1
|
Feng Y, Huang X, Zhao W, Ming Y, Zhou Y, Feng R, Xiao J, Shan X, Kang X, Duan X, Chen H. Association among internalizing problems, white matter integrity, and social difficulties in children with autism spectrum disorder. Prog Neuropsychopharmacol Biol Psychiatry 2024; 135:111109. [PMID: 39074528 DOI: 10.1016/j.pnpbp.2024.111109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Revised: 07/04/2024] [Accepted: 07/24/2024] [Indexed: 07/31/2024]
Abstract
Autism spectrum disorder (ASD) is characterized by social difficulties and often accompanied by internalizing and externalizing problems, which are frequently overlooked. Here, we examined and compared fractional anisotropy (FA) between 79 children with ASD (aged 4-7.8 years) and 70 age-, gender-, and handedness- matched typically developing controls (TDCs, aged 3-7.2 years). We aimed to explore the relationship among social difficulties, internalizing and externalizing problems, and brain structural foundation (characterized by white matter integrity). Compared with the TDCs, the children with ASD exhibited more severe internalizing and externalizing problems, which were positively correlated with social difficulties. Reduced FA values were observed in specific white matter tracts that integrate a fronto-temporal-occipital circuit. In particular, the FA values within this circuit were negatively correlated with internalizing problems and SRS-TOTAL scores. Mediation analysis revealed that internalizing problems mediated the relationship between the FA values in the left middle longitudinal fasciculus (L-MdLF) and corpus callosum forceps major (CCM) and social difficulties in children with ASD. These findings contribute to our understanding of social difficulties, internalizing and externalizing problems, and white matter integrity in children with ASD and highlight internalizing problems as a mediator between social difficulties and white matter integrity.
Collapse
Affiliation(s)
- Yu Feng
- The Clinical Hospital of Chengdu Brain Science Institute, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu 610054, PR China; MOE Key Lab for Neuro information, High-Field Magnetic Resonance Brain Imaging Key Laboratory of Sichuan Province, University of Electronic Science and Technology of China, Chengdu 610054, PR China
| | - Xinyue Huang
- The Clinical Hospital of Chengdu Brain Science Institute, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu 610054, PR China; MOE Key Lab for Neuro information, High-Field Magnetic Resonance Brain Imaging Key Laboratory of Sichuan Province, University of Electronic Science and Technology of China, Chengdu 610054, PR China
| | - Weixin Zhao
- The Clinical Hospital of Chengdu Brain Science Institute, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu 610054, PR China; MOE Key Lab for Neuro information, High-Field Magnetic Resonance Brain Imaging Key Laboratory of Sichuan Province, University of Electronic Science and Technology of China, Chengdu 610054, PR China
| | - Yating Ming
- The Clinical Hospital of Chengdu Brain Science Institute, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu 610054, PR China; MOE Key Lab for Neuro information, High-Field Magnetic Resonance Brain Imaging Key Laboratory of Sichuan Province, University of Electronic Science and Technology of China, Chengdu 610054, PR China
| | - Yuanyue Zhou
- Department of Medical Psychology, The First Affiliated Hospital, Hainan Medical University, Haikou 571199, Hainan, PR China
| | - Rui Feng
- The Clinical Hospital of Chengdu Brain Science Institute, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu 610054, PR China; MOE Key Lab for Neuro information, High-Field Magnetic Resonance Brain Imaging Key Laboratory of Sichuan Province, University of Electronic Science and Technology of China, Chengdu 610054, PR China
| | - Jinming Xiao
- The Clinical Hospital of Chengdu Brain Science Institute, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu 610054, PR China; MOE Key Lab for Neuro information, High-Field Magnetic Resonance Brain Imaging Key Laboratory of Sichuan Province, University of Electronic Science and Technology of China, Chengdu 610054, PR China
| | - Xiaolong Shan
- The Clinical Hospital of Chengdu Brain Science Institute, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu 610054, PR China; MOE Key Lab for Neuro information, High-Field Magnetic Resonance Brain Imaging Key Laboratory of Sichuan Province, University of Electronic Science and Technology of China, Chengdu 610054, PR China
| | - Xiaodong Kang
- Child Rehabilitation Unit, Affiliated Sichuan Provincial Rehabilitation Hospital of Chengdu University of TCM, Sichuan, Bayi Rehabilitation Center, Chengdu 611135, PR China
| | - Xujun Duan
- The Clinical Hospital of Chengdu Brain Science Institute, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu 610054, PR China; MOE Key Lab for Neuro information, High-Field Magnetic Resonance Brain Imaging Key Laboratory of Sichuan Province, University of Electronic Science and Technology of China, Chengdu 610054, PR China.
| | - Huafu Chen
- The Clinical Hospital of Chengdu Brain Science Institute, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu 610054, PR China; MOE Key Lab for Neuro information, High-Field Magnetic Resonance Brain Imaging Key Laboratory of Sichuan Province, University of Electronic Science and Technology of China, Chengdu 610054, PR China.
| |
Collapse
|
2
|
Li M, Izumoto M, Wang Y, Kato Y, Iwatani Y, Hirata I, Mizuno Y, Tachibana M, Mohri I, Kagitani-Shimono K. Altered white matter connectivity of ventral language networks in autism spectrum disorder: An automated fiber quantification analysis with multi-site datasets. Neuroimage 2024; 297:120731. [PMID: 39002786 DOI: 10.1016/j.neuroimage.2024.120731] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Revised: 06/28/2024] [Accepted: 07/11/2024] [Indexed: 07/15/2024] Open
Abstract
Comprehension and pragmatic deficits are prevalent in autism spectrum disorder (ASD) and are potentially linked to altered connectivity in the ventral language networks. However, previous magnetic resonance imaging studies have not sufficiently explored the microstructural abnormalities in the ventral fiber tracts underlying comprehension dysfunction in ASD. Additionally, the precise locations of white matter (WM) changes in the long tracts of patients with ASD remain poorly understood. In the current study, we applied the automated fiber-tract quantification (AFQ) method to investigate the fine-grained WM properties of the ventral language pathway and their relationships with comprehension and symptom manifestation in ASD. The analysis included diffusion/T1 weighted imaging data of 83 individuals with ASD and 83 age-matched typically developing (TD) controls. Case-control comparisons were performed on the diffusion metrics of the ventral tracts at both the global and point-wise levels. We also explored correlations between diffusion metrics, comprehension performance, and ASD traits, and conducted subgroup analyses based on age range to examine developmental moderating effects. Individuals with ASD exhibited remarkable hypoconnectivity in the ventral tracts, particularly in the temporal portions of the left inferior longitudinal fasciculus (ILF) and the inferior fronto-occipital fasciculus (IFOF). These WM abnormalities were associated with poor comprehension and more severe ASD symptoms. Furthermore, WM alterations in the ventral tract and their correlation with comprehension dysfunction were more prominent in younger children with ASD than in adolescents. These findings indicate that WM disruptions in the temporal portions of the left ILF/IFOF are most notable in ASD, potentially constituting the core neurological underpinnings of comprehension and communication deficits in autism. Moreover, impaired WM connectivity and comprehension ability in patients with ASD appear to improve with age.
Collapse
Affiliation(s)
- Min Li
- Osaka University, Department of Child Development, United Graduate School of Child Development, Suita, Osaka, Japan
| | - Maya Izumoto
- Osaka University, Department of Child Development, United Graduate School of Child Development, Suita, Osaka, Japan
| | - Yide Wang
- Osaka University, Department of Child Development, United Graduate School of Child Development, Suita, Osaka, Japan
| | - Yoko Kato
- Osaka University, Department of Child Development, United Graduate School of Child Development, Suita, Osaka, Japan
| | - Yoshiko Iwatani
- Osaka University, Department of Child Development, United Graduate School of Child Development, Suita, Osaka, Japan
| | - Ikuko Hirata
- Osaka University, Department of Child Development, United Graduate School of Child Development, Suita, Osaka, Japan
| | - Yoshifumi Mizuno
- Research Center for Child Mental Development, University of Fukui, Fukui, Japan
| | - Masaya Tachibana
- Osaka University, Department of Child Development, United Graduate School of Child Development, Suita, Osaka, Japan
| | - Ikuko Mohri
- Osaka University, Department of Child Development, United Graduate School of Child Development, Suita, Osaka, Japan
| | - Kuriko Kagitani-Shimono
- Osaka University, Department of Child Development, United Graduate School of Child Development, Suita, Osaka, Japan.
| |
Collapse
|
3
|
te Rietmolen N, Mercier MR, Trébuchon A, Morillon B, Schön D. Speech and music recruit frequency-specific distributed and overlapping cortical networks. eLife 2024; 13:RP94509. [PMID: 39038076 PMCID: PMC11262799 DOI: 10.7554/elife.94509] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/24/2024] Open
Abstract
To what extent does speech and music processing rely on domain-specific and domain-general neural networks? Using whole-brain intracranial EEG recordings in 18 epilepsy patients listening to natural, continuous speech or music, we investigated the presence of frequency-specific and network-level brain activity. We combined it with a statistical approach in which a clear operational distinction is made between shared, preferred, and domain-selective neural responses. We show that the majority of focal and network-level neural activity is shared between speech and music processing. Our data also reveal an absence of anatomical regional selectivity. Instead, domain-selective neural responses are restricted to distributed and frequency-specific coherent oscillations, typical of spectral fingerprints. Our work highlights the importance of considering natural stimuli and brain dynamics in their full complexity to map cognitive and brain functions.
Collapse
Affiliation(s)
- Noémie te Rietmolen
- Institute for Language, Communication, and the Brain, Aix-Marseille UniversityMarseilleFrance
- Aix Marseille Université, INSERM, INS, Institut de Neurosciences des SystèmesMarseilleFrance
| | - Manuel R Mercier
- Aix Marseille Université, INSERM, INS, Institut de Neurosciences des SystèmesMarseilleFrance
| | - Agnès Trébuchon
- Institute for Language, Communication, and the Brain, Aix-Marseille UniversityMarseilleFrance
- Aix Marseille Université, INSERM, INS, Institut de Neurosciences des SystèmesMarseilleFrance
- APHM, Hôpital de la Timone, Service de Neurophysiologie CliniqueMarseilleFrance
| | - Benjamin Morillon
- Institute for Language, Communication, and the Brain, Aix-Marseille UniversityMarseilleFrance
- Aix Marseille Université, INSERM, INS, Institut de Neurosciences des SystèmesMarseilleFrance
| | - Daniele Schön
- Institute for Language, Communication, and the Brain, Aix-Marseille UniversityMarseilleFrance
- Aix Marseille Université, INSERM, INS, Institut de Neurosciences des SystèmesMarseilleFrance
| |
Collapse
|
4
|
Wu J, Cheng Y, Qu X, Kang T, Cai Y, Wang P, Zaccarella E, Friederici AD, Hartwigsen G, Chen L. Continuous Theta-Burst Stimulation on the Left Posterior Inferior Frontal Gyrus Perturbs Complex Syntactic Processing Stability in Mandarin Chinese. NEUROBIOLOGY OF LANGUAGE (CAMBRIDGE, MASS.) 2024; 5:608-627. [PMID: 38939729 PMCID: PMC11210936 DOI: 10.1162/nol_a_00140] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Accepted: 02/12/2024] [Indexed: 06/29/2024]
Abstract
The structure of human language is inherently hierarchical. The left posterior inferior frontal gyrus (LpIFG) is proposed to be a core region for constructing syntactic hierarchies. However, it remains unclear whether LpIFG plays a causal role in syntactic processing in Mandarin Chinese and whether its contribution depends on syntactic complexity, working memory, or both. We addressed these questions by applying inhibitory continuous theta-burst stimulation (cTBS) over LpIFG. Thirty-two participants processed sentences containing embedded relative clauses (i.e., complex syntactic processing), syntactically simpler coordinated sentences (i.e., simple syntactic processing), and non-hierarchical word lists (i.e., word list processing) after receiving real or sham cTBS. We found that cTBS significantly increased the coefficient of variation, a representative index of processing stability, in complex syntactic processing (esp., when subject relative clause was embedded) but not in the other two conditions. No significant changes in d' and reaction time were detected in these conditions. The findings suggest that (a) inhibitory effect of cTBS on the LpIFG might be prominent in perturbing the complex syntactic processing stability but subtle in altering the processing quality; and (b) the causal role of the LpIFG seems to be specific for syntactic processing rather than working memory capacity, further evidencing their separability in LpIFG. Collectively, these results support the notion of the LpIFG as a core region for complex syntactic processing across languages.
Collapse
Affiliation(s)
- Junjie Wu
- Key Research Base of Humanities and Social Sciences of the Ministry of Education, Academy of Psychology and Behavior, Tianjin Normal University, Tianjin, China
| | - Yao Cheng
- Max Planck Partner Group, School of International Chinese Language Education, Beijing Normal University, Beijing, China
| | - Xingfang Qu
- Max Planck Partner Group, School of International Chinese Language Education, Beijing Normal University, Beijing, China
| | - Tianmin Kang
- Department of Psychology, Skidmore College, Saratoga Springs, NY, USA
| | - Yimin Cai
- Max Planck Partner Group, School of International Chinese Language Education, Beijing Normal University, Beijing, China
| | - Peng Wang
- Institute of Psychology, University of Regensburg, Regensburg, Germany
- Institute of Psychology, University of Greifswald, Greifswald, Germany
| | - Emiliano Zaccarella
- Department of Neuropsychology, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany
| | - Angela D. Friederici
- Department of Neuropsychology, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany
| | - Gesa Hartwigsen
- Lise Meitner Research Group Cognition and Plasticity, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany
- Wilhelm Wundt Institute for Psychology, Leipzig University, Leipzig, Germany
| | - Luyao Chen
- Max Planck Partner Group, School of International Chinese Language Education, Beijing Normal University, Beijing, China
- Department of Neuropsychology, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany
- Institute of Educational System Science, Beijing Normal University, Beijing, China
| |
Collapse
|
5
|
Spagna A, Heidenry Z, Miselevich M, Lambert C, Eisenstadt BE, Tremblay L, Liu Z, Liu J, Bartolomeo P. Visual mental imagery: Evidence for a heterarchical neural architecture. Phys Life Rev 2024; 48:113-131. [PMID: 38217888 DOI: 10.1016/j.plrev.2023.12.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2023] [Accepted: 12/26/2023] [Indexed: 01/15/2024]
Abstract
Theories of Visual Mental Imagery (VMI) emphasize the processes of retrieval, modification, and recombination of sensory information from long-term memory. Yet, only few studies have focused on the behavioral mechanisms and neural correlates supporting VMI of stimuli from different semantic domains. Therefore, we currently have a limited understanding of how the brain generates and maintains mental representations of colors, faces, shapes - to name a few. Such an undetermined scenario renders unclear the organizational structure of neural circuits supporting VMI, including the role of the early visual cortex. We aimed to fill this gap by reviewing the scientific literature of five semantic domains: visuospatial, face, colors, shapes, and letters imagery. Linking theory to evidence from over 60 different experimental designs, this review highlights three main points. First, there is no consistent activity in the early visual cortex across all VMI domains, contrary to the prediction of the dominant model. Second, there is consistent activity of the frontoparietal networks and the left hemisphere's fusiform gyrus during voluntary VMI irrespective of the semantic domain investigated. We propose that these structures are part of a domain-general VMI sub-network. Third, domain-specific information engages specific regions of the ventral and dorsal cortical visual pathways. These regions partly overlap with those found in visual perception studies (e.g., fusiform face area for faces imagery; lingual gyrus for color imagery). Altogether, the reviewed evidence suggests the existence of domain-general and domain-specific mechanisms of VMI selectively engaged by stimulus-specific properties (e.g., colors or faces). These mechanisms would be supported by an organizational structure mixing vertical and horizontal connections (heterarchy) between sub-networks for specific stimulus domains. Such a heterarchical organization of VMI makes different predictions from current models of VMI as reversed perception. Our conclusions set the stage for future research, which should aim to characterize the spatiotemporal dynamics and interactions among key regions of this architecture giving rise to visual mental images.
Collapse
Affiliation(s)
- Alfredo Spagna
- Department of Psychology, Columbia University in the City of New York, NY, 10027, USA.
| | - Zoe Heidenry
- Department of Psychology, Columbia University in the City of New York, NY, 10027, USA
| | | | - Chloe Lambert
- Department of Psychology, Columbia University in the City of New York, NY, 10027, USA
| | | | - Laura Tremblay
- Department of Psychology, Helen Wills Neuroscience Institute, University of California, Berkeley, Berkeley, California; Department of Neurology, VA Northern California Health Care System, Martinez, California
| | - Zixin Liu
- Department of Human Development, Teachers College, Columbia University, NY, 10027, USA
| | - Jianghao Liu
- Sorbonne Université, Inserm, CNRS, Paris Brain Institute, ICM, Hôpital de la Pitié-Salpêtrière, Paris 10027, France; Dassault Systèmes, Vélizy-Villacoublay, France
| | - Paolo Bartolomeo
- Sorbonne Université, Inserm, CNRS, Paris Brain Institute, ICM, Hôpital de la Pitié-Salpêtrière, Paris 10027, France
| |
Collapse
|
6
|
Silcox JW, Mickey B, Payne BR. Disruption to left inferior frontal cortex modulates semantic prediction effects in reading and subsequent memory: Evidence from simultaneous TMS-EEG. Psychophysiology 2023; 60:e14312. [PMID: 37203307 DOI: 10.1111/psyp.14312] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Revised: 01/25/2023] [Accepted: 03/21/2023] [Indexed: 05/20/2023]
Abstract
Readers use prior context to predict features of upcoming words. When predictions are accurate, this increases the efficiency of comprehension. However, little is known about the fate of predictable and unpredictable words in memory or the neural systems governing these processes. Several theories suggest that the speech production system, including the left inferior frontal cortex (LIFC), is recruited for prediction but evidence that LIFC plays a causal role is lacking. We first examined the effects of predictability on memory and then tested the role of posterior LIFC using transcranial magnetic stimulation (TMS). In Experiment 1, participants read category cues, followed by a predictable, unpredictable, or incongruent target word for later recall. We observed a predictability benefit to memory, with predictable words remembered better than unpredictable words. In Experiment 2, participants performed the same task with electroencephalography (EEG) while undergoing event-related TMS over posterior LIFC using a protocol known to disrupt speech production, or over the right hemisphere homologue as an active control site. Under control stimulation, predictable words were better recalled than unpredictable words, replicating Experiment 1. This predictability benefit to memory was eliminated under LIFC stimulation. Moreover, while an a priori ROI-based analysis did not yield evidence for a reduction in the N400 predictability effect, mass-univariate analyses did suggest that the N400 predictability effect was reduced in spatial and temporal extent under LIFC stimulation. Collectively, these results provide causal evidence that the LIFC is recruited for prediction during silent reading, consistent with prediction-through-production accounts.
Collapse
Affiliation(s)
- Jack W Silcox
- Department of Psychology, University of Utah, Salt Lake City, Utah, USA
| | - Brian Mickey
- Department of Psychiatry, Huntsman Mental Health Institute, University of Utah, Salt Lake City, Utah, USA
- Neuroscience Program, University of Utah, Salt Lake City, Utah, USA
| | - Brennan R Payne
- Department of Psychology, University of Utah, Salt Lake City, Utah, USA
- Neuroscience Program, University of Utah, Salt Lake City, Utah, USA
| |
Collapse
|
7
|
Liu Y, Gao C, Wang P, Friederici AD, Zaccarella E, Chen L. Exploring the neurobiology of Merge at a basic level: insights from a novel artificial grammar paradigm. Front Psychol 2023; 14:1151518. [PMID: 37287773 PMCID: PMC10242141 DOI: 10.3389/fpsyg.2023.1151518] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Accepted: 05/09/2023] [Indexed: 06/09/2023] Open
Abstract
Introduction Human language allows us to generate an infinite number of linguistic expressions. It's proposed that this competence is based on a binary syntactic operation, Merge, combining two elements to form a new constituent. An increasing number of recent studies have shifted from complex syntactic structures to two-word constructions to investigate the neural representation of this operation at the most basic level. Methods This fMRI study aimed to develop a highly flexible artificial grammar paradigm for testing the neurobiology of human syntax at a basic level. During scanning, participants had to apply abstract syntactic rules to assess whether a given two-word artificial phrase could be further merged with a third word. To control for lower-level template-matching and working memory strategies, an additional non-mergeable word-list task was set up. Results Behavioral data indicated that participants complied with the experiment. Whole brain and region of interest (ROI) analyses were performed under the contrast of "structure > word-list." Whole brain analysis confirmed significant involvement of the posterior inferior frontal gyrus [pIFG, corresponding to Brodmann area (BA) 44]. Furthermore, both the signal intensity in Broca's area and the behavioral performance showed significant correlations with natural language performance in the same participants. ROI analysis within the language atlas and anatomically defined Broca's area revealed that only the pIFG was reliably activated. Discussion Taken together, these results support the notion that Broca's area, particularly BA 44, works as a combinatorial engine where words are merged together according to syntactic information. Furthermore, this study suggests that the present artificial grammar may serve as promising material for investigating the neurobiological basis of syntax, fostering future cross-species studies.
Collapse
Affiliation(s)
- Yang Liu
- Max Planck Partner Group, School of International Chinese Language Education, Beijing Normal University, Beijing, China
| | - Chenyang Gao
- School of Global Education and Development, University of Chinese Academy of Social Sciences, Beijing, China
| | - Peng Wang
- Method and Development Group (MEG and Cortical Networks), Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany
- Institute of Psychology, University of Greifswald, Greifswald, Germany
- Institute of Psychology, University of Regensburg, Regensburg, Germany
| | - Angela D. Friederici
- Department of Neuropsychology, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany
| | - Emiliano Zaccarella
- Department of Neuropsychology, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany
| | - Luyao Chen
- Max Planck Partner Group, School of International Chinese Language Education, Beijing Normal University, Beijing, China
- Department of Neuropsychology, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany
- Institute of Educational System Science, Beijing Normal University, Beijing, China
| |
Collapse
|
8
|
Dedhe AM, Clatterbuck H, Piantadosi ST, Cantlon JF. Origins of Hierarchical Logical Reasoning. Cogn Sci 2023; 47:e13250. [PMID: 36739520 PMCID: PMC11057913 DOI: 10.1111/cogs.13250] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 12/21/2022] [Accepted: 01/06/2023] [Indexed: 02/06/2023]
Abstract
Hierarchical cognitive mechanisms underlie sophisticated behaviors, including language, music, mathematics, tool-use, and theory of mind. The origins of hierarchical logical reasoning have long been, and continue to be, an important puzzle for cognitive science. Prior approaches to hierarchical logical reasoning have often failed to distinguish between observable hierarchical behavior and unobservable hierarchical cognitive mechanisms. Furthermore, past research has been largely methodologically restricted to passive recognition tasks as compared to active generation tasks that are stronger tests of hierarchical rules. We argue that it is necessary to implement learning studies in humans, non-human species, and machines that are analyzed with formal models comparing the contribution of different cognitive mechanisms implicated in the generation of hierarchical behavior. These studies are critical to advance theories in the domains of recursion, rule-learning, symbolic reasoning, and the potentially uniquely human cognitive origins of hierarchical logical reasoning.
Collapse
Affiliation(s)
- Abhishek M. Dedhe
- Department of Psychology, Carnegie Mellon University
- Center for the Neural Basis of Cognition, Carnegie Mellon University
| | | | | | - Jessica F. Cantlon
- Department of Psychology, Carnegie Mellon University
- Center for the Neural Basis of Cognition, Carnegie Mellon University
| |
Collapse
|
9
|
Musso M, Altenmüller E, Reisert M, Hosp J, Schwarzwald R, Blank B, Horn J, Glauche V, Kaller C, Weiller C, Schumacher M. Speaking in gestures: Left dorsal and ventral frontotemporal brain systems underlie communication in conducting. Eur J Neurosci 2023; 57:324-350. [PMID: 36509461 DOI: 10.1111/ejn.15883] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Revised: 09/27/2022] [Accepted: 11/21/2022] [Indexed: 12/15/2022]
Abstract
Conducting constitutes a well-structured system of signs anticipating information concerning the rhythm and dynamic of a musical piece. Conductors communicate the musical tempo to the orchestra, unifying the individual instrumental voices to form an expressive musical Gestalt. In a functional magnetic resonance imaging (fMRI) experiment, 12 professional conductors and 16 instrumentalists conducted real-time novel pieces with diverse complexity in orchestration and rhythm. For control, participants either listened to the stimuli or performed beat patterns, setting the time of a metronome or complex rhythms played by a drum. Activation of the left superior temporal gyrus (STG), supplementary and premotor cortex and Broca's pars opercularis (F3op) was shared in both musician groups and separated conducting from the other conditions. Compared to instrumentalists, conductors activated Broca's pars triangularis (F3tri) and the STG, which differentiated conducting from time beating and reflected the increase in complexity during conducting. In comparison to conductors, instrumentalists activated F3op and F3tri when distinguishing complex rhythm processing from simple rhythm processing. Fibre selection from a normative human connectome database, constructed using a global tractography approach, showed that the F3op and STG are connected via the arcuate fasciculus, whereas the F3tri and STG are connected via the extreme capsule. Like language, the anatomical framework characterising conducting gestures is located in the left dorsal system centred on F3op. This system reflected the sensorimotor mapping for structuring gestures to musical tempo. The ventral system centred on F3Tri may reflect the art of conductors to set this musical tempo to the individual orchestra's voices in a global, holistic way.
Collapse
Affiliation(s)
- Mariacristina Musso
- Department of Neurology and Clinical Neuroscience, Medical Center, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Eckart Altenmüller
- Institute of Music Physiology and Musician's Medicine, Hannover University of Music Drama and Media, Hannover, Germany
| | - Marco Reisert
- Department of Medical Physics, Medical Center, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Jonas Hosp
- Department of Neurology and Clinical Neuroscience, Medical Center, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Ralf Schwarzwald
- Department of Neuroradiology, Medical Center, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Bettina Blank
- Department of Neurology and Clinical Neuroscience, Medical Center, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Julian Horn
- Department of Neurology and Clinical Neuroscience, Medical Center, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Volkmar Glauche
- Department of Neurology and Clinical Neuroscience, Medical Center, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Christoph Kaller
- Department of Medical Physics, Medical Center, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Cornelius Weiller
- Department of Neurology and Clinical Neuroscience, Medical Center, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Martin Schumacher
- Department of Neuroradiology, Medical Center, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| |
Collapse
|
10
|
Niesen M, Bourguignon M, Bertels J, Vander Ghinst M, Wens V, Goldman S, De Tiège X. Cortical tracking of lexical speech units in a multi-talker background is immature in school-aged children. Neuroimage 2023; 265:119770. [PMID: 36462732 DOI: 10.1016/j.neuroimage.2022.119770] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Revised: 11/09/2022] [Accepted: 11/23/2022] [Indexed: 12/03/2022] Open
Abstract
Children have more difficulty perceiving speech in noise than adults. Whether this difficulty relates to an immature processing of prosodic or linguistic elements of the attended speech is still unclear. To address the impact of noise on linguistic processing per se, we assessed how babble noise impacts the cortical tracking of intelligible speech devoid of prosody in school-aged children and adults. Twenty adults and twenty children (7-9 years) listened to synthesized French monosyllabic words presented at 2.5 Hz, either randomly or in 4-word hierarchical structures wherein 2 words formed a phrase at 1.25 Hz, and 2 phrases formed a sentence at 0.625 Hz, with or without babble noise. Neuromagnetic responses to words, phrases and sentences were identified and source-localized. Children and adults displayed significant cortical tracking of words in all conditions, and of phrases and sentences only when words formed meaningful sentences. In children compared with adults, the cortical tracking was lower for all linguistic units in conditions without noise. In the presence of noise, the cortical tracking was similarly reduced for sentence units in both groups, but remained stable for phrase units. Critically, when there was noise, adults increased the cortical tracking of monosyllabic words in the inferior frontal gyri and supratemporal auditory cortices but children did not. This study demonstrates that the difficulties of school-aged children in understanding speech in a multi-talker background might be partly due to an immature tracking of lexical but not supra-lexical linguistic units.
Collapse
Affiliation(s)
- Maxime Niesen
- Université libre de Bruxelles (ULB), UNI - ULB Neurosciences Institute, Laboratoire de Neuroanatomie et de Neuroimagerie translationnelles (LN2T), 1070 Brussels, Belgium; Université libre de Bruxelles (ULB), Hôpital Universitaire de Bruxelles (HUB), CUB Hôpital Erasme, Department of Otorhinolaryngology, 1070 Brussels, Belgium.
| | - Mathieu Bourguignon
- Université libre de Bruxelles (ULB), UNI - ULB Neurosciences Institute, Laboratoire de Neuroanatomie et de Neuroimagerie translationnelles (LN2T), 1070 Brussels, Belgium; Université libre de Bruxelles (ULB), UNI-ULB Neuroscience Institute, Laboratory of Neurophysiology and Movement Biomechanics, 1070 Brussels, Belgium.; BCBL, Basque Center on Cognition, Brain and Language, 20009 San Sebastian, Spain
| | - Julie Bertels
- Université libre de Bruxelles (ULB), UNI - ULB Neurosciences Institute, Laboratoire de Neuroanatomie et de Neuroimagerie translationnelles (LN2T), 1070 Brussels, Belgium; Université libre de Bruxelles (ULB), UNI-ULB Neuroscience Institute, Cognition and Computation group, ULBabyLab - Consciousness, Brussels, Belgium
| | - Marc Vander Ghinst
- Université libre de Bruxelles (ULB), UNI - ULB Neurosciences Institute, Laboratoire de Neuroanatomie et de Neuroimagerie translationnelles (LN2T), 1070 Brussels, Belgium; Université libre de Bruxelles (ULB), Hôpital Universitaire de Bruxelles (HUB), CUB Hôpital Erasme, Department of Otorhinolaryngology, 1070 Brussels, Belgium
| | - Vincent Wens
- Université libre de Bruxelles (ULB), UNI - ULB Neurosciences Institute, Laboratoire de Neuroanatomie et de Neuroimagerie translationnelles (LN2T), 1070 Brussels, Belgium; Université libre de Bruxelles (ULB), Hôpital Universitaire de Bruxelles (HUB), CUB Hôpital Erasme, Department of translational Neuroimaging, 1070 Brussels, Belgium
| | - Serge Goldman
- Université libre de Bruxelles (ULB), UNI - ULB Neurosciences Institute, Laboratoire de Neuroanatomie et de Neuroimagerie translationnelles (LN2T), 1070 Brussels, Belgium; Université libre de Bruxelles (ULB), Hôpital Universitaire de Bruxelles (HUB), CUB Hôpital Erasme, Department of Nuclear Medicine, 1070 Brussels, Belgium
| | - Xavier De Tiège
- Université libre de Bruxelles (ULB), UNI - ULB Neurosciences Institute, Laboratoire de Neuroanatomie et de Neuroimagerie translationnelles (LN2T), 1070 Brussels, Belgium; Université libre de Bruxelles (ULB), Hôpital Universitaire de Bruxelles (HUB), CUB Hôpital Erasme, Department of translational Neuroimaging, 1070 Brussels, Belgium
| |
Collapse
|
11
|
Klein CC, Berger P, Goucha T, Friederici AD, Grosse Wiesmann C. Children’s syntax is supported by the maturation of BA44 at 4 years, but of the posterior STS at 3 years of age. Cereb Cortex 2022; 33:5426-5435. [PMID: 36408641 PMCID: PMC10152089 DOI: 10.1093/cercor/bhac430] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Revised: 09/07/2022] [Accepted: 09/26/2022] [Indexed: 11/22/2022] Open
Abstract
Abstract
Within the first years of life, children learn major aspects of their native language. However, the ability to process complex sentence structures, a core faculty in human language called syntax, emerges only slowly. A milestone in syntax acquisition is reached around the age of 4 years, when children learn a variety of syntactic concepts. Here, we ask which maturational changes in the child’s brain underlie the emergence of syntactically complex sentence processing around this critical age. We relate markers of cortical brain maturation to 3- and 4-year-olds’ sentence processing in contrast to other language abilities. Our results show that distinct cortical brain areas support sentence processing in the two age groups. Sentence production abilities at 3 years were associated with increased surface area in the most posterior part of the left superior temporal sulcus, whereas 4-year-olds showed an association with cortical thickness in the left posterior part of Broca’s area, i.e. BA44. The present findings suggest that sentence processing abilities rely on the maturation of distinct cortical regions in 3- compared to 4-year-olds. The observed shift to more mature regions involved in processing syntactically complex sentences may underlie behavioral milestones in syntax acquisition at around 4 years.
Collapse
Affiliation(s)
- Cheslie C Klein
- Max Planck Institute for Human Cognitive and Brain Sciences Department of Neuropsychology, , Stephanstraße 1a, Leipzig 04103 , Germany
- Max Planck Institute for Human Cognitive and Brain Sciences Research Group Milestones of Early Cognitive Development, , Stephanstraße 1a, Leipzig 04103 , Germany
| | - Philipp Berger
- Max Planck Institute for Human Cognitive and Brain Sciences Department of Neuropsychology, , Stephanstraße 1a, Leipzig 04103 , Germany
- Max Planck Institute for Human Cognitive and Brain Sciences Research Group Milestones of Early Cognitive Development, , Stephanstraße 1a, Leipzig 04103 , Germany
| | - Tomás Goucha
- Max Planck Institute for Human Cognitive and Brain Sciences Department of Neuropsychology, , Stephanstraße 1a, Leipzig 04103 , Germany
| | - Angela D Friederici
- Max Planck Institute for Human Cognitive and Brain Sciences Department of Neuropsychology, , Stephanstraße 1a, Leipzig 04103 , Germany
| | - Charlotte Grosse Wiesmann
- Max Planck Institute for Human Cognitive and Brain Sciences Research Group Milestones of Early Cognitive Development, , Stephanstraße 1a, Leipzig 04103 , Germany
| |
Collapse
|
12
|
Morin O. The puzzle of ideography. Behav Brain Sci 2022; 46:e233. [PMID: 36254782 DOI: 10.1017/s0140525x22002801] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
An ideography is a general-purpose code made of pictures that do not encode language, which can be used autonomously - not just as a mnemonic prop - to encode information on a broad range of topics. Why are viable ideographies so hard to find? I contend that self-sufficient graphic codes need to be narrowly specialized. Writing systems are only an apparent exception: At their core, they are notations of a spoken language. Even if they also encode nonlinguistic information, they are useless to someone who lacks linguistic competence in the encoded language or a related one. The versatility of writing is thus vicarious: Writing borrows it from spoken language. Why is it so difficult to build a fully generalist graphic code? The most widespread answer points to a learnability problem. We possess specialized cognitive resources for learning spoken language, but lack them for graphic codes. I argue in favor of a different account: What is difficult about graphic codes is not so much learning or teaching them as getting every user to learn and teach the same code. This standardization problem does not affect spoken or signed languages as much. Those are based on cheap and transient signals, allowing for easy online repairing of miscommunication, and require face-to-face interactions where the advantages of common ground are maximized. Graphic codes lack these advantages, which makes them smaller in size and more specialized.
Collapse
Affiliation(s)
- Olivier Morin
- Max Planck Institute for Geoanthropology, Minds and Traditions Research Group, Jena, Germany ; https://www.shh.mpg.de/94549/themintgroup
- Institut Jean Nicod, CNRS, ENS, PSL University, Paris, France
| |
Collapse
|
13
|
Li M, Wang Y, Tachibana M, Rahman S, Kagitani-Shimono K. Atypical structural connectivity of language networks in autism spectrum disorder: A meta-analysis of diffusion tensor imaging studies. Autism Res 2022; 15:1585-1602. [PMID: 35962721 PMCID: PMC9546367 DOI: 10.1002/aur.2789] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2022] [Accepted: 07/25/2022] [Indexed: 11/20/2022]
Abstract
Patients with autism spectrum disorder (ASD) often show pervasive and complex language impairments that are closely associated with aberrant structural connectivity of language networks. However, the characteristics of white matter connectivity in ASD have remained inconclusive in previous diffusion tensor imaging (DTI) studies. The current meta‐analysis aimed to comprehensively elucidate the abnormality in language‐related white matter connectivity in individuals with ASD. We searched PubMed, Web of Science, Scopus, and Medline databases to identify relevant studies. The standardized mean difference was calculated to measure the pooled difference in DTI metrics in each tract between the ASD and typically developing (TD) groups. The moderating effects of age, sex, language ability, and symptom severity were investigated using subgroup and meta‐regression analysis. Thirty‐three DTI studies involving 831 individuals with ASD and 836 TD controls were included in the meta‐analysis. ASD subjects showed significantly lower fractional anisotropy or higher mean diffusivity across language‐associated tracts than TD controls. These abnormalities tended to be more prominent in the left language networks than in the right. In addition, children with ASD exhibit more pronounced and pervasive disturbances in white matter connectivity than adults. These results support the under‐connectivity hypothesis and demonstrate the widespread abnormal microstructure of language‐related tracts in patients with ASD. Otherwise, white matter abnormalities in the autistic brain could vary depending on the developmental stage and hemisphere.
Collapse
Affiliation(s)
- Min Li
- Department of Child Development, United Graduate School of Child Development, Osaka University, Suita, Osaka, Japan
| | - Yide Wang
- Department of Child Development, United Graduate School of Child Development, Osaka University, Suita, Osaka, Japan
| | - Masaya Tachibana
- Department of Child Development, United Graduate School of Child Development, Osaka University, Suita, Osaka, Japan
| | - Shafiur Rahman
- Department of Child Development, United Graduate School of Child Development, Hamamatsu University School of Medicine, Higashi-ku, Hamamatsu, Shizuoka, Japan.,Research Center for Child Mental Development, Hamamatsu University School of Medicine, Higashi-ku, Hamamatsu, Shizuoka, Japan
| | - Kuriko Kagitani-Shimono
- Department of Child Development, United Graduate School of Child Development, Osaka University, Suita, Osaka, Japan
| |
Collapse
|
14
|
Nakatani H, Nakamura Y, Okanoya K. Respective Involvement of the Right Cerebellar Crus I and II in Syntactic and Semantic Processing for Comprehension of Language. CEREBELLUM (LONDON, ENGLAND) 2022:10.1007/s12311-022-01451-y. [PMID: 35927417 DOI: 10.1007/s12311-022-01451-y] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 07/28/2022] [Indexed: 06/15/2023]
Abstract
The right posterolateral portions of the cerebellum (crus-I/II) are involved in language processing. However, their functional role in language remains unknown. The cerebellum is hypothesized to acquire an internal model that is a functional copy of mental representations in the cerebrum and to contribute to cognitive function. In this research, based on the cerebellar internal model hypothesis, we conducted task-based and resting-state functional magnetic resonance imaging (fMRI) experiments to investigate the role of the cerebellum in the syntactic and semantic aspects of comprehension of sentences. In a syntactic task, participants read sentences with center-embedded hierarchical structures. The hierarchical level-dependent activity was found in the right crus-I as well as Broca's area (p < 0.05, voxel-based small volume correction (SVC)). In a semantic task, the participants read three types of sentences for investigation of sentence-level, phrase-level, and word-level semantic processing. The semantic level-dependent activity was found in the right crus-II as well as in the left anterior temporal lobe and the left angular gyrus (p < 0.05, voxel-based SVC). Moreover, the right crus-I/II showed significant activity when the cognitive load was high. Resting-state fMRI demonstrated intrinsic functional connectivity between the right crus-I/II and language-related regions in the left cerebrum (p < 0.05, voxel-based SVC). These findings suggest that the right crus-I and crus-II are involved, respectively, in the syntactic and semantic aspects of sentence processing. The cerebellum assists processing of language in the cerebrum when the cognitive load is high.
Collapse
Affiliation(s)
- Hironori Nakatani
- School of Information and Telecommunication Engineering, Tokai University, 2-3-23, Minato-ku, TakanawaTokyo, 108-8619, Japan.
- RIKEN Center for Brain Science, 2-1, Hirosawa, Wako, Saitama, 351-0198, Japan.
| | - Yuko Nakamura
- The Center for Evolutionary Cognitive Sciences, Graduate School of Art and Sciences, The University of Tokyo, 3-8-1, Meguro-ku, KomabaTokyo, 153-8902, Japan
- Institute for Diversity & Adaptation of Human Mind (UTIDAHM), The University of Tokyo, 3-8-1, Meguro-ku, KomabaTokyo, 153-8902, Japan
| | - Kazuo Okanoya
- RIKEN Center for Brain Science, 2-1, Hirosawa, Wako, Saitama, 351-0198, Japan
- The Center for Evolutionary Cognitive Sciences, Graduate School of Art and Sciences, The University of Tokyo, 3-8-1, Meguro-ku, KomabaTokyo, 153-8902, Japan
- Institute for Diversity & Adaptation of Human Mind (UTIDAHM), The University of Tokyo, 3-8-1, Meguro-ku, KomabaTokyo, 153-8902, Japan
- Graduate School of Arts and Sciences, The University of Tokyo, 3-8-1, Komaba, Meguro-ku, Tokyo, 153-8902, Japan
- Teikyo University, Advanced Comprehensive Research Organization, 2-21-1, Kaga, Itabashi-ku, Tokyo, 173-0003, Japan
| |
Collapse
|
15
|
Sun C, Meng X, Du B, Zhang Y, Liu L, Dong Q, Georgiou GK, Nan Y. Behavioral and neural rhythm sensitivities predict phonological awareness and word reading development in Chinese. BRAIN AND LANGUAGE 2022; 230:105126. [PMID: 35487083 DOI: 10.1016/j.bandl.2022.105126] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2021] [Revised: 03/07/2022] [Accepted: 04/14/2022] [Indexed: 06/14/2023]
Abstract
The present study examined both the development of behavioral and electrophysiological rhythm processing and their contribution to phonological awareness and word reading in Chinese. We followed a sample of 47 Mandarin-speaking Chinese children from age 9 (Grade 3) to age 11 (Grade 5). Results showed first a significant improvement over time in behavioral beat perception and in P3as for small beat changes. Second, behavioral and neural beat sensitivities at age 9 predicted phonological awareness (phoneme deletion and tone identification) at age 11 and its development over the two-year span of the study. Neural beat sensitivities at age 9 also explained unique variance in reading accuracy (but not reading fluency) at age 11 and its two-year development. Taken together, these findings suggest that rhythm and Chinese reading-related skills are intricately related. Neural rhythm sensitivities could serve as predictive biomarkers for the development of phonological awareness and reading in Chinese school-age children.
Collapse
Affiliation(s)
- Chen Sun
- State Key Laboratory of Cognitive Neuroscience and Learning & IDG, McGovern Institute for Brain Research, Beijing Normal University, Beijing 100875, China
| | - Xiangyun Meng
- State Key Laboratory of Cognitive Neuroscience and Learning & IDG, McGovern Institute for Brain Research, Beijing Normal University, Beijing 100875, China
| | - Boqi Du
- State Key Laboratory of Cognitive Neuroscience and Learning & IDG, McGovern Institute for Brain Research, Beijing Normal University, Beijing 100875, China
| | - Yuxuan Zhang
- State Key Laboratory of Cognitive Neuroscience and Learning & IDG, McGovern Institute for Brain Research, Beijing Normal University, Beijing 100875, China
| | - Li Liu
- State Key Laboratory of Cognitive Neuroscience and Learning & IDG, McGovern Institute for Brain Research, Beijing Normal University, Beijing 100875, China.
| | - Qi Dong
- State Key Laboratory of Cognitive Neuroscience and Learning & IDG, McGovern Institute for Brain Research, Beijing Normal University, Beijing 100875, China
| | - George K Georgiou
- Department of Educational Psychology, University of Alberta, Edmonton, Alberta T6G 2G5, Canada
| | - Yun Nan
- State Key Laboratory of Cognitive Neuroscience and Learning & IDG, McGovern Institute for Brain Research, Beijing Normal University, Beijing 100875, China.
| |
Collapse
|
16
|
|
17
|
Asano R, Boeckx C, Seifert U. Hierarchical control as a shared neurocognitive mechanism for language and music. Cognition 2021; 216:104847. [PMID: 34311153 DOI: 10.1016/j.cognition.2021.104847] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2020] [Revised: 05/14/2021] [Accepted: 07/11/2021] [Indexed: 12/16/2022]
Abstract
Although comparative research has made substantial progress in clarifying the relationship between language and music as neurocognitive systems from both a theoretical and empirical perspective, there is still no consensus about which mechanisms, if any, are shared and how they bring about different neurocognitive systems. In this paper, we tackle these two questions by focusing on hierarchical control as a neurocognitive mechanism underlying syntax in language and music. We put forward the Coordinated Hierarchical Control (CHC) hypothesis: linguistic and musical syntax rely on hierarchical control, but engage this shared mechanism differently depending on the current control demand. While linguistic syntax preferably engages the abstract rule-based control circuit, musical syntax rather employs the coordination of the abstract rule-based and the more concrete motor-based control circuits. We provide evidence for our hypothesis by reviewing neuroimaging as well as neuropsychological studies on linguistic and musical syntax. The CHC hypothesis makes a set of novel testable predictions to guide future work on the relationship between language and music.
Collapse
Affiliation(s)
- Rie Asano
- Systematic Musicology, Institute of Musicology, University of Cologne, Germany.
| | - Cedric Boeckx
- Section of General Linguistics, University of Barcelona, Spain; University of Barcelona Institute for Complex Systems (UBICS), Spain; Catalan Institute for Advanced Studies and Research (ICREA), Spain
| | - Uwe Seifert
- Systematic Musicology, Institute of Musicology, University of Cologne, Germany
| |
Collapse
|
18
|
Abstract
Humans belong to the vast clade of species known as the bilateria, with a bilaterally symmetrical body plan. Over the course of evolution, exceptions to symmetry have arisen. Among chordates, the internal organs have been arranged asymmetrically in order to create more efficient functioning and packaging. The brain has also assumed asymmetries, although these generally trade off against the pressure toward symmetry, itself a reflection of the symmetry of limbs and sense organs. In humans, at least, brain asymmetries occur in independent networks, including those involved in language and manual manipulation biased to the left hemisphere, and emotion and face perception biased to the right. Similar asymmetries occur in other species, notably the great apes. A number of asymmetries are correlated with conditions such as dyslexia, autism, and schizophrenia, and have largely independent genetic associations. The origin of asymmetry itself, though, appears to be unitary, and in the case of the internal organs, at least, may depend ultimately on asymmetry at the molecular level.
Collapse
|
19
|
Asano R. The evolution of hierarchical structure building capacity for language and music: a bottom-up perspective. Primates 2021; 63:417-428. [PMID: 33839984 PMCID: PMC9463250 DOI: 10.1007/s10329-021-00905-x] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2020] [Accepted: 03/26/2021] [Indexed: 12/27/2022]
Abstract
A central property of human language is its hierarchical structure. Humans can flexibly combine elements to build a hierarchical structure expressing rich semantics. A hierarchical structure is also considered as playing a key role in many other human cognitive domains. In music, auditory-motor events are combined into hierarchical pitch and/or rhythm structure expressing affect. How did such a hierarchical structure building capacity evolve? This paper investigates this question from a bottom-up perspective based on a set of action-related components as a shared basis underlying cognitive capacities of nonhuman primates and humans. Especially, I argue that the evolution of hierarchical structure building capacity for language and music is tractable for comparative evolutionary study once we focus on the gradual elaboration of shared brain architecture: the cortico-basal ganglia-thalamocortical circuits for hierarchical control of goal-directed action and the dorsal pathways for hierarchical internal models. I suggest that this gradual elaboration of the action-related brain architecture in the context of vocal control and tool-making went hand in hand with amplification of working memory, and made the brain ready for hierarchical structure building in language and music.
Collapse
Affiliation(s)
- Rie Asano
- Systematic Musicology, Institute of Musicology, University of Cologne, Cologne, Germany.
| |
Collapse
|
20
|
Chen L, Goucha T, Männel C, Friederici AD, Zaccarella E. Hierarchical syntactic processing is beyond mere associating: Functional magnetic resonance imaging evidence from a novel artificial grammar. Hum Brain Mapp 2021; 42:3253-3268. [PMID: 33822433 PMCID: PMC8193521 DOI: 10.1002/hbm.25432] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2020] [Revised: 03/02/2021] [Accepted: 03/24/2021] [Indexed: 01/31/2023] Open
Abstract
Grammar is central to any natural language. In the past decades, the artificial grammar of the AnBn type in which a pair of associated elements can be nested in the other pair was considered as a desirable model to mimic human language syntax without semantic interference. However, such a grammar relies on mere associating mechanisms, thus insufficient to reflect the hierarchical nature of human syntax. Here, we test how the brain imposes syntactic hierarchies according to the category relations on linearized sequences by designing a novel artificial “Hierarchical syntactic structure‐building Grammar” (HG), and compare this to the AnBn grammar as a “Nested associating Grammar” (NG) based on multilevel associations. Thirty‐six healthy German native speakers were randomly assigned to one of the two grammars. Both groups performed a grammaticality judgment task on auditorily presented word sequences generated by the corresponding grammar in the scanner after a successful explicit behavioral learning session. Compared to the NG group, we found that the HG group showed a (a) significantly higher involvement of Brodmann area (BA) 44 in Broca's area and the posterior superior temporal gyrus (pSTG); and (b) qualitatively distinct connectivity between the two regions. Thus, the present study demonstrates that the build‐up process of syntactic hierarchies on the basis of category relations critically relies on a distinctive left‐hemispheric syntactic network involving BA 44 and pSTG. This indicates that our novel artificial grammar can constitute a suitable experimental tool to investigate syntax‐specific processes in the human brain.
Collapse
Affiliation(s)
- Luyao Chen
- College of Chinese Language and Culture, Beijing Normal University, Beijing.,Department of Neuropsychology, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany
| | - Tomás Goucha
- Department of Neuropsychology, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany
| | - Claudia Männel
- Department of Neuropsychology, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany.,Department of Audiology and Phoniatrics, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Angela D Friederici
- Department of Neuropsychology, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany
| | - Emiliano Zaccarella
- Department of Neuropsychology, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany
| |
Collapse
|
21
|
Zhao TC, Boorom O, Kuhl PK, Gordon R. Infants' neural speech discrimination predicts individual differences in grammar ability at 6 years of age and their risk of developing speech-language disorders. Dev Cogn Neurosci 2021; 48:100949. [PMID: 33823366 PMCID: PMC8047161 DOI: 10.1016/j.dcn.2021.100949] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Revised: 03/23/2021] [Accepted: 03/27/2021] [Indexed: 11/17/2022] Open
Abstract
The 'sensitive period' for phonetic learning posits that between 6 and 12 months of age, infants' discrimination of native and nonnative speech sounds diverge. Individual differences in this dynamic processing of speech have been shown to predict later language acquisition up to 30 months of age, using parental surveys. Yet, it is unclear whether infant speech discrimination could predict longer-term language outcome and risk for developmental speech-language disorders, which affect up to 16 % of the population. The current study reports a prospective prediction of speech-language skills at a much later age-6 years-old-from the same children's nonnative speech discrimination at 11 months-old, indexed by MEG mismatch responses. Children's speech-language skills at 6 were comprehensively evaluated by a speech-language pathologist in two ways: individual differences in spoken grammar, and the presence versus absence of speech-language disorders. Results showed that the prefrontal MEG mismatch response at 11 months not only significantly predicted individual differences in spoken grammar skills at 6 years, but also accurately identified the presence versus absence of speech-language disorders, using a machine-learning classification. These results represent new evidence that advance our theoretical understanding of the neurodevelopmental trajectory of language acquisition and early risk factors for developmental speech-language disorders.
Collapse
Affiliation(s)
- T Christina Zhao
- Institute for Learning & Brain Sciences, University of Washington, Seattle, WA, USA; Department of Speech and Hearing Sciences, University of Washington, Seattle, WA, USA.
| | - Olivia Boorom
- Department of Hearing & Speech Sciences, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Patricia K Kuhl
- Institute for Learning & Brain Sciences, University of Washington, Seattle, WA, USA; Department of Speech and Hearing Sciences, University of Washington, Seattle, WA, USA
| | - Reyna Gordon
- Department of Otolaryngology and Head & Neck Surgery, Vanderbilt University Medical Center, Nashville, TN, USA; Vanderbilt Brain Institute, Vanderbilt University Medical Center, Nashville, TN, USA; Vanderbilt Kennedy Center, Vanderbilt University Medical Center, Nashville, TN, USA
| |
Collapse
|
22
|
Changeux JP, Goulas A, Hilgetag CC. A Connectomic Hypothesis for the Hominization of the Brain. Cereb Cortex 2021; 31:2425-2449. [PMID: 33367521 PMCID: PMC8023825 DOI: 10.1093/cercor/bhaa365] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2020] [Revised: 10/30/2020] [Accepted: 11/02/2020] [Indexed: 02/06/2023] Open
Abstract
Cognitive abilities of the human brain, including language, have expanded dramatically in the course of our recent evolution from nonhuman primates, despite only minor apparent changes at the gene level. The hypothesis we propose for this paradox relies upon fundamental features of human brain connectivity, which contribute to a characteristic anatomical, functional, and computational neural phenotype, offering a parsimonious framework for connectomic changes taking place upon the human-specific evolution of the genome. Many human connectomic features might be accounted for by substantially increased brain size within the global neural architecture of the primate brain, resulting in a larger number of neurons and areas and the sparsification, increased modularity, and laminar differentiation of cortical connections. The combination of these features with the developmental expansion of upper cortical layers, prolonged postnatal brain development, and multiplied nongenetic interactions with the physical, social, and cultural environment gives rise to categorically human-specific cognitive abilities including the recursivity of language. Thus, a small set of genetic regulatory events affecting quantitative gene expression may plausibly account for the origins of human brain connectivity and cognition.
Collapse
Affiliation(s)
- Jean-Pierre Changeux
- CNRS UMR 3571, Institut Pasteur, 75724 Paris, France
- Communications Cellulaires, Collège de France, 75005 Paris, France
| | - Alexandros Goulas
- Institute of Computational Neuroscience, University Medical Center Eppendorf, Hamburg University, 20246 Hamburg, Germany
| | - Claus C Hilgetag
- Institute of Computational Neuroscience, University Medical Center Eppendorf, Hamburg University, 20246 Hamburg, Germany
- Department of Health Sciences, Boston University, Boston, MA 02115, USA
| |
Collapse
|
23
|
Ivanova AA, Mineroff Z, Zimmerer V, Kanwisher N, Varley R, Fedorenko E. The Language Network Is Recruited but Not Required for Nonverbal Event Semantics. NEUROBIOLOGY OF LANGUAGE (CAMBRIDGE, MASS.) 2021; 2:176-201. [PMID: 37216147 PMCID: PMC10158592 DOI: 10.1162/nol_a_00030] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/04/2020] [Accepted: 01/07/2021] [Indexed: 05/24/2023]
Abstract
The ability to combine individual concepts of objects, properties, and actions into complex representations of the world is often associated with language. Yet combinatorial event-level representations can also be constructed from nonverbal input, such as visual scenes. Here, we test whether the language network in the human brain is involved in and necessary for semantic processing of events presented nonverbally. In Experiment 1, we scanned participants with fMRI while they performed a semantic plausibility judgment task versus a difficult perceptual control task on sentences and line drawings that describe/depict simple agent-patient interactions. We found that the language network responded robustly during the semantic task performed on both sentences and pictures (although its response to sentences was stronger). Thus, language regions in healthy adults are engaged during a semantic task performed on pictorial depictions of events. But is this engagement necessary? In Experiment 2, we tested two individuals with global aphasia, who have sustained massive damage to perisylvian language areas and display severe language difficulties, against a group of age-matched control participants. Individuals with aphasia were severely impaired on the task of matching sentences to pictures. However, they performed close to controls in assessing the plausibility of pictorial depictions of agent-patient interactions. Overall, our results indicate that the left frontotemporal language network is recruited but not necessary for semantic processing of nonverbally presented events.
Collapse
Affiliation(s)
- Anna A. Ivanova
- Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA, USA
- McGovern Institute for Brain Research, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Zachary Mineroff
- Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Vitor Zimmerer
- Division of Psychology and Language Sciences, University College London, London, UK
| | - Nancy Kanwisher
- Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA, USA
- McGovern Institute for Brain Research, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Rosemary Varley
- Division of Psychology and Language Sciences, University College London, London, UK
| | - Evelina Fedorenko
- Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA, USA
- McGovern Institute for Brain Research, Massachusetts Institute of Technology, Cambridge, MA, USA
| |
Collapse
|
24
|
Zaccarella E, Papitto G, Friederici AD. Language and action in Broca's area: Computational differentiation and cortical segregation. Brain Cogn 2020; 147:105651. [PMID: 33254030 DOI: 10.1016/j.bandc.2020.105651] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Revised: 10/21/2020] [Accepted: 10/23/2020] [Indexed: 10/22/2022]
Abstract
Actions have been proposed to follow hierarchical principles similar to those hypothesized for language syntax. These structural similarities are claimed to be reflected in the common involvement of certain neural populations of Broca's area, in the Inferior Frontal Gyrus (IFG). In this position paper, we follow an influential hypothesis in linguistic theory to introduce the syntactic operation Merge and the corresponding motor/conceptual interfaces. We argue that actions hierarchies do not follow the same principles ruling language syntax. We propose that hierarchy in the action domain lies in predictive processing mechanisms mapping sensory inputs and statistical regularities of action-goal relationships. At the cortical level, distinct Broca's subregions appear to support different types of computations across the two domains. We argue that anterior BA44 is a major hub for the implementation of the syntactic operation Merge. On the other hand, posterior BA44 is recruited in selecting premotor mental representations based on the information provided by contextual signals. This functional distinction is corroborated by a recent meta-analysis (Papitto, Friederici, & Zaccarella, 2020). We conclude by suggesting that action and language can meet only where the interfaces transfer abstract computations either to the external world or to the internal mental world.
Collapse
Affiliation(s)
- Emiliano Zaccarella
- Max Planck Institute for Human Cognitive and Brain Sciences, Department of Neuropsychology, Leipzig, Germany.
| | - Giorgio Papitto
- Max Planck Institute for Human Cognitive and Brain Sciences, Department of Neuropsychology, Leipzig, Germany; International Max Planck Research School on Neuroscience of Communication: Function, Structure, and Plasticity, Leipzig, Germany
| | - Angela D Friederici
- Max Planck Institute for Human Cognitive and Brain Sciences, Department of Neuropsychology, Leipzig, Germany
| |
Collapse
|
25
|
Kozlenkov A, Vermunt MW, Apontes P, Li J, Hao K, Sherwood CC, Hof PR, Ely JJ, Wegner M, Mukamel EA, Creyghton MP, Koonin EV, Dracheva S. Evolution of regulatory signatures in primate cortical neurons at cell-type resolution. Proc Natl Acad Sci U S A 2020; 117:28422-28432. [PMID: 33109720 PMCID: PMC7668098 DOI: 10.1073/pnas.2011884117] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
The human cerebral cortex contains many cell types that likely underwent independent functional changes during evolution. However, cell-type-specific regulatory landscapes in the cortex remain largely unexplored. Here we report epigenomic and transcriptomic analyses of the two main cortical neuronal subtypes, glutamatergic projection neurons and GABAergic interneurons, in human, chimpanzee, and rhesus macaque. Using genome-wide profiling of the H3K27ac histone modification, we identify neuron-subtype-specific regulatory elements that previously went undetected in bulk brain tissue samples. Human-specific regulatory changes are uncovered in multiple genes, including those associated with language, autism spectrum disorder, and drug addiction. We observe preferential evolutionary divergence in neuron subtype-specific regulatory elements and show that a substantial fraction of pan-neuronal regulatory elements undergoes subtype-specific evolutionary changes. This study sheds light on the interplay between regulatory evolution and cell-type-dependent gene-expression programs, and provides a resource for further exploration of human brain evolution and function.
Collapse
Affiliation(s)
- Alexey Kozlenkov
- Research & Development, James J. Peters VA Medical Center, Bronx, NY 10468
- Friedman Brain Institute and Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY 10029
| | - Marit W Vermunt
- Hubrecht Institute, University Medical Center Utrecht, 3584 CT Utrecht, The Netherlands
| | - Pasha Apontes
- Research & Development, James J. Peters VA Medical Center, Bronx, NY 10468
| | - Junhao Li
- Department of Cognitive Science, University of California San Diego, La Jolla, CA 92037
| | - Ke Hao
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029
| | - Chet C Sherwood
- Department of Anthropology and Center for the Advanced Study of Human Paleobiology, The George Washington University, Washington, DC 20052
| | - Patrick R Hof
- Nash Family Department of Neuroscience, Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029
| | - John J Ely
- Alamogordo Primate Facility, Holloman Air Force Base, Alamogordo, NM 88330
| | - Michael Wegner
- Institut für Biochemie, Emil-Fischer-Zentrum, Friedrich-Alexander Universität Erlangen-Nürnberg, 91054 Erlangen, Germany
| | - Eran A Mukamel
- Department of Cognitive Science, University of California San Diego, La Jolla, CA 92037
| | - Menno P Creyghton
- Hubrecht Institute, University Medical Center Utrecht, 3584 CT Utrecht, The Netherlands;
- Department of Developmental Biology, Erasmus University Medical Center, 3015 CN Rotterdam, The Netherlands
| | - Eugene V Koonin
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, MD 20894
| | - Stella Dracheva
- Research & Development, James J. Peters VA Medical Center, Bronx, NY 10468;
- Friedman Brain Institute and Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY 10029
| |
Collapse
|
26
|
von Heiseler TN. The Social Origin of the Concept of Truth - How Statements Are Built on Disagreements. Front Psychol 2020; 11:733. [PMID: 32411047 PMCID: PMC7198879 DOI: 10.3389/fpsyg.2020.00733] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2019] [Accepted: 03/25/2020] [Indexed: 11/13/2022] Open
Abstract
This paper proposes a social account for the origin of the truth value and the emergence of the first declarative sentence. Such a proposal is based on two assumptions. The first is known as the social intelligence hypothesis: that the cognitive evolution of humans is first and foremost an adaptation to social demands. The second is the function-first approach to explaining the evolution of traits: before a prototype of a new trait develops and the adaptation process begins, something already existing is used for a new purpose. Applied to the emergence of declarative sentences, this suggests something already existing-natural signs (which have a logical or causal relation to what they denote)-were used for the declarative function and thereby integrated (in the form of indexical objects implying a past action) into communication. I show that the display of an indexical object (such as the display of hunting trophies) can imply a conceptual structure similar to that informing the syntax of sentences. The view developed in this paper is broadly consistent with the argumentative theory of Mercier and Sperber, which suggests that reasoning is less adapted to decision making than to social purposes such as winning disputes or justifying one's actions. In this paper I extend this view to the origin of the concept of truth. According to my proposal, the first declarative sentence (articulated in a simple sign language) emerged as a negation of a negation of an implicit statement expressed by the display of an indexical object referring to a past action. Thereby, I suggest that the binary structure of the truth value underlying any declarative sentence is founded on disagreements based on conflicts of interest. Thus, I deny that the concept of truth could have evolved for instrumental reasons such as solving problems, or through self-questioning about what one ought to believe.
Collapse
|
27
|
Corballis MC. Crossing the Rubicon: Behaviorism, Language, and Evolutionary Continuity. Front Psychol 2020; 11:653. [PMID: 32373020 PMCID: PMC7186390 DOI: 10.3389/fpsyg.2020.00653] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2020] [Accepted: 03/18/2020] [Indexed: 01/09/2023] Open
Abstract
Euan Macphail's work and ideas captured a pivotal time in the late 20th century when behavioral laws were considered to apply equally across vertebrates, implying equal intelligence, but it was also a time when behaviorism was challenged by the view that language was unique to humans, and bestowed a superior mental status. Subsequent work suggests greater continuity between humans and their forebears, challenging the Chomskyan assumption that language evolved in a single step ("the great leap forward") in humans. Language is now understood to be based on an amalgam of cognitive functions, including mental time travel, theory of mind, and what may be more broadly defined as imagination. These functions probably evolved gradually in hominin evolution and are present in varying degrees in non-human species. The blending of language into cognition provides for both interspecies differences in mental function, and continuity between humans and other species. What does seem to be special to humans is the ability to communicate the contents of imagination, although even this is not absolute, and is perhaps less adaptive than we like to think.
Collapse
Affiliation(s)
- Michael C. Corballis
- Faculty of Science, School of Psychology, The University of Auckland, Auckland, New Zealand
| |
Collapse
|
28
|
Fedorenko E, Blank IA. Broca's Area Is Not a Natural Kind. Trends Cogn Sci 2020; 24:270-284. [PMID: 32160565 PMCID: PMC7211504 DOI: 10.1016/j.tics.2020.01.001] [Citation(s) in RCA: 129] [Impact Index Per Article: 32.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2019] [Revised: 12/21/2019] [Accepted: 01/09/2020] [Indexed: 01/09/2023]
Abstract
Theories of human cognition prominently feature 'Broca's area', which causally contributes to a myriad of mental functions. However, Broca's area is not a monolithic, multipurpose unit - it is structurally and functionally heterogeneous. Some functions engaging (subsets of) this area share neurocognitive resources, whereas others rely on separable circuits. A decade of converging evidence has now illuminated a fundamental distinction between two subregions of Broca's area that likely play computationally distinct roles in cognition: one belongs to the domain-specific 'language network', the other to the domain-general 'multiple-demand (MD) network'. Claims about Broca's area should be (re)cast in terms of these (and other, as yet undetermined) functional components, to establish a cumulative research enterprise where empirical findings can be replicated and theoretical proposals can be meaningfully compared and falsified.
Collapse
Affiliation(s)
- Evelina Fedorenko
- Brain and Cognitive Sciences Department, and McGovern Institute for Brain Research, Massachusetts Institute of Technology (MIT), Cambridge, MA 02139, USA.
| | - Idan A Blank
- Department of Psychology, University of California at Los Angeles (UCLA), Los Angeles, CA 90095, USA.
| |
Collapse
|
29
|
Albouy P, Benjamin L, Morillon B, Zatorre RJ. Distinct sensitivity to spectrotemporal modulation supports brain asymmetry for speech and melody. Science 2020; 367:1043-1047. [DOI: 10.1126/science.aaz3468] [Citation(s) in RCA: 75] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2019] [Accepted: 01/02/2020] [Indexed: 01/08/2023]
Abstract
Does brain asymmetry for speech and music emerge from acoustical cues or from domain-specific neural networks? We selectively filtered temporal or spectral modulations in sung speech stimuli for which verbal and melodic content was crossed and balanced. Perception of speech decreased only with degradation of temporal information, whereas perception of melodies decreased only with spectral degradation. Functional magnetic resonance imaging data showed that the neural decoding of speech and melodies depends on activity patterns in left and right auditory regions, respectively. This asymmetry is supported by specific sensitivity to spectrotemporal modulation rates within each region. Finally, the effects of degradation on perception were paralleled by their effects on neural classification. Our results suggest a match between acoustical properties of communicative signals and neural specializations adapted to that purpose.
Collapse
Affiliation(s)
- Philippe Albouy
- Cognitive Neuroscience Unit, Montreal Neurological Institute, McGill University, Montreal, QC, Canada
- International Laboratory for Brain, Music and Sound Research (BRAMS); Centre for Research in Brain, Language and Music; Centre for Interdisciplinary Research in Music, Media, and Technology, Montreal, QC, Canada
- CERVO Brain Research Centre, School of Psychology, Laval University, Quebec, QC, Canada
| | - Lucas Benjamin
- Cognitive Neuroscience Unit, Montreal Neurological Institute, McGill University, Montreal, QC, Canada
| | - Benjamin Morillon
- Aix Marseille University, Inserm, INS, Institut de Neurosciences des Systèmes, Marseille, France
| | - Robert J. Zatorre
- Cognitive Neuroscience Unit, Montreal Neurological Institute, McGill University, Montreal, QC, Canada
- International Laboratory for Brain, Music and Sound Research (BRAMS); Centre for Research in Brain, Language and Music; Centre for Interdisciplinary Research in Music, Media, and Technology, Montreal, QC, Canada
| |
Collapse
|
30
|
Fishbein AR, Fritz JB, Idsardi WJ, Wilkinson GS. What can animal communication teach us about human language? Philos Trans R Soc Lond B Biol Sci 2019; 375:20190042. [PMID: 31735148 DOI: 10.1098/rstb.2019.0042] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Language has been considered by many to be uniquely human. Numerous theories for how it evolved have been proposed but rarely tested. The articles in this theme issue consider the extent to which aspects of language, such as vocal learning, phonology, syntax, semantics, intentionality, cognition and neurobiological adaptations, are shared with other animals. By adopting a comparative approach, insights into the mechanisms and origins of human language can be gained. While points of agreement exist among the authors, conflicting viewpoints are expressed on several issues, such as the presence of proto-syntax in animal communication, the neural basis of the Merge operation, and the neurogenetic changes necessary for vocal learning. Future comparative research in animal communication has the potential to teach us even more about the evolution, neurobiology and cognitive basis of human language. This article is part of the theme issue 'What can animal communication teach us about human language?'
Collapse
Affiliation(s)
- Adam R Fishbein
- Neuroscience and Cognitive Science Program, University of Maryland, College Park, MD, USA.,Department of Psychology, University of Maryland, College Park, MD, USA
| | - Jonathan B Fritz
- Neuroscience and Cognitive Science Program, University of Maryland, College Park, MD, USA.,Institute for Systems Research, University of Maryland, College Park, MD, USA
| | - William J Idsardi
- Neuroscience and Cognitive Science Program, University of Maryland, College Park, MD, USA.,Department of Linguistics, University of Maryland, College Park, MD, USA
| | - Gerald S Wilkinson
- Neuroscience and Cognitive Science Program, University of Maryland, College Park, MD, USA.,Department of Biology, University of Maryland, College Park, MD, USA
| |
Collapse
|