1
|
Williams MP, Flegontov P, Maier R, Huber CD. Testing times: disentangling admixture histories in recent and complex demographies using ancient DNA. Genetics 2024; 228:iyae110. [PMID: 39013011 PMCID: PMC11373510 DOI: 10.1093/genetics/iyae110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Revised: 04/08/2024] [Accepted: 06/11/2024] [Indexed: 07/18/2024] Open
Abstract
Our knowledge of human evolutionary history has been greatly advanced by paleogenomics. Since the 2020s, the study of ancient DNA has increasingly focused on reconstructing the recent past. However, the accuracy of paleogenomic methods in resolving questions of historical and archaeological importance amidst the increased demographic complexity and decreased genetic differentiation remains an open question. We evaluated the performance and behavior of two commonly used methods, qpAdm and the f3-statistic, on admixture inference under a diversity of demographic models and data conditions. We performed two complementary simulation approaches-firstly exploring a wide demographic parameter space under four simple demographic models of varying complexities and configurations using branch-length data from two chromosomes-and secondly, we analyzed a model of Eurasian history composed of 59 populations using whole-genome data modified with ancient DNA conditions such as SNP ascertainment, data missingness, and pseudohaploidization. We observe that population differentiation is the primary factor driving qpAdm performance. Notably, while complex gene flow histories influence which models are classified as plausible, they do not reduce overall performance. Under conditions reflective of the historical period, qpAdm most frequently identifies the true model as plausible among a small candidate set of closely related populations. To increase the utility for resolving fine-scaled hypotheses, we provide a heuristic for further distinguishing between candidate models that incorporates qpAdm model P-values and f3-statistics. Finally, we demonstrate a significant performance increase for qpAdm using whole-genome branch-length f2-statistics, highlighting the potential for improved demographic inference that could be achieved with future advancements in f-statistic estimations.
Collapse
Affiliation(s)
- Matthew P Williams
- Department of Biology, Pennsylvania State University, University Park, PA 16802, USA
| | - Pavel Flegontov
- Department of Biology and Ecology, University of Ostrava, Ostrava 701 03, Czechia
- Department of Human Evolutionary Biology, Harvard University, Cambridge, MA 02138, USA
| | - Robert Maier
- Department of Human Evolutionary Biology, Harvard University, Cambridge, MA 02138, USA
| | - Christian D Huber
- Department of Biology, Pennsylvania State University, University Park, PA 16802, USA
| |
Collapse
|
2
|
Mc Cartney AM, Scholz AH, Groussin M, Staunton C. Benefit-Sharing by Design: A Call to Action for Human Genomics Research. Annu Rev Genomics Hum Genet 2024; 25:369-395. [PMID: 38608642 DOI: 10.1146/annurev-genom-021623-104241] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/14/2024]
Abstract
The ethical standards for the responsible conduct of human research have come a long way; however, concerns surrounding equity remain in human genetics and genomics research. Addressing these concerns will help society realize the full potential of human genomics research. One outstanding concern is the fair and equitable sharing of benefits from research on human participants. Several international bodies have recognized that benefit-sharing can be an effective tool for ethical research conduct, but international laws, including the Convention on Biological Diversity and its Nagoya Protocol on Access and Benefit-Sharing, explicitly exclude human genetic and genomic resources. These agreements face significant challenges that must be considered and anticipated if similar principles are applied in human genomics research. We propose that benefit-sharing from human genomics research can be a bottom-up effort and embedded into the existing research process. We propose the development of a "benefit-sharing by design" framework to address concerns of fairness and equity in the use of human genomic resources and samples and to learn from the aspirations and decade of implementation of the Nagoya Protocol.
Collapse
Affiliation(s)
- Ann M Mc Cartney
- Genomics Institute, University of California, Santa Cruz, California, USA;
| | - Amber Hartman Scholz
- Department of Science Policy and Internationalisation, Leibniz Institute DSMZ-German Collection of Microorganisms and Cell Cultures, Braunschweig, Germany;
| | - Mathieu Groussin
- Institute of Clinical Molecular Biology, Kiel University, Kiel, Germany;
| | - Ciara Staunton
- School of Law, University of KwaZulu-Natal, Durban, South Africa
- Institute for Biomedicine, Eurac Research, Bolzano, Italy;
| |
Collapse
|
3
|
Williams MP, Flegontov P, Maier R, Huber CD. Testing Times: Challenges in Disentangling Admixture Histories in Recent and Complex Demographies. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.11.13.566841. [PMID: 38014190 PMCID: PMC10680674 DOI: 10.1101/2023.11.13.566841] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/29/2023]
Abstract
Paleogenomics has expanded our knowledge of human evolutionary history. Since the 2020s, the study of ancient DNA has increased its focus on reconstructing the recent past. However, the accuracy of paleogenomic methods in answering questions of historical and archaeological importance amidst the increased demographic complexity and decreased genetic differentiation within the historical period remains an open question. We used two simulation approaches to evaluate the limitations and behavior of commonly used methods, qpAdm and the f3-statistic, on admixture inference. The first is based on branch-length data simulated from four simple demographic models of varying complexities and configurations. The second, an analysis of Eurasian history composed of 59 populations using whole-genome data modified with ancient DNA conditions such as SNP ascertainment, data missingness, and pseudo-haploidization. We show that under conditions resembling historical populations, qpAdm can identify a small candidate set of true sources and populations closely related to them. However, in typical ancient DNA conditions, qpAdm is unable to further distinguish between them, limiting its utility for resolving fine-scaled hypotheses. Notably, we find that complex gene-flow histories generally lead to improvements in the performance of qpAdm and observe no bias in the estimation of admixture weights. We offer a heuristic for admixture inference that incorporates admixture weight estimate and P-values of qpAdm models, and f3-statistics to enhance the power to distinguish between multiple plausible candidates. Finally, we highlight the future potential of qpAdm through whole-genome branch-length f2-statistics, demonstrating the improved demographic inference that could be achieved with advancements in f-statistic estimations.
Collapse
Affiliation(s)
- Matthew P. Williams
- Pennsylvania State University, Department of Biology, University Park, PA 16802, USA
| | - Pavel Flegontov
- Department of Biology and Ecology, Faculty of Science, University of Ostrava, Ostrava, Czechia
- Department of Human Evolutionary Biology, Harvard University, Cambridge, MA, USA
| | - Robert Maier
- Department of Human Evolutionary Biology, Harvard University, Cambridge, MA, USA
| | - Christian D. Huber
- Pennsylvania State University, Department of Biology, University Park, PA 16802, USA
| |
Collapse
|
4
|
Barron AB, Mourmourakis F. The Relationship between Cognition and Brain Size or Neuron Number. BRAIN, BEHAVIOR AND EVOLUTION 2023; 99:109-122. [PMID: 37487478 DOI: 10.1159/000532013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Accepted: 07/05/2023] [Indexed: 07/26/2023]
Abstract
The comparative approach is a powerful way to explore the relationship between brain structure and cognitive function. Thus far, the field has been dominated by the assumption that a bigger brain somehow means better cognition. Correlations between differences in brain size or neuron number between species and differences in specific cognitive abilities exist, but these correlations are very noisy. Extreme differences exist between clades in the relationship between either brain size or neuron number and specific cognitive abilities. This means that correlations become weaker, not stronger, as the taxonomic diversity of sampled groups increases. Cognition is the outcome of neural networks. Here we propose that considering plausible neural network models will advance our understanding of the complex relationships between neuron number and different aspects of cognition. Computational modelling of networks suggests that adding pathways, or layers, or changing patterns of connectivity in a network can all have different specific consequences for cognition. Consequently, models of computational architecture can help us hypothesise how and why differences in neuron number might be related to differences in cognition. As methods in connectomics continue to improve and more structural information on animal brains becomes available, we are learning more about natural network structures in brains, and we can develop more biologically plausible models of cognitive architecture. Natural animal diversity then becomes a powerful resource to both test the assumptions of these models and explore hypotheses for how neural network structure and network size might delimit cognitive function.
Collapse
Affiliation(s)
- Andrew B Barron
- School of Natural Sciences, Macquarie University, Sydney, New South Wales, Australia
| | - Faelan Mourmourakis
- School of Natural Sciences, Macquarie University, Sydney, New South Wales, Australia
| |
Collapse
|
5
|
Clavel P, Louis L, Sarkissian CD, Thèves C, Gillet C, Chauvey L, Tressières G, Schiavinato S, Calvière-Tonasso L, Telmon N, Clavel B, Jonvel R, Tzortzis S, Bouniol L, Fémolant JM, Klunk J, Poinar H, Signoli M, Costedoat C, Spyrou MA, Seguin-Orlando A, Orlando L. Improving the extraction of ancient Yersinia pestis genomes from the dental pulp. iScience 2023; 26:106787. [PMID: 37250315 PMCID: PMC10214834 DOI: 10.1016/j.isci.2023.106787] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Revised: 02/11/2023] [Accepted: 04/26/2023] [Indexed: 05/31/2023] Open
Abstract
Ancient DNA preserved in the dental pulp offers the opportunity to characterize the genome of some of the deadliest pathogens in human history. However, while DNA capture technologies help, focus sequencing efforts, and therefore, reduce experimental costs, the recovery of ancient pathogen DNA remains challenging. Here, we tracked the kinetics of ancient Yersinia pestis DNA release in solution during a pre-digestion of the dental pulp. We found that most of the ancient Y. pestis DNA is released within 60 min at 37°C in our experimental conditions. We recommend a simple pre-digestion as an economical procedure to obtain extracts enriched in ancient pathogen DNA, as longer digestion times release other types of templates, including host DNA. Combining this procedure with DNA capture, we characterized the genome sequences of 12 ancient Y. pestis bacteria from France dating to the second pandemic outbreaks of the 17th and 18th centuries Common Era.
Collapse
Affiliation(s)
- Pierre Clavel
- Centre d’Anthropobiologie et de Génomique de Toulouse (CAGT), CNRS UMR5288, Université Paul Sabatier, 37 allées Jules Guesde, 31000 Toulouse, France
| | - Lexane Louis
- Centre d’Anthropobiologie et de Génomique de Toulouse (CAGT), CNRS UMR5288, Université Paul Sabatier, 37 allées Jules Guesde, 31000 Toulouse, France
| | - Clio Der Sarkissian
- Centre d’Anthropobiologie et de Génomique de Toulouse (CAGT), CNRS UMR5288, Université Paul Sabatier, 37 allées Jules Guesde, 31000 Toulouse, France
| | - Catherine Thèves
- Centre d’Anthropobiologie et de Génomique de Toulouse (CAGT), CNRS UMR5288, Université Paul Sabatier, 37 allées Jules Guesde, 31000 Toulouse, France
| | - Claudia Gillet
- Centre d’Anthropobiologie et de Génomique de Toulouse (CAGT), CNRS UMR5288, Université Paul Sabatier, 37 allées Jules Guesde, 31000 Toulouse, France
| | - Lorelei Chauvey
- Centre d’Anthropobiologie et de Génomique de Toulouse (CAGT), CNRS UMR5288, Université Paul Sabatier, 37 allées Jules Guesde, 31000 Toulouse, France
| | - Gaétan Tressières
- Centre d’Anthropobiologie et de Génomique de Toulouse (CAGT), CNRS UMR5288, Université Paul Sabatier, 37 allées Jules Guesde, 31000 Toulouse, France
| | - Stéphanie Schiavinato
- Centre d’Anthropobiologie et de Génomique de Toulouse (CAGT), CNRS UMR5288, Université Paul Sabatier, 37 allées Jules Guesde, 31000 Toulouse, France
| | - Laure Calvière-Tonasso
- Centre d’Anthropobiologie et de Génomique de Toulouse (CAGT), CNRS UMR5288, Université Paul Sabatier, 37 allées Jules Guesde, 31000 Toulouse, France
| | - Norbert Telmon
- Centre d’Anthropobiologie et de Génomique de Toulouse (CAGT), CNRS UMR5288, Université Paul Sabatier, 37 allées Jules Guesde, 31000 Toulouse, France
| | - Benoît Clavel
- Archéozoologie, Archéobotanique: Sociétés, Pratiques et Environnements (AASPE), CNRS-UMR7209, Muséum national d’histoire naturelle, 55 Rue Buffon, 75005 Paris, France
| | - Richard Jonvel
- Amiens Métropole Service Archéologie Préventive, 2 rue Colbert, 80000 Amiens, France
| | - Stéfan Tzortzis
- Service Régional de l’Archéologie, 21 allée Claude Forbin, 13100 Aix-en-Provence, France
| | - Laetitia Bouniol
- Service archéologique de la ville de Beauvais, 1 rue Desgroux, 60021 Beauvais, France
| | - Jean-Marc Fémolant
- Service archéologique de la ville de Beauvais, 1 rue Desgroux, 60021 Beauvais, France
| | | | - Hendrik Poinar
- McMaster Ancient DNA Centre, Departments of Anthropology, Biology and Biochemistry, McMaster University, Hamilton, ON L8S 4L9, Canada
- Michael G. DeGroote Institute of Infectious Disease Research, McMaster University, Hamilton, ON L8S, 4L9, Canada
- Humans and the Microbiome Program, Canadian Institute for Advanced Research, Toronto, ON, Canada
| | - Michel Signoli
- Aix-Marseille Université, CNRS, EFS, ADES, 13005 Marseille, France
| | | | - Maria A. Spyrou
- Institute for Archaeological Sciences, Eberhard Karls University of Tübingen, Tübingen, Germany
| | - Andaine Seguin-Orlando
- Centre d’Anthropobiologie et de Génomique de Toulouse (CAGT), CNRS UMR5288, Université Paul Sabatier, 37 allées Jules Guesde, 31000 Toulouse, France
| | - Ludovic Orlando
- Centre d’Anthropobiologie et de Génomique de Toulouse (CAGT), CNRS UMR5288, Université Paul Sabatier, 37 allées Jules Guesde, 31000 Toulouse, France
| |
Collapse
|
6
|
Ancient DNA analysis from epoxy resin Biodur ®-embedded bones. Biotechniques 2022; 73:113-122. [PMID: 36066013 DOI: 10.2144/btn-2022-0056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
For microscopic investigation, archaeological bone samples are often embedded in Biodur® epoxy resin. This study wants to test whether it is possible to extract DNA suitable for PCR amplification from this sample type. For eight individuals a set of samples - each consisting of a Biodur-embedded femur sample, a native femur sample and a control sample of different anatomical origin - were submitted to organic DNA extraction. The extraction success was tested by autosomal short tandem repeat amplification. Seven out of eight Biodur-embedded femur samples revealed successful amplification results. If Biodur-embedded bone material exists from earlier microscopic investigations, our results encourage the use of this sample type as a source for genetic research.
Collapse
|
7
|
Biddanda A, Steinrücken M, Novembre J. Properties of Two-Locus Genealogies and Linkage Disequilibrium in Temporally Structured Samples. Genetics 2022; 221:6549526. [PMID: 35294015 PMCID: PMC9245597 DOI: 10.1093/genetics/iyac038] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Accepted: 02/06/2022] [Indexed: 11/13/2022] Open
Abstract
Archaeogenetics has been revolutionary, revealing insights into demographic history and recent positive selection. However, most studies to date have ignored the non-random association of genetic variants at different loci (i.e., linkage disequilibrium, LD). This may be in part because basic properties of LD in samples from different times are still not well understood. Here, we derive several results for summary statistics of haplotypic variation under a model with time-stratified sampling: 1) The correlation between the number of pairwise differences observed between time-staggered samples (πΔt) in models with and without strict population continuity; 2) The product of the LD coefficient, D, between ancient and modern samples, which is a measure of haplotypic similarity between modern and ancient samples; and 3) The expected switch rate in the Li and Stephens haplotype copying model. The latter has implications for genotype imputation and phasing in ancient samples with modern reference panels. Overall, these results provide a characterization of how haplotype patterns are affected by sample age, recombination rates, and population sizes. We expect these results will help guide the interpretation and analysis of haplotype data from ancient and modern samples.
Collapse
Affiliation(s)
- Arjun Biddanda
- Department of Human Genetics, University of Chicago, Chicago, IL 60637, USA
| | - Matthias Steinrücken
- Department of Human Genetics, University of Chicago, Chicago, IL 60637, USA.,Department of Ecology and Evolution, University of Chicago, Chicago, IL 60637, USA
| | - John Novembre
- Department of Human Genetics, University of Chicago, Chicago, IL 60637, USA.,Department of Ecology and Evolution, University of Chicago, Chicago, IL 60637, USA
| |
Collapse
|
8
|
Smith RW, Non AL. Assessing the achievements and uncertain future of paleoepigenomics. Epigenomics 2021; 14:167-173. [PMID: 34850636 DOI: 10.2217/epi-2021-0382] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Affiliation(s)
- Rick Wa Smith
- Department of Sociology and Anthropology, George Mason University, Fairfax, VA 22030, USA
| | - Amy L Non
- Department of Anthropology, University of California, San Diego, La Jolla, CA 92093, USA
| |
Collapse
|
9
|
Calvignac-Spencer S, Düx A, Gogarten JF, Patrono LV. Molecular archeology of human viruses. Adv Virus Res 2021; 111:31-61. [PMID: 34663498 DOI: 10.1016/bs.aivir.2021.07.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The evolution of human-virus associations is usually reconstructed from contemporary patterns of genomic diversity. An intriguing, though still rarely implemented, alternative is to search for the genetic material of viruses in archeological and medical archive specimens to document evolution as it happened. In this chapter, we present lessons from ancient DNA research and incorporate insights from virology to explore the potential range of applications and likely limitations of archeovirological approaches. We also highlight the numerous questions archeovirology will hopefully allow us to tackle in the near future, and the main expected roadblocks to these avenues of research.
Collapse
Affiliation(s)
- Sébastien Calvignac-Spencer
- Epidemiology of Highly Pathogenic Microorganisms, Robert Koch-Institute, Berlin, Germany; Viral Evolution, Robert Koch-Institute, Berlin, Germany.
| | - Ariane Düx
- Epidemiology of Highly Pathogenic Microorganisms, Robert Koch-Institute, Berlin, Germany; Viral Evolution, Robert Koch-Institute, Berlin, Germany
| | - Jan F Gogarten
- Epidemiology of Highly Pathogenic Microorganisms, Robert Koch-Institute, Berlin, Germany; Viral Evolution, Robert Koch-Institute, Berlin, Germany
| | - Livia V Patrono
- Epidemiology of Highly Pathogenic Microorganisms, Robert Koch-Institute, Berlin, Germany
| |
Collapse
|
10
|
Roca-Rada X, Politis G, Messineo PG, Scheifler N, Scabuzzo C, González M, Harkins KM, Reich D, Souilmi Y, Teixeira JC, Llamas B, Fehren-Schmitz L. Ancient mitochondrial genomes from the Argentinian Pampas inform the early peopling of the Southern Cone of South America. iScience 2021; 24:102553. [PMID: 34142055 PMCID: PMC8188552 DOI: 10.1016/j.isci.2021.102553] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Revised: 04/26/2021] [Accepted: 05/14/2021] [Indexed: 01/02/2023] Open
Abstract
The Southern Cone of South America (SCSA) is a key region for investigations about the peopling of the Americas. However, little is known about the eastern sector, the Argentinian Pampas. We analyzed 18 mitochondrial genomes-7 of which are novel-from human skeletal remains from 3 Early to Late Holocene archaeological sites. The Pampas present a distinctive genetic makeup compared to other Middle to Late Holocene pre-Columbian SCSA populations. We also report the earliest individuals carrying SCSA-specific mitochondrial haplogroups D1j and D1g from Early and Middle Holocene, respectively. Using these deep calibration time points in Bayesian phylogenetic reconstructions, we suggest that the first settlers of the Pampas were part of a single and rapid dispersal ∼15,600 years ago. Finally, we propose that present-day genetic differences between the Pampas and the rest of the SCSA are due to founder effects, genetic drift, and a partial population replacement ∼9,000 years ago.
Collapse
Affiliation(s)
- Xavier Roca-Rada
- Australian Centre for Ancient DNA, School of Biological Sciences, University of Adelaide, Adelaide, SA 5005, Australia
| | - Gustavo Politis
- INCUAPA-CONICET, Facultad de Ciencias Sociales, Universidad Nacional del Centro de la Provincia de Buenos Aires, Olavarría, Buenos Aires, Argentina
- Facultad de Ciencias Naturales y Museo, Universidad Nacional de La Plata, Buenos Aires, Argentina
| | - Pablo G. Messineo
- INCUAPA-CONICET, Facultad de Ciencias Sociales, Universidad Nacional del Centro de la Provincia de Buenos Aires, Olavarría, Buenos Aires, Argentina
| | - Nahuel Scheifler
- INCUAPA-CONICET, Facultad de Ciencias Sociales, Universidad Nacional del Centro de la Provincia de Buenos Aires, Olavarría, Buenos Aires, Argentina
| | - Clara Scabuzzo
- CICYTTP-CONICET, Provincia de Entre Ríos-UADER-División Arqueología, Facultad de Ciencias Naturales y Museo, Universidad Nacional de La Plata. Dr. Materi y España (3105), Diamante, Entre Ríos Argentina
| | - Mariela González
- INCUAPA-CONICET, Facultad de Ciencias Sociales, Universidad Nacional del Centro de la Provincia de Buenos Aires, Olavarría, Buenos Aires, Argentina
| | - Kelly M. Harkins
- UCSC Paleogenomics Department of Anthropology, University of California, Santa Cruz, Santa Cruz, CA 95064, USA
| | - David Reich
- Department of Genetics, Harvard Medical School, Boston, MA 02115, USA
- Department of Human Evolutionary Biology, Harvard University, Cambridge, MA 02138, USA
- Broad Institute of Harvard and MIT, Cambridge, MA 02142, USA
- Howard Hughes Medical Institute, Harvard Medical School, Boston, MA 02115, USA
| | - Yassine Souilmi
- Australian Centre for Ancient DNA, School of Biological Sciences, University of Adelaide, Adelaide, SA 5005, Australia
- National Centre for Indigenous Genomics, Australian National University, Canberra, ACT 0200, Australia
- Environment Institute, University of Adelaide, Adelaide, SA 5005, Australia
| | - João C. Teixeira
- Australian Centre for Ancient DNA, School of Biological Sciences, University of Adelaide, Adelaide, SA 5005, Australia
- Centre of Excellence for Australian Biodiversity and Heritage (CABAH), University of Adelaide, Adelaide, SA 5005, Australia
| | - Bastien Llamas
- Australian Centre for Ancient DNA, School of Biological Sciences, University of Adelaide, Adelaide, SA 5005, Australia
- National Centre for Indigenous Genomics, Australian National University, Canberra, ACT 0200, Australia
- Environment Institute, University of Adelaide, Adelaide, SA 5005, Australia
- Centre of Excellence for Australian Biodiversity and Heritage (CABAH), University of Adelaide, Adelaide, SA 5005, Australia
| | - Lars Fehren-Schmitz
- UCSC Paleogenomics Department of Anthropology, University of California, Santa Cruz, Santa Cruz, CA 95064, USA
- UCSC Genomics Institute, University of California, Santa Cruz, Santa Cruz, CA 95064, USA
| |
Collapse
|
11
|
Couceiro J, Matos I, Mendes JJ, Baptista PV, Fernandes AR, Quintas A. Inflammatory factors, genetic variants, and predisposition for preterm birth. Clin Genet 2021; 100:357-367. [PMID: 34013526 DOI: 10.1111/cge.14001] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Revised: 05/11/2021] [Accepted: 05/17/2021] [Indexed: 12/21/2022]
Abstract
Preterm birth is a major clinical and public health challenge, with a prevalence of 11% worldwide. It is the leading cause of death in children younger than 5 years old and represents 70% of neonatal deaths and 75% of neonatal morbidity. Despite the clinical and public health significance, this condition's etiology is still unclear, and most of the cases are spontaneous. There are several known preterm birth risk factors, including inflammatory diseases and the genetic background, although the underlying molecular mechanisms are far from understood. The present review highlights the research advances on the association between inflammatory-related genes and the increased risk for preterm delivery. The most associated genetic variants are the TNFα rs1800629, the IL1α rs17561, and the IL1RN rs2234663. Moreover, many of the genes discussed in this review are also implicated in pathologies involving inflammatory or autoimmune systems, such as periodontal disease, bowel inflammatory disease, and autoimmune rheumatic diseases. This review presents evidence suggesting a common genetic background to preterm birth, autoimmune and inflammatory diseases susceptibility.
Collapse
Affiliation(s)
- Joana Couceiro
- Centro de Investigação Interdisciplinar Egas Moniz, Campus Universitário Quinta da Granja, Caparica, Portugal.,UCIBIO, Departamento de Ciências da Vida, Faculdade de Ciências e Tecnologia, Universidade NOVA de Lisboa, Campus de Caparica, Caparica, Portugal.,Laboratório de Ciências Forenses e Psicológicas Egas Moniz, Campus Universitário Quinta da Granja, Caparica, Portugal
| | - Irina Matos
- Centro de Investigação Interdisciplinar Egas Moniz, Campus Universitário Quinta da Granja, Caparica, Portugal
| | - José João Mendes
- Centro de Investigação Interdisciplinar Egas Moniz, Campus Universitário Quinta da Granja, Caparica, Portugal
| | - Pedro V Baptista
- UCIBIO, Departamento de Ciências da Vida, Faculdade de Ciências e Tecnologia, Universidade NOVA de Lisboa, Campus de Caparica, Caparica, Portugal
| | - Alexandra R Fernandes
- UCIBIO, Departamento de Ciências da Vida, Faculdade de Ciências e Tecnologia, Universidade NOVA de Lisboa, Campus de Caparica, Caparica, Portugal
| | - Alexandre Quintas
- Centro de Investigação Interdisciplinar Egas Moniz, Campus Universitário Quinta da Granja, Caparica, Portugal.,Laboratório de Ciências Forenses e Psicológicas Egas Moniz, Campus Universitário Quinta da Granja, Caparica, Portugal
| |
Collapse
|
12
|
Mitchell KJ, Rawlence NJ. Examining Natural History through the Lens of Palaeogenomics. Trends Ecol Evol 2021; 36:258-267. [PMID: 33455740 DOI: 10.1016/j.tree.2020.10.005] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Revised: 10/05/2020] [Accepted: 10/07/2020] [Indexed: 12/20/2022]
Abstract
The many high-resolution tools that are uniquely applicable to specimens from the Quaternary period (the past ~2.5 Ma) provide an opportunity to cross-validate data and test hypotheses based on the morphology and distribution of fossils. Among these tools is palaeogenomics - the genome-scale sequencing of genetic material from ancient specimens - that can provide direct insight into ecology and evolution, potentially improving the accuracy of inferences about past ecological communities over longer timescales. Palaeogenomics has revealed instances of over- and underestimation of extinct diversity, detected cryptic faunal migration and turnover, allowed quantification of widespread sex biases and sexual dimorphism in the fossil record, revealed past hybridisation events and hybrid individuals, and has highlighted previously unrecognised routes of zoonotic disease transfer.
Collapse
Affiliation(s)
- Kieren J Mitchell
- Australian Centre for Ancient DNA (ACAD), School of Biological Sciences, University of Adelaide, Adelaide, South Australia, Australia; Australian Research Council (ARC) Centre of Excellence for Australian Biodiversity and Heritage (CABAH), School of Biological Sciences, University of Adelaide, Adelaide, South Australia, Australia.
| | - Nicolas J Rawlence
- Otago Palaeogenetics Laboratory, Department of Zoology, University of Otago, Dunedin, New Zealand
| |
Collapse
|
13
|
French JC, Riris P, Fernandéz-López de Pablo J, Lozano S, Silva F. A manifesto for palaeodemography in the twenty-first century. Philos Trans R Soc Lond B Biol Sci 2020; 376:20190707. [PMID: 33250019 DOI: 10.1098/rstb.2019.0707] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Affiliation(s)
- Jennifer C French
- Department of Archaeology, Classics and Egyptology, University of Liverpool, Liverpool, UK
| | - Philip Riris
- Institute for the Modelling of Socio-Environmental Transitions, Bournemouth University, Poole, UK
| | | | | | - Fabio Silva
- Institute for the Modelling of Socio-Environmental Transitions, Bournemouth University, Poole, UK
| |
Collapse
|
14
|
Roca-Rada X, Souilmi Y, Teixeira JC, Llamas B. Ancient DNA Studies in Pre-Columbian Mesoamerica. Genes (Basel) 2020; 11:E1346. [PMID: 33202852 PMCID: PMC7696771 DOI: 10.3390/genes11111346] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2020] [Revised: 11/04/2020] [Accepted: 11/10/2020] [Indexed: 02/07/2023] Open
Abstract
Mesoamerica is a historically and culturally defined geographic area comprising current central and south Mexico, Belize, Guatemala, El Salvador, and border regions of Honduras, western Nicaragua, and northwestern Costa Rica. The permanent settling of Mesoamerica was accompanied by the development of agriculture and pottery manufacturing (2500 BCE-150 CE), which led to the rise of several cultures connected by commerce and farming. Hence, Mesoamericans probably carried an invaluable genetic diversity partly lost during the Spanish conquest and the subsequent colonial period. Mesoamerican ancient DNA (aDNA) research has mainly focused on the study of mitochondrial DNA in the Basin of Mexico and the Yucatán Peninsula and its nearby territories, particularly during the Postclassic period (900-1519 CE). Despite limitations associated with the poor preservation of samples in tropical areas, recent methodological improvements pave the way for a deeper analysis of Mesoamerica. Here, we review how aDNA research has helped discern population dynamics patterns in the pre-Columbian Mesoamerican context, how it supports archaeological, linguistic, and anthropological conclusions, and finally, how it offers new working hypotheses.
Collapse
Affiliation(s)
- Xavier Roca-Rada
- Australian Centre for Ancient DNA, School of Biological Sciences, University of Adelaide, Adelaide, SA 5005, Australia; (Y.S.); (J.C.T.)
| | - Yassine Souilmi
- Australian Centre for Ancient DNA, School of Biological Sciences, University of Adelaide, Adelaide, SA 5005, Australia; (Y.S.); (J.C.T.)
- National Centre for Indigenous Genomics, Australian National University, Canberra, ACT 0200, Australia
- Environment Institute, University of Adelaide, Adelaide, SA 5005, Australia
| | - João C. Teixeira
- Australian Centre for Ancient DNA, School of Biological Sciences, University of Adelaide, Adelaide, SA 5005, Australia; (Y.S.); (J.C.T.)
- Centre of Excellence for Australian Biodiversity and Heritage (CABAH), School of Biological Sciences, University of Adelaide, Adelaide, SA 5005, Australia
| | - Bastien Llamas
- Australian Centre for Ancient DNA, School of Biological Sciences, University of Adelaide, Adelaide, SA 5005, Australia; (Y.S.); (J.C.T.)
- National Centre for Indigenous Genomics, Australian National University, Canberra, ACT 0200, Australia
- Environment Institute, University of Adelaide, Adelaide, SA 5005, Australia
- Centre of Excellence for Australian Biodiversity and Heritage (CABAH), School of Biological Sciences, University of Adelaide, Adelaide, SA 5005, Australia
| |
Collapse
|
15
|
McHugo GP, Dover MJ, MacHugh DE. Unlocking the origins and biology of domestic animals using ancient DNA and paleogenomics. BMC Biol 2019; 17:98. [PMID: 31791340 PMCID: PMC6889691 DOI: 10.1186/s12915-019-0724-7] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2019] [Accepted: 11/13/2019] [Indexed: 12/13/2022] Open
Abstract
Animal domestication has fascinated biologists since Charles Darwin first drew the parallel between evolution via natural selection and human-mediated breeding of livestock and companion animals. In this review we show how studies of ancient DNA from domestic animals and their wild progenitors and congeners have shed new light on the genetic origins of domesticates, and on the process of domestication itself. High-resolution paleogenomic data sets now provide unprecedented opportunities to explore the development of animal agriculture across the world. In addition, functional population genomics studies of domestic and wild animals can deliver comparative information useful for understanding recent human evolution.
Collapse
Affiliation(s)
- Gillian P McHugo
- Animal Genomics Laboratory, UCD School of Agriculture and Food Science, University College Dublin, Dublin, D04 V1W8, Ireland
| | - Michael J Dover
- Animal Genomics Laboratory, UCD School of Agriculture and Food Science, University College Dublin, Dublin, D04 V1W8, Ireland
| | - David E MacHugh
- Animal Genomics Laboratory, UCD School of Agriculture and Food Science, University College Dublin, Dublin, D04 V1W8, Ireland.
- UCD Conway Institute of Biomolecular and Biomedical Research, University College Dublin, Dublin, D04 V1W8, Ireland.
| |
Collapse
|
16
|
Renaud G, Hanghøj K, Korneliussen TS, Willerslev E, Orlando L. Joint Estimates of Heterozygosity and Runs of Homozygosity for Modern and Ancient Samples. Genetics 2019; 212:587-614. [PMID: 31088861 PMCID: PMC6614887 DOI: 10.1534/genetics.119.302057] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2019] [Accepted: 05/01/2019] [Indexed: 11/18/2022] Open
Abstract
Both the total amount and the distribution of heterozygous sites within individual genomes are informative about the genetic diversity of the population they belong to. Detecting true heterozygous sites in ancient genomes is complicated by the generally limited coverage achieved and the presence of post-mortem damage inflating sequencing errors. Additionally, large runs of homozygosity found in the genomes of particularly inbred individuals and of domestic animals can skew estimates of genome-wide heterozygosity rates. Current computational tools aimed at estimating runs of homozygosity and genome-wide heterozygosity levels are generally sensitive to such limitations. Here, we introduce ROHan, a probabilistic method which substantially improves the estimate of heterozygosity rates both genome-wide and for genomic local windows. It combines a local Bayesian model and a Hidden Markov Model at the genome-wide level and can work both on modern and ancient samples. We show that our algorithm outperforms currently available methods for predicting heterozygosity rates for ancient samples. Specifically, ROHan can delineate large runs of homozygosity (at megabase scales) and produce a reliable confidence interval for the genome-wide rate of heterozygosity outside of such regions from modern genomes with a depth of coverage as low as 5-6× and down to 7-8× for ancient samples showing moderate DNA damage. We apply ROHan to a series of modern and ancient genomes previously published and revise available estimates of heterozygosity for humans, chimpanzees and horses.
Collapse
Affiliation(s)
- Gabriel Renaud
- Lundbeck Foundation GeoGenetics Center, Globe Institute, University of Copenhagen, 1350K, Denmark
| | - Kristian Hanghøj
- Lundbeck Foundation GeoGenetics Center, Globe Institute, University of Copenhagen, 1350K, Denmark
- Laboratoire d'Anthropobiologie Moléculaire et d'Imagerie de Synthèse, CNRS UMR 5288, Université de Toulouse, Université Paul Sabatier, 31000, France
| | | | - Eske Willerslev
- Lundbeck Foundation GeoGenetics Center, Globe Institute, University of Copenhagen, 1350K, Denmark
- Department of Zoology, University of Cambridge, CB2 3EJ, UK
- The Wellcome Trust Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridge CB10 1SA, UK
- The Danish Institute for Advanced Study at The University of Southern Denmark, DK-5230 Odense M, Denmark
| | - Ludovic Orlando
- Lundbeck Foundation GeoGenetics Center, Globe Institute, University of Copenhagen, 1350K, Denmark
- Laboratoire d'Anthropobiologie Moléculaire et d'Imagerie de Synthèse, CNRS UMR 5288, Université de Toulouse, Université Paul Sabatier, 31000, France
| |
Collapse
|
17
|
Kyriazis M. Ageing Throughout History: The Evolution of Human Lifespan. J Mol Evol 2019; 88:57-65. [PMID: 31197416 DOI: 10.1007/s00239-019-09896-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2019] [Accepted: 06/06/2019] [Indexed: 12/20/2022]
Abstract
It is not surprising that one of the most complex phenomena in nature is that of ageing. It does not only bear biological interest, but it is also associated with cultural, psychological, social and even philosophical issues. It is therefore to be expected that a great deal of research is being performed in order to study the evolution of ageing and, more specifically, the evolution of human ageing. Historical aspects of this evolution will be discussed. Evidence from a variety of sources shows that the human lifespan is increasing, and may well continue to increase to levels that are difficult to predict. In addition, the most important theories about ageing based on evolutionary principles will be examined. Examples are mutation accumulation, antagonistic pleiotropy and the disposable soma theory. Finally, a section about future evolution of human ageing, based upon newly emerging research, will shed some light and provide speculative-provocative ideas about the future of ageing in humans.
Collapse
|
18
|
Traversari M, Serrangeli MC, Catalano G, Petrella E, Piciucchi S, Feletti F, Oxilia G, Cristiani E, Vazzana A, Sorrentino R, De Fanti S, Luiselli D, Calcagnile L, Saragoni L, Feeney RNM, Gruppioni G, Cilli E, Benazzi S. Multi-analytic study of a probable case of fibrous dysplasia (FD) from certosa monumental cemetery (Bologna, Italy). INTERNATIONAL JOURNAL OF PALEOPATHOLOGY 2019; 25:1-8. [PMID: 30913508 DOI: 10.1016/j.ijpp.2019.03.003] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/13/2018] [Revised: 03/08/2019] [Accepted: 03/08/2019] [Indexed: 06/09/2023]
Abstract
OBJECTIVE To evaluate, via a multidisciplinary approach, a distinctive paleopathological condition believed to be fibrous dysplasia, found on a 19th/20th century skeleton from Certosa Monumental Cemetery, Bologna, Italy. MATERIALS A skeletonized cranium and mandible recovered from an ossuary in 2014. METHODS Pathological alterations were analysed by radiological examination, dental macrowear, histopathological and genetic analyses. RESULT The skeleton is believed to be an adult male. Differential diagnoses include Paget's disease, McCune-Albright syndrome, osteochondroma and osteosarcoma. The radiographic findings, along with the solitary nature of the lesions, are strong evidence for the diagnosis of fibrous dysplasia (FD). Genetic analysis further revealed a frequency of ˜1% of mutant alleles with the R201C substitution, one of the post-zygotic activating mutation frequently associated with FD. CONCLUSIONS The multi-analytical method employed suggests a diagnosis of monostotic form of FD. The diagnostic design incorporates multiple lines of evidence, including macroscopic, histopathological, and genetic analyses. SIGNIFICANCE Through the use of a multi-analytic approach, robust diagnoses can be offered. This case serves as one of the oldest examples of FD from an historical context. The genetic mutation detected, associated with FD, has not been previously reported in historical/ancient samples.
Collapse
Affiliation(s)
- Mirko Traversari
- Department of Cultural Heritage, University of Bologna, via degli Ariani 1, 48121, Ravenna, Italy.
| | - Maria Cristina Serrangeli
- Department of Cultural Heritage, University of Bologna, via degli Ariani 1, 48121, Ravenna, Italy; UCD School of Medicine, Health Science Centre, University College Dublin, Belfield, Dublin 4, Ireland
| | - Giulio Catalano
- Department of Cultural Heritage, University of Bologna, via degli Ariani 1, 48121, Ravenna, Italy
| | - Enrico Petrella
- Department of Radiology, AUSL Romagna, Morgagni-Pierantoni city hospital, via Carlo Forlanini 34, 47121, Forlì, Italy
| | - Sara Piciucchi
- Department of Radiology, AUSL Romagna, Morgagni-Pierantoni city hospital, via Carlo Forlanini 34, 47121, Forlì, Italy
| | - Francesco Feletti
- Department of Diagnostic Imaging Ausl Romagna, Santa Maria delle Croci Hospital, Viale Randi, 5, 48121 Ravenna, Italy
| | - Gregorio Oxilia
- Department of Cultural Heritage, University of Bologna, via degli Ariani 1, 48121, Ravenna, Italy
| | - Emanuela Cristiani
- Department of Oral and Maxillofacial Sciences, School of Dentistry, Sapienza University of Rome, Via Caserta, 6, 00161 Rome
| | - Antonino Vazzana
- Department of Cultural Heritage, University of Bologna, via degli Ariani 1, 48121, Ravenna, Italy
| | - Rita Sorrentino
- Department of Cultural Heritage, University of Bologna, via degli Ariani 1, 48121, Ravenna, Italy; Department of Biological, Geological and Environmental Sciences, University of Bologna, via Selmi 3, Bologna, Italy
| | - Sara De Fanti
- Department of Biological, Geological and Environmental Sciences, University of Bologna, via Selmi 3, Bologna, Italy
| | - Donata Luiselli
- Department of Cultural Heritage, University of Bologna, via degli Ariani 1, 48121, Ravenna, Italy
| | - Lucio Calcagnile
- CEDAD - CEnter for DAting and Diagnostics Department of Mathematics and Physics "Ennio De Giorgi", University of Salento and INFN-National Institute for Nuclear Physics, Via Monteroni, 73100, Lecce, Italy
| | - Luca Saragoni
- Department of Pathological Anatomy, AUSL Romagna, Morgagni-Pierantoni city hospital, via Carlo Forlanini 34, 47121, Forlì, Italy
| | - Robin N M Feeney
- UCD School of Medicine, Health Science Centre, University College Dublin, Belfield, Dublin 4, Ireland
| | - Giorgio Gruppioni
- Department of Cultural Heritage, University of Bologna, via degli Ariani 1, 48121, Ravenna, Italy
| | - Elisabetta Cilli
- Department of Cultural Heritage, University of Bologna, via degli Ariani 1, 48121, Ravenna, Italy
| | - Stefano Benazzi
- Department of Cultural Heritage, University of Bologna, via degli Ariani 1, 48121, Ravenna, Italy; Department of Human Evolution, Max Planck Institute for Evolutionary Anthropology, Deutscher Platz 6, 04103, Leipzig, Germany
| |
Collapse
|
19
|
Wang XS, Chen D, Wang H, Liu L, Huang JF, Duan XM, Yan XX, Luo XG. Mawangdui-Type Ancient Human Cadavers in China and Strategies for Their Long-Term Preservation. Biopreserv Biobank 2019; 17:113-118. [PMID: 30888198 DOI: 10.1089/bio.2019.0018] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Ancient human remains may exist as intact cadavers in various forms, including mummies as well as humid or soft corpses. These valuable human depositories have been increasingly investigated with modern molecular biological approaches, delivering breakthrough discoveries in the field of paleoanthropology. Many ancient remains are also preserved in museums for public education of the history of human civilization. The Mawangdui tomb No. 1 cadaver was unearthed in 1972 in Changsha, China, and is a well-preserved humid-type corpse of a deceased woman who lived in the Western Han Dynasty (206BC-24AD). During the past few decades, a number of other similar cadavers have been discovered in China. The Mawangdui cadaver thus appears to represent an archetype of the humid corpses that are commonly unearthed from buried coffins, but show a great extent of anatomical and histological integrity at the time of excavation. Long-term protection of these cadavers is important with regard to scientific investigation and heritage conservation, while challenges exist to develop effective preservation protocols. In this perspective article, we describe the overall features of the humid cadavers found in China, and discuss the factors that potentially contributed to their preservation before excavation. We also introduce the efforts taken for, and experience learned from, postexcavation preservation of the Mawangdui cadaver during the past four decades. Finally, we propose that research into the mechanism governing the breakdown of macromolecules may provide potential solutions for extended protection of these valuable ancient human remains.
Collapse
Affiliation(s)
- Xiao-Sheng Wang
- 1 Department of Anatomy and Neurobiology, Central South University Xiangya School of Medicine, Changsha, Hunan, China.,2 Center for Preservation of Mawangdui Han Tomb Cadaver, Morphological Science Building, Central South University Xiangya School of Medicine, Changsha, Hunan, China
| | - Dan Chen
- 1 Department of Anatomy and Neurobiology, Central South University Xiangya School of Medicine, Changsha, Hunan, China.,2 Center for Preservation of Mawangdui Han Tomb Cadaver, Morphological Science Building, Central South University Xiangya School of Medicine, Changsha, Hunan, China
| | - Hui Wang
- 1 Department of Anatomy and Neurobiology, Central South University Xiangya School of Medicine, Changsha, Hunan, China.,2 Center for Preservation of Mawangdui Han Tomb Cadaver, Morphological Science Building, Central South University Xiangya School of Medicine, Changsha, Hunan, China
| | - Liang Liu
- 3 Hunan Museum, Changsha, Hunan, China
| | - Ju-Fang Huang
- 1 Department of Anatomy and Neurobiology, Central South University Xiangya School of Medicine, Changsha, Hunan, China.,2 Center for Preservation of Mawangdui Han Tomb Cadaver, Morphological Science Building, Central South University Xiangya School of Medicine, Changsha, Hunan, China
| | | | - Xiao-Xin Yan
- 1 Department of Anatomy and Neurobiology, Central South University Xiangya School of Medicine, Changsha, Hunan, China.,2 Center for Preservation of Mawangdui Han Tomb Cadaver, Morphological Science Building, Central South University Xiangya School of Medicine, Changsha, Hunan, China
| | - Xue-Gang Luo
- 1 Department of Anatomy and Neurobiology, Central South University Xiangya School of Medicine, Changsha, Hunan, China.,2 Center for Preservation of Mawangdui Han Tomb Cadaver, Morphological Science Building, Central South University Xiangya School of Medicine, Changsha, Hunan, China
| |
Collapse
|
20
|
Late Bronze Age cultural origins of dairy pastoralism in Mongolia. Proc Natl Acad Sci U S A 2018; 115:12083-12085. [PMID: 30420514 DOI: 10.1073/pnas.1817559115] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
|
21
|
Larmuseau MHD, Ottoni C. Mediterranean Y-chromosome 2.0-why the Y in the Mediterranean is still relevant in the postgenomic era. Ann Hum Biol 2018; 45:20-33. [PMID: 29382278 DOI: 10.1080/03014460.2017.1402956] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
CONTEXT Due to its unique paternal inheritance, the Y-chromosome has been a highly popular marker among population geneticists for over two decades. Recently, the advent of cost-effective genome-wide methods has unlocked information-rich autosomal genomic data, paving the way to the postgenomic era. This seems to have announced the decreasing popularity of investigating Y-chromosome variation, which provides only the paternal perspective of human ancestries and is strongly influenced by genetic drift and social behaviour. OBJECTIVE For this special issue on population genetics of the Mediterranean, the aim was to demonstrate that the Y-chromosome still provides important insights in the postgenomic era and in a time when ancient genomes are becoming exponentially available. METHODS A systematic literature search on Y-chromosomal studies in the Mediterranean was performed. RESULTS Several applications of Y-chromosomal analysis with future opportunities are formulated and illustrated with studies on Mediterranean populations. CONCLUSIONS There will be no reduced interest in Y-chromosomal studies going from reconstruction of male-specific demographic events to ancient DNA applications, surname history and population-wide estimations of extra-pair paternity rates. Moreover, more initiatives are required to collect population genetic data of Y-chromosomal markers for forensic research, and to include Y-chromosomal data in GWAS investigations and studies on male infertility.
Collapse
Affiliation(s)
- Maarten H D Larmuseau
- a KU Leuven, Forensic Biomedical Sciences , Department of Imaging & Pathology , Leuven , Belgium.,b KU Leuven, Laboratory of Socioecology and Social Evolution , Department of Biology , Leuven , Belgium
| | - Claudio Ottoni
- c Centre for Ecological and Evolutionary Synthesis (CEES), Department of Biosciences , University of Oslo , Oslo , Norway
| |
Collapse
|
22
|
|
23
|
Larmuseau MHD, Calafell F, Princen SA, Decorte R, Soen V. The black legend on the Spanish presence in the low countries: Verifying shared beliefs on genetic ancestry. AMERICAN JOURNAL OF PHYSICAL ANTHROPOLOGY 2018; 166:219-227. [PMID: 29327450 DOI: 10.1002/ajpa.23409] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/15/2017] [Revised: 11/28/2017] [Accepted: 01/01/2018] [Indexed: 11/08/2022]
Abstract
OBJECTIVES War atrocities committed by the Spanish army in the Low Countries during the 16th century are so ingrained in the collective memory of Belgian and Dutch societies that they generally assume a signature of this history to be present in their genetic ancestry. Historians claim this assumption is a consequence of the so-called "Black Legend" and negative propaganda portraying and remembering Spanish soldiers as extreme sexual aggressors. The impact of the presence of Spaniards during the Dutch Revolt on the genetic variation in the Low Countries has been verified in this study. MATERIALS AND METHODS A recent population genetic analysis of Iberian-associated Y-chromosomal variation among Europe is enlarged with representative samples of Dutch (N = 250) and Flemish (N = 1,087) males. Frequencies of these variants are also compared between donors whose oldest reported paternal ancestors lived in-nowadays Flemish-cities affected by so-called Spanish Furies (N = 116) versus other patrilineages in current Flemish territory (N = 971). RESULTS The frequencies of Y-chromosomal markers Z195 and SRY2627 decline steeply going north from Spain and the data for the Flemish and Dutch populations fits within this pattern. No trend of higher frequencies of these variants has been found within the well-ascertained samples associated with Spanish Fury cities. DISCUSSION Although sexual aggression did occur in the 16th century, these activities did not leave a traceable "Spanish" genetic signature in the autochthonous genome of the Low Countries. Our results support the view that the 'Black Legend' and historical propaganda on sexual aggression have nurtured today's incorrect assumptions regarding genetic ancestry.
Collapse
Affiliation(s)
- Maarten H D Larmuseau
- Department of Forensic Biomedical Sciences, Laboratory of Forensic Genetics and Molecular Archaeology, KU Leuven, Leuven, Belgium.,Department of Biology, Laboratory of Socioecology and Social Evolution, KU Leuven, Leuven, Belgium
| | - Francesc Calafell
- Departament de Ciències Experimentals i de la Salut, Institut de Biologia Evolutiva (CSIC-UPF), Universitat Pompeu Fabra, Barcelona, Catalonia, Spain
| | - Sarah A Princen
- Department of Biology, Laboratory of Socioecology and Social Evolution, KU Leuven, Leuven, Belgium
| | - Ronny Decorte
- Department of Forensic Biomedical Sciences, Laboratory of Forensic Genetics and Molecular Archaeology, KU Leuven, Leuven, Belgium
| | - Violet Soen
- Early Modern History (15th-18th Centuries), Faculty of Arts, KU Leuven, Leuven, Belgium
| |
Collapse
|
24
|
Woods R, Marr MM, Brace S, Barnes I. The Small and the Dead: A Review of Ancient DNA Studies Analysing Micromammal Species. Genes (Basel) 2017; 8:E312. [PMID: 29117125 PMCID: PMC5704225 DOI: 10.3390/genes8110312] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2017] [Revised: 10/13/2017] [Accepted: 10/13/2017] [Indexed: 02/06/2023] Open
Abstract
The field of ancient DNA (aDNA) has recently been in a state of exponential growth, largely driven by the uptake of Next Generation Sequencing (NGS) techniques. Much of this work has focused on the mammalian megafauna and ancient humans, with comparatively less studies looking at micromammal fauna, despite the potential of these species in testing evolutionary, environmental and taxonomic theories. Several factors make micromammal fauna ideally suited for aDNA extraction and sequencing. Micromammal subfossil assemblages often include the large number of individuals appropriate for population level analyses, and, furthermore, the assemblages are frequently found in cave sites where the constant temperature and sheltered environment provide favourable conditions for DNA preservation. This review looks at studies that include the use of aDNA in molecular analysis of micromammal fauna, in order to examine the wide array of questions that can be answered in the study of small mammals using new palaeogenetic techniques. This study highlights the bias in current aDNA studies and assesses the future use of aDNA as a tool for the study of micromammal fauna.
Collapse
Affiliation(s)
- Roseina Woods
- Department of Earth Sciences, Natural History Museum, Cromwell Road, London SW7 5BD, UK.
| | - Melissa M Marr
- Department of Earth Sciences, Natural History Museum, Cromwell Road, London SW7 5BD, UK.
| | - Selina Brace
- Department of Earth Sciences, Natural History Museum, Cromwell Road, London SW7 5BD, UK.
| | - Ian Barnes
- Department of Earth Sciences, Natural History Museum, Cromwell Road, London SW7 5BD, UK.
| |
Collapse
|
25
|
Marciniak S, Perry GH. Harnessing ancient genomes to study the history of human adaptation. Nat Rev Genet 2017; 18:659-674. [PMID: 28890534 DOI: 10.1038/nrg.2017.65] [Citation(s) in RCA: 96] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The past several years have witnessed an explosion of successful ancient human genome-sequencing projects, with genomic-scale ancient DNA data sets now available for more than 1,100 ancient human and archaic hominin (for example, Neandertal) individuals. Recent 'evolution in action' analyses have started using these data sets to identify and track the spatiotemporal trajectories of genetic variants associated with human adaptations to novel and changing environments, agricultural lifestyles, and introduced or co-evolving pathogens. Together with evidence of adaptive introgression of genetic variants from archaic hominins to humans and emerging ancient genome data sets for domesticated animals and plants, these studies provide novel insights into human evolution and the evolutionary consequences of human behaviour that go well beyond those that can be obtained from modern genomic data or the fossil and archaeological records alone.
Collapse
Affiliation(s)
- Stephanie Marciniak
- Department of Anthropology, Pennsylvania State University, University Park, Pennsylvania 16802, USA
| | - George H Perry
- Department of Anthropology, Pennsylvania State University, University Park, Pennsylvania 16802, USA
- Department of Biology, Pennsylvania State University, University Park, Pennsylvania 16802, USA
- Huck Institutes of the Life Sciences, Pennsylvania State University, University Park, Pennsylvania 16802, USA
| |
Collapse
|
26
|
Theofanopoulou C, Gastaldon S, O’Rourke T, Samuels BD, Messner A, Martins PT, Delogu F, Alamri S, Boeckx C. Self-domestication in Homo sapiens: Insights from comparative genomics. PLoS One 2017; 12:e0185306. [PMID: 29045412 PMCID: PMC5646786 DOI: 10.1371/journal.pone.0185306] [Citation(s) in RCA: 77] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2017] [Accepted: 09/11/2017] [Indexed: 02/07/2023] Open
Abstract
This study identifies and analyzes statistically significant overlaps between selective sweep screens in anatomically modern humans and several domesticated species. The results obtained suggest that (paleo-)genomic data can be exploited to complement the fossil record and support the idea of self-domestication in Homo sapiens, a process that likely intensified as our species populated its niche. Our analysis lends support to attempts to capture the "domestication syndrome" in terms of alterations to certain signaling pathways and cell lineages, such as the neural crest.
Collapse
Affiliation(s)
- Constantina Theofanopoulou
- Section of General Linguistics, Universitat de Barcelona, Barcelona, Spain
- Universitat de Barcelona Institute for Complex Systems, Barcelona, Spain
| | - Simone Gastaldon
- Section of General Linguistics, Universitat de Barcelona, Barcelona, Spain
- School of Psychology, University of Padova, Padova, Italy
| | - Thomas O’Rourke
- Section of General Linguistics, Universitat de Barcelona, Barcelona, Spain
| | - Bridget D. Samuels
- Center for Craniofacial Molecular Biology, University of Southern California, Los Angeles, CA, United States of America
| | - Angela Messner
- Section of General Linguistics, Universitat de Barcelona, Barcelona, Spain
| | | | - Francesco Delogu
- Department of Chemistry, Biotechnology and Food Science, Norwegian University of Life Sciences (NMBU), Ås, Norway
| | - Saleh Alamri
- Section of General Linguistics, Universitat de Barcelona, Barcelona, Spain
| | - Cedric Boeckx
- Section of General Linguistics, Universitat de Barcelona, Barcelona, Spain
- Universitat de Barcelona Institute for Complex Systems, Barcelona, Spain
- ICREA, Barcelona, Spain
| |
Collapse
|
27
|
Abstract
Analyzing the conditions in which past individuals lived is key to understanding the environments and cultural transitions to which humans had to adapt. Here, we suggest a methodology to probe into past environments, using reconstructed premortem DNA methylation maps of ancient individuals. We review a large body of research showing that differential DNA methylation is associated with changes in various external and internal factors, and propose that loci whose DNA methylation level is environmentally responsive could serve as markers to infer about ancient daily life, diseases, nutrition, exposure to toxins, and more. We demonstrate this approach by showing that hunger-related DNA methylation changes are found in ancient hunter-gatherers. The strategy we present here opens a window to reconstruct previously inaccessible aspects of the lives of past individuals.
Collapse
Affiliation(s)
- David Gokhman
- Department of Genetics, The Alexander Silberman Institute of Life Sciences, Faculty of Science, The Hebrew University of Jerusalem Edmond J. Safra Campus, Givat Ram, Jerusalem, Israel
| | - Anat Malul
- Department of Genetics, The Alexander Silberman Institute of Life Sciences, Faculty of Science, The Hebrew University of Jerusalem Edmond J. Safra Campus, Givat Ram, Jerusalem, Israel
| | - Liran Carmel
- Department of Genetics, The Alexander Silberman Institute of Life Sciences, Faculty of Science, The Hebrew University of Jerusalem Edmond J. Safra Campus, Givat Ram, Jerusalem, Israel
| |
Collapse
|
28
|
Bhatti S, Abbas S, Aslamkhan M, Attimonelli M, Trinidad MS, Aydin HH, de Souza EMS, Gonzalez GR. Genetic perspective of uniparental mitochondrial DNA landscape on the Punjabi population, Pakistan. Mitochondrial DNA A DNA Mapp Seq Anal 2017; 29:714-726. [PMID: 28745560 DOI: 10.1080/24701394.2017.1350951] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
To investigate the uniparental genetic structure of the Punjabi population from mtDNA aspect and to set up an appropriate mtDNA forensic database, we studied maternally unrelated Punjabi (N = 100) subjects from two caste groups (i.e. Arain and Gujar) belonging to territory of Punjab. The complete control region was elucidated by Sanger sequencing and the subsequent 58 different haplotypes were designated into appropriate haplogroups according to the most recently updated mtDNA phylogeny. We found a homogenous dispersal of Eurasian haplogroup uniformity among the Punjab Province and exhibited a strong connotation with the European populations. Punjabi castes are primarily a composite of substantial South Asian, East Asian and West Eurasian lineages. Moreover, for the first time we have defined the newly sub-haplogroup M52b1 characterized by 16223 T, 16275 G and 16438 A in Gujar caste. The vast array of mtDNA variants displayed in this study suggested that the haplogroup composition radiates signals of extensive genetic conglomeration, population admixture and demographic expansion that was equipped with diverse origin, whereas matrilineal gene pool was phylogeographically homogenous across the Punjab. This context was further fully acquainted with the facts supported by PCA scatterplot that Punjabi population clustered with South Asian populations. Finally, the high power of discrimination (0.8819) and low random match probability (0.0085%) proposed a worthy contribution of mtDNA control region dataset as a forensic database that considered a gold standard of today to get deeper insight into the genetic ancestry of contemporary matrilineal phylogeny.
Collapse
Affiliation(s)
- Shahzad Bhatti
- a Department of Human Genetics and Molecular Biology , University of Health Sciences Lahore , Lahore , Pakistan.,b Institute of Molecular Biology and Biotechnology , University of Lahore , Lahore , Pakistan
| | - Sana Abbas
- b Institute of Molecular Biology and Biotechnology , University of Lahore , Lahore , Pakistan
| | - Muhammad Aslamkhan
- a Department of Human Genetics and Molecular Biology , University of Health Sciences Lahore , Lahore , Pakistan
| | - Marcella Attimonelli
- c Department of Biosciences, Biotechnologies and Biopharmaceutics , University of Bari , Bari , Italy
| | - Magali Segundo Trinidad
- d Universidad National Autonoma de Mexico , Facultad de Medicinia , Ciudad de Mexico , Mexico
| | - Hikmet Hakan Aydin
- e Department of Medical Biochemistry , Ege University School of Medicine , Izmir , Turkey
| | - Erica Martinha Silva de Souza
- f Instituto Nacional de Pesquisa, Manaus Programa de Pós Graduação em Genética , Conservação e Biologia Evolutiva , Manaus , Brazil
| | | |
Collapse
|
29
|
Zaucha J, Heddle JG. Resurrecting the Dead (Molecules). Comput Struct Biotechnol J 2017; 15:351-358. [PMID: 28652896 PMCID: PMC5472138 DOI: 10.1016/j.csbj.2017.05.002] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2017] [Revised: 05/11/2017] [Accepted: 05/21/2017] [Indexed: 12/15/2022] Open
Abstract
Biological molecules, like organisms themselves, are subject to genetic drift and may even become "extinct". Molecules that are no longer extant in living systems are of high interest for several reasons including insight into how existing life forms evolved and the possibility that they may have new and useful properties no longer available in currently functioning molecules. Predicting the sequence/structure of such molecules and synthesizing them so that their properties can be tested is the basis of "molecular resurrection" and may lead not only to a deeper understanding of evolution, but also to the production of artificial proteins with novel properties and even to insight into how life itself began.
Collapse
Affiliation(s)
- Jan Zaucha
- Departament of Computer Science, University of Bristol, Life Sciences Building, 24 Tyndall Avenue, Bristol BS8 1TQ, United Kingdom
| | - Jonathan G. Heddle
- Bionanoscience and Biochemistry Laboratory, Jagiellonian University, Malopolska Centre of Biotechnology, Gronstajowa 7A, 30-387 Kraków, Poland
| |
Collapse
|
30
|
Williams AC, Hill LJ. Meat and Nicotinamide: A Causal Role in Human Evolution, History, and Demographics. Int J Tryptophan Res 2017; 10:1178646917704661. [PMID: 28579800 PMCID: PMC5417583 DOI: 10.1177/1178646917704661] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2016] [Accepted: 03/15/2017] [Indexed: 01/15/2023] Open
Abstract
Hunting for meat was a critical step in all animal and human evolution. A key brain-trophic element in meat is vitamin B3 / nicotinamide. The supply of meat and nicotinamide steadily increased from the Cambrian origin of animal predators ratcheting ever larger brains. This culminated in the 3-million-year evolution of Homo sapiens and our overall demographic success. We view human evolution, recent history, and agricultural and demographic transitions in the light of meat and nicotinamide intake. A biochemical and immunological switch is highlighted that affects fertility in the 'de novo' tryptophan-to-kynurenine-nicotinamide 'immune tolerance' pathway. Longevity relates to nicotinamide adenine dinucleotide consumer pathways. High meat intake correlates with moderate fertility, high intelligence, good health, and longevity with consequent population stability, whereas low meat/high cereal intake (short of starvation) correlates with high fertility, disease, and population booms and busts. Too high a meat intake and fertility falls below replacement levels. Reducing variances in meat consumption might help stabilise population growth and improve human capital.
Collapse
Affiliation(s)
- Adrian C Williams
- Department of Neurology, University Hospitals Birmingham NHS Foundation Trust, Birmingham, UK
| | - Lisa J Hill
- Neuroscience and Ophthalmology Research Group, Institute of Inflammation and Ageing, University of Birmingham, Birmingham, UK
| |
Collapse
|
31
|
Tickle C, Urrutia AO. Perspectives on the history of evo-devo and the contemporary research landscape in the genomics era. Philos Trans R Soc Lond B Biol Sci 2017; 372:20150473. [PMID: 27994116 PMCID: PMC5182407 DOI: 10.1098/rstb.2015.0473] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/01/2016] [Indexed: 12/12/2022] Open
Abstract
A fundamental question in biology is how the extraordinary range of living organisms arose. In this theme issue, we celebrate how evolutionary studies on the origins of morphological diversity have changed over the past 350 years since the first publication of the Philosophical Transactions of The Royal Society Current understanding of this topic is enriched by many disciplines, including anatomy, palaeontology, developmental biology, genetics and genomics. Development is central because it is the means by which genetic information of an organism is translated into morphology. The discovery of the genetic basis of development has revealed how changes in form can be inherited, leading to the emergence of the field known as evolutionary developmental biology (evo-devo). Recent approaches include imaging, quantitative morphometrics and, in particular, genomics, which brings a new dimension. Articles in this issue illustrate the contemporary evo-devo field by considering general principles emerging from genomics and how this and other approaches are applied to specific questions about the evolution of major transitions and innovations in morphology, diversification and modification of structures, intraspecific morphological variation and developmental plasticity. Current approaches enable a much broader range of organisms to be studied, thus building a better appreciation of the origins of morphological diversity.This article is part of the themed issue 'Evo-devo in the genomics era, and the origins of morphological diversity'.
Collapse
Affiliation(s)
- Cheryll Tickle
- Department of Biology and Biochemistry, University of Bath, Bath BA2 7AY, UK
| | - Araxi O Urrutia
- Department of Biology and Biochemistry, University of Bath, Bath BA2 7AY, UK
- Milner Centre for Evolution, University of Bath, Bath BA2 7AY, UK
| |
Collapse
|