1
|
Din MAU, Wan A, Chu Y, Zhou J, Yan Y, Xu Z. Therapeutic role of extracellular vesicles from human umbilical cord mesenchymal stem cells and their wide therapeutic implications in inflammatory bowel disease and other inflammatory disorder. Front Med (Lausanne) 2024; 11:1406547. [PMID: 39139783 PMCID: PMC11319305 DOI: 10.3389/fmed.2024.1406547] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Accepted: 07/18/2024] [Indexed: 08/15/2024] Open
Abstract
The chronic immune-mediated inflammatory condition known as inflammatory bowel disease (IBD) significantly affects the gastrointestinal system. While the precise etiology of IBD remains elusive, extensive research suggests that a range of pathophysiological pathways and immunopathological mechanisms may significantly contribute as potential factors. Mesenchymal stem cells (MSCs) have shown significant potential in the development of novel therapeutic approaches for various medical conditions. However, some MSCs have been found to exhibit tumorigenic characteristics, which limit their potential for medical treatments. The extracellular vesicles (EVs), paracrine factors play a crucial role in the therapeutic benefits conferred by MSCs. The EVs consist of proteins, microRNAs, and lipids, and are instrumental in facilitating intercellular communication. Due to the ease of maintenance, and decreased immunogenicity, tumorigenicity the EVs have become a new and exciting option for whole cell treatment. This review comprehensively assesses recent preclinical research on human umbilical cord mesenchymal stem cell (hUC-MSC)-derived EVs as a potential IBD therapy. It comprehensively addresses key aspects of various conditions, including diabetes, cancer, dermal injuries, neurological disorders, cardiovascular issues, liver and kidney diseases, and bone-related afflictions.
Collapse
Affiliation(s)
- Muhammad Azhar Ud Din
- Changzhou Key Laboratory of Molecular Diagnostics and Precision Cancer Medicine, Wujin Hospital Affiliated with Jiangsu University, Jiangsu University, Changzhou, China
- Key Laboratory of Medical Science and Laboratory Medicine of Jiangsu Province, School of Medicine Jiangsu University, Zhenjiang, China
| | | | - Ying Chu
- Changzhou Key Laboratory of Molecular Diagnostics and Precision Cancer Medicine, Wujin Hospital Affiliated with Jiangsu University, Jiangsu University, Changzhou, China
| | - Jing Zhou
- Changzhou Key Laboratory of Molecular Diagnostics and Precision Cancer Medicine, Wujin Hospital Affiliated with Jiangsu University, Jiangsu University, Changzhou, China
| | - Yongmin Yan
- Changzhou Key Laboratory of Molecular Diagnostics and Precision Cancer Medicine, Wujin Hospital Affiliated with Jiangsu University, Jiangsu University, Changzhou, China
| | - Zhiliang Xu
- Changzhou Key Laboratory of Molecular Diagnostics and Precision Cancer Medicine, Wujin Hospital Affiliated with Jiangsu University, Jiangsu University, Changzhou, China
| |
Collapse
|
2
|
He J, Du Z, Zhang H, Wang B, Xia J. Exosomes derived from human umbilical cord mesenchymal stem cells loaded with RVG-Lamp2b and Netrin-1 promotes Schwann cell invasion and migration. Tissue Cell 2023; 85:102219. [PMID: 37716176 DOI: 10.1016/j.tice.2023.102219] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Revised: 05/17/2023] [Accepted: 09/09/2023] [Indexed: 09/18/2023]
Abstract
BACKGROUND Netrin-1 has a neuroprotective effect by regulating angiogenesis, autophagy, apoptosis, and neuroinflammation. This study investigated the effects of netrin-1 delivery to mouse Schwann cells and vascular endothelial cells using exosomes modified with rabies virus glycoprotein (RVG) peptides. MATERIALS AND METHODS RVG-Lamp2b and/or Netrin-1 were overexpressed in human umbilical cord mesenchymal stem cells to obtain exosomes modified with RVG-Lamp2b and/or loaded with Netrin-1. Then, exosomes were labeled with carboxyfluorescein diacetate succinimidyl ester and co-cultured with mouse Schwann cells and endothelial cells. Netrin-1 expression in Schwann cells and endothelial cells was measured using quantitative polymerase chain reaction and immunoblotting. Moreover, methyl thiazolyl tetrazolium assays and Transwell assays were used to detect proliferation, migration, and invasion of Schwann cells and endothelial cells. RESULTS Exosomes with RVG-Lamp2b entered Schwann cells more readily compared with the exosomes without RVG-Lamp2b. Meanwhile, this was not the case in endothelial cells. Netrin-1-loaded exosomes significantly promoted Netrin-1 expression, cell proliferation, migration, invasion, and epithelial-mesenchymal transition in Schwann cells and endothelial cells. These effects were further enhanced by Netrin-1-loaded exosomes modified with RVG-Lamp2b in Schwann cells, but not in endothelial cells. CONCLUSION HucMSC-derived exosomes loaded with RVG-Lamp2b and Netrin-1 promote proliferation, migration, and invasion of Schwann cells.
Collapse
Affiliation(s)
- Jie He
- Department of Anesthesiology and Pain Management, Hangzhou Third People's Hospital, Hangzhou 310009, Zhejiang, China
| | - Zhongju Du
- Department of Anesthesiology and Pain Management, Hangzhou Third People's Hospital, Hangzhou 310009, Zhejiang, China
| | - Hua Zhang
- Department of Anesthesiology and Pain Management, Hangzhou Third People's Hospital, Hangzhou 310009, Zhejiang, China.
| | - Bo Wang
- Department of Anesthesiology and Pain Management, Hangzhou Third People's Hospital, Hangzhou 310009, Zhejiang, China
| | - Jurong Xia
- Department of Anesthesiology and Pain Management, Hangzhou Third People's Hospital, Hangzhou 310009, Zhejiang, China
| |
Collapse
|
3
|
Wang Y, Shi G, Huang TCT, Li J, Long Z, Reisdorf R, Shin AY, Amadio P, Behfar A, Zhao C, Moran SL. Enhancing Functional Recovery after Segmental Nerve Defect Using Nerve Allograft Treated with Plasma-Derived Exosome. Plast Reconstr Surg 2023; 152:1247-1258. [PMID: 36912739 DOI: 10.1097/prs.0000000000010389] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/14/2023]
Abstract
BACKGROUND Nerve injuries can result in detrimental functional outcomes. Currently, autologous nerve graft offers the best outcome for segmental peripheral nerve injury. Allografts are alternatives, but do not have comparable results. This study evaluated whether plasma-derived exosome can improve nerve regeneration and functional recovery when combined with decellularized nerve allografts. METHODS The effect of exosomes on Schwann cell proliferation and migration were evaluated. A rat model of sciatic nerve repair was used to evaluate the effect on nerve regeneration and functional recovery. A fibrin sealant was used as the scaffold for exosome. Eighty-four Lewis rats were divided into autograft, allograft, and allograft with exosome groups. Gene expression of nerve regeneration factors was analyzed on postoperative day 7. At 12 and 16 weeks, rats were subjected to maximum isometric tetanic force and compound muscle action potential. Nerve specimens were then analyzed by means of histology and immunohistochemistry. RESULTS Exosomes were readily taken up by Schwann cells that resulted in improved Schwann cell viability and migration. The treated allograft group had functional recovery (compound muscle action potential, isometric tetanic force) comparable to that of the autograft group. Similar results were observed in gene expression analysis of nerve regenerating factors. Histologic analysis showed no statistically significant differences between treated allograft and autograft groups in terms of axonal density, fascicular area, and myelin sheath thickness. CONCLUSIONS Plasma-derived exosome treatment of decellularized nerve allograft may provide comparable clinical outcomes to that of an autograft. This can be a promising strategy in the future as an alternative for segmental peripheral nerve repair. CLINICAL RELEVANCE STATEMENT Off-the-shelf exosomes may improve recovery in nerve allografts.
Collapse
Affiliation(s)
- Yicun Wang
- From the Department of Orthopedics, Jinling Hospital, School of Medicine, Nanjing University
- Division of Plastic Surgery, Department of Surgery
- Department of Orthopedic Surgery
| | - Guidong Shi
- Department of Orthopedic Surgery
- Tianjin Medical University
| | | | - Jialun Li
- Division of Plastic Surgery, Department of Surgery
- Department of Plastic Surgery, Wuhan Union Hospital, Huazhong University of Science and Technology
| | | | | | | | | | - Atta Behfar
- Center for Regenerative Medicine
- Department of Cardiovascular Medicine, Mayo Clinic
| | | | | |
Collapse
|
4
|
Hayashi Y, Nishimura K, Tanaka A, Inoue D. Extracellular vesicle-mediated remodeling of the bone marrow microenvironment in myeloid malignancies. Int J Hematol 2023; 117:821-829. [PMID: 37041345 DOI: 10.1007/s12185-023-03587-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 03/07/2023] [Accepted: 03/22/2023] [Indexed: 04/13/2023]
Abstract
Hematopoiesis is maintained and regulated by a bone marrow-specific microenvironment called a niche. In hematological malignancies, tumor cells induce niche remodeling, and the reconstructed niche is closely linked to disease pathogenesis. Recent studies have suggested that extracellular vesicles (EVs) secreted from tumor cells play a principal role in niche remodeling in hematological malignancies. Although EVs are emerging as potential therapeutic targets, the underlying mechanism of action remains unclear, and selective inhibition remains a challenge. This review summarizes remodeling of the bone marrow microenvironment in hematological malignancies and its contribution to pathogenesis, as well as roles of tumor-derived EVs, and provides a perspective on future research in this field.
Collapse
Affiliation(s)
- Yasutaka Hayashi
- Department of Hematology-Oncology, Institute of Biomedical Research and Innovation, Foundation for Biomedical Research and Innovation at Kobe, 6-3-7, Minatojimaminami-machi, Chuo-ku, Kobe, 650-0047, Japan.
| | - Koutarou Nishimura
- Department of Hematology-Oncology, Institute of Biomedical Research and Innovation, Foundation for Biomedical Research and Innovation at Kobe, 6-3-7, Minatojimaminami-machi, Chuo-ku, Kobe, 650-0047, Japan
| | - Atsushi Tanaka
- Department of Hematology-Oncology, Institute of Biomedical Research and Innovation, Foundation for Biomedical Research and Innovation at Kobe, 6-3-7, Minatojimaminami-machi, Chuo-ku, Kobe, 650-0047, Japan
- Laboratory of Immunology, Institute for Life and Medical Sciences, Kyoto University, Kyoto, Japan
| | - Daichi Inoue
- Department of Hematology-Oncology, Institute of Biomedical Research and Innovation, Foundation for Biomedical Research and Innovation at Kobe, 6-3-7, Minatojimaminami-machi, Chuo-ku, Kobe, 650-0047, Japan.
| |
Collapse
|
5
|
Bisserier M, Brojakowska A, Saffran N, Rai AK, Lee B, Coleman M, Sebastian A, Evans A, Mills PJ, Addya S, Arakelyan A, Garikipati VNS, Hadri L, Goukassian DA. Astronauts Plasma-Derived Exosomes Induced Aberrant EZH2-Mediated H3K27me3 Epigenetic Regulation of the Vitamin D Receptor. Front Cardiovasc Med 2022; 9:855181. [PMID: 35783863 PMCID: PMC9243458 DOI: 10.3389/fcvm.2022.855181] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Accepted: 05/25/2022] [Indexed: 11/17/2022] Open
Abstract
There are unique stressors in the spaceflight environment. Exposure to such stressors may be associated with adverse effects on astronauts' health, including increased cancer and cardiovascular disease risks. Small extracellular vesicles (sEVs, i.e., exosomes) play a vital role in intercellular communication and regulate various biological processes contributing to their role in disease pathogenesis. To assess whether spaceflight alters sEVs transcriptome profile, sEVs were isolated from the blood plasma of 3 astronauts at two different time points: 10 days before launch (L-10) and 3 days after return (R+3) from the Shuttle mission. AC16 cells (human cardiomyocyte cell line) were treated with L-10 and R+3 astronauts-derived exosomes for 24 h. Total RNA was isolated and analyzed for gene expression profiling using Affymetrix microarrays. Enrichment analysis was performed using Enrichr. Transcription factor (TF) enrichment analysis using the ENCODE/ChEA Consensus TF database identified gene sets related to the polycomb repressive complex 2 (PRC2) and Vitamin D receptor (VDR) in AC16 cells treated with R+3 compared to cells treated with L-10 astronauts-derived exosomes. Further analysis of the histone modifications using datasets from the Roadmap Epigenomics Project confirmed enrichment in gene sets related to the H3K27me3 repressive mark. Interestingly, analysis of previously published H3K27me3-chromatin immunoprecipitation sequencing (ChIP-Seq) ENCODE datasets showed enrichment of H3K27me3 in the VDR promoter. Collectively, our results suggest that astronaut-derived sEVs may epigenetically repress the expression of the VDR in human adult cardiomyocytes by promoting the activation of the PRC2 complex and H3K27me3 levels.
Collapse
Affiliation(s)
- Malik Bisserier
- Icahn School of Medicine at Mount Sinai, Cardiovascular Research Institute, New York, NY, United States
| | - Agnieszka Brojakowska
- Icahn School of Medicine at Mount Sinai, Cardiovascular Research Institute, New York, NY, United States
| | - Nathaniel Saffran
- Icahn School of Medicine at Mount Sinai, Cardiovascular Research Institute, New York, NY, United States
| | - Amit Kumar Rai
- Department of Emergency Medicine, The Ohio State University Wexner Medical Center, Columbus, OH, United States
| | - Brooke Lee
- Department of Emergency Medicine, The Ohio State University Wexner Medical Center, Columbus, OH, United States
| | - Matthew Coleman
- Lawrence Livermore National Laboratory, Livermore, CA, United States
- Department of Radiation Oncology, University of California, Davis, Sacramento, CA, United States
| | - Aimy Sebastian
- Lawrence Livermore National Laboratory, Livermore, CA, United States
| | - Angela Evans
- Lawrence Livermore National Laboratory, Livermore, CA, United States
- Department of Radiation Oncology, University of California, Davis, Sacramento, CA, United States
| | - Paul J. Mills
- Center of Excellence for Research and Training in Integrative Health, University of California, San Diego, La Jolla, CA, United States
| | - Sankar Addya
- Kimmel Cancer Center, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA, United States
| | - Arsen Arakelyan
- Bioinformatics Group, Institute of Molecular Biology, National Academy of Sciences of the Republic of Armenia (NAS RA), Yerevan, Armenia
- Department of Bioengineering, Bioinformatics, and Molecular Biology, Russian-Armenian University, Yerevan, Armenia
| | - Venkata Naga Srikanth Garikipati
- Department of Emergency Medicine, The Ohio State University Wexner Medical Center, Columbus, OH, United States
- Dorothy M. Davis Heart Lung and Research Institute, The Ohio State University Wexner Medical Center, Columbus, OH, United States
| | - Lahouaria Hadri
- Icahn School of Medicine at Mount Sinai, Cardiovascular Research Institute, New York, NY, United States
| | - David A. Goukassian
- Icahn School of Medicine at Mount Sinai, Cardiovascular Research Institute, New York, NY, United States
| |
Collapse
|
6
|
Li C, Li X, Shi Z, Wu P, Fu J, Tang J, Qing L. Exosomes from LPS-preconditioned bone marrow MSCs accelerated peripheral nerve regeneration via M2 macrophage polarization: Involvement of TSG-6/NF-κB/NLRP3 signaling pathway. Exp Neurol 2022; 356:114139. [PMID: 35690131 DOI: 10.1016/j.expneurol.2022.114139] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Revised: 06/02/2022] [Accepted: 06/03/2022] [Indexed: 11/30/2022]
Abstract
Lipopolysaccharide (LPS)-preconditioned mesenchymal stem cells (MSCs) possessed strong immunomodulatory and anti-inflammatory functions by secreting exosomes as major paracrine effectors. However, the specific effect of exosomes from LPS pre-MSCs (LPS pre-Exos) on peripheral nerve regeneration has yet to be documented. Here, we established a sciatic nerve injury model in rats and an inflammatory model in RAW264.7 cells to explore the potential mechanism between LPS pre-Exos and peripheral nerve repair. The local injection of LPS pre-Exos into the nerve injury site resulted in an accelerated functional recovery, axon regeneration and remyelination, and an enhanced M2 Macrophage polarization. Consistent with the data in vivo, LPS pre-Exos were able to shift the pro-inflammation macrophage into a pro-regeneration macrophage. Notably, TNF stimulated gene-6 (TSG-6) was found to be highly enriched in LPS pre-Exos. We obtained si TSG-6 Exo by the knockdown of TSG-6 in LPS pre-Exos to demonstrate the role of TSG-6 in macrophage polarization, and found that TSG-6 served as a critical mediator in LPS pre-Exos-induced regulatory effects through the inhibition of NF-ΚΒ and NOD-like receptor protein 3 (NLRP3). In conclusion, our findings suggested that LPS pre-Exos promoted macrophage polarization toward an M2 phenotype by shuttling TSG-6 to inactivate the NF-ΚΒ/NLRP3 signaling axis, and could provide a potential therapeutic avenue for peripheral nerve repair.
Collapse
Affiliation(s)
- Cheng Li
- Department of Orthopedics, Xiangya Hospital, Central South University, Changsha, China
| | - Xiaoxiao Li
- Department of Pathology, Changsha Medical University, Changsha, China; Department of Orthopedics, Xiangya Hospital, Central South University, Changsha, China
| | - Zhen Shi
- Department of Orthopedics, Xiangya Hospital, Central South University, Changsha, China; Department of Plastic Surgery, The Second Affiliated Hospital Zhejiang University School of Medicine, Hangzhou, China
| | - Panfeng Wu
- Department of Orthopedics, Xiangya Hospital, Central South University, Changsha, China
| | - Jinfei Fu
- Department of Orthopedics, Xiangya Hospital, Central South University, Changsha, China
| | - Juyu Tang
- Department of Orthopedics, Xiangya Hospital, Central South University, Changsha, China
| | - Liming Qing
- Department of Orthopedics, Xiangya Hospital, Central South University, Changsha, China.
| |
Collapse
|
7
|
Hayashi Y, Kawabata KC, Tanaka Y, Uehara Y, Mabuchi Y, Murakami K, Nishiyama A, Kiryu S, Yoshioka Y, Ota Y, Sugiyama T, Mikami K, Tamura M, Fukushima T, Asada S, Takeda R, Kunisaki Y, Fukuyama T, Yokoyama K, Uchida T, Hagihara M, Ohno N, Usuki K, Tojo A, Katayama Y, Goyama S, Arai F, Tamura T, Nagasawa T, Ochiya T, Inoue D, Kitamura T. MDS cells impair osteolineage differentiation of MSCs via extracellular vesicles to suppress normal hematopoiesis. Cell Rep 2022; 39:110805. [PMID: 35545056 DOI: 10.1016/j.celrep.2022.110805] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Revised: 02/15/2022] [Accepted: 04/19/2022] [Indexed: 12/13/2022] Open
Abstract
Myelodysplastic syndrome (MDS) is a clonal disorder of hematopoietic stem cells (HSCs), characterized by ineffective hematopoiesis and frequent progression to leukemia. It has long remained unresolved how MDS cells, which are less proliferative, inhibit normal hematopoiesis and eventually dominate the bone marrow space. Despite several studies implicating mesenchymal stromal or stem cells (MSCs), a principal component of the HSC niche, in the inhibition of normal hematopoiesis, the molecular mechanisms underlying this process remain unclear. Here, we demonstrate that both human and mouse MDS cells perturb bone metabolism by suppressing the osteolineage differentiation of MSCs, which impairs the ability of MSCs to support normal HSCs. Enforced MSC differentiation rescues the suppressed normal hematopoiesis in both in vivo and in vitro MDS models. Intriguingly, the suppression effect is reversible and mediated by extracellular vesicles (EVs) derived from MDS cells. These findings shed light on the novel MDS EV-MSC axis in ineffective hematopoiesis.
Collapse
Affiliation(s)
- Yasutaka Hayashi
- Division of Cellular Therapy, Institute of Medical Science, University of Tokyo, Shirokanedai, Minato-ku, Tokyo 108-8639, Japan; Department of Hematology-Oncology, Institute of Biomedical Research and Innovation, Foundation for Biomedical Research and Innovation at Kobe, Minatojimaminami-machi, Chuo-ku, Kobe 650-0047, Japan
| | - Kimihito C Kawabata
- Division of Cellular Therapy, Institute of Medical Science, University of Tokyo, Shirokanedai, Minato-ku, Tokyo 108-8639, Japan; Division of Hematology/Medical Oncology, Department of Medicine, Weill-Cornell Medical College, Cornell University, NY 10021, USA
| | - Yosuke Tanaka
- Division of Cellular Therapy, Institute of Medical Science, University of Tokyo, Shirokanedai, Minato-ku, Tokyo 108-8639, Japan
| | - Yasufumi Uehara
- Department of Stem Cell Biology and Medicine, Graduate School of Medical Sciences, Kyushu University, Fukuoka 812-8582, Japan; Center for Cellular and Molecular Medicine, Kyushu University Hospital, Fukuoka 812-8582, Japan
| | - Yo Mabuchi
- Department of Biochemistry and Biophysics, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo 113-8510, Japan
| | - Koichi Murakami
- Department of Immunology, Yokohama City University Graduate School of Medicine, Yokohama 236-0043, Japan; Advanced Medical Research Center, Yokohama City University, Yokohama 236-0043, Japan
| | - Akira Nishiyama
- Department of Immunology, Yokohama City University Graduate School of Medicine, Yokohama 236-0043, Japan
| | - Shigeru Kiryu
- Department of Radiology, International University of Health and Welfare Narita Hospital, Chiba 286-8686, Japan
| | - Yusuke Yoshioka
- Department of Molecular and Cellular Medicine, Institute of Medical Science, Tokyo Medical University, Tokyo 160-0023, Japan
| | - Yasunori Ota
- Department of Pathology, Research Hospital, Institute of Medical Science, University of Tokyo, Tokyo 108-8639, Japan
| | - Tatsuki Sugiyama
- Laboratory of Stem Cell Biology and Developmental Immunology, Graduate School of Frontier Biosciences and Graduate School of Medicine, WPI Immunology Frontier Research Center, Osaka University, Osaka 565-0871, Japan
| | - Keiko Mikami
- Division of Cellular Therapy, Institute of Medical Science, University of Tokyo, Shirokanedai, Minato-ku, Tokyo 108-8639, Japan
| | - Moe Tamura
- Division of Cellular Therapy, Institute of Medical Science, University of Tokyo, Shirokanedai, Minato-ku, Tokyo 108-8639, Japan; Division of Molecular Oncology, Department of Computational Biology and Medical Sciences, Graduate School of Frontier Sciences, University of Tokyo, Tokyo 108-8639, Japan
| | - Tsuyoshi Fukushima
- Division of Cellular Therapy, Institute of Medical Science, University of Tokyo, Shirokanedai, Minato-ku, Tokyo 108-8639, Japan
| | - Shuhei Asada
- Division of Cellular Therapy, Institute of Medical Science, University of Tokyo, Shirokanedai, Minato-ku, Tokyo 108-8639, Japan
| | - Reina Takeda
- Division of Cellular Therapy, Institute of Medical Science, University of Tokyo, Shirokanedai, Minato-ku, Tokyo 108-8639, Japan
| | - Yuya Kunisaki
- Department of Stem Cell Biology and Medicine, Graduate School of Medical Sciences, Kyushu University, Fukuoka 812-8582, Japan; Center for Cellular and Molecular Medicine, Kyushu University Hospital, Fukuoka 812-8582, Japan
| | - Tomofusa Fukuyama
- Division of Cellular Therapy, Institute of Medical Science, University of Tokyo, Shirokanedai, Minato-ku, Tokyo 108-8639, Japan
| | - Kazuaki Yokoyama
- Department of Hematology/Oncology, Research Hospital, Institute of Medical Science, University of Tokyo, Tokyo 108-8639, Japan
| | - Tomoyuki Uchida
- Department of Hematology, Eiju General Hospital, Tokyo 110-8645, Japan
| | - Masao Hagihara
- Department of Hematology, Eiju General Hospital, Tokyo 110-8645, Japan
| | - Nobuhiro Ohno
- Department of Hematology, Kanto Rosai Hospital, Kawasaki 211-8510, Japan
| | - Kensuke Usuki
- Department of Hematology, NTT Medical Center Tokyo, Tokyo 141-8625, Japan
| | - Arinobu Tojo
- Department of Hematology/Oncology, Research Hospital, Institute of Medical Science, University of Tokyo, Tokyo 108-8639, Japan; Tokyo Medical and Dental University, Tokyo 113-8510, Japan
| | | | - Susumu Goyama
- Division of Cellular Therapy, Institute of Medical Science, University of Tokyo, Shirokanedai, Minato-ku, Tokyo 108-8639, Japan; Division of Molecular Oncology, Department of Computational Biology and Medical Sciences, Graduate School of Frontier Sciences, University of Tokyo, Tokyo 108-8639, Japan
| | - Fumio Arai
- Department of Stem Cell Biology and Medicine, Graduate School of Medical Sciences, Kyushu University, Fukuoka 812-8582, Japan
| | - Tomohiko Tamura
- Department of Biochemistry and Biophysics, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo 113-8510, Japan; Department of Immunology, Yokohama City University Graduate School of Medicine, Yokohama 236-0043, Japan
| | - Takashi Nagasawa
- Laboratory of Stem Cell Biology and Developmental Immunology, Graduate School of Frontier Biosciences and Graduate School of Medicine, WPI Immunology Frontier Research Center, Osaka University, Osaka 565-0871, Japan
| | - Takahiro Ochiya
- Department of Molecular and Cellular Medicine, Institute of Medical Science, Tokyo Medical University, Tokyo 160-0023, Japan
| | - Daichi Inoue
- Department of Hematology-Oncology, Institute of Biomedical Research and Innovation, Foundation for Biomedical Research and Innovation at Kobe, Minatojimaminami-machi, Chuo-ku, Kobe 650-0047, Japan.
| | - Toshio Kitamura
- Division of Cellular Therapy, Institute of Medical Science, University of Tokyo, Shirokanedai, Minato-ku, Tokyo 108-8639, Japan.
| |
Collapse
|
8
|
Bisserier M, Saffran N, Brojakowska A, Sebastian A, Evans AC, Coleman MA, Walsh K, Mills PJ, Garikipati VNS, Arakelyan A, Hadri L, Goukassian DA. Emerging Role of Exosomal Long Non-coding RNAs in Spaceflight-Associated Risks in Astronauts. Front Genet 2022; 12:812188. [PMID: 35111205 PMCID: PMC8803151 DOI: 10.3389/fgene.2021.812188] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Accepted: 12/21/2021] [Indexed: 12/27/2022] Open
Abstract
During spaceflight, astronauts are exposed to multiple unique environmental factors, particularly microgravity and ionizing radiation, that can cause a range of harmful health consequences. Over the past decades, increasing evidence demonstrates that the space environment can induce changes in gene expression and RNA processing. Long non-coding RNA (lncRNA) represent an emerging area of focus in molecular biology as they modulate chromatin structure and function, the transcription of neighboring genes, and affect RNA splicing, stability, and translation. They have been implicated in cancer development and associated with diverse cardiovascular conditions and associated risk factors. However, their role on astronauts' health after spaceflight remains poorly understood. In this perspective article, we provide new insights into the potential role of exosomal lncRNA after spaceflight. We analyzed the transcriptional profile of exosomes isolated from peripheral blood plasma of three astronauts who flew on various Shuttle missions between 1998-2001 by RNA-sequencing. Computational analysis of the transcriptome of these exosomes identified 27 differentially expressed lncRNAs with a Log2 fold change, with molecular, cellular, and clinical implications.
Collapse
Affiliation(s)
- Malik Bisserier
- Cardiovascular Research Institute, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - Nathaniel Saffran
- Cardiovascular Research Institute, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - Agnieszka Brojakowska
- Cardiovascular Research Institute, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - Aimy Sebastian
- Physical and Life Sciences Directorate, Lawrence Livermore National Laboratory, Livermore, CA, United States
| | - Angela Clare Evans
- Physical and Life Sciences Directorate, Lawrence Livermore National Laboratory, Livermore, CA, United States
- Department of Radiation Oncology, University of California, Davis, Sacramento, CA, United States
| | - Matthew A. Coleman
- Physical and Life Sciences Directorate, Lawrence Livermore National Laboratory, Livermore, CA, United States
- Department of Radiation Oncology, University of California, Davis, Sacramento, CA, United States
| | - Kenneth Walsh
- School of Medicine, University of Virginia, Charlottesville, VA, United States
| | - Paul J. Mills
- Center of Excellence for Research and Training in Integrative Health, University of California, San Diego, San Diego, CA, United States
| | - Venkata Naga Srikanth Garikipati
- Department of Emergency Medicine, Dorothy M. Davis Heart Lung and Research Institute, Ohio State University Wexner Medical Center, Columbus, OH, United States
| | - Arsen Arakelyan
- Bioinformatics Group, The Institute of Molecular Biology, The National Academy of Sciences of the Republic of Armenia, Yerevan, Armenia
| | - Lahouaria Hadri
- Cardiovascular Research Institute, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - David A. Goukassian
- Cardiovascular Research Institute, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| |
Collapse
|
9
|
Pan S, Chen Y, Yan J, Li F, Chen X, Xu X, Xing H. The emerging roles and mechanisms of exosomal non-coding RNAs in the mutual regulation between adipose tissue and other related tissues in obesity and metabolic diseases. Front Endocrinol (Lausanne) 2022; 13:975334. [PMID: 36060952 PMCID: PMC9433671 DOI: 10.3389/fendo.2022.975334] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Accepted: 08/02/2022] [Indexed: 11/24/2022] Open
Abstract
Exosomes (EXs) are the major types of extracellular vesicles (EVs) of 30-100 nm diameter that can be secreted by most cells to the extracellular environment. EXs transport endogenous cargoes (proteins, lipids, RNAs, etc.) to target cells and thereby triggers the release of these bioactive components, which then play important roles in regulating numerous biological processes under both physiological and pathological conditions. Throughout the studies in recent years, growing evidences have shown that EXs-derived non-coding RNAs (EXs-ncRNAs) are emerging as key players in cell-to-cell communication between adipose tissue and other related tissues in obesity and metabolic diseases. In this review, we will summarize the recent findings about EXs-ncRNAs, especially focus on the following aspects: 1) the biogenesis of EXs and emerging roles of EXs-ncRNAs, 2) the role of EXs-ncRNAs (EXs-miRNAs, EXs-lncRNAs, EXs-circRNAs, etc.) that were secreted by adipose-related tissues in promoting the differentiation of preadipocytes into mature and fully functional adipocytes, and 3) the crosstalk between the adipose tissue derived EXs-ncRNAs and the development of insulin resistance, obesity and various cancers. This review aims to reveal the emerging roles and mechanisms of EXs-ncRNAs in the mutual regulation of adipose tissue and its related tissues in obesity and metabolic diseases, so as to provide references for elucidating the etiology of obesity and related metabolic diseases and screening novel therapeutic targets.
Collapse
Affiliation(s)
- Shifeng Pan
- College of Veterinary Medicine, Yangzhou University, Yangzhou, China
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, China
- Department of Animal Science, Washington State University, Pullman, WA, United States
- *Correspondence: Shifeng Pan,
| | - Yongfang Chen
- College of Veterinary Medicine, Yangzhou University, Yangzhou, China
| | - Jie Yan
- College of Veterinary Medicine, Yangzhou University, Yangzhou, China
| | - Fei Li
- College of Veterinary Medicine, Yangzhou University, Yangzhou, China
| | - Xinyu Chen
- College of Veterinary Medicine, Yangzhou University, Yangzhou, China
| | - Xingyu Xu
- College of Veterinary Medicine, Yangzhou University, Yangzhou, China
| | - Hua Xing
- College of Veterinary Medicine, Yangzhou University, Yangzhou, China
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, China
| |
Collapse
|
10
|
Forte D, Barone M, Palandri F, Catani L. The "Vesicular Intelligence" Strategy of Blood Cancers. Genes (Basel) 2021; 12:genes12030416. [PMID: 33805807 PMCID: PMC7999060 DOI: 10.3390/genes12030416] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Revised: 03/10/2021] [Accepted: 03/11/2021] [Indexed: 12/13/2022] Open
Abstract
Blood cancers are a heterogeneous group of disorders including leukemia, multiple myeloma, and lymphoma. They may derive from the clonal evolution of the hemopoietic stem cell compartment or from the transformation of progenitors with immune potential. Extracellular vesicles (EVs) are membrane-bound nanovesicles which are released by cells into body fluids with a role in intercellular communication in physiology and pathology, including cancer. EV cargos are enriched in nucleic acids, proteins, and lipids, and these molecules can be delivered to target cells to influence their biological properties and modify surrounding or distant targets. In this review, we will describe the “smart strategy” on how blood cancer-derived EVs modulate tumor cell development and maintenance. Moreover, we will also depict the function of microenvironment-derived EVs in blood cancers and discuss how the interplay between tumor and microenvironment affects blood cancer cell growth and spreading, immune response, angiogenesis, thrombogenicity, and drug resistance. The potential of EVs as non-invasive biomarkers will be also discussed. Lastly, we discuss the clinical application viewpoint of EVs in blood cancers. Overall, blood cancers apply a ‘vesicular intelligence’ strategy to spread signals over their microenvironment, promoting the development and/or maintenance of the malignant clone.
Collapse
Affiliation(s)
- Dorian Forte
- IRCCS Azienda Ospedaliero—Department of Experimental, Diagnostic and Specialty Medicine, School of Medicine, Institute of Hematology “Seràgnoli”, University of Bologna, 40138 Bologna, Italy; (D.F.); (M.B.)
| | - Martina Barone
- IRCCS Azienda Ospedaliero—Department of Experimental, Diagnostic and Specialty Medicine, School of Medicine, Institute of Hematology “Seràgnoli”, University of Bologna, 40138 Bologna, Italy; (D.F.); (M.B.)
| | - Francesca Palandri
- IRCCS Azienda Ospedaliero—Institute of Hematology “Seràgnoli”, University of Bologna, 40138 Bologna, Italy
- Correspondence: (F.P.); (L.C.); Tel.: +39-5121-43044 (F.P.); +39-5121-43837 (L.C.)
| | - Lucia Catani
- IRCCS Azienda Ospedaliero—Department of Experimental, Diagnostic and Specialty Medicine, School of Medicine, Institute of Hematology “Seràgnoli”, University of Bologna, 40138 Bologna, Italy; (D.F.); (M.B.)
- IRCCS Azienda Ospedaliero—Institute of Hematology “Seràgnoli”, University of Bologna, 40138 Bologna, Italy
- Correspondence: (F.P.); (L.C.); Tel.: +39-5121-43044 (F.P.); +39-5121-43837 (L.C.)
| |
Collapse
|
11
|
Potential Role of microRNAs in inducing Drug Resistance in Patients with Multiple Myeloma. Cells 2021; 10:cells10020448. [PMID: 33672466 PMCID: PMC7923438 DOI: 10.3390/cells10020448] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2021] [Revised: 02/08/2021] [Accepted: 02/17/2021] [Indexed: 02/06/2023] Open
Abstract
The prognosis for newly diagnosed subjects with multiple myeloma (MM) has significantly progressed in recent years. However, most MM patients relapse and after several salvage therapies, the onset of multidrug resistance provokes the occurrence of a refractory disease. A continuous and bidirectional exchange of information takes place between the cells of the microenvironment and neoplastic cells to solicit the demands of cancer cells. Among the molecules serving as messengers, there are microRNAs (miRNA), a family of small noncoding RNAs that regulate gene expression. Numerous miRNAs are associated with drug resistance, also in MM, and the modulation of their expression or activity might be explored to reverse it. In this review we report the most recent studies concerning the relationship between miRNAs and chemoresistance to the most frequently used drugs, such as proteasome inhibitors, steroids, alkylating agents and immunomodulators. The experimental use of antagomirs or miRNA mimics have successfully been proven to counteract chemoresistance and display synergistic effects with antimyeloma drugs which could represent a fundamental moment to overcome resistance in MM treatment.
Collapse
|
12
|
Youssef El Baradie KB, Hamrick MW. Therapeutic application of extracellular vesicles for musculoskeletal repair & regeneration. Connect Tissue Res 2021; 62:99-114. [PMID: 32602385 DOI: 10.1080/03008207.2020.1781102] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Traumatic musculoskeletal injuries are common in both the civilian and combat care settings. Significant barriers exist to repairing these injuries including fracture nonunion, muscle fibrosis, re-innervation, and compartment syndrome, as well as infection and inflammation. Recently, extracellular vesicles (EVs), including exosomes and microvesicles, have attracted attention in the field of musculoskeletal regeneration. These vesicles are released by different cell types and play a vital role in cell communication by delivering functional cargoes such as proteins and RNAs. Many of these cargo molecules can be utilized for repair purposes in skeletal disorders such as osteoporosis, osteogenesis imperfecta, sarcopenia, and fracture healing. There are, however, some challenges to overcome in order to advance the successful application of these vesicles in the therapeutic setting. These include large-scale production and isolation of exosomes, long-term storage, in vivo stability, and strategies for tissue-specific targeting and delivery. This paper reviews the general characteristics of exosomes along with their physiological roles and contribution to the pathogenesis of musculoskeletal diseases. We also highlight new findings on the use of synthetic exosomes to overcome the limitations of native exosomes in treating musculoskeletal injuries and disorders.
Collapse
Affiliation(s)
| | - Mark W Hamrick
- Medical College of Georgia, Augusta University , Augusta, GA, USA
| |
Collapse
|
13
|
Fastova EA, Magomedova AU, Kravchenko SK, Petinati NA, Sats NV, Drize NI, Savchenko VG. Analysis of Bone Tissue Condition in Patients with Diffuse Large B-Cell Lymphoma without Bone Marrow Involvement. Bull Exp Biol Med 2020; 169:677-682. [PMID: 32986209 DOI: 10.1007/s10517-020-04953-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2019] [Indexed: 11/26/2022]
Abstract
We studied changes in the bone tissue in patients with diffuse large B-cell lymphoma at the onset of the disease (N=41; before chemotherapy) and 5-16 years after the end of treatment (N=47). Osteodensitometry, biochemical markers of osteoporosis in the blood and urine, and gene expression in multipotent mesenchymal stromal cells were analyzed. In multipotent mesenchymal stromal cells of all patients, the expression of genes associated with bone and cartilage differentiation (FGF2, FGFR1, FGFR2, BGLAP, SPP1, TGFB1, and SOX9) was changed. In primary patients, the ratio of deoxypyridinoline/creatinine in the urine and blood level of β-cross-laps were increased, while plasma concentration of vitamin D was reduced, which indicates activation of bone resorption. No differences between the groups were revealed by osteodensitometry. No direct relationship between changes in gene expression in multipotent mesenchymal stromal cells and osteoporosis markers was found. The presence of a tumor in the body affects the bone marrow stroma, but achievement of remission and compensatory mechanisms provide age-appropriate condition of the bone tissue.
Collapse
Affiliation(s)
- E A Fastova
- National Medical Research Center of Hematology, Ministry of Health of the Russian Federation, Moscow, Russia.
| | - A U Magomedova
- National Medical Research Center of Hematology, Ministry of Health of the Russian Federation, Moscow, Russia
| | - S K Kravchenko
- National Medical Research Center of Hematology, Ministry of Health of the Russian Federation, Moscow, Russia
| | - N A Petinati
- National Medical Research Center of Hematology, Ministry of Health of the Russian Federation, Moscow, Russia
| | - N V Sats
- National Medical Research Center of Hematology, Ministry of Health of the Russian Federation, Moscow, Russia
| | - N I Drize
- National Medical Research Center of Hematology, Ministry of Health of the Russian Federation, Moscow, Russia
| | - V G Savchenko
- National Medical Research Center of Hematology, Ministry of Health of the Russian Federation, Moscow, Russia
| |
Collapse
|
14
|
Xia B, Gao J, Li S, Huang L, Zhu L, Ma T, Zhao L, Yang Y, Luo K, Shi X, Mei L, Zhang H, Zheng Y, Lu L, Luo Z, Huang J. Mechanical stimulation of Schwann cells promote peripheral nerve regeneration via extracellular vesicle-mediated transfer of microRNA 23b-3p. Theranostics 2020; 10:8974-8995. [PMID: 32802175 PMCID: PMC7415818 DOI: 10.7150/thno.44912] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2020] [Accepted: 06/09/2020] [Indexed: 12/14/2022] Open
Abstract
Rationale: Peripheral nerves are unique in their remarkable elasticity. Schwann cells (SCs), important components of the peripheral nervous system (PNS), are constantly subjected to physiological and mechanical stresses from dynamic stretching and compression forces during movement. So far, it is not clear if SCs sense and respond to mechanical signals. It is also unknown whether mechanical stimuli can interfere with the intercellular communications between neurons and SCs, and what role extracellular vesicles (EVs) play in this process. The present study aimed to examine the effect of mechanical stimuli on the EV-mediated intercellular communication between neurons and SCs, explore their effect on axonal regeneration, and investigate the underlying mechanism. Methods: Purified SCs were stimulated using a magnetic force-based mechanical stimulation (MS) system and EVs were purified from mechanically stimulated SCs (MS-SCs-EVs) and non-stimulated SCs (SCs-EVs). The effect of MS-SCs-EVs on axonal elongation was examined in vitro and in vivo. High throughput miRNA sequencing was performed to compare the differential miRNA profiles between MS-SCs-EVs and SCs-EVs. The functional role of differentially expressed miRNAs on neurite extension in MS-SCs-EVs was examined. Also, the putative target genes of differentially expressed miRNAs in MS-SCs-EVs were predicted by bioinformatics tools, and the regulatory effect of those miRNAs on putative target genes was validated both in vitro and in vivo. Results: The MS-SCs-EVs showed an average size of 137.52±1.77 nm, and could be internalized by dorsal root ganglion (DRG) neurons. Compared to SCs-EVs, MS-SCs-EVs showed a stronger ability to enhance neurite outgrowth in vitro and nerve regeneration in vivo. High throughput miRNA sequencing identified a number of differentially expressed miRNAs in MS-SCs-EVs. Further analysis of those EV-miRNAs demonstrated that miR-23b-3p played a predominant role in MS-SCs-EVs since its deprivation abolished their enhanced axonal elongation. Furthermore, we identified neuropilin 1 (Nrp1) in neurons as the target gene of miR-23b-3p in MS-SCs-EVs. This observation was supported by the evidence that miR-23b-3p could decrease Nrp1-3'-UTR-WT luciferase activity in vitro and down-regulate Nrp1 expression in neurons. Conclusion: Our findings suggested that mechanical stimuli are capable of modulating the intercellular communication between neurons and SCs by altering miRNA composition in MS-SCs-EVs. Transfer of miR-23b-3p by MS-SCs-EVs from mechanically stimulated SCs to neurons decreased neuronal Nrp1 expression, which was responsible, at least in part, for the beneficial effect of MS-SCs-EVs on axonal regeneration. Our results highlighted the potential therapeutic value of MS-SCs-EVs and miR-23b-3p-enriched EVs in peripheral nerve injury repair.
Collapse
Affiliation(s)
- Bing Xia
- Department of Orthopedics, Xijing Hospital, the Fourth Military Medical University, Xi'an, 710032, People's Republic of China
| | - Jianbo Gao
- Department of Orthopedics, Xijing Hospital, the Fourth Military Medical University, Xi'an, 710032, People's Republic of China
| | - Shengyou Li
- Department of Orthopedics, Xijing Hospital, the Fourth Military Medical University, Xi'an, 710032, People's Republic of China
| | - Liangliang Huang
- Department of Orthopedics, the General Hospital of Central Theater Command of People's Liberation Army, Wuhan, 430070, People's Republic of China
| | - Lei Zhu
- Department of Spine Surgery, Honghui Hospital Affiliated to Medical School of Xi'an Jiaotong University, Xi'an Shaanxi, 710054, People's Republic of China
| | - Teng Ma
- Department of Orthopedics, Xijing Hospital, the Fourth Military Medical University, Xi'an, 710032, People's Republic of China
| | - Laihe Zhao
- Department of Orthopedics, Xijing Hospital, the Fourth Military Medical University, Xi'an, 710032, People's Republic of China
| | - Yujie Yang
- Department of Orthopedics, Xijing Hospital, the Fourth Military Medical University, Xi'an, 710032, People's Republic of China
| | - Kai Luo
- Department of Orthopedics, the 985th Hospital People's Liberation Army Joint Logistics Support Force, Taiyuan, 030000, People's Republic of China
| | - Xiaowei Shi
- Department of Orthopedics, Xijing Hospital, the Fourth Military Medical University, Xi'an, 710032, People's Republic of China
| | - Liangwei Mei
- Department of Orthopedics, Xijing Hospital, the Fourth Military Medical University, Xi'an, 710032, People's Republic of China
| | - Hao Zhang
- Department of Spinal Surgery, the People's Hospital of Longhua District, Shenzhen, 518109, People's Republic of China
| | - Yi Zheng
- Department of Orthopedics, Xijing Hospital, the Fourth Military Medical University, Xi'an, 710032, People's Republic of China
| | - Lei Lu
- Department of Oral Anatomy and Physiology, State Key Laboratory of Military Stomatology & National Clinical Research Center for Oral Diseases & Shaanxi Key Laboratory of Stomatology, School of Stomatology, the Fourth Military Medical University, Xi'an, 710032, People's Republic of China
| | - Zhuojing Luo
- Department of Orthopedics, Xijing Hospital, the Fourth Military Medical University, Xi'an, 710032, People's Republic of China
| | - Jinghui Huang
- Department of Orthopedics, Xijing Hospital, the Fourth Military Medical University, Xi'an, 710032, People's Republic of China
| |
Collapse
|
15
|
Saitoh Y, Umezu T, Imanishi S, Asano M, Yoshizawa S, Katagiri S, Suguro T, Fujimoto H, Akahane D, Kobayashi-Kawana C, Ohyashiki JH, Ohyashiki K. Downregulation of extracellular vesicle microRNA-101 derived from bone marrow mesenchymal stromal cells in myelodysplastic syndrome with disease progression. Oncol Lett 2020; 19:2053-2061. [PMID: 32194702 PMCID: PMC7038917 DOI: 10.3892/ol.2020.11282] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2019] [Accepted: 11/11/2019] [Indexed: 12/21/2022] Open
Abstract
To evaluate the mechanism underlying the communication between myeloid malignant and bone marrow (BM) microenvironment cells in disease progression, the current study established BM mesenchymal stromal cells (MSCs) and assessed extracellular vesicle (EV) microRNA (miR) expression in 22 patients with myelodysplastic syndrome (MDS) and 7 patients with acute myeloid leukemia and myelodysplasia-related changes (AML/MRC). Patients with MDS were separated into two categories based on the revised International Prognostic Scoring System (IPSS-R), and EV-miR expression in BM-MSCs was evaluated using a TaqMan low-density array. The selected miRs were evaluated using reverse transcription-quantitative PCR. The current study demonstrated that the expression of BM-MSC-derived EV-miR was heterogenous and based on MDS severity, the expression of EV-miR-101 was lower in high-risk group and patients with AML/MRC compared with the control and low-risk groups. This reversibly correlated with BM blast percentage, with which the cellular miR-101 from BM-MSCs or serum EV-miR-101 expression exhibited no association. Database analyses indicated that miR-101 negatively regulated cell proliferation and epigenetic gene expression. The downregulation of BM-MSC-derived EV-miR-101 may be associated with cell-to-cell communication and may accelerate the malignant process in MDS cells.
Collapse
Affiliation(s)
- Yuu Saitoh
- Department of Hematology, Tokyo Medical University, Tokyo 160-8402, Japan
- Department of Hematology, Shizuoka General Hospital, Shizuoka 420-8527, Japan
| | - Tomohiro Umezu
- Department of Hematology, Tokyo Medical University, Tokyo 160-8402, Japan
- Department of Molecular Pathology, Tokyo Medical University, Tokyo 160-8402, Japan
| | - Satoshi Imanishi
- Institute of Medical Sciences, Tokyo Medical University, Tokyo 160-0023, Japan
| | - Michiyo Asano
- Department of Hematology, Tokyo Medical University, Tokyo 160-8402, Japan
| | | | - Seiichiro Katagiri
- Department of Hematology, Tokyo Medical University, Tokyo 160-8402, Japan
| | - Tamiko Suguro
- Department of Hematology, Tokyo Medical University, Tokyo 160-8402, Japan
| | - Hiroaki Fujimoto
- Department of Hematology, Tokyo Medical University, Tokyo 160-8402, Japan
| | - Daigo Akahane
- Department of Hematology, Tokyo Medical University, Tokyo 160-8402, Japan
| | | | - Junko H. Ohyashiki
- Institute of Medical Sciences, Tokyo Medical University, Tokyo 160-0023, Japan
- Department of Advanced Cellular Therapy, Tokyo Medical University, Tokyo 160-0023, Japan
| | - Kazuma Ohyashiki
- Department of Hematology, Tokyo Medical University, Tokyo 160-8402, Japan
- Department of Advanced Cellular Therapy, Tokyo Medical University, Tokyo 160-0023, Japan
| |
Collapse
|
16
|
Serum extracellular vesicles expressing bone activity markers associate with bone loss after HIV antiretroviral therapy. AIDS 2020; 34:351-361. [PMID: 31725429 DOI: 10.1097/qad.0000000000002430] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
OBJECTIVE We tested whether bone-related extracellular vesicle phenotypes changed after initiating antiretroviral therapy (ART) and determined whether changes in levels of extracellular vesicles correlated with changes in bone mineral density (BMD). DESIGN Extracellular vesicle phenotypes were measured in blinded serum samples from 15 adults with HIV at baseline, 1, 3, 6 and 12 months after ART initiation. Not all samples were available at each time point so we averaged early (TP1, 1-3 months) and late (TP2, 6-12 months) time points. METHODS Extracellular vesicles were stained for osteocalcin (OC), RANKL (CD254), RANK (CD265), M-CSF (macrophage colony stimulating factor), and CD34. Serum OC, procollagen type I N-terminal propeptide (P1NP), and C-terminal telopeptide of type 1 collagen (CTx) were also measured. RESULTS BMD significantly decreased from baseline to 12 months. Levels of OC+EVs, serum OC, serum P1NP, and CTx were significantly higher at early and late time points compared with baseline. Increases in EVs expressing OC, RANKL, RANK, and CD34 from baseline to TP1 were associated with decreases in total hip BMD from baseline to 12 months. Change in serum OC, P1NP, and CTx from baseline to TP1 or TP2 did not correlate with change in BMD. CONCLUSION Early changes in extracellular vesicles expressing markers of bone activity were associated with total hip bone loss 12 months after ART initiation. These data suggest that serum extracellular vesicles may serve as novel biomarkers of bone remodeling. Future studies are required to determine if extracellular vesicles contribute to the effects of ART on changes in bone turnover markers and BMD.
Collapse
|
17
|
Xia B, Gao J, Li S, Huang L, Ma T, Zhao L, Yang Y, Huang J, Luo Z. Extracellular Vesicles Derived From Olfactory Ensheathing Cells Promote Peripheral Nerve Regeneration in Rats. Front Cell Neurosci 2019; 13:548. [PMID: 31866834 PMCID: PMC6908849 DOI: 10.3389/fncel.2019.00548] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2019] [Accepted: 11/26/2019] [Indexed: 12/13/2022] Open
Abstract
Accumulating evidence showed that extracellular vesicles (EVs) and their cargoes are important information mediators in the nervous system and have been proposed to play an important role in regulating regeneration. Moreover, many studies reported that olfactory ensheathing cells (OECs) conditioned medium is capable of promoting nerve regeneration and functional recovery. However, the role of EVs derived from OECs in axonal regeneration has not been clear. Thereby, the present study was designed to firstly isolate EVs from OECs culture supernatants, and then investigated their role in enhancing axonal regeneration after sciatic nerve injury. In vitro studies showed that OECs-EVs promoted axonal growth of dorsal root ganglion (DRG), which is dose-dependent and relies on their integrity. In vivo studies further demonstrated that nerve conduit containing OECs-EVs significantly enhanced axonal regeneration, myelination of regenerated axons and neurologically functional recovery in rats with sciatic nerve injury. In conclusion, our results, for the first time, demonstrated that OECs-EVs are capable of promoting nerve regeneration and functional recovery after peripheral nerve injuries in rats.
Collapse
Affiliation(s)
- Bing Xia
- Department of Orthopaedics, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | - Jianbo Gao
- Department of Orthopaedics, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | - Shengyou Li
- Department of Orthopaedics, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | - Liangliang Huang
- Department of Orthopaedics, The General Hospital of Central Theater Command of People's Liberation Army, Wuhan, China
| | - Teng Ma
- Department of Orthopaedics, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | - Laihe Zhao
- Department of Orthopaedics, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | - Yujie Yang
- Department of Orthopaedics, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | - Jinghui Huang
- Department of Orthopaedics, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | - Zhuojing Luo
- Department of Orthopaedics, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| |
Collapse
|
18
|
Almeria C, Weiss R, Roy M, Tripisciano C, Kasper C, Weber V, Egger D. Hypoxia Conditioned Mesenchymal Stem Cell-Derived Extracellular Vesicles Induce Increased Vascular Tube Formation in vitro. Front Bioeng Biotechnol 2019; 7:292. [PMID: 31709251 PMCID: PMC6819375 DOI: 10.3389/fbioe.2019.00292] [Citation(s) in RCA: 117] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2019] [Accepted: 10/09/2019] [Indexed: 12/13/2022] Open
Abstract
Mesenchymal stem/stromal cells (MSCs) display a variety of therapeutically relevant effects, such as the induction of angiogenesis, particularly under hypoxic conditions. It is generally recognized that MSCs exert their effects by secretion of paracrine factors and by stimulation of host cells. Furthermore, there is increasing evidence that some therapeutically relevant effects of MSCs are mediated by MSC-derived extracellular vesicles (EVs). Since our current knowledge on MSC-derived EVs released under hypoxic conditions is very limited, we aimed to characterize MSC-derived EVs from normoxic vs. hypoxic conditions (5% O2). Adipose-derived MSCs were grown under normoxic and hypoxic conditions, and EVs were analyzed by flow cytometry using lactadherin as a marker for EVs exposing phosphatidylserine, CD63 and CD81 as EV markers, as well as CD73 and CD90 as MSC surface markers. Particle concentration and size distribution were measured by nanoparticle tracking analysis (NTA), and the EV surface antigen signature was characterized using bead-based multiplex flow cytometry. Furthermore, we evaluated the potential of MSC-derived EVs obtained under hypoxic conditions to support angiogenesis using an in vitro assay with an hTERT-immortalized human umbilical vein endothelial cell (HUVEC) line. Proliferation and viability of MSCs were increased under hypoxic conditions. EV concentration, size, and surface signature did not differ significantly between normoxic and hypoxic conditions, with the exception of CD44, which was significantly upregulated on normoxic EVs. EVs from hypoxic conditions exhibited increased tube formation as compared to normoxic EVs or to the corresponding supernatants from both groups, indicating that tube formation is facilitated by EVs rather than by soluble factors. In conclusion, hypoxia conditioned MSC-derived EVs appear to be functionally more potent than normoxic MSC-derived EVs regarding the induction of angiogenesis.
Collapse
Affiliation(s)
- Ciarra Almeria
- Department of Biotechnology, University of Natural Resources and Life Science, Vienna, Austria
| | - René Weiss
- Christian Doppler Laboratory for Innovative Therapy Approaches in Sepsis, Department for Biomedical Research, Danube University Krems, Krems, Austria
| | - Michelle Roy
- Department of Biotechnology, University of Natural Resources and Life Science, Vienna, Austria
| | - Carla Tripisciano
- Christian Doppler Laboratory for Innovative Therapy Approaches in Sepsis, Department for Biomedical Research, Danube University Krems, Krems, Austria
| | - Cornelia Kasper
- Department of Biotechnology, University of Natural Resources and Life Science, Vienna, Austria
| | - Viktoria Weber
- Christian Doppler Laboratory for Innovative Therapy Approaches in Sepsis, Department for Biomedical Research, Danube University Krems, Krems, Austria
| | - Dominik Egger
- Department of Biotechnology, University of Natural Resources and Life Science, Vienna, Austria
| |
Collapse
|
19
|
Engineered human platelet-derived microparticles as natural vectors for targeted drug delivery. Oncotarget 2019; 10:5835-5846. [PMID: 31645903 PMCID: PMC6791386 DOI: 10.18632/oncotarget.27223] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2019] [Accepted: 09/10/2019] [Indexed: 12/31/2022] Open
Abstract
Drug targeting has opened a new paradigm in therapeutics with development of delivery vectors like liposomes and polymeric nanoparticles. Although their clinical application is crippled by limited biological adaptability. Off-target toxicity and biocompatibility still remains one of the critical problems in anticancer therapeutics that can be life-threatening. Here we report a quick, simple and facile method of engineering human platelets to generate drug loaded platelet-derived microparticles (PMPs) by top-down approach, which are biocompatible and naturally target leukemia cells. Drug loaded PMPs and cancer cell uptake were characterized by flow cytometry, confocal microscopy, Nanoparticle Tracking Analysis and fluorimetry. Effective drug delivery was tested in cancer cell lines as well as in clinical samples from leukemia patients. We explored that PMPs are capable of carrying multiple drug payloads, have long shelf life and can be harvested in large quantity in short period. Importantly, PMPs exhibited remarkably higher toxicity towards cancer cells than free drug and had lower escape into extravascular spaces. Transfer of drug to cancer cells of leukemia patients was significantly higher than free drug, when delivered through PMPs. Our experiments validated therapeutic application of PMPs as biocompatible drug delivery vector against cancer cells with minimal off-target delivery.
Collapse
|
20
|
Dabbah M, Jarchowsky-Dolberg O, Attar-Schneider O, Tartakover Matalon S, Pasmanik-Chor M, Drucker L, Lishner M. Multiple myeloma BM-MSCs increase the tumorigenicity of MM cells via transfer of VLA4-enriched microvesicles. Carcinogenesis 2019; 41:100-110. [DOI: 10.1093/carcin/bgz169] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2019] [Revised: 09/16/2019] [Accepted: 10/02/2019] [Indexed: 11/14/2022] Open
Abstract
Abstract
Multiple myeloma (MM) cells accumulate in the bone marrow (BM) where their interactions impede disease therapy. We have shown that microvesicles (MVs) derived from BM mesenchymal stem cells (MSCs) of MM patients promote the malignant traits via modulation of translation initiation (TI), whereas MVs from normal donors (ND) do not. Here, we observed that this phenomenon is contingent on a MVs’ protein constituent, and determined correlations between the MVs from the tumor microenvironment, for example, MM BM-MSCs and patients’ clinical characteristics. BM-MSCs’ MVs (ND/MM) proteomes were assayed (mass spectrometry) and compared. Elevated integrin CD49d (X80) and CD29 (X2) was determined in MM-MSCs’ MVs and correlated with patients’ staging and treatment response (free light chain, BM plasma cells count, stage, response to treatment). BM-MSCs’ MVs uptake into MM cell lines was assayed (flow cytometry) with/without integrin inhibitors (RGD, natalizumab, and anti-CD29 monoclonal antibody) and recipient cells were analyzed for cell count, migration, MAPKs, TI, and drug response (doxorubicin, Velcade). Their inhibition, particularly together, attenuated the uptake of MM-MSCs MVs (but not ND-MSCs MVs) into MM cells and reduced MM cells’ signaling, phenotype, and increased drug response. This study exposed a critical novel role for CD49d/CD29 on MM-MSCs MVs and presented a discriminate method to inhibit cancer promoting action of MM-MSCs MVs while retaining the anticancer function of ND-MSCs-MVs. Moreover, these findings demonstrate yet again the intricacy of the microenvironment involvement in the malignant process and highlight new therapeutic avenues to be explored.
Collapse
Affiliation(s)
- Mahmoud Dabbah
- Oncogenetic Laboratory, Kfar Saba
- Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | | | | | | | | | - Liat Drucker
- Oncogenetic Laboratory, Kfar Saba
- Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Michael Lishner
- Oncogenetic Laboratory, Kfar Saba
- Hematology Unit, Kfar Saba
- Research Institute, Meir Medical Center, Kfar Saba
- Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| |
Collapse
|
21
|
Exosomes and Their Noncoding RNA Cargo Are Emerging as New Modulators for Diabetes Mellitus. Cells 2019; 8:cells8080853. [PMID: 31398847 PMCID: PMC6721737 DOI: 10.3390/cells8080853] [Citation(s) in RCA: 110] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2019] [Revised: 07/29/2019] [Accepted: 08/06/2019] [Indexed: 12/15/2022] Open
Abstract
Diabetes belongs to a group of metabolic disorders characterized by long term high blood glucose levels due to either inadequate production of insulin (Type 1 diabetes, T1DM) or poor response of the recipient cell to insulin (Type 2 diabetes, T2DM). Organ dysfunctions are the main causes of morbidity and mortality due to high glucose levels. Understanding the mechanisms of organ crosstalk may help us improve our basic knowledge and find novel strategies to better treat the disease. Exosomes are part of a newly emerged research area and have attracted a great deal of attention for their capacity to regulate communications between cells. In conditions of diabetes, exosomes play important roles in the pathological processes in both T1DM and T2DM, such as connecting the immune cell response to pancreatic tissue injury, as well as adipocyte stimulation to insulin resistance of skeletal muscle or liver. Furthermore, in recent years, nucleic acids containing exosomes—especially microRNAs (miRNAs) and long noncoding RNAs (lncRNAs)—have been shown to mainly regulate communications between organs in pathological processes of diabetes, including influencing metabolic signals and insulin signals in target tissues, affecting cell viability, and modulating inflammatory pancreatic cells. Moreover, exosome miRNAs show promise in their use as biomarkers or in treatments for diabetes and diabetic complications. Thus, this paper summarizes the recent work on exosomes related to diabetes as well as the roles of exosomal miRNAs and lncRNAs in diabetic pathology and diagnosis in order to help us better understand the exact roles of exosomes in diabetes development.
Collapse
|
22
|
Trovato E, Di Felice V, Barone R. Extracellular Vesicles: Delivery Vehicles of Myokines. Front Physiol 2019; 10:522. [PMID: 31133872 PMCID: PMC6514434 DOI: 10.3389/fphys.2019.00522] [Citation(s) in RCA: 68] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2018] [Accepted: 04/11/2019] [Indexed: 12/18/2022] Open
Abstract
Movement and regular physical activity are two important factors that help the human body prevent, reduce and treat different chronic diseases such as obesity, type 2 diabetes, heart diseases, hypertension, sarcopenia, cachexia and cancer. During exercise, several tissues release molecules into the blood stream, and are able to mediate beneficial effects throughout the whole body. In particular, contracting skeletal muscle cells have the capacity to communicate with other organs through the release of humoral factors that play an important role in the mechanisms of adaptation to physical exercise. These muscle-derived factors, today recognized as myokines, act as endocrine and paracrine hormones. Moreover, exercise may stimulate the release of small membranous vesicles into circulation, whose composition is influenced by the same exercise. Combining the two hypotheses, these molecules related to exercise, named exer-kines, might be secreted from muscle cells inside small vesicles (nanovesicles). These could act as messengers in tissue cross talk during physical exercise. Thanks to their ability to deliver useful molecules (such as proteins and miRNA) in both physiological and pathological conditions, extracellular vesicles can be thought of as promising candidates for potential therapeutic and diagnostic applications for several diseases.
Collapse
Affiliation(s)
- Eleonora Trovato
- Department of Biomedicine, Neurosciences and Advanced Diagnostic (BIND), Human Anatomy and Histology Institute, University of Palermo, Palermo, Italy
| | - Valentina Di Felice
- Department of Biomedicine, Neurosciences and Advanced Diagnostic (BIND), Human Anatomy and Histology Institute, University of Palermo, Palermo, Italy.,Innovation and Biotechnology for Health and Exercise (iBioTHEx), Palermo, Italy
| | - Rosario Barone
- Department of Biomedicine, Neurosciences and Advanced Diagnostic (BIND), Human Anatomy and Histology Institute, University of Palermo, Palermo, Italy.,Euro-Mediterranean Institute of Science and Technology (IEMEST), Palermo, Italy
| |
Collapse
|
23
|
Qing L, Chen H, Tang J, Jia X. Exosomes and Their MicroRNA Cargo: New Players in Peripheral Nerve Regeneration. Neurorehabil Neural Repair 2018; 32:765-776. [PMID: 30223738 PMCID: PMC6146407 DOI: 10.1177/1545968318798955] [Citation(s) in RCA: 114] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Peripheral nerve injury is a major clinical problem and often results in a poor functional recovery. Despite obvious clinical need, treatment strategies have been largely suboptimal. In the nervous system, exosomes, which are nanosized extracellular vesicles, play a critical role in mediating intercellular communication. More specifically, microRNA carried by exosomes are involved in various key processes such as nerve and vascular regeneration, and exosomes originating from Schwann cells, macrophages, and mesenchymal stem cells can promote peripheral nerve regeneration. In this review, the current knowledge of exosomes' and their miRNA cargo's role in peripheral nerve regeneration are summarized. The possible future roles of exosomes in therapy and the potential for microRNA-containing exosomes to treat peripheral nerve injuries are also discussed.
Collapse
Affiliation(s)
- Liming Qing
- Department of Hand & Microsurgery, Xiangya Hospital of
Central South University, Changsha, Hunan, 410008
- Department of Neurosurgery, University of Maryland School of
Medicine, Baltimore, MD 21201, USA
| | - Huanwen Chen
- Department of Neurosurgery, University of Maryland School of
Medicine, Baltimore, MD 21201, USA
| | - Juyu Tang
- Department of Hand & Microsurgery, Xiangya Hospital of
Central South University, Changsha, Hunan, 410008
| | - Xiaofeng Jia
- Department of Neurosurgery, University of Maryland School of
Medicine, Baltimore, MD 21201, USA
- Department of Orthopedics, University of Maryland School of
Medicine, Baltimore, MD 21201, USA
- Department of Anatomy and Neurobiology, University of Maryland
School of Medicine, Baltimore, MD 21201, USA
- Department of Biomedical Engineering, Johns Hopkins University
School of Medicine, Baltimore, MD 21205, USA
- Department of Anesthesiology and Critical Care Medicine, Johns
Hopkins University School of Medicine, Baltimore, MD 21205, USA
| |
Collapse
|
24
|
Carter DRF, Clayton A, Devitt A, Hunt S, Lambert DW. Extracellular vesicles in the tumour microenvironment. Philos Trans R Soc Lond B Biol Sci 2018; 373:rstb.2016.0475. [PMID: 29158307 DOI: 10.1098/rstb.2016.0475] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/22/2017] [Indexed: 12/14/2022] Open
Affiliation(s)
- David Raul Francisco Carter
- Department of Biological and Medical Sciences, Faculty of Health and Life Sciences, Oxford Brookes University, Gipsy Lane, Headington, Oxford OX3 0BP, UK
| | - Aled Clayton
- Division of Cancer and Genetics, Tenovus Institute, Cardiff University, Heath Park, Cardiff CF14 4XN, UK
| | - Andrew Devitt
- School of Life and Health Sciences, Aston University, Birmingham B4 7ET, UK
| | - Stuart Hunt
- School of Clinical Dentistry, University of Sheffield, Sheffield S10 2TA, UK
| | - Daniel W Lambert
- School of Clinical Dentistry, University of Sheffield, Sheffield S10 2TA, UK .,Sheffield Institute for Nucleic Acids, University of Sheffield, Sheffield S10 2TN, UK
| |
Collapse
|
25
|
Liu AQ, Hu CH, Jin F, Zhang LS, Xuan K. Contributions of Bioactive Molecules in Stem Cell-Based Periodontal Regeneration. Int J Mol Sci 2018; 19:ijms19041016. [PMID: 29597317 PMCID: PMC5979460 DOI: 10.3390/ijms19041016] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2018] [Revised: 03/22/2018] [Accepted: 03/26/2018] [Indexed: 12/14/2022] Open
Abstract
Periodontal disease is a widespread disease, which without proper treatment, may lead to tooth loss in adults. Because stem cells from the inflammatory microenvironment created by periodontal disease exhibit impaired regeneration potential even under favorable conditions, it is difficult to obtain satisfactory therapeutic outcomes using traditional treatments, which only focus on the control of inflammation. Therefore, a new stem cell-based therapy known as cell aggregates/cell sheets technology has emerged. This approach provides sufficient numbers of stem cells with high viability for treating the defective site and offers new hope in the field of periodontal regeneration. However, it is not sufficient for regenerating periodontal tissues by delivering cell aggregates/cell sheets to the impaired microenvironment in order to suppress the function of resident cells. In the present review, we summarize some promising bioactive molecules that act as cellular signals, which recreate a favorable microenvironment for tissue regeneration, recruit endogenous cells into the defective site and enhance the viability of exogenous cells.
Collapse
Affiliation(s)
- An-Qi Liu
- State Key Laboratory of Military Stomatology & National Clinical Research Center for Oral Diseases & Shaanxi Clinical Research Center for Oral Diseases, Department of Pediatric Dentistry, School of Stomatology, The Fourth Military Medical University, Xi'an 710032, China.
- Research and Development Center for Tissue Engineering, The Fourth Military Medical University, Xi'an 710032, China.
| | - Cheng-Hu Hu
- Research and Development Center for Tissue Engineering, The Fourth Military Medical University, Xi'an 710032, China.
| | - Fang Jin
- Research and Development Center for Tissue Engineering, The Fourth Military Medical University, Xi'an 710032, China.
- State Key Laboratory of Military Stomatology & National Clinical Research Center for Oral Diseases & Shaanxi Clinical Research Center for Oral Diseases, Department of Orthodontics, School of Stomatology, The Fourth Military Medical University, Xi'an 710032, China.
| | - Li-Shu Zhang
- Research and Development Center for Tissue Engineering, The Fourth Military Medical University, Xi'an 710032, China.
- State Key Laboratory of Military Stomatology & National Clinical Research Center for Oral Diseases & Shaanxi Clinical Research Center for Oral Diseases, Department of Orthodontics, School of Stomatology, The Fourth Military Medical University, Xi'an 710032, China.
| | - Kun Xuan
- State Key Laboratory of Military Stomatology & National Clinical Research Center for Oral Diseases & Shaanxi Clinical Research Center for Oral Diseases, Department of Pediatric Dentistry, School of Stomatology, The Fourth Military Medical University, Xi'an 710032, China.
- Research and Development Center for Tissue Engineering, The Fourth Military Medical University, Xi'an 710032, China.
| |
Collapse
|
26
|
Abstract
Extracellular vesicles (EVs), as nanometer-scale particles, include exosomes, microvesicles, and apoptotic bodies. EVs are released by most cell types, such as bone marrow stem cells, osteoblasts, osteoclasts, and immune cells. In bone-remodeling microenvironments, EVs deliver specific proteins (e.g., tenascin C and Sema4D), microRNAs (e.g., miR-214-3p, miR-183-5p, and miR-196a), and other growth factors (e.g., bone morphogenetic protein 1 to 7 and transforming growth factor β1) to osteoblasts and regulate bone formation. In addition, EVs can deliver cytokines, such as RANK (receptor activator of nuclear factor κB) and RANKL (RANK ligand), and microRNAs, such as miR-218 and miR-148a, to modulate osteoclast differentiation during bone resorption. EVs also transfer bioactive molecules and have targeted therapies in bone-related diseases. Moreover, bioactive molecules in EVs are biomarkers in bone-related diseases. We highlight the emerging role of EVs in bone remodeling during physiologic and pathologic conditions and summarize the role of EVs in tooth development and regeneration. At the end of this review, we discuss the challenges of EV application in the treatment of bone diseases.
Collapse
Affiliation(s)
- M Liu
- 1 Department of Endodontology, School and Hospital of Stomatology, Tongji University, Shanghai Engineering Research Center of Tooth Restoration and Regeneration, Shanghai, China
| | - Y Sun
- 2 Department of Implantology, School and Hospital of Stomatology, Tongji University, Shanghai Engineering Research Center of Tooth Restoration and Regeneration, Shanghai, China
| | - Q Zhang
- 1 Department of Endodontology, School and Hospital of Stomatology, Tongji University, Shanghai Engineering Research Center of Tooth Restoration and Regeneration, Shanghai, China
| |
Collapse
|