1
|
Ooi QE, Nguyen CTT, Laloo AE, Koh YZ, Swarup S. Soil-sediment connectivity through Bayesian source tracking in an urban naturalised waterway via microbial and isotopic markers. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 949:175152. [PMID: 39097031 DOI: 10.1016/j.scitotenv.2024.175152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/25/2024] [Revised: 06/27/2024] [Accepted: 07/28/2024] [Indexed: 08/05/2024]
Abstract
Riverine sediments are important habitats for microbial activity in naturalised waterways to provide potential ecosystem services that improve stormwater quality. Yet, little is known about the sources of these sediment microbes, and the factors shaping them. This study investigated the dominant source of sediments in a tropical naturalised urban waterway, using two Bayesian methods for microbial and isotopic 13C/15N markers concurrently. Additionally, key factors shaping microbial communities from the surrounding landscape were evaluated. A comprehensive two-year field survey identified source land covers of interest based on topology and soil context. Among these land covers, riverbanks were the dominant source of sediments contribution for both edaphic and microbial components. The physico-chemical environment explains most of the variation in sediment communities compared to inter-location distances and microbial source contribution. As microbes provide ecosystem services important for rewilding waterways, management strategies that establish diverse sediment microbial communities are encouraged. Since riverbanks play a disproportionately important role in material contribution to sediment beds, management practices aimed at controlling soil erosion from riverbanks can improve overall functioning of waterway systems.
Collapse
Affiliation(s)
- Qi En Ooi
- National University of Singapore Environmental Research Institute, National University of Singapore, 117411, Singapore; Singapore Centre of Environmental Engineering and Life Sciences, National University of Singapore, Singapore; Department of Biological Sciences, National University of Singapore, Singapore 117558, Singapore.
| | - Canh Tien Trinh Nguyen
- Singapore Centre of Environmental Engineering and Life Sciences, National University of Singapore, Singapore; Centre for Radiation Research Education and Innovation, The University of Adelaide, 5005, Australia
| | - Andrew Elohim Laloo
- National University of Singapore Environmental Research Institute, National University of Singapore, 117411, Singapore; Singapore Centre of Environmental Engineering and Life Sciences, National University of Singapore, Singapore.
| | - Yi Zi Koh
- Singapore Centre of Environmental Engineering and Life Sciences, National University of Singapore, Singapore
| | - Sanjay Swarup
- National University of Singapore Environmental Research Institute, National University of Singapore, 117411, Singapore; Singapore Centre of Environmental Engineering and Life Sciences, National University of Singapore, Singapore; Department of Biological Sciences, National University of Singapore, Singapore 117558, Singapore.
| |
Collapse
|
2
|
Tannock GW. Understanding the gut microbiota by considering human evolution: a story of fire, cereals, cooking, molecular ingenuity, and functional cooperation. Microbiol Mol Biol Rev 2024; 88:e0012722. [PMID: 38126754 PMCID: PMC10966955 DOI: 10.1128/mmbr.00127-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2023] Open
Abstract
SUMMARYThe microbial community inhabiting the human colon, referred to as the gut microbiota, is mostly composed of bacterial species that, through extensive metabolic networking, degrade and ferment components of food and human secretions. The taxonomic composition of the microbiota has been extensively investigated in metagenomic studies that have also revealed details of molecular processes by which common components of the human diet are metabolized by specific members of the microbiota. Most studies of the gut microbiota aim to detect deviations in microbiota composition in patients relative to controls in the hope of showing that some diseases and conditions are due to or exacerbated by alterations to the gut microbiota. The aim of this review is to consider the gut microbiota in relation to the evolution of Homo sapiens which was heavily influenced by the consumption of a nutrient-dense non-arboreal diet, limited gut storage capacity, and acquisition of skills relating to mastering fire, cooking, and cultivation of cereal crops. The review delves into the past to gain an appreciation of what is important in the present. A holistic view of "healthy" microbiota function is proposed based on the evolutionary pathway shared by humans and gut microbes.
Collapse
Affiliation(s)
- Gerald W. Tannock
- Department of Microbiology and Immunology, University of Otago, Dunedin, New Zealand
| |
Collapse
|
3
|
van Dijk B, Buffard P, Farr AD, Giersdorf F, Meijer J, Dutilh BE, Rainey PB. Identifying and tracking mobile elements in evolving compost communities yields insights into the nanobiome. ISME COMMUNICATIONS 2023; 3:90. [PMID: 37640834 PMCID: PMC10462680 DOI: 10.1038/s43705-023-00294-w] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Revised: 08/02/2023] [Accepted: 08/08/2023] [Indexed: 08/31/2023]
Abstract
Microbial evolution is driven by rapid changes in gene content mediated by horizontal gene transfer (HGT). While mobile genetic elements (MGEs) are important drivers of gene flux, the nanobiome-the zoo of Darwinian replicators that depend on microbial hosts-remains poorly characterised. New approaches are necessary to increase our understanding beyond MGEs shaping individual populations, towards their impacts on complex microbial communities. A bioinformatic pipeline (xenoseq) was developed to cross-compare metagenomic samples from microbial consortia evolving in parallel, aimed at identifying MGE dissemination, which was applied to compost communities which underwent periodic mixing of MGEs. We show that xenoseq can distinguish movement of MGEs from demographic changes in community composition that otherwise confounds identification, and furthermore demonstrate the discovery of various unexpected entities. Of particular interest was a nanobacterium of the candidate phylum radiation (CPR) which is closely related to a species identified in groundwater ecosystems (Candidatus Saccharibacterium), and appears to have a parasitic lifestyle. We also highlight another prolific mobile element, a 313 kb plasmid hosted by a Cellvibrio lineage. The host was predicted to be capable of nitrogen fixation, and acquisition of the plasmid coincides with increased ammonia production. Taken together, our data show that new experimental strategies combined with bioinformatic analyses of metagenomic data stand to provide insight into the nanobiome as a driver of microbial community evolution.
Collapse
Affiliation(s)
- Bram van Dijk
- Department of Microbial Population Biology, Max Planck Institute for Evolutionary Biology, Plön, Germany.
- Theoretical Biology and Bioinformatics, Department of Biology, Science for Life, Utrecht University, Utrecht, the Netherlands.
| | - Pauline Buffard
- Department of Microbial Population Biology, Max Planck Institute for Evolutionary Biology, Plön, Germany
| | - Andrew D Farr
- Department of Microbial Population Biology, Max Planck Institute for Evolutionary Biology, Plön, Germany
| | - Franz Giersdorf
- Department of Microbial Population Biology, Max Planck Institute for Evolutionary Biology, Plön, Germany
| | - Jeroen Meijer
- Theoretical Biology and Bioinformatics, Department of Biology, Science for Life, Utrecht University, Utrecht, the Netherlands
| | - Bas E Dutilh
- Theoretical Biology and Bioinformatics, Department of Biology, Science for Life, Utrecht University, Utrecht, the Netherlands
- Institute of Biodiversity, Faculty of Biological Sciences, Cluster of Excellence Balance of the Microverse, Friedrich Schiller University, Jena, Germany
| | - Paul B Rainey
- Department of Microbial Population Biology, Max Planck Institute for Evolutionary Biology, Plön, Germany.
- Laboratory of Biophysics and Evolution, CBI, ESPCI Paris, Université PSL CNRS, Paris, France.
| |
Collapse
|
4
|
Guo P, Rennenberg H, Du H, Wang T, Gao L, Flemetakis E, Hänsch R, Ma M, Wang D. Bacterial assemblages imply methylmercury production at the rice-soil system. ENVIRONMENT INTERNATIONAL 2023; 178:108066. [PMID: 37399771 DOI: 10.1016/j.envint.2023.108066] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Revised: 05/03/2023] [Accepted: 06/24/2023] [Indexed: 07/05/2023]
Abstract
The plant microbiota can affect plant health and fitness by promoting methylmercury (MeHg) production in paddy soil. Although most well-known mercury (Hg) methylators are observed in the soil, it remains unclear how rice rhizosphere assemblages alter MeHg production. Here, we used network analyses of microbial diversity to identify bulk soil (BS), rhizosphere (RS) and root bacterial networks during rice development at Hg gradients. Hg gradients greatly impacted the niche-sharing of taxa significantly relating to MeHg/THg, while plant development had little effect. In RS networks, Hg gradients increased the proportion of MeHg-related nodes in total nodes from 37.88% to 45.76%, but plant development enhanced from 48.59% to 50.41%. The module hub and connector in RS networks included taxa positively (Nitrososphaeracea, Vicinamibacteraceae and Oxalobacteraceae) and negatively (Gracilibacteraceae) correlating with MeHg/THg at the blooming stage. In BS networks, Deinococcaceae and Paludibacteraceae were positively related to MeHg/THg, and constituted the connector at the reviving stage and the module hub at the blooming stage. Soil with an Hg concentration of 30 mg kg-1 increased the complexity and connectivity of root microbial networks, although microbial community structure in roots was less affected by Hg gradients and plant development. As most frequent connector in root microbial networks, Desulfovibrionaceae did not significantly correlate with MeHg/THg, but was likely to play an important role in the response to Hg stress.
Collapse
Affiliation(s)
- Pan Guo
- Center of Molecular Ecophysiology (CMEP), College of Resources and Environment, Southwest University, Chongqing, China
| | - Heinz Rennenberg
- Center of Molecular Ecophysiology (CMEP), College of Resources and Environment, Southwest University, Chongqing, China
| | - Hongxia Du
- Chongqing Key Laboratory of Bio-resource for Bioenergy, College of Resources and Environment, Southwest University, Chongqing, China
| | - Tao Wang
- Center of Molecular Ecophysiology (CMEP), College of Resources and Environment, Southwest University, Chongqing, China
| | - Lan Gao
- Center of Molecular Ecophysiology (CMEP), College of Resources and Environment, Southwest University, Chongqing, China
| | - Emmanouil Flemetakis
- Laboratory of Molecular Biology, Department of Biotechnology, Agricultural University of Athens, 11855 Athens, Greece
| | - Robert Hänsch
- Institute for Plant Biology, Technische Universität Braunschweig, Humboldtstraße 1, D-38106 Braunschweig, Germany
| | - Ming Ma
- Center of Molecular Ecophysiology (CMEP), College of Resources and Environment, Southwest University, Chongqing, China; Chongqing Key Laboratory of Bio-resource for Bioenergy, College of Resources and Environment, Southwest University, Chongqing, China.
| | - Dingyong Wang
- Chongqing Key Laboratory of Agricultural Resources and Environment, College of Resources and Environment, Chongqing, China
| |
Collapse
|
5
|
Roche KE, Bjork JR, Dasari MR, Grieneisen L, Jansen D, Gould TJ, Gesquiere LR, Barreiro LB, Alberts SC, Blekhman R, Gilbert JA, Tung J, Mukherjee S, Archie EA. Universal gut microbial relationships in the gut microbiome of wild baboons. eLife 2023; 12:e83152. [PMID: 37158607 PMCID: PMC10292843 DOI: 10.7554/elife.83152] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Accepted: 05/08/2023] [Indexed: 05/10/2023] Open
Abstract
Ecological relationships between bacteria mediate the services that gut microbiomes provide to their hosts. Knowing the overall direction and strength of these relationships is essential to learn how ecology scales up to affect microbiome assembly, dynamics, and host health. However, whether bacterial relationships are generalizable across hosts or personalized to individual hosts is debated. Here, we apply a robust, multinomial logistic-normal modeling framework to extensive time series data (5534 samples from 56 baboon hosts over 13 years) to infer thousands of correlations in bacterial abundance in individual baboons and test the degree to which bacterial abundance correlations are 'universal'. We also compare these patterns to two human data sets. We find that, most bacterial correlations are weak, negative, and universal across hosts, such that shared correlation patterns dominate over host-specific correlations by almost twofold. Further, taxon pairs that had inconsistent correlation signs (either positive or negative) in different hosts always had weak correlations within hosts. From the host perspective, host pairs with the most similar bacterial correlation patterns also had similar microbiome taxonomic compositions and tended to be genetic relatives. Compared to humans, universality in baboons was similar to that in human infants, and stronger than one data set from human adults. Bacterial families that showed universal correlations in human infants were often universal in baboons. Together, our work contributes new tools for analyzing the universality of bacterial associations across hosts, with implications for microbiome personalization, community assembly, and stability, and for designing microbiome interventions to improve host health.
Collapse
Affiliation(s)
- Kimberly E Roche
- Program in Computational Biology and Bioinformatics, Duke UniversityDurhamUnited States
| | - Johannes R Bjork
- University of Groningen and University Medical Center Groningen, Department of Gastroenterology and HepatologyGroningenNetherlands
- University of Groningen and University Medical Center Groningen, Department of GeneticsGroningenNetherlands
- Department of Biological Sciences, University of Notre DameNotre DameUnited States
| | - Mauna R Dasari
- Department of Biological Sciences, University of Notre DameNotre DameUnited States
| | - Laura Grieneisen
- Department of Biology, University of British Columbia-Okanagan CampusKelownaCanada
| | - David Jansen
- Department of Biological Sciences, University of Notre DameNotre DameUnited States
| | - Trevor J Gould
- Department of Ecology, Evolution, and Behavior, University of MinnesotaMinneapolisUnited States
| | | | - Luis B Barreiro
- Committee on Genetics, Genomics, and Systems Biology, University of ChicagoChicagoUnited States
- Section of Genetic Medicine, Department of Medicine, University of ChicagoChicagoUnited States
- Committee on Immunology, University of ChicagoChicagoUnited States
| | - Susan C Alberts
- Department of Biology, Duke UniversityDurhamUnited States
- Department of Evolutionary Anthropology, Duke UniversityDurhamUnited States
- Duke University Population Research Institute, Duke UniversityDurhamUnited States
| | - Ran Blekhman
- Section of Genetic Medicine, Department of Medicine, University of ChicagoChicagoUnited States
| | - Jack A Gilbert
- Department of Pediatrics and the Scripps Institution of Oceanography, University of California, San DiegoSan DiegoUnited States
| | - Jenny Tung
- Department of Biology, Duke UniversityDurhamUnited States
- Department of Evolutionary Anthropology, Duke UniversityDurhamUnited States
- Duke University Population Research Institute, Duke UniversityDurhamUnited States
- Department of Primate Behavior and Evolution, Max Planck Institute for Evolutionary AnthropologyLeipzigGermany
| | - Sayan Mukherjee
- Program in Computational Biology and Bioinformatics, Duke UniversityDurhamUnited States
- Departments of Statistical Science, Mathematics, Computer Science, and Bioinformatics & Biostatistics, Duke UniversityDurhamUnited States
- Center for Scalable Data Analytics and Artificial Intelligence, University of LeipzigLeipzigGermany
- Max Plank Institute for Mathematics in the Natural SciencesLeipzigGermany
| | - Elizabeth A Archie
- Department of Biological Sciences, University of Notre DameNotre DameUnited States
| |
Collapse
|
6
|
Björk JR, Dasari MR, Roche K, Grieneisen L, Gould TJ, Grenier JC, Yotova V, Gottel N, Jansen D, Gesquiere LR, Gordon JB, Learn NH, Wango TL, Mututua RS, Kinyua Warutere J, Siodi L, Mukherjee S, Barreiro LB, Alberts SC, Gilbert JA, Tung J, Blekhman R, Archie EA. Synchrony and idiosyncrasy in the gut microbiome of wild baboons. Nat Ecol Evol 2022; 6:955-964. [PMID: 35654895 PMCID: PMC9271586 DOI: 10.1038/s41559-022-01773-4] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Accepted: 04/20/2022] [Indexed: 01/04/2023]
Abstract
Human gut microbial dynamics are highly individualized, making it challenging to link microbiota to health and to design universal microbiome therapies. This individuality is typically attributed to variation in host genetics, diets, environments and medications but it could also emerge from fundamental ecological forces that shape microbiota more generally. Here, we leverage extensive gut microbial time series from wild baboons-hosts who experience little interindividual dietary and environmental heterogeneity-to test whether gut microbial dynamics are synchronized across hosts or largely idiosyncratic. Despite their shared lifestyles, baboon microbiota were only weakly synchronized. The strongest synchrony occurred among baboons living in the same social group, probably because group members range over the same habitat and simultaneously encounter the same sources of food and water. However, this synchrony was modest compared to each host's personalized dynamics. In support, host-specific factors, especially host identity, explained, on average, more than three times the deviance in longitudinal dynamics compared to factors shared with social group members and ten times the deviance of factors shared across the host population. These results contribute to mounting evidence that highly idiosyncratic gut microbiomes are not an artefact of modern human environments and that synchronizing forces in the gut microbiome (for example, shared environments, diets and microbial dispersal) are not strong enough to overwhelm key drivers of microbiome personalization, such as host genetics, priority effects, horizontal gene transfer and functional redundancy.
Collapse
Affiliation(s)
- Johannes R Björk
- Department of Biological Sciences, University of Notre Dame, Notre Dame, IN, USA.
| | - Mauna R Dasari
- Department of Biological Sciences, University of Notre Dame, Notre Dame, IN, USA
| | - Kim Roche
- Program in Computational Biology and Bioinformatics, Duke University, Durham, NC, USA
| | - Laura Grieneisen
- Department of Genetics, Cell Biology, and Development, University of Minnesota, Minneapolis, MN, USA
| | - Trevor J Gould
- Department of Genetics, Cell Biology, and Development, University of Minnesota, Minneapolis, MN, USA
| | - Jean-Christophe Grenier
- Department of Genetics, CHU Sainte Justine Research Center, Montréal, Quebec, Canada
- Research Center, Montreal Heart Institute, Montréal, Quebec, Canada
| | - Vania Yotova
- Department of Genetics, CHU Sainte Justine Research Center, Montréal, Quebec, Canada
| | - Neil Gottel
- Department of Pediatrics and the Scripps Institution of Oceanography, University of California, San Diego, San Diego, CA, USA
| | - David Jansen
- Department of Biological Sciences, University of Notre Dame, Notre Dame, IN, USA
| | | | | | - Niki H Learn
- Department of Ecology and Evolutionary Biology, Princeton University, Princeton, NJ, USA
| | - Tim L Wango
- Amboseli Baboon Research Project, Amboseli National Park, Amboseli, Kenya
- The Department of Veterinary Anatomy and Animal Physiology, University of Nairobi, Nairobi, Kenya
| | - Raphael S Mututua
- Amboseli Baboon Research Project, Amboseli National Park, Amboseli, Kenya
| | - J Kinyua Warutere
- Amboseli Baboon Research Project, Amboseli National Park, Amboseli, Kenya
| | - Long'ida Siodi
- Amboseli Baboon Research Project, Amboseli National Park, Amboseli, Kenya
| | - Sayan Mukherjee
- Program in Computational Biology and Bioinformatics, Duke University, Durham, NC, USA
| | - Luis B Barreiro
- Department of Medicine, Section of Genetic Medicine, University of Chicago, Chicago, IL, USA
| | - Susan C Alberts
- Department of Biology, Duke University, Durham, NC, USA
- Department of Evolutionary Anthropology, Duke University, Durham, NC, USA
- Duke University Population Research Institute, Duke University, Durham, NC, USA
| | - Jack A Gilbert
- Department of Pediatrics and the Scripps Institution of Oceanography, University of California, San Diego, San Diego, CA, USA
| | - Jenny Tung
- Department of Biology, Duke University, Durham, NC, USA
- Department of Evolutionary Anthropology, Duke University, Durham, NC, USA
- Duke University Population Research Institute, Duke University, Durham, NC, USA
- Canadian Institute for Advanced Research, Toronto, Ontario, Canada
| | - Ran Blekhman
- Department of Genetics, Cell Biology, and Development, University of Minnesota, Minneapolis, MN, USA
- Department of Ecology, Evolution, and Behavior, University of Minnesota, Minneapolis, MN, USA
| | - Elizabeth A Archie
- Department of Biological Sciences, University of Notre Dame, Notre Dame, IN, USA.
| |
Collapse
|
7
|
Shkoporov AN, Turkington CJ, Hill C. Mutualistic interplay between bacteriophages and bacteria in the human gut. Nat Rev Microbiol 2022; 20:737-749. [PMID: 35773472 DOI: 10.1038/s41579-022-00755-4] [Citation(s) in RCA: 52] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/25/2022] [Indexed: 12/12/2022]
Abstract
Bacteriophages (phages) are often described as obligate predators of their bacterial hosts, and phage predation is one of the leading forces controlling the density and distribution of bacterial populations. Every 48 h half of all bacteria on Earth are killed by phages. Efficient killing also forms the basis of phage therapy in humans and animals and the use of phages as food preservatives. In turn, bacteria have a plethora of resistance systems against phage attack, but very few bacterial species, if any, have entirely escaped phage predation. However, in complex communities and environments such as the human gut, this antagonistic model of attack and counter-defence does not fully describe the scope of phage-bacterium interactions. In this Review, we explore some of the more mutualistic aspects of phage-bacterium interactions in the human gut, and we suggest that the relationship between phages and their bacterial hosts in the gut is best characterized not as a fight to the death between enemies but rather as a mutualistic relationship between partners.
Collapse
Affiliation(s)
- Andrey N Shkoporov
- APC Microbiome Ireland & School of Microbiology, University College Cork, Cork, Ireland. .,Department of Medicine, University College Cork, Cork, Ireland.
| | | | - Colin Hill
- APC Microbiome Ireland & School of Microbiology, University College Cork, Cork, Ireland.
| |
Collapse
|
8
|
Denk J, Hallatschek O. Self-consistent dispersal puts tight constraints on the spatiotemporal organization of species-rich metacommunities. Proc Natl Acad Sci U S A 2022; 119:e2200390119. [PMID: 35727977 PMCID: PMC9245702 DOI: 10.1073/pnas.2200390119] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Accepted: 04/19/2022] [Indexed: 11/21/2022] Open
Abstract
Biodiversity is often attributed to a dynamic equilibrium between the immigration and extinction of species. This equilibrium forms a common basis for studying ecosystem assembly from a static reservoir of migrants-the mainland. Yet, natural ecosystems often consist of many coupled communities (i.e., metacommunities), and migration occurs between these communities. The pool of migrants then depends on what is sustained in the ecosystem, which, in turn, depends on the dynamic migrant pool. This chicken-and-egg problem of survival and dispersal is poorly understood in communities of many competing species, except for the neutral case-the "unified neutral theory of biodiversity." Employing spatiotemporal simulations and mean-field analyses, we show that self-consistent dispersal puts rather tight constraints on the dynamic migration-extinction equilibrium. When the number of species is large, species are pushed to the edge of their global extinction, even when competition is weak. As a consequence, the overall diversity is highly sensitive to perturbations in demographic parameters, including growth and dispersal rates. When dispersal is short range, the resulting spatiotemporal abundance patterns follow broad scale-free distributions that correspond to a directed percolation phase transition. The qualitative agreement of our results for short-range and long-range dispersal suggests that this self-organization process is a general property of species-rich metacommunities. Our study shows that self-sustaining metacommunities are highly sensitive to environmental change and provides insights into how biodiversity can be rescued and maintained.
Collapse
Affiliation(s)
- Jonas Denk
- Department of Physics, University of California, Berkeley, CA 94720
- Department of Integrative Biology, University of California, Berkeley, CA 94720
| | - Oskar Hallatschek
- Department of Physics, University of California, Berkeley, CA 94720
- Department of Integrative Biology, University of California, Berkeley, CA 94720
- Peter Debye Institute for Soft Matter Physics, Leipzig University, 04103 Leipzig, Germany
| |
Collapse
|
9
|
Legeay J, Hijri M. A Comprehensive Insight of Current and Future Challenges in Large-Scale Soil Microbiome Analyses. MICROBIAL ECOLOGY 2022:10.1007/s00248-022-02060-2. [PMID: 35739325 DOI: 10.1007/s00248-022-02060-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Accepted: 06/15/2022] [Indexed: 06/15/2023]
Abstract
In the last decade, various large-scale projects describing soil microbial diversity across large geographical gradients have been undertaken. However, many questions remain unanswered about the best ways to conduct these studies. In this review, we present an overview of the experience gathered during these projects, and of the challenges that future projects will face, such as standardization of protocols and results, considering the temporal variation of microbiomes, and the legal constraints limiting such studies. We also present the arguments for and against the exhaustive description of soil microbiomes. Finally, we look at future developments of soil microbiome studies, notably emphasizing the important role of cultivation techniques.
Collapse
Affiliation(s)
- Jean Legeay
- African Genome Center, Mohammed VI Polytechnic University, Ben Guerir, Morocco.
| | - Mohamed Hijri
- African Genome Center, Mohammed VI Polytechnic University, Ben Guerir, Morocco
- Institut de La Recherche en Biologie Végétale, Département de Sciences Biologiques, Université de Montréal, Montreal, QE, H1X 2B2, Canada
| |
Collapse
|
10
|
Mueller UG, Linksvayer TA. Microbiome breeding: conceptual and practical issues. Trends Microbiol 2022; 30:997-1011. [PMID: 35595643 DOI: 10.1016/j.tim.2022.04.003] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Revised: 03/30/2022] [Accepted: 04/11/2022] [Indexed: 10/18/2022]
Abstract
Microbiome breeding is a new artificial selection technique that seeks to change the genetic composition of microbiomes in order to benefit plant or animal hosts. Recent experimental and theoretical analyses have shown that microbiome breeding is possible whenever microbiome-encoded genetic factors affect host traits (e.g., health) and microbiomes are transmissible between hosts with sufficient fidelity, such as during natural microbiome transmission between individuals of social animals, or during experimental microbiome transplanting between plants. To address misunderstandings that stymie microbiome-breeding programs, we (i) clarify and visualize the corresponding elements of microbiome selection and standard selection; (ii) elucidate the eco-evolutionary processes underlying microbiome selection within a quantitative genetic framework to summarize practical guidelines that optimize microbiome breeding; and (iii) characterize the kinds of host species most amenable to microbiome breeding.
Collapse
Affiliation(s)
- Ulrich G Mueller
- Department of Integrative Biology, University of Texas at Austin, Austin, TX 78712, USA.
| | - Timothy A Linksvayer
- Department of Biological Sciences, Texas Tech University, Lubbock, TX 79409, USA.
| |
Collapse
|
11
|
Manriquez B, Muller D, Prigent-Combaret C. Experimental Evolution in Plant-Microbe Systems: A Tool for Deciphering the Functioning and Evolution of Plant-Associated Microbial Communities. Front Microbiol 2021; 12:619122. [PMID: 34025595 PMCID: PMC8137971 DOI: 10.3389/fmicb.2021.619122] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2020] [Accepted: 03/29/2021] [Indexed: 12/22/2022] Open
Abstract
In natural environments, microbial communities must constantly adapt to stressful environmental conditions. The genetic and phenotypic mechanisms underlying the adaptive response of microbial communities to new (and often complex) environments can be tackled with a combination of experimental evolution and next generation sequencing. This combination allows to analyse the real-time evolution of microbial populations in response to imposed environmental factors or during the interaction with a host, by screening for phenotypic and genotypic changes over a multitude of identical experimental cycles. Experimental evolution (EE) coupled with comparative genomics has indeed facilitated the monitoring of bacterial genetic evolution and the understanding of adaptive evolution processes. Basically, EE studies had long been done on single strains, allowing to reveal the dynamics and genetic targets of natural selection and to uncover the correlation between genetic and phenotypic adaptive changes. However, species are always evolving in relation with other species and have to adapt not only to the environment itself but also to the biotic environment dynamically shaped by the other species. Nowadays, there is a growing interest to apply EE on microbial communities evolving under natural environments. In this paper, we provide a non-exhaustive review of microbial EE studies done with systems of increasing complexity (from single species, to synthetic communities and natural communities) and with a particular focus on studies between plants and plant-associated microorganisms. We highlight some of the mechanisms controlling the functioning of microbial species and their adaptive responses to environment changes and emphasize the importance of considering bacterial communities and complex environments in EE studies.
Collapse
Affiliation(s)
| | | | - Claire Prigent-Combaret
- UMR 5557 Ecologie Microbienne, VetAgro Sup, CNRS, INRAE, University of Lyon, Université Claude Bernard Lyon 1, Villeurbanne, France
| |
Collapse
|
12
|
Barraclough TG. Evolution: Groundhog Day for a Lab Bacterium. Curr Biol 2020; 30:R1484-R1486. [DOI: 10.1016/j.cub.2020.10.019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
13
|
Chaos may lurk under a cloak of neutrality. Proc Natl Acad Sci U S A 2020; 117:16104-16106. [PMID: 32601229 DOI: 10.1073/pnas.2010120117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
|
14
|
Prosser JI, Martiny JBH. Conceptual challenges in microbial community ecology. Philos Trans R Soc Lond B Biol Sci 2020; 375:20190241. [PMID: 32200750 DOI: 10.1098/rstb.2019.0241] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Affiliation(s)
- James I Prosser
- School of Biological Sciences, University of Aberdeen, Cruickshank Building, St Machar Drive, Aberdeen AB24 3UU, UK
| | - Jennifer B H Martiny
- Department of Ecology and Evolutionary Biology, University of California, Irvine, CA, USA
| |
Collapse
|