1
|
Bestion E, Legrand D, Baines CB, Bonte D, Coulon A, Dahirel M, Delgado M, Deshpande JN, Duncan AB, Fronhofer EA, Gounand I, Jacob S, Kaltz O, Massol F, Mathyssen E, Parmentier T, Saade C, Schtickzelle N, Zilio G, Cote J. Species interactions affect dispersal: a meta-analysis. Philos Trans R Soc Lond B Biol Sci 2024; 379:20230127. [PMID: 38913065 PMCID: PMC11391282 DOI: 10.1098/rstb.2023.0127] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 02/05/2024] [Accepted: 03/06/2024] [Indexed: 06/25/2024] Open
Abstract
Context-dependent dispersal allows organisms to seek and settle in habitats improving their fitness. Despite the importance of species interactions in determining fitness, a quantitative synthesis of how they affect dispersal is lacking. We present a meta-analysis asking (i) whether the interaction experienced and/or perceived by a focal species (detrimental interaction with predators, competitors, parasites or beneficial interaction with resources, hosts, mutualists) affects its dispersal; and (ii) how the species' ecological and biological background affects the direction and strength of this interaction-dependent dispersal. After a systematic search focusing on actively dispersing species, we extracted 397 effect sizes from 118 empirical studies encompassing 221 species pairs; arthropods were best represented, followed by vertebrates, protists and others. Detrimental species interactions increased the focal species' dispersal (adjusted effect: 0.33 [0.06, 0.60]), while beneficial interactions decreased it (-0.55 [-0.92, -0.17]). The effect depended on the dispersal phase, with detrimental interactors having opposite impacts on emigration and transience. Interaction-dependent dispersal was negatively related to species' interaction strength, and depended on the global community composition, with cues of presence having stronger effects than the presence of the interactor and the ecological complexity of the community. Our work demonstrates the importance of interspecific interactions on dispersal plasticity, with consequences for metacommunity dynamics.This article is part of the theme issue 'Diversity-dependence of dispersal: interspecific interactions determine spatial dynamics'.
Collapse
Affiliation(s)
- Elvire Bestion
- Station d'Ecologie Théorique et Expérimentale, CNRS, UAR 2029, Moulis 09200, France
| | - Delphine Legrand
- Station d'Ecologie Théorique et Expérimentale, CNRS, UAR 2029, Moulis 09200, France
| | - Celina B Baines
- Department of Ecology and Evolutionary Biology, University of Toronto, 25 Willcocks Street, Toronto, Canada M5S 3B2
| | - Dries Bonte
- Terrestrial Ecology Unit (TEREC), Department of Biology, Ghent University, K.L. Ledeganckstraat 35, Ghent 9000, Belgium
| | - Aurelie Coulon
- Centre d'Ecologie et des Sciences de la Conservation (CESCO), MNHN, CNRS, Sorbonne University, Paris, Concarneau 75005, France
- Centre d'Ecologie Fonctionelle et Evolutive (CEFE), University of Montpellier, CNRS, Montpellier 34293, France
| | - Maxime Dahirel
- Terrestrial Ecology Unit (TEREC), Department of Biology, Ghent University, K.L. Ledeganckstraat 35, Ghent 9000, Belgium
| | - María Delgado
- Biodiversity Research Institute (IMIB), CSIC/UO/PA, Campus de Mieres, Edificio de Investigación, Mieres, Asturias 33600, Spain
| | - Jhelam N Deshpande
- ISEM, Université de Montpellier, CNRS, IRD, EPHE, Montpellier 34095, France
| | - Alison B Duncan
- ISEM, Université de Montpellier, CNRS, IRD, EPHE, Montpellier 34095, France
| | | | - Isabelle Gounand
- Institut d'écologie et des sciences de l'environnement (iEES Paris), Sorbonne Université, CNRS, UPEC, CNRS, IRD, INRA, Paris 75005, France
| | - Staffan Jacob
- Station d'Ecologie Théorique et Expérimentale, CNRS, UAR 2029, Moulis 09200, France
| | - Oliver Kaltz
- ISEM, Université de Montpellier, CNRS, IRD, EPHE, Montpellier 34095, France
| | - François Massol
- Institut Pasteur de Lille, University Lille, CNRS, Inserm, CHU Lille, U1019 - UMR 9017 - CIIL - Center for Infection and Immunity of Lille, Lille 59019, France
| | | | - Thomas Parmentier
- Terrestrial Ecology Unit (TEREC), Department of Biology, Ghent University, K.L. Ledeganckstraat 35, Ghent 9000, Belgium
- Research Unit of Environmental and Evolutionary Biology, Namur Institute of Complex Systems, and Institute of Life, Earth, and the Environment, University of Namur, Rue de Bruxelles 61, Namur 5000, Belgium
| | - Camille Saade
- ISEM, Université de Montpellier, CNRS, IRD, EPHE, Montpellier 34095, France
| | | | - Giacomo Zilio
- Centre d'Ecologie Fonctionelle et Evolutive (CEFE), University of Montpellier, CNRS, Montpellier 34293, France
- ISEM, Université de Montpellier, CNRS, IRD, EPHE, Montpellier 34095, France
| | - Julien Cote
- Centre de Recherche sur la Biodiversité et l'Environnement (CRBE), UMR 5300 CNRS-IRD-TINP-UT3, Université Toulouse III - Paul Sabatier, Bât. 4R1, 118 route de Narbonne, Toulouse 31062, France
| |
Collapse
|
2
|
Fronhofer EA, Bonte D, Bestion E, Cote J, Deshpande JN, Duncan AB, Hovestadt T, Kaltz O, Keith SA, Kokko H, Legrand D, Malusare SP, Parmentier T, Saade C, Schtickzelle N, Zilio G, Massol F. Evolutionary ecology of dispersal in biodiverse spatially structured systems: what is old and what is new? Philos Trans R Soc Lond B Biol Sci 2024; 379:20230142. [PMID: 38913061 PMCID: PMC11391287 DOI: 10.1098/rstb.2023.0142] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 03/14/2024] [Accepted: 05/01/2024] [Indexed: 06/25/2024] Open
Abstract
Dispersal is a well-recognized driver of ecological and evolutionary dynamics, and simultaneously an evolving trait. Dispersal evolution has traditionally been studied in single-species metapopulations so that it remains unclear how dispersal evolves in metacommunities and metafoodwebs, which are characterized by a multitude of species interactions. Since most natural systems are both species-rich and spatially structured, this knowledge gap should be bridged. Here, we discuss whether knowledge from dispersal evolutionary ecology established in single-species systems holds in metacommunities and metafoodwebs and we highlight generally valid and fundamental principles. Most biotic interactions form the backdrop to the ecological theatre for the evolutionary dispersal play because interactions mediate patterns of fitness expectations across space and time. While this allows for a simple transposition of certain known principles to a multispecies context, other drivers may require more complex transpositions, or might not be transferred. We discuss an important quantitative modulator of dispersal evolution-increased trait dimensionality of biodiverse meta-systems-and an additional driver: co-dispersal. We speculate that scale and selection pressure mismatches owing to co-dispersal, together with increased trait dimensionality, may lead to a slower and more 'diffuse' evolution in biodiverse meta-systems. Open questions and potential consequences in both ecological and evolutionary terms call for more investigation. This article is part of the theme issue 'Diversity-dependence of dispersal: interspecific interactions determine spatial dynamics'.
Collapse
Affiliation(s)
- Emanuel A Fronhofer
- ISEM, University of Montpellier, CNRS, IRD, EPHE , Montpellier 34095, France
| | - Dries Bonte
- Terrestrial Ecology Unit (TEREC), Department of Biology, Ghent University, K.L. Ledeganckstraat 35 , Ghent B-9000, Belgium
| | - Elvire Bestion
- Station d'Ecologie Théorique et Expérimentale, CNRS, UAR 2029 , Moulis F-09200, France
| | - Julien Cote
- Laboratoire Évolution & Diversité Biologique, CNRS, Université Toulouse III Paul Sabatier, IRD, UMR 5174, 118 route de Narbonne , Toulouse F-31062, France
| | - Jhelam N Deshpande
- ISEM, University of Montpellier, CNRS, IRD, EPHE , Montpellier 34095, France
| | - Alison B Duncan
- ISEM, University of Montpellier, CNRS, IRD, EPHE , Montpellier 34095, France
| | - Thomas Hovestadt
- Department Animal Ecology and Tropical Biology, Biozentrum, University of Würzburg , Würzburg 97074, Germany
| | - Oliver Kaltz
- ISEM, University of Montpellier, CNRS, IRD, EPHE , Montpellier 34095, France
| | - Sally A Keith
- Lancaster Environment Centre, Lancaster University , Lancaster LA1 4YQ, UK
| | - Hanna Kokko
- Institute of Organismic and Molecular Evolution, Johannes Gutenberg University , Mainz 55128, Germany
| | - Delphine Legrand
- Station d'Ecologie Théorique et Expérimentale, CNRS, UAR 2029 , Moulis F-09200, France
| | - Sarthak P Malusare
- ISEM, University of Montpellier, CNRS, IRD, EPHE , Montpellier 34095, France
| | - Thomas Parmentier
- Terrestrial Ecology Unit (TEREC), Department of Biology, Ghent University, K.L. Ledeganckstraat 35 , Ghent B-9000, Belgium
- Research Unit of Environmental and Evolutionary Biology, Namur Institute of Complex Systems, and Institute of Life, Earth, and the Environment, University of Namur , Namur 5000, Belgium
| | - Camille Saade
- ISEM, University of Montpellier, CNRS, IRD, EPHE , Montpellier 34095, France
| | | | - Giacomo Zilio
- ISEM, University of Montpellier, CNRS, IRD, EPHE , Montpellier 34095, France
| | - François Massol
- Institut Pasteur de Lille, Univ. Lille, CNRS, Inserm, CHU Lille, U1019 - UMR 9017 - CIIL - Center for Infection and Immunity of Lille , Lille 59000, France
| |
Collapse
|
3
|
Bonte D, Keith S, Fronhofer EA. Species interactions and eco-evolutionary dynamics of dispersal: the diversity dependence of dispersal. Philos Trans R Soc Lond B Biol Sci 2024; 379:20230125. [PMID: 38913054 PMCID: PMC11391317 DOI: 10.1098/rstb.2023.0125] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Accepted: 05/07/2024] [Indexed: 06/25/2024] Open
Abstract
Dispersal plays a pivotal role in the eco-evolutionary dynamics of spatially structured populations, communities and ecosystems. As an individual-based trait, dispersal is subject to both plasticity and evolution. Its dependence on conditions and context is well understood within single-species metapopulations. However, species do not exist in isolation; they interact locally through various horizontal and vertical interactions. While the significance of species interactions is recognized for species coexistence and food web functioning, our understanding of their influence on regional dynamics, such as their impact on spatial dynamics in metacommunities and meta-food webs, remains limited. Building upon insights from behavioural and community ecology, we aim to elucidate biodiversity as both a driver and an outcome of connectivity. By synthesizing conceptual, theoretical and empirical contributions from global experts in the field, we seek to explore how a more mechanistic understanding of diversity-dispersal relationships influences the distribution of species in spatially and temporally changing environments. Our findings highlight the importance of explicitly considering interspecific interactions as drivers of dispersal, thus reshaping our understanding of fundamental dynamics including species coexistence and the emergent dynamics of metacommunities and meta-ecosystems. We envision that this initiative will pave the way for advanced forecasting approaches to understanding biodiversity dynamics under the pressures of global change. This article is part of the theme issue 'Diversity-dependence of dispersal: interspecific interactions determine spatial dynamics'.
Collapse
Affiliation(s)
- Dries Bonte
- Department of Biology, Ghent University, K.L. Ledeganckstraat 35 , Gent B-9000, Belgium
| | - Sally Keith
- Lancaster Environment Centre, Lancaster University , Lancaster LA1 4YQ, UK
| | - Emanuel A Fronhofer
- ISEM, University of Montpellier, CNRS, IRD, EPHE , Montpellier 34095, France
| |
Collapse
|