1
|
Zhao R, Wang J, Chung SK, Xu B. New insights into anti-depression effects of bioactive phytochemicals. Pharmacol Res 2024:107566. [PMID: 39746497 DOI: 10.1016/j.phrs.2024.107566] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/18/2024] [Revised: 12/04/2024] [Accepted: 12/23/2024] [Indexed: 01/04/2025]
Abstract
Depression is one of the most common psychological disorders, and due to its high prevalence and mortality rates, it imposes a significant disease burden. Contemporary treatments for depression involve various synthetic drugs, which have limitations such as side effects, single targets, and slow onset of action. Unlike synthetic medications, phytochemicals offer the benefits of a multi-target and multi-pathway mode of treatment for depression. In this literature review, we describe the pharmacological actions, experimental models, and clinical trials of the antidepressant effects of various phytochemicals. Additionally, we summarize the potential mechanisms by which these phytochemicals prevent depression, including regulating neurotransmitters and their receptors, the HPA axis, inflammatory responses, managing oxidative stress, neuroplasticity, and the gut microbiome. Phytochemicals exert therapeutic effects through multiple pathways and targets, making traditional Chinese medicine (TCM) a promising adjunctive antidepressant for the prevention, alleviation, and treatment of depression. Therefore, this review aims to provide robust evidence for subsequent research into developing phytochemical resources as effective antidepressant agents.
Collapse
Affiliation(s)
- Ruohan Zhao
- Food Science and Technology Program, Department of Life Sciences, BNU-HKBU United International College, Zhuhai, Guangdong 519087, China
| | - Jingwen Wang
- Food Science and Technology Program, Department of Life Sciences, BNU-HKBU United International College, Zhuhai, Guangdong 519087, China
| | - Sookja Kim Chung
- Faculty of Medicine, Macau University of Science and Technology, Macau, China.
| | - Baojun Xu
- Food Science and Technology Program, Department of Life Sciences, BNU-HKBU United International College, Zhuhai, Guangdong 519087, China.
| |
Collapse
|
2
|
Feng LS, Wang YM, Liu H, Ning B, Yu HB, Li SL, Wang YT, Zhao MJ, Ma J. Hyperactivity in the Hypothalamic-Pituitary-Adrenal Axis: An Invisible Killer for Anxiety and/or Depression in Coronary Artherosclerotic Heart Disease. J Integr Neurosci 2024; 23:222. [PMID: 39735967 DOI: 10.31083/j.jin2312222] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Revised: 09/20/2024] [Accepted: 09/26/2024] [Indexed: 12/31/2024] Open
Abstract
The coexistence of anxiety or depression with coronary heart disease (CHD) is a significant clinical challenge in cardiovascular medicine. Recent studies have indicated that hypothalamic-pituitary-adrenal (HPA) axis activity could be a promising focus in understanding and addressing the development of treatments for comorbid CHD and anxiety or depression. The HPA axis helps to regulate the levels of inflammatory factors, thereby reducing oxidative stress damage, promoting platelet activation, and stabilizing gut microbiota, which enhance the survival and regeneration of neurons, endothelial cells, and other cell types, leading to neuroprotective and cardioprotective benefits. This review addresses the relevance of the HPA axis to the cardiovascular and nervous systems, as well as the latest research advancements regarding its mechanisms of action. The discussion includes a detailed function of the HPA axis in regulating the processes mentioned. Above all, it summarizes the therapeutic potential of HPA axis function as a biomarker for coronary atherosclerotic heart disease combined with anxiety or depression.
Collapse
Affiliation(s)
- Lan-Shuan Feng
- First Clinical Medical College, Shaanxi University of Chinese Medicine, 712046 Xianyang, Shaanxi, China
| | - Yi-Ming Wang
- First Clinical Medical College, Shaanxi University of Chinese Medicine, 712046 Xianyang, Shaanxi, China
| | - Huan Liu
- First Clinical Medical College, Shaanxi University of Chinese Medicine, 712046 Xianyang, Shaanxi, China
- The Department of Traditional Chinese Medicine, the First Affiliated Hospital of the Air Force Military Medical University, 710038 Xi'an, Shaanxi, China
| | - Bo Ning
- First Clinical Medical College, Shaanxi University of Chinese Medicine, 712046 Xianyang, Shaanxi, China
| | - Hu-Bin Yu
- First Clinical Medical College, Shaanxi University of Chinese Medicine, 712046 Xianyang, Shaanxi, China
| | - Shi-Lin Li
- First Clinical Medical College, Shaanxi University of Chinese Medicine, 712046 Xianyang, Shaanxi, China
| | - Yu-Ting Wang
- First Clinical Medical College, Shaanxi University of Chinese Medicine, 712046 Xianyang, Shaanxi, China
- Department of Cardiology, Affiliated Hospital of Shaanxi University of Chinese Medicine, 712000 Xianyang, Shaanxi, China
| | - Ming-Jun Zhao
- First Clinical Medical College, Shaanxi University of Chinese Medicine, 712046 Xianyang, Shaanxi, China
- Department of Cardiology, Affiliated Hospital of Shaanxi University of Chinese Medicine, 712000 Xianyang, Shaanxi, China
| | - Jing Ma
- First Clinical Medical College, Shaanxi University of Chinese Medicine, 712046 Xianyang, Shaanxi, China
- The Department of Traditional Chinese Medicine, the First Affiliated Hospital of the Air Force Military Medical University, 710038 Xi'an, Shaanxi, China
| |
Collapse
|
3
|
Millanes PM, Pérez-Rodríguez L, Rubalcaba JG, Gil D, Jimeno B. Corticosterone and glucose are correlated and show similar response patterns to temperature and stress in a free-living bird. J Exp Biol 2024; 227:jeb246905. [PMID: 38949462 PMCID: PMC11418182 DOI: 10.1242/jeb.246905] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Accepted: 06/24/2024] [Indexed: 07/02/2024]
Abstract
Glucocorticoid (GC) hormones have traditionally been interpreted as indicators of stress, but the extent to which they provide information on physiological state remains debated. GCs are metabolic hormones that amongst other functions ensure increasing fuel (i.e. glucose) supply on the face of fluctuating energetic demands, a role often overlooked by ecological studies investigating the consequences of GC variation. Furthermore, because energy budget is limited, in natural contexts where multiple stimuli coexist, the organisms' ability to respond physiologically may be constrained when multiple triggers of metabolic responses overlap in time. Using free-living spotless starling (Sturnus unicolor) chicks, we experimentally tested whether two stimuli of different nature known to trigger a metabolic or GC response, respectively, cause a comparable increase in plasma GCs and glucose. We further tested whether response patterns differed when both stimuli occurred consecutively. We found that both experimental treatments caused increases in GCs and glucose of similar magnitude, suggesting that both variables fluctuate along with variation in energy expenditure, independently of the trigger. Exposure to the two stimuli occurring subsequently did not cause a difference in GC or glucose responses compared with exposure to a single stimulus, suggesting a limited capacity to respond to an additional stimulus during an ongoing acute response. Lastly, we found a positive and significant correlation between plasma GCs and glucose after the experimental treatments. Our results add to the increasing research on the role of energy expenditure on GC variation, by providing experimental evidence on the association between plasma GCs and energy metabolism.
Collapse
Affiliation(s)
- Paola M. Millanes
- Departamento de Biología y Geología, Física y Química Inorgánica, Universidad Rey Juan Carlos, 28933 Móstoles, Madrid, Spain
| | - Lorenzo Pérez-Rodríguez
- Instituto de Investigación en Recursos Cinegéticos (IREC), CSIC-UCLM-JCCM, Ronda de Toledo 12, 13005 Ciudad Real, Spain
| | - Juan G. Rubalcaba
- Departamento de Biología y Geología, Física y Química Inorgánica, Universidad Rey Juan Carlos, 28933 Móstoles, Madrid, Spain
- Department of Biodiversity, Ecology and Evolution, Faculty of Biological Sciences. Complutense University of Madrid, José Antonio Novais, 12, 28040 Madrid, Spain
| | - Diego Gil
- Department of Evolutionary Ecology, Museo Nacional de Ciencias Naturales (MNCN-CSIC), José Gutiérrez Abascal, 2, 28006 Madrid, Spain
| | - Blanca Jimeno
- Instituto de Investigación en Recursos Cinegéticos (IREC), CSIC-UCLM-JCCM, Ronda de Toledo 12, 13005 Ciudad Real, Spain
- Pyrenean Institute of Ecology (IPE-CSIC), Avda Nuestra Señora de la Victoria, s/n, 22700 Jaca, Huesca, Spain
| |
Collapse
|
4
|
Jimeno B, Rubalcaba JG. Modelling the role of glucocorticoid receptor as mediator of endocrine responses to environmental challenge. Philos Trans R Soc Lond B Biol Sci 2024; 379:20220501. [PMID: 38310935 PMCID: PMC10838647 DOI: 10.1098/rstb.2022.0501] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Accepted: 10/03/2023] [Indexed: 02/06/2024] Open
Abstract
Glucocorticoid hormones (GCs) modulate acute 'stress' responses in vertebrates, exerting their actions across many physiological systems to help the organism face and overcome challenges. These actions take place via binding to the glucocorticoid receptor (GR), which determines not only the magnitude of the GC-mediated physiological response but also the negative feedback that downregulates GCs to restore homeostasis. Although GR function is assumed to determine GC regulation capacity, the associations between GR abundance and individuals' coping abilities remain cryptic. We developed a dynamic model fitted to empirical data to predict the effects of GR abundance on both plasma GC response patterns and the magnitude of GC-mediated physiological response. Individuals with higher GRs showed lower GC exposure, stronger physiological responses and greater capacity to adjust this response according to stressor intensity, which may be translated into more resilient and flexible GC phenotypes. Our results also show that among-individual variability in GR abundance challenges the detectability of the association between plasma GC measurements and physiological responses. Our approach provides mechanistic insights into the role of GRs in plasma GC measurements and function, which point at GR abundance fundamentally driving complex features of the GC regulation system in the face of environmental change. This article is part of the theme issue 'Endocrine responses to environmental variation: conceptual approaches and recent developments'.
Collapse
Affiliation(s)
- Blanca Jimeno
- Instituto Pirenaico de Ecologia (IPE), CSIC, Avda. Nuestra Señora de la Victoria 16, 22700, Jaca, Spain
| | - Juan G. Rubalcaba
- Departamento de Biodiversidad, Ecología y Evolución, Facultad CC Biológicas, Universidad Complutense de Madrid, José Antonio Nováis 12, 28040, Madrid, Spain
| |
Collapse
|
5
|
Little AG, Seebacher F. Endocrine responses to environmental variation. Philos Trans R Soc Lond B Biol Sci 2024; 379:20220515. [PMID: 38310937 PMCID: PMC10838640 DOI: 10.1098/rstb.2022.0515] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Accepted: 11/24/2023] [Indexed: 02/06/2024] Open
Abstract
Hormones regulate most physiological functions and life history from embryonic development to reproduction. In addition to their roles in growth and development, hormones also mediate responses to the abiotic, social and nutritional environments. Hormone signalling is responsive to environmental changes to adjust phenotypes to prevailing conditions. Both hormone levels and receptor densities can change to provide a flexible system of regulation. Endocrine flexibility connects the environment to organismal function, and it is central to understanding environmental impacts and their effect on individuals and populations. Hormones may also act as a 'sensor' to link environmental signals to epigenetic processes and thereby effect phenotypic plasticity within and across generations. Many environmental parameters are now changing in unprecedented ways as a result of human activity. The knowledge base of organism-environmental interactions was established in environments that differ in many ways from current conditions as a result of ongoing human impacts. It is an urgent contemporary challenge to understand how evolved endocrine responses will modulate phenotypes in response to anthropogenic environmental impacts including climate change, light-at-night and chemical pollution. Endocrine responses play a central role in ecology, and their integration into conservation can lead to more effective outcomes. This article is part of the theme issue 'Endocrine responses to environmental variation: conceptual approaches and recent developments'.
Collapse
Affiliation(s)
- Alexander G. Little
- Department of Biology, Life Sciences Building, McMaster University, Hamilton, Ontario, Canada L8S 4K1
| | - Frank Seebacher
- School of Life and Environmental Sciences A08, University of Sydney, Sydney, New South Wales 2006, Australia
| |
Collapse
|