townsville, Queensland 4811, Australia
| | - Loïc Pellissier
- Swiss Federal Research Institute WSL, 8903 Birmensdorf, Switzerland.,Landscape Ecology, Institute of Terrestrial Ecosystems, ETH Zürich, 8044 Zürich, Switzerland
| | - Fabien Leprieur
- MARBEC, Université de Montpellier, CNRS, Ifremer, IRD, Montpellier, France.,Institut Universitaire de France, Paris, France
| |
Collapse
|
17
|
Ecological niche modelling does not support climatically-driven dinosaur diversity decline before the Cretaceous/Paleogene mass extinction. Nat Commun 2019; 10:1091. [PMID: 30842410 PMCID: PMC6403247 DOI: 10.1038/s41467-019-08997-2] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2018] [Accepted: 02/13/2019] [Indexed: 02/07/2023] Open
Abstract
In the lead-up to the Cretaceous/Paleogene mass extinction, dinosaur diversity is argued to have been either in long-term decline, or thriving until their sudden demise. The latest Cretaceous (Campanian-Maastrichtian [83-66 Ma]) of North America provides the best record to address this debate, but even here diversity reconstructions are biased by uneven sampling. Here we combine fossil occurrences with climatic and environmental modelling to quantify latest Cretaceous North American dinosaur habitat. Ecological niche modelling shows a Campanian-to-Maastrichtian habitability decrease in areas with present-day rock-outcrop. However, a continent-wide projection demonstrates habitat stability, or even a Campanian-to-Maastrichtian increase, that is not preserved. This reduction of the spatial sampling window resulted from formation of the proto-Rocky Mountains and sea-level regression. We suggest that Maastrichtian North American dinosaur diversity is therefore likely to be underestimated, with the apparent decline a product of sampling bias, and not due to a climatically-driven decrease in habitability as previously hypothesised.
Collapse
|
18
|
Abstract
Beta diversity, the compositional variation among communities or assemblages, is crucial to understanding the principles of diversity assembly. The mean pairwise proportional dissimilarity expresses overall heterogeneity of samples in a data set and is among the most widely used and most robust measures of beta diversity. Obtaining a complete list of taxa and their abundances requires substantial taxonomic expertise and is time consuming. In addition, the information is generally incomplete due to sampling biases. Based on the concept of the ecological significance of dominant taxa, we explore whether determining proportional dissimilarity can be simplified based on dominant species. Using simulations and six case studies, we assess the correlation between complete community compositional data and reduced subsets of a varying number of dominant species. We find that gross beta diversity is usually depicted accurately when only the 80th percentile or five of the most abundant species of each site is considered. In data sets with very high evenness, at least the 10 most abundant species should be included. Focusing on dominant species also maintains the rank-order of beta diversity among sites. Our new approach will allow ecologists and paleobiologists to produce a far greater amount of data on diversity patterns with less time and effort, supporting conservation studies and basic science.
Collapse
Affiliation(s)
- Vanessa Julie Roden
- GeoZentrum Nordbayern, Section Palaeobiology, University Erlangen-Nürnberg, Loewenichstraße 28, 91054, Erlangen, Germany
| | - Ádám T Kocsis
- GeoZentrum Nordbayern, Section Palaeobiology, University Erlangen-Nürnberg, Loewenichstraße 28, 91054, Erlangen, Germany
| | - Martin Zuschin
- Department of Palaeontology, University of Vienna, Althanstraße 14, 1090, Vienna, Austria
| | - Wolfgang Kiessling
- GeoZentrum Nordbayern, Section Palaeobiology, University Erlangen-Nürnberg, Loewenichstraße 28, 91054, Erlangen, Germany
| |
Collapse
|
19
|
Hannisdal B, Haaga KA, Reitan T, Diego D, Liow LH. Common species link global ecosystems to climate change: dynamical evidence in the planktonic fossil record. Proc Biol Sci 2018; 284:rspb.2017.0722. [PMID: 28701561 PMCID: PMC5524498 DOI: 10.1098/rspb.2017.0722] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2017] [Accepted: 06/05/2017] [Indexed: 12/02/2022] Open
Abstract
Common species shape the world around us, and changes in their commonness signify large-scale shifts in ecosystem structure and function. However, our understanding of long-term ecosystem response to environmental forcing in the deep past is centred on species richness, neglecting the disproportional impact of common species. Here, we use common and widespread species of planktonic foraminifera in deep-sea sediments to track changes in observed global occupancy (proportion of sampled sites at which a species is present and observed) through the turbulent climatic history of the last 65 Myr. Our approach is sensitive to relative changes in global abundance of the species set and robust to factors that bias richness estimators. Using three independent methods for detecting causality, we show that the observed global occupancy of planktonic foraminifera has been dynamically coupled to past oceanographic changes captured in deep-ocean temperature reconstructions. The causal inference does not imply a direct mechanism, but is consistent with an indirect, time-delayed causal linkage. Given the strong quantitative evidence that a dynamical coupling exists, we hypothesize that mixotrophy (symbiont hosting) may be an ecological factor linking the global abundance of planktonic foraminifera to long-term climate changes via the relative extent of oligotrophic oceans.
Collapse
Affiliation(s)
- Bjarte Hannisdal
- Centre for Geobiology, Department of Earth Science, University of Bergen, PO Box 7803, 5020 Bergen, Norway .,Bjerknes Centre for Climate Research, University of Bergen, PO Box 7803, 5020 Bergen, Norway
| | - Kristian Agasøster Haaga
- Centre for Geobiology, Department of Earth Science, University of Bergen, PO Box 7803, 5020 Bergen, Norway.,Bjerknes Centre for Climate Research, University of Bergen, PO Box 7803, 5020 Bergen, Norway
| | - Trond Reitan
- Centre for Ecological and Evolutionary Synthesis, Department of Biosciences, University of Oslo, PO Box 1066, Blindern, 0316 Oslo, Norway
| | - David Diego
- Centre for Geobiology, Department of Earth Science, University of Bergen, PO Box 7803, 5020 Bergen, Norway
| | - Lee Hsiang Liow
- Centre for Ecological and Evolutionary Synthesis, Department of Biosciences, University of Oslo, PO Box 1066, Blindern, 0316 Oslo, Norway.,Natural History Museum, University of Oslo, PO Box 1172 Blindern, 0318 Oslo, Norway
| |
Collapse
|
20
|
The impact of endothermy on the climatic niche evolution and the distribution of vertebrate diversity. Nat Ecol Evol 2018; 2:459-464. [PMID: 29379185 DOI: 10.1038/s41559-017-0451-9] [Citation(s) in RCA: 67] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2017] [Accepted: 12/12/2017] [Indexed: 11/09/2022]
Abstract
Understanding the mechanisms by which the abiotic and biotic requirements of species, or ecological niches, change over time is a central issue in evolutionary biology. Niche evolution is poorly understood at both the macroecological and macroevolutionary scales, as niches can shift over short periods of time but appear to change more slowly over longer timescales. Although reconstructing past niches has always been a major concern for palaeontologists and evolutionary biologists, only a few recent studies have successfully determined the factors that affect niche evolution. Here, we compare the evolution of climatic niches in four main groups of terrestrial vertebrates using a modelling approach integrating both palaeontological and neontological data, and large-scale datasets that contain information on the current distributions, phylogenetic relationships and fossil records for a total of 11,465 species. By reconstructing historical shifts in geographical ranges and climatic niches, we show that niche shifts are significantly faster in endotherms (birds and mammals) than in ectotherms (squamates and amphibians). We further demonstrate that the diversity patterns of the four clades are directly affected by the rate of niche evolution, with fewer latitudinal shifts in ectotherms.
Collapse
|
21
|
Hsiang AY, Elder LE, Hull PM. Towards a morphological metric of assemblage dynamics in the fossil record: a test case using planktonic foraminifera. Philos Trans R Soc Lond B Biol Sci 2016; 371:20150227. [PMID: 26977067 PMCID: PMC4810820 DOI: 10.1098/rstb.2015.0227] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
With a glance, even the novice naturalist can tell you something about the ecology of a given ecosystem. This is because the morphology of individuals reflects their evolutionary history and ecology, and imparts a distinct ‘look’ to communities—making it possible to immediately discern between deserts and forests, or coral reefs and abyssal plains. Once quantified, morphology can provide a common metric for characterizing communities across space and time and, if measured rapidly, serve as a powerful tool for quantifying biotic dynamics. Here, we present and test a new high-throughput approach for analysing community shape in the fossil record using semi-three-dimensional (3D) morphometrics from vertically stacked images (light microscopic or photogrammetric). We assess the potential informativeness of community morphology in a first analysis of the relationship between 3D morphology, ecology and phylogeny in 16 extant species of planktonic foraminifera—an abundant group in the marine fossil record—and in a preliminary comparison of four assemblages from the North Atlantic. In the species examined, phylogenetic relatedness was most closely correlated with ecology, with all three ecological traits examined (depth habitat, symbiont ecology and biogeography) showing significant phylogenetic signal. By contrast, morphological trees (based on 3D shape similarity) were relatively distantly related to both ecology and phylogeny. Although improvements are needed to realize the full utility of community morphometrics, our approach already provides robust volumetric measurements of assemblage size, a key ecological characteristic.
Collapse
Affiliation(s)
- Allison Y Hsiang
- Department of Geology and Geophysics, Yale University, P.O. Box 208109, New Haven, CT 06520-8109, USA
| | - Leanne E Elder
- Department of Geology and Geophysics, Yale University, P.O. Box 208109, New Haven, CT 06520-8109, USA
| | - Pincelli M Hull
- Department of Geology and Geophysics, Yale University, P.O. Box 208109, New Haven, CT 06520-8109, USA
| |
Collapse
|
22
|
Price SA, Schmitz L. A promising future for integrative biodiversity research: an increased role of scale-dependency and functional biology. Philos Trans R Soc Lond B Biol Sci 2016; 371:20150228. [PMID: 26977068 DOI: 10.1098/rstb.2015.0228] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Studies into the complex interaction between an organism and changes to its biotic and abiotic environment are fundamental to understanding what regulates biodiversity. These investigations occur at many phylogenetic, temporal and spatial scales and within a variety of biological and geological disciplines but often in relative isolation. This issue focuses on what can be achieved when ecological mechanisms are integrated into analyses of deep-time biodiversity patterns through the union of fossil and extant data and methods. We expand upon this perspective to argue that, given its direct relevance to the current biodiversity crisis, greater integration is needed across biodiversity research. We focus on the need to understand scaling effects, how lower-level ecological and evolutionary processes scale up and vice versa, and the importance of incorporating functional biology. Placing function at the core of biodiversity research is fundamental, as it establishes how an organism interacts with its abiotic and biotic environment and it is functional diversity that ultimately determines important ecosystem processes. To achieve full integration, concerted and ongoing efforts are needed to build a united and interactive community of biodiversity researchers, with education and interdisciplinary training at its heart.
Collapse
Affiliation(s)
- S A Price
- Department of Evolution & Ecology, University of California Davis, 1 Shields Avenue, Davis, CA 95616, USA
| | - L Schmitz
- W.M. Keck Science Department, Claremont McKenna, Pitzer, and Scripps Colleges, 925 North Mills Avenue, Claremont, CA 91711, USA
| |
Collapse
|
23
|
Jablonski D, Huang S, Roy K, Valentine JW. Shaping the Latitudinal Diversity Gradient: New Perspectives from a Synthesis of Paleobiology and Biogeography. Am Nat 2016; 189:1-12. [PMID: 28035884 DOI: 10.1086/689739] [Citation(s) in RCA: 53] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
An impediment to understanding the origin and dynamics of the latitudinal diversity gradient (LDG)-the most pervasive large-scale biotic pattern on Earth-has been the tendency to focus narrowly on a single causal factor when a more synthetic, integrative approach is needed. Using marine bivalves as a model system and drawing on other systems where possible, we review paleobiologic and biogeographic support for two supposedly opposing views, that the LDG is shaped primarily by (a) local environmental factors that determine the number of species and higher taxa at a given latitude (in situ hypotheses) or (b) the entry of lineages arising elsewhere into a focal region (spatial dynamics hypotheses). Support for in situ hypotheses includes the fit of present-day diversity trends in many clades to such environmental factors as temperature and the correlation of extinction intensities in Pliocene bivalve faunas with net regional temperature changes. Support for spatial dynamics hypotheses includes the age-frequency distribution of bivalve genera across latitudes, which is consistent with an out-of-the-tropics dynamic, as are the higher species diversities in temperate southeastern Australia and southeastern Japan than in the tropical Caribbean. Thus, both in situ and spatial dynamics processes must shape the bivalve LDG and are likely to operate in other groups as well. The relative strengths of the two processes may differ among groups showing similar LDGs, but dissecting their effects will require improved methods of integrating fossil data with molecular phylogenies. We highlight several potential research directions and argue that many of the most dramatic biotic patterns, past and present, are likely to have been generated by diverse, mutually reinforcing drivers.
Collapse
|
24
|
Ezard THG, Quental TB, Benton MJ. The challenges to inferring the regulators of biodiversity in deep time. Philos Trans R Soc Lond B Biol Sci 2016; 371:20150216. [PMID: 26977058 PMCID: PMC4810811 DOI: 10.1098/rstb.2015.0216] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/22/2016] [Indexed: 11/12/2022] Open
Abstract
Attempts to infer the ecological drivers of macroevolution in deep time have long drawn inspiration from work on extant systems, but long-term evolutionary and geological changes complicate the simple extrapolation of such theory. Recent efforts to incorporate a more informed ecology into macroevolution have moved beyond the descriptive, seeking to isolate generating mechanisms and produce testable hypotheses of how groups of organisms usurp each other or coexist over vast timespans. This theme issue aims to exemplify this progress, providing a series of case studies of how novel modelling approaches are helping infer the regulators of biodiversity in deep time. In this Introduction, we explore the challenges of these new approaches. First, we discuss how our choices of taxonomic units have implications for the conclusions drawn. Second, we emphasize the need to embrace the interdependence of biotic and abiotic changes, because no living organism ignores its environment. Third, in the light of parts 1 and 2, we discuss the set of dynamic signatures that we might expect to observe in the fossil record. Finally, we ask whether these dynamics represent the most ecologically informative foci for research efforts aimed at inferring the regulators of biodiversity in deep time. The papers in this theme issue contribute in each of these areas.
Collapse
Affiliation(s)
- Thomas H G Ezard
- Ocean and Earth Sciences, National Oceanography Centre Southampton, University of Southampton Waterfront Campus, European Way, Southampton SO14 3ZH, UK Centre for Biological Sciences, University of Southampton, Life Sciences Building 85, Highfield Campus, Southampton SO17 1BJ, UK
| | - Tiago B Quental
- Departamento de Ecologia, Universidade de São Paulo, São Paulo, SP 05508-900, Brazil
| | - Michael J Benton
- School of Earth Sciences, University of Bristol, Bristol BS8 1RJ, UK
| |
Collapse
|