1
|
Nosil P, Gompert Z, Funk DJ. Divergent dynamics of sexual and habitat isolation at the transition between stick insect populations and species. Nat Commun 2024; 15:2273. [PMID: 38480699 PMCID: PMC10937975 DOI: 10.1038/s41467-024-46294-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Accepted: 02/22/2024] [Indexed: 03/17/2024] Open
Abstract
Speciation is often viewed as a continuum along which populations diverge until they become reproductively-isolated species. However, such divergence may be heterogeneous, proceeding in fits and bursts, rather than being uniform and gradual. We show in Timema stick insects that one component of reproductive isolation evolves non-uniformly across this continuum, whereas another does not. Specifically, we use thousands of host-preference and mating trials to study habitat and sexual isolation among 42 pairs of taxa spanning a range of genomic differentiation and divergence time. We find that habitat isolation is uncoupled from genomic differentiation within species, but accumulates linearly with it between species. In contrast, sexual isolation accumulates linearly across the speciation continuum, and thus exhibits similar dynamics to morphological traits not implicated in reproductive isolation. The results show different evolutionary dynamics for different components of reproductive isolation and highlight a special relevance for species status in the process of speciation.
Collapse
Affiliation(s)
- Patrik Nosil
- CEFE, Univ Montpellier, CNRS, EPHE, IRD, Montpellier, France
| | | | - Daniel J Funk
- Department of Biological Sciences, Vanderbilt University, Nashville, TN, USA.
| |
Collapse
|
2
|
Nosil P, Feder JL, Gompert Z. Biodiversity, resilience and the stability of evolutionary systems. Curr Biol 2021; 31:R1149-R1153. [PMID: 34637720 DOI: 10.1016/j.cub.2021.01.022] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Various macro-evolutionary phenomena, such as long-term stability punctuated by bursts of evolution, are difficult to explain via the micro-evolutionary process of weak selection acting steadily on individual mutations. In contrast, bursts of change are expected if evolutionary systems are complex and balanced, with occasional disruption of balance. Such disruption represents the collapse of resilience, akin to the snapping of an elastic band. It can be driven by external factors, or by self-propagating feedback loops internal to a system. Thus, evolutionary resilience could help explain how evolution generates broader patterns of biodiversity. We outline evidence and tests for this hypothesis, which emphasizes the processes balancing evolution, as urged fifty years ago in ecological genetics and via modern results in a range of systems.
Collapse
Affiliation(s)
- Patrik Nosil
- CEFE, Univ. Montpellier, CNRS, EPHE, IRD, Univ Paul Valery Montpellier 3, Montpellier, 34293, France; Department of Biology, Utah State University, Logan, UT 84322, USA.
| | - Jeffrey L Feder
- Department of Biological Sciences, University of Notre Dame, Notre Dame, IN 46556, USA
| | | |
Collapse
|
3
|
White NJ, Butlin RK. Multidimensional divergent selection, local adaptation, and speciation. Evolution 2021; 75:2167-2178. [PMID: 34263939 DOI: 10.1111/evo.14312] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2020] [Revised: 06/29/2021] [Accepted: 07/05/2021] [Indexed: 12/24/2022]
Abstract
Divergent selection applied to one or more traits drives local adaptation and may lead to ecological speciation. Divergent selection on many traits might be termed "multidimensional" divergent selection. There is a commonly held view that multidimensional divergent selection is likely to promote local adaptation and speciation to a greater extent than unidimensional divergent selection. We disentangle the core concepts underlying dimensionality as a property of the environment, phenotypes, and genome. In particular, we identify a need to separate the overall strength of selection and the number of loci affected from dimensionality per se, and to distinguish divergence dimensionality from dimensionality of stabilizing selection. We then critically scrutinize this commonly held view that multidimensional selection promotes speciation, re-examining the evidence base from theory, experiments, and nature. We conclude that the evidence base is currently weak and generally suffers from confounding of possible causal effects. Finally, we propose several mechanisms by which multidimensional divergent selection and related processes might influence divergence, both as a driver and as a barrier.
Collapse
Affiliation(s)
- Nathan J White
- Department of Animal and Plant Sciences, University of Sheffield, Sheffield, S10 2TN, United Kingdom
| | - Roger K Butlin
- Department of Animal and Plant Sciences, University of Sheffield, Sheffield, S10 2TN, United Kingdom.,Department of Marine Sciences, University of Gothenburg, Gothenburg, SE-40530, Sweden
| |
Collapse
|
4
|
Rodríguez RL, Wood TK, Stearns FW, Snyder RL, Tilmon KJ, Cast MS, Hunt RE, Cocroft RB. Adaptation without Specialization Early in a Host Shift. Am Nat 2021; 198:333-346. [PMID: 34403320 DOI: 10.1086/715629] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
AbstractStudents of speciation debate the role of performance trade-offs across different environments early in speciation. We tested for early performance trade-offs with a host shift experiment using a member of the Enchenopa binotata species complex of treehoppers (Hemiptera: Membracidae). In this clade of plant-feeding insects, different species live on different host plants and exhibit strong behavioral and physiological host specialization. After five generations, the experimental host shifts resulted either in no adaptation or in adaptation without specialization. The latter result was more likely in sympatry; in allopatry, populations on novel host plants were more likely to become extinct. We conclude that in the early stages of speciation, adaptation to novel host plants does not necessarily bring about performance trade-offs on ancestral environments. Adaptation may be facilitated rather than hindered by gene flow, which prevents extinction. Additional causes of specialization and assortative mating may be required if colonization of novel environments is to result in speciation.
Collapse
|
5
|
Brachmann MK, Parsons K, Skúlason S, Ferguson MM. The interaction of resource use and gene flow on the phenotypic divergence of benthic and pelagic morphs of Icelandic Arctic charr ( Salvelinus alpinus). Ecol Evol 2021; 11:7315-7334. [PMID: 34188815 PMCID: PMC8216915 DOI: 10.1002/ece3.7563] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2020] [Revised: 02/09/2021] [Accepted: 03/02/2021] [Indexed: 12/11/2022] Open
Abstract
Conceptual models of adaptive divergence and ecological speciation in sympatry predict differential resource use, phenotype-environment correlations, and reduced gene flow among diverging phenotypes. While these predictions have been assessed in past studies, connections among them have rarely been assessed collectively. We examined relationships among phenotypic, ecological, and genetic variation in Arctic charr (Salvelinus alpinus) from six Icelandic localities that have undergone varying degrees of divergence into sympatric benthic and pelagic morphs. We characterized morphological variation with geometric morphometrics, tested for differential resource use between morphs using stable isotopes, and inferred the amount of gene flow from single nucleotide polymorphisms. Analysis of stable isotopic signatures indicated that sympatric morphs showed similar difference in resource use across populations, likely arising from the common utilization of niche space within each population. Carbon isotopic signature was also a significant predictor of individual variation in body shape and size, suggesting that variation in benthic and pelagic resource use is associated with phenotypic variation. The estimated percentage of hybrids between sympatric morphs varied across populations (from 0% to 15.6%) but the majority of fish had genotypes (ancestry coefficients) characteristic of pure morphs. Despite evidence of reduced gene flow between sympatric morphs, we did not detect the expected negative relationship between divergence in resource use and gene flow. Three lakes showed the expected pattern, but morphs in the fourth showed no detectable hybridization and had relatively low differences in resource use between them. This coupled with the finding that resource use and genetic differentiation had differential effects on body shape variation across populations suggests that reproductive isolation maintains phenotypic divergence between benthic and pelagic morphs when the effects of resource use are relatively low. Our ability to assess relationships between phenotype, ecology, and genetics deepens our understanding of the processes underlying adaptive divergence in sympatry.
Collapse
Affiliation(s)
| | - Kevin Parsons
- Institute of Biodiversity, Animal Health and Comparative MedicineSchool of Life ScienceUniversity of GlasgowGlasgowUK
| | - Skúli Skúlason
- Department of Aquaculture and Fish BiologyHólar UniversitySaudárkrókurIceland
- Icelandic Museum of Natural HistoryReykjavíkIceland
| | | |
Collapse
|
6
|
Kulmuni J, Butlin RK, Lucek K, Savolainen V, Westram AM. Towards the completion of speciation: the evolution of reproductive isolation beyond the first barriers. Philos Trans R Soc Lond B Biol Sci 2020; 375:20190528. [PMID: 32654637 PMCID: PMC7423269 DOI: 10.1098/rstb.2019.0528] [Citation(s) in RCA: 51] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/21/2020] [Indexed: 12/12/2022] Open
Abstract
Speciation, that is, the evolution of reproductive barriers eventually leading to complete isolation, is a crucial process generating biodiversity. Recent work has contributed much to our understanding of how reproductive barriers begin to evolve, and how they are maintained in the face of gene flow. However, little is known about the transition from partial to strong reproductive isolation (RI) and the completion of speciation. We argue that the evolution of strong RI is likely to involve different processes, or new interactions among processes, compared with the evolution of the first reproductive barriers. Transition to strong RI may be brought about by changing external conditions, for example, following secondary contact. However, the increasing levels of RI themselves create opportunities for new barriers to evolve and, and interaction or coupling among barriers. These changing processes may depend on genomic architecture and leave detectable signals in the genome. We outline outstanding questions and suggest more theoretical and empirical work, considering both patterns and processes associated with strong RI, is needed to understand how speciation is completed. This article is part of the theme issue 'Towards the completion of speciation: the evolution of reproductive isolation beyond the first barriers'.
Collapse
Affiliation(s)
- Jonna Kulmuni
- Organismal and Evolutionary Biology, University of Helsinki, Finland
| | - Roger K. Butlin
- Department of Animal and Plant Sciences, University of Sheffield, Sheffield S10 2TN, UK
- Department of Marine Sciences, University of Gothenburg, 405 30 Gothenburg, Sweden
| | - Kay Lucek
- Department of Environmental Sciences, University of Basel, 4056 Basel, Switzerland
| | - Vincent Savolainen
- Department of Life Sciences, Imperial College London, Silwood Park Campus, Ascot SL5 7PY, UK
| | | |
Collapse
|
7
|
Muschick M, Soria-Carrasco V, Feder JL, Gompert Z, Nosil P. Adaptive zones shape the magnitude of premating reproductive isolation in Timema stick insects. Philos Trans R Soc Lond B Biol Sci 2020; 375:20190541. [PMID: 32654646 DOI: 10.1098/rstb.2019.0541] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
Simpson's fossil-record inspired model of 'adaptive zones' proposes that evolution is dominated by small fluctuations within adaptive zones, occasionally punctuated by larger shifts between zones. This model can help explain why the process of population divergence often results in weak or moderate reproductive isolation (RI), rather than strong RI and distinct species. Applied to the speciation process, the adaptive zones hypothesis makes two inter-related predictions: (i) large shifts between zones are relatively rare, (ii) when large shifts do occur they generate stronger RI than shifts within zones. Here, we use ecological, phylogenetic and behavioural data to test these predictions in Timema stick insects. We show that host use in Timema is dominated by moderate shifts within the systematic divisions of flowering plants and conifers, with only a few extreme shifts between these divisions. However, when extreme shifts occur, they generate greater RI than do more moderate shifts. Our results support the adaptive zones model, and suggest that the net contribution of ecological shifts to diversification is dependent on both their magnitude and frequency. We discuss the generality of our findings in the light of emerging evidence from diverse taxa that the evolution of RI is not always the only factor determining the origin of species diversity. This article is part of the theme issue 'Towards the completion of speciation: the evolution of reproductive isolation beyond the first barriers'.
Collapse
Affiliation(s)
- Moritz Muschick
- Department of Animal and Plant Sciences, University of Sheffield, Sheffield S10 2TN, UK.,Department of Fish Ecology and Evolution, Eawag, Swiss Federal Institute for Aquatic Science and Technology, 6047 Kastanienbaum, Switzerland.,Aquatic Ecology and Evolution, Institute of Ecology and Evolution, University of Bern, 3012 Bern, Switzerland
| | - Víctor Soria-Carrasco
- Department of Animal and Plant Sciences, University of Sheffield, Sheffield S10 2TN, UK.,Department of Crop Genetics, John Innes Centre, Norwich Research Park, Norwich NR4 7UH, UK
| | - Jeffrey L Feder
- Department of Biological Sciences, University of Notre Dame, Notre Dame, IN 46556, USA
| | - Zach Gompert
- Department of Biology, Utah State University, Logan, UT 84322, USA
| | - Patrik Nosil
- Department of Animal and Plant Sciences, University of Sheffield, Sheffield S10 2TN, UK.,Center for Evolution and Functional Ecology, CNRS, 34000 Montpellier, France
| |
Collapse
|