1
|
Wanasinghe WMLA, Xin W, Siliang Y, Qiu D. Polaribacter uvawellassae sp. nov., a Member of the Family Flavobacteriaceae Isolated from Mud Crab (Scylla serrata). Curr Microbiol 2025; 82:186. [PMID: 40069428 DOI: 10.1007/s00284-025-04166-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2024] [Accepted: 02/26/2025] [Indexed: 04/11/2025]
Abstract
A Gram-stain-negative, strictly aerobic, rod-shaped, and no flagella, designated SLMDC-22 T, was isolated from the intestine of a mud crab (Scylla serrata). The molecular phylogenetic analysis based on 16S rRNA gene sequences indicated that strain SLMDC-22 T belonged to the genus Polaribacter and exhibited 96.9% similarity to P. huanghezhanensis, 96.5% to P. pacificus, 95.8% to P. lacunae, and 94.1% to P. marinivivus. The G + C content of the DNA of strain SLMDC-22 T was 30.3%. Growth occurred at 4-34 °C (optimum, 23 °C), at pH 5-9 (optimum, pH 7.0), and with 0.5-2.0% (w/v) NaCl (optimum, 2%). The major fatty acid was iso-C15:0. Major polar lipids include phospholipid, phosphatidylmonomethylethanolamine, phosphatidylethanolamine, amino lipid, glycolipid, amino phospholipid, and an unknown polar lipid. The major respiratory quinone is MK-6. Based on whole-genome analysis, the orthologous average nucleotide identity (ANI) with the two closest relatives, Polaribacter huanghezhanensis and Polaribacter pacificus, were 87.3% and 75.7%, respectively. Furthermore, the digital DNA-DNA hybridization (dDDH) values against Polaribacter huanghezhanensis and Polaribacter pacificus were 75.8% and 19.6%, respectively. Notably, 25 genes of SLMDC-22 T were associated with nitrogen metabolism, including denitrification, nitrate ammonification, ammonium assimilation, and nitrosative stress. The phenotypic, genotypic, phylogenetic, and chemotaxonomic data revealed that strain SLMDC-22 T represents a novel species of the genus Polaribacter, for which the name Polaribacter uvawellassae sp. nov. is proposed. The type strain is SLMDC-22 T (= KCTC 102289 T = MCCC 1K09222T).
Collapse
Affiliation(s)
- W M Lakshani Anuradha Wanasinghe
- National Key Laboratory of Breeding Biotechnology and Sustainable Aquaculture, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
- Department of Animal Science, Faculty of Animal Science and Export Agriculture, Uva Wellassa University of Sri Lanka, Passara Road, Badulla, 90000, Sri Lanka
| | - Wang Xin
- National Key Laboratory of Breeding Biotechnology and Sustainable Aquaculture, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yuan Siliang
- National Key Laboratory of Breeding Biotechnology and Sustainable Aquaculture, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, China
| | - Dongru Qiu
- National Key Laboratory of Breeding Biotechnology and Sustainable Aquaculture, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, China.
| |
Collapse
|
2
|
Lee SY, Rho A, Choi JY, Choi J, Lee BM, Cho BC, Hwang CY. Thalassobellus suaedae gen. nov., sp. nov., a marine bacterium of the family Flavobacteriaceae isolated from a halophyte Suaeda japonica. Int J Syst Evol Microbiol 2025; 75. [PMID: 39937673 DOI: 10.1099/ijsem.0.006663] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/14/2025] Open
Abstract
Two Gram-stain-negative, facultative anaerobic, rod-shaped and non-gliding bacteria, designated as HL-DH10T and HL-DH14, were isolated from the halophyte Suaeda japonica in a mudflat, Republic of Korea. Based on the results of 16S rRNA gene pairwise analysis, the two isolates were the members of the family Flavobacteriaceae, and Aestuariibaculum suncheonense SC17T was the most closely related to strains HL-DH10T and HL-DH14 with 96.3% and 95.4% sequence similarity, respectively. The average nt identity and digital DNA-DNA hybridization values between strains HL-DH10T and HL-DH14 and other related species were all less than 79.2% and 21.9%, respectively. The genomic DNA G+C contents of strains HL-DH10T and HL-DH14 were 32.0% and 31.5%, respectively. Cells of these strains showed optimal growth at 25 °C, pH 6.5-7.0 and 2.5-4.0% (w/v) sea salts. The major respiratory quinone was menaquinone-6. The major cellular fatty acids were iso-C15:0 (14.0-16.0%), iso-C15:1 G (10.0-12.0%), iso-C17:0 3-OH (12.4-13.9%), iso-C15:0 3-OH (11.8-14.9%) and anteiso-C15:0 (9.4-10.6%). The polar lipids consisted of phosphatidylethanolamine, an unidentified aminophospholipid, two to three unidentified aminolipids and three unidentified lipids. The comprehensive phylogenetic, genomic, phenotypic and chemotaxonomic results indicate that strains HL-DH10T and HL-DH14 are considered to represent a novel genus of Flavobacteriaceae. Hence, we propose the novel genus Thalassobellus suaedae gen. nov., sp. nov. The type strain is HL-DH10T (=KCCM 90512T=JCM 36598T).
Collapse
Affiliation(s)
- Su Yeon Lee
- Microbial Oceanography Laboratory, School of Earth and Environmental Sciences and Research Institute of Oceanography, Seoul National University, Seoul 08826, Republic of Korea
| | - Ami Rho
- Microbial Oceanography Laboratory, School of Earth and Environmental Sciences and Research Institute of Oceanography, Seoul National University, Seoul 08826, Republic of Korea
| | - Jy Young Choi
- Microbial Oceanography Laboratory, School of Earth and Environmental Sciences and Research Institute of Oceanography, Seoul National University, Seoul 08826, Republic of Korea
| | - Jaeho Choi
- Microbial Oceanography Laboratory, School of Earth and Environmental Sciences and Research Institute of Oceanography, Seoul National University, Seoul 08826, Republic of Korea
| | - Bo Min Lee
- Microbial Oceanography Laboratory, School of Earth and Environmental Sciences and Research Institute of Oceanography, Seoul National University, Seoul 08826, Republic of Korea
| | - Byung Cheol Cho
- Microbial Oceanography Laboratory, School of Earth and Environmental Sciences and Research Institute of Oceanography, Seoul National University, Seoul 08826, Republic of Korea
| | - Chung Yeon Hwang
- Microbial Oceanography Laboratory, School of Earth and Environmental Sciences and Research Institute of Oceanography, Seoul National University, Seoul 08826, Republic of Korea
| |
Collapse
|
3
|
Manrique-de-la-Cuba MF, Parada-Pozo G, Rodríguez-Marconi S, López-Rodríguez MR, Abades S, Trefault N. Evidence of habitat specificity in sponge microbiomes from Antarctica. ENVIRONMENTAL MICROBIOME 2024; 19:100. [PMID: 39633476 PMCID: PMC11619120 DOI: 10.1186/s40793-024-00648-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/22/2024] [Accepted: 11/25/2024] [Indexed: 12/07/2024]
Abstract
BACKGROUND Marine sponges and their microbiomes are ecosystem engineers distributed across the globe. However, most research has focused on tropical and temperate sponges, while polar regions like Antarctica have been largely neglected. Despite its harsh conditions and geographical isolation, Antarctica is densely populated by sponges. In this study, we explored the extent of habitat specificity in the diversity, community composition, and microbial co-occurrence within Antarctic sponge microbiomes, in comparison to those from other marine environments. We used massive sequencing of 16S rRNA genes and integrated multiple databases to incorporate Antarctic sponges as a habitat in global microbiome analyses. RESULTS Our study revealed significant differences in microbial diversity and community composition between Antarctic and non-Antarctic sponges. We found that most microorganisms present in Antarctic sponges are unique to the South Shetland Islands. Nitrosomonas oligotropha, Candidatus Nitrosopumilus, Polaribacter, SAR116 clade, and Low Salinity Nitrite-Oxidizing Bacteria (LS-NOB) are microbial members characterizing the Antarctic sponge microbiomes. Based on their exclusivity and presence across different sponges worldwide, we identified habitat-specific and habitat-generalist bacteria associated with each habitat. They are particularly abundant and connected within all the Antarctic sponges, suggesting that they may play a crucial role as keystone species within these sponge ecosystems. CONCLUSIONS This study provides significant insights into the microbial diversity and community composition of sponges in Antarctica and non-Antarctic ecoregions. Our findings provide evidence for habitat-specific patterns that differentiate the microbiomes of Antarctic sponges from elsewhere, indicating the strong influence of environmental selection and dispersal limitation wrapped into the Antarctic ecoregions to shape more similar microbial communities in distantly related sponges. This study contributes to understanding signatures of microbial community assembly in the Antarctic sponges and has important implications for the ecology and evolution of these unique marine environments.
Collapse
Affiliation(s)
| | - Génesis Parada-Pozo
- GEMA Center for Genomics, Ecology & Environment, Universidad Mayor, Santiago, Chile
- Millenium Nucleus in Marine Agronomy of Seaweed Holobionts (MASH), Puerto Montt, Chile
| | | | | | - Sebastián Abades
- GEMA Center for Genomics, Ecology & Environment, Universidad Mayor, Santiago, Chile
| | - Nicole Trefault
- GEMA Center for Genomics, Ecology & Environment, Universidad Mayor, Santiago, Chile.
- Millenium Nucleus in Marine Agronomy of Seaweed Holobionts (MASH), Puerto Montt, Chile.
- FONDAP Center IDEAL- Dynamics of High Latitude Marine Ecosystem, Punta Arenas, Chile.
| |
Collapse
|
4
|
Baek JH, Butt M, Han DM, Kim JM, Choi S, Jeon CO. Polaribacter ponticola sp. nov., isolated from seawater, reclassification of Polaribacter undariae as a later heterotypic synonym of Polaribacter sejongensis, and emended description of Polaribacter sejongensis Kim et al. 2013. Int J Syst Evol Microbiol 2024; 74:006526. [PMID: 39264709 PMCID: PMC11392042 DOI: 10.1099/ijsem.0.006526] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2024] [Accepted: 09/05/2024] [Indexed: 09/13/2024] Open
Abstract
A Gram-stain-negative, yellow-pigmented, and strictly aerobic bacterium, designated as strain MSW5T, was isolated from seawater of the Yellow Sea in South Korea. The cells were non-motile rods exhibiting oxidase- and catalase-positive activities. Growth was observed at 15-25 °C (optimum, 25 °C) and pH 5.0-9.0 (optimum, pH 7.0-8.0) and in the presence of 1.0-5.0% (w/v) NaCl (optimum, 2.0%). Menaquinone-6 was the sole respiratory quinone, and iso-C15 : 0, summed feature 3 (C16 : 1 ω7c and/or C16 : 1 ω6c), iso-C15 : 0 3-OH, and C15 : 1 ω6c were the major cellular fatty acids. Major polar lipids included phosphatidylethanolamine, two unidentified aminolipids, and three unidentified lipids. Phylogenetic analyses based on 16S rRNA gene sequences and 92 concatenated core protein sequences revealed that strain MSW5T formed a distinct lineage within the genus Polaribacter. The genome of strain MSW5T was 3582 kb in size with a 29.1 mol% G+C content. Strain MSW5T exhibited the highest similarity to Polaribacter atrinae WP25T, with a 97.9% 16S rRNA gene sequence similarity. However, the average nucleotide identity and digital DNA-DNA hybridization values were 79.4 and 23.3%, respectively, indicating that strain MSW5T represents a novel species. Based on its phenotypic, chemotaxonomic, and phylogenetic characteristics, strain MSW5T is proposed to represent a novel species, with the name Polaribacter ponticola sp. nov. The type strain is MSW5T (=KACC 22340T=NBRC 116025T). In addition, whole genome sequence comparisons and phenotypic features suggested that Polaribacter sejongensis and Polaribacter undariae belong to the same species, with P. undariae proposed as a later heterotypic synonym of P. sejongensis. An emended description of Polaribacter sejongensis is also proposed.
Collapse
Affiliation(s)
- Ju Hye Baek
- Department of Life Science, Chung-Ang University, Seoul 06974, Republic of Korea
| | - Mahrukh Butt
- Department of Life Science, Chung-Ang University, Seoul 06974, Republic of Korea
| | - Dong Min Han
- Department of Life Science, Chung-Ang University, Seoul 06974, Republic of Korea
| | - Jeong Min Kim
- Department of Life Science, Chung-Ang University, Seoul 06974, Republic of Korea
| | - Seohui Choi
- Department of Life Science, Chung-Ang University, Seoul 06974, Republic of Korea
| | - Che Ok Jeon
- Department of Life Science, Chung-Ang University, Seoul 06974, Republic of Korea
| |
Collapse
|
5
|
González-Aravena M, Perrois G, Font A, Cárdenas CA, Rondon R. Microbiome profile of the Antarctic clam Laternula elliptica. Braz J Microbiol 2024; 55:487-497. [PMID: 38157148 PMCID: PMC10920576 DOI: 10.1007/s42770-023-01200-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Accepted: 11/27/2023] [Indexed: 01/03/2024] Open
Abstract
The filter feeder clam Laternula elliptica is a key species in the Antarctic ecosystem. As a stenothermal benthic species, it has a poor capacity for adaptation to small temperature variations. Despite their ecological importance and sensitivity to climate change, studies on their microbiomes are lacking. The goal of this study was to characterize the bacterial communities of L. elliptica and the tissues variability of this microbiome to provide an initial insight of host-microbiota interactions. We investigated the diversity and taxonomic composition of bacterial communities of L. elliptica from five regions of the body using high-throughput 16S rRNA gene sequencing. The results showed that the microbiome of L. elliptica tended to differ from that of the surrounding seawater samples. However, there were no significant differences in the microbial composition between the body sites, and only two OTUs were present in all samples, being considered core microbiome (genus Moritella and Polaribacter). No significant differences were detected in diversity indexes among tissues (mean 626.85 for observed OTUs, 628.89 Chao1, 5.42 Shannon, and 0.87 Simpson). Rarefaction analysis revealed that most tissues reached a plateau of OTU number according to sample increase, with the exception of Siphon samples. Psychromonas and Psychrilyobacter were particularly abundant in L. elliptica whereas Fluviicola dominated seawater and siphons. Typical polar bacteria were Polaribacter, Shewanella, Colwellia, and Moritella. We detected the prevalence of pathogenic bacterial sequences, particularly in the family Arcobacteraceae, Pseudomonadaceae, and Mycoplasmataceae. The prokaryotic diversity was similar among tissues, as well as their taxonomic composition, suggesting a homogeneity of the microbiome along L. elliptica body. The Antarctic clam population can be used to monitor the impact of human activity in areas near Antarctic stations that discharge wastewater.
Collapse
Affiliation(s)
| | - Garance Perrois
- Departamento Científico, Instituto Antártico Chileno, Punta Arenas, Chile
- Tropical & Subtropical Research Center, Korea Institute of Ocean Science & Technology, Busan, Republic of Korea
| | - Alejandro Font
- Departamento Científico, Instituto Antártico Chileno, Punta Arenas, Chile
| | - César A Cárdenas
- Departamento Científico, Instituto Antártico Chileno, Punta Arenas, Chile
- Millennium Institute Biodiversity of Antarctic and Subantarctic Ecosystems (BASE), Santiago, Chile
| | - Rodolfo Rondon
- Departamento Científico, Instituto Antártico Chileno, Punta Arenas, Chile.
| |
Collapse
|
6
|
Hwang K, Choe H, Kim KM. Complete genome of Polaribacter huanghezhanensis KCTC 32516 T isolated from glaciomarine fjord sediment of Svalbard. Mar Genomics 2023; 72:101068. [PMID: 38008528 DOI: 10.1016/j.margen.2023.101068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Revised: 08/17/2023] [Accepted: 08/18/2023] [Indexed: 11/28/2023]
Abstract
Polaribacter huanghezhanensis KCTC 32516T is an aerobic, non-flagellated, Gram-negative, orange-colony-forming bacterium that was isolated from the surficial glaciomarine sediment of inner basin of Kongsfjorden, Svalbard. The sampling site is characterized by a sedimentation of organic depleted lithogenous particles from the nearby glaciers, resulting in reduction of organic matter concentration. In order to understand microbial adaptation to the oligotrophic environment, we here sequenced the complete genome of the P. huanghezhanensis KCTC 32516T. The genome consists of 2,587,874 bp (G + C content of 31.5%) with a single chromosome, 2391 protein-coding genes, 39 tRNAs, and 2 rRNA operons. Our comparative analysis revealed that the P. huanghezhanensis possess the smallest genome in fifteen Polaribacter species with genome. The streamlined genome of this species, required less resource in replication, could evolved by the nutrient deficiency in surrounding environment. Simultaneously, the 15 KOs involved in amino acid biosynthesis and anaplerotic carbon fixation is uniquely absent in the P. huanghezhanensis. In addition, although the advantage of small genome, other 15 KOs involved in resource recycling and stress resistance is uniquely present in sequenced genome. This result demonstrates that the sequenced genome serves as a valuable model for further studies aimed at elucidating the molecular mechanisms associated with adaptation to oligotrophic habitat.
Collapse
Affiliation(s)
- Kyuin Hwang
- Division of Polar Life Sciences, Korea Polar Research Institute, 26 Songdomirae-ro, Yeonsu-gu, Incheon 21990, Republic of Korea.
| | - Hanna Choe
- Biological Resource Center, Korea Research Institute of Bioscience and Biotechnology, 181 Ipsin-gil, Jeongeup 56212, Republic of Korea
| | - Kyung Mo Kim
- Division of Polar Life Sciences, Korea Polar Research Institute, 26 Songdomirae-ro, Yeonsu-gu, Incheon 21990, Republic of Korea
| |
Collapse
|
7
|
Shin DY, Hong YW, Kim SY, Choi JY, Kim BJ, Kang JK, Cho BC, Hwang CY. Jiella pelagia sp. nov., isolated from the phosphonate-amended seawater of the northwestern Pacific Ocean. Int J Syst Evol Microbiol 2023; 73. [PMID: 37917152 DOI: 10.1099/ijsem.0.006139] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2023] Open
Abstract
A novel Gram-stain-negative, aerobic, rod-shaped bacterium, designated as HL-NP1T, was isolated from the surface water of the northwestern Pacific Ocean after enrichment cultivation using the organic phosphorous compound of 2-aminoethylphosphonate. Phylogenetic analysis based on 16S rRNA gene sequences showed that the strain belonged to the genus Jiella, with the highest similarity to Jiella pacifica 40Bstr34T (98.7 %). The complete genome sequence of strain HL-NP1T comprised a circular chromosome of 5.58 Mbp and two circular plasmids of 0.15 and 0.22 Mbp. Comparison of the genome sequences between strains HL-NP1T and J. pacifica 40Bstr34T revealed that average nucleotide identity, average amino acid identity and digital DNA-DNA hybridization values (88.0, 86.4 and 33.9 %, respectively) were below the recommended cut-off levels for delineating bacterial species. Strain HL-NP1T showed optimal growth at 30 °C, pH 6.5-7.0, with 2.0-2.5 % (w/v) NaCl. The sole respiratory quinone was ubiquinone-10. The predominant fatty acid was summed feature 8 (C18 : 1 ω6c and/or C18 : 1 ω7c). The polar lipids comprised diphosphatidylglycerol, phosphatidylcholine, phosphatidylethanolamine, phosphatidylglycerol, phosphatidylmonomethylethanolamine, an unidentified aminolipid and four unidentified lipids. The G+C content of the genomic DNA was 65.1 %. Based on phylogenetic, genotypic, phenotypic and chemotaxonomic data, strain HL-NP1T is proposed to represent a novel species of the genus Jiella, for which the name Jiella pelagia sp. nov. is proposed. The type strain is HL-NP1T (= KCCM 90499T = JCM 35838T).
Collapse
Affiliation(s)
- Dong Young Shin
- Microbial Oceanography Laboratory, School of Earth and Environmental Sciences and Research Institute of Oceanography, Seoul National University, Seoul 08826, Republic of Korea
| | - Yeon Woo Hong
- Microbial Oceanography Laboratory, School of Earth and Environmental Sciences and Research Institute of Oceanography, Seoul National University, Seoul 08826, Republic of Korea
| | - Soo Yoon Kim
- Microbial Oceanography Laboratory, School of Earth and Environmental Sciences and Research Institute of Oceanography, Seoul National University, Seoul 08826, Republic of Korea
| | - Jy Young Choi
- Microbial Oceanography Laboratory, School of Earth and Environmental Sciences and Research Institute of Oceanography, Seoul National University, Seoul 08826, Republic of Korea
| | - Bok Jin Kim
- Microbial Oceanography Laboratory, School of Earth and Environmental Sciences and Research Institute of Oceanography, Seoul National University, Seoul 08826, Republic of Korea
| | - Jin Kyeong Kang
- Microbial Oceanography Laboratory, School of Earth and Environmental Sciences and Research Institute of Oceanography, Seoul National University, Seoul 08826, Republic of Korea
| | - Byung Cheol Cho
- Microbial Oceanography Laboratory, School of Earth and Environmental Sciences and Research Institute of Oceanography, Seoul National University, Seoul 08826, Republic of Korea
- Saemangeum Environmental Research Center, Kunsan National University, Kunsan 54150, Republic of Korea
| | - Chung Yeon Hwang
- Microbial Oceanography Laboratory, School of Earth and Environmental Sciences and Research Institute of Oceanography, Seoul National University, Seoul 08826, Republic of Korea
| |
Collapse
|
8
|
Kristyanto S, Jung J, Kim JM, Kim K, Lee MH, Hao L, Jeon CO. Colwellia maritima sp. nov. and Polaribacter marinus sp. nov., isolated from seawater. Int J Syst Evol Microbiol 2022; 72. [PMID: 36748488 DOI: 10.1099/ijsem.0.005620] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/05/2022] Open
Abstract
Two Gram-stain-negative, catalase- and oxidase-positive, and aerobic bacteria, strains MSW7T and MSW13T, were isolated from seawater. Cells of strains MSW7T and MSW13T are motile and non-motile rods, respectively. Strain MSW7T optimally grew at 25 °C and pH 7.0 and in the presence of 3 % (w/v) NaCl, whereas strain MSW13T optimally grew at 25 °C and pH 6.0-7.0 and in the presence of 2 % NaCl. As the sole respiratory quinone and the major fatty acids and polar lipids, strain MSW7T contained ubiquinone-8, C16 : 0, C15 : 1 ω8c, C17 : 1 ω8c and summed feature 3 (C16 : 1 ω7c and/or C16 : 1 ω6c), and phosphatidylethanolamine and phosphatidylglycerol, respectively, whereas strain MSW13T contained menaquinone-6, C15 : 1 ω6c, iso-C15 : 0, anteiso-C15 : 0, and iso-C15 : 0 3-OH, and phosphatidylethanolamine, respectively. The DNA G+C contents of strains MSW7T and MSW13T were 37.3 and 29.9 %, respectively. Phylogenetic analyses based on 16S rRNA gene sequences showed that strains MSW7T and MSW13T were most closely related to Colwellia echini A3T and Polaribacter atrinae WP25T with 98.8 and 98.1 % sequence similarities, respectively. The average nucleotide identity and digital DNA-DNA hybridization values between strain MSW7T and C. echini A3T and between strain MSW13T and P. atrinae KACC 17473T were 73.6 and 22.6 % and 80.4 and 23.8 %, respectively. Based on phenotypic, chemotaxonomic and phylogenetic data, strains MSW7T and MSW13T represent novel species of the genera Colwellia and Polaribacter, respectively, for which the names Colwellia maritima sp. nov. and Polaribacter marinus sp. nov. are proposed, respectively. The type strains of C. maritima sp. nov. and P. marinus sp. nov. are MSW7T (=KACC 22339T=JCM 35001T) and MSW13T (=KACC 22341T=JCM 35021T), respectively.
Collapse
Affiliation(s)
- Sylvia Kristyanto
- Department of Life Science, Chung-Ang University, Seoul 06974, Republic of Korea
| | - Jaejoon Jung
- Department of Life Science, Chung-Ang University, Seoul 06974, Republic of Korea
| | - Jeong Min Kim
- Department of Life Science, Chung-Ang University, Seoul 06974, Republic of Korea
| | - Keunpil Kim
- Department of Life Science, Chung-Ang University, Seoul 06974, Republic of Korea
| | - Mi-Hwa Lee
- Freshwater Bioresources Utilization Division, Nakdonggang National Institute of Biological Resources, Gyeongsangbuk-do 37242, Republic of Korea
| | - Lujiang Hao
- School of Bioengineering, State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, PR China
| | - Che Ok Jeon
- Department of Life Science, Chung-Ang University, Seoul 06974, Republic of Korea
| |
Collapse
|
9
|
Description of Polaribacter batillariae sp. nov., Polaribacter cellanae sp. nov., and Polaribacter pectinis sp. nov., novel bacteria isolated from the gut of three types of South Korean shellfish. J Microbiol 2022; 60:576-584. [DOI: 10.1007/s12275-022-1604-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Revised: 02/21/2022] [Accepted: 03/02/2022] [Indexed: 10/18/2022]
|
10
|
Garcia-Lopez E, Ruiz-Blas F, Sanchez-Casanova S, Peña Perez S, Martin-Cerezo ML, Cid C. Microbial Communities in Volcanic Glacier Ecosystems. Front Microbiol 2022; 13:825632. [PMID: 35547132 PMCID: PMC9084427 DOI: 10.3389/fmicb.2022.825632] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Accepted: 03/17/2022] [Indexed: 11/13/2022] Open
Abstract
Glaciers constitute a polyextremophilic environment characterized by low temperatures, high solar radiation, a lack of nutrients, and low water availability. However, glaciers located in volcanic regions have special characteristics, since the volcanic foci provide them with heat and nutrients that allow the growth of microbial communities highly adapted to this environment. Most of the studies on these glacial ecosystems have been carried out in volcanic environments in the northern hemisphere, including Iceland and the Pacific Northwest. To better know, the microbial diversity of the underexplored glacial ecosystems and to check what their specific characteristics were, we studied the structure of bacterial communities living in volcanic glaciers in Deception Island, Antarctica, and in the Kamchatka peninsula. In addition to geographic coordinates, many other glacier environmental factors (like volcanic activity, altitude, temperature, pH, or ice chemical composition) that can influence the diversity and distribution of microbial communities were considered in this study. Finally, using their taxonomic assignments, an attempt was made to compare how different or similar are the biogeochemical cycles in which these microbiomes are involved.
Collapse
Affiliation(s)
- Eva Garcia-Lopez
- Department of Molecular Evolution, Centro de Astrobiologia (CSIC-INTA), Torrejón de Ardoz, Spain
| | - Fatima Ruiz-Blas
- Department of Molecular Evolution, Centro de Astrobiologia (CSIC-INTA), Torrejón de Ardoz, Spain
| | | | - Sonia Peña Perez
- Department of Molecular Evolution, Centro de Astrobiologia (CSIC-INTA), Torrejón de Ardoz, Spain
| | | | - Cristina Cid
- Department of Molecular Evolution, Centro de Astrobiologia (CSIC-INTA), Torrejón de Ardoz, Spain
| |
Collapse
|
11
|
Happel L, Rondon R, Font A, González-Aravena M, Cárdenas CA. Stability of the Microbiome of the Sponge Mycale ( Oxymycale) acerata in the Western Antarctic Peninsula. Front Microbiol 2022; 13:827863. [PMID: 35444618 PMCID: PMC9014287 DOI: 10.3389/fmicb.2022.827863] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Accepted: 02/21/2022] [Indexed: 01/04/2023] Open
Abstract
The sponge microbiome, especially in Low Microbial Abundance (LMA) species, is expected to be influenced by the local environment; however, contrasting results exist with evidence showing that host specificity is also important, hence suggesting that the microbiome is influenced by host-specific and environmental factors. Despite sponges being important members of Southern Ocean benthic communities, their relationships with the microbial communities they host remain poorly studied. Here, we studied the spatial and temporal patterns of the microbiota associated with the ecologically important LMA sponge M. acerata at sites along ∼400 km of the Western Antarctic Peninsula (WAP) to assess patterns in the core and variable microbial components of the symbiont communities of this sponge species. The analyses of 31 samples revealed that the microbiome of M. acerata is composed of 35 prokaryotic phyla (3 Archaea, 31 Bacteria, and one unaffiliated), being mainly dominated by Proteobacteria with Gammaproteobacteria as the most dominant class. The core community was composed of six prokaryotic OTUs, with gammaproteobacterial OTU (EC94 Family), showing a mean abundance over 65% of the total abundance. Despite some differences in rare OTUs, the core community did not show clear patterns in diversity and abundance associated with specific sites/environmental conditions, confirming a low variability in community structure of this species along the WAP. The analysis at small scale (Doumer Island, Palmer Archipelago) showed no differences in space and time in the microbiome M. acerata collected at sites around the island, sampled in three consecutive years (2016-2018). Our results highlight the existence of a low spatial and temporal variability in the microbiome of M. acerata, supporting previous suggestions based on limited studies on this and other Antarctic sponges.
Collapse
Affiliation(s)
- Lea Happel
- IMBRSea International Masters Program, Ghent University, Ghent, Belgium
- Helmholtz Centre for Polar and Marine Research, Alfred Wegener Institute, Bremerhaven, Germany
| | - Rodolfo Rondon
- Departamento Científico, Instituto Antártico Chileno, Punta Arenas, Chile
| | - Alejandro Font
- Departamento Científico, Instituto Antártico Chileno, Punta Arenas, Chile
| | | | - César A. Cárdenas
- Departamento Científico, Instituto Antártico Chileno, Punta Arenas, Chile
- Millennium Institute Biodiversity of Antarctic and Subantarctic Ecosystems (BASE), Santiago, Chile
| |
Collapse
|
12
|
Zhang Q, Fu L, Gui Y, Miao J, Li J. Complete genome sequence of Polaribacter sejongensis NJDZ03 exhibiting diverse macroalgal polysaccharide-degrading activity. Mar Genomics 2022; 61:100913. [DOI: 10.1016/j.margen.2021.100913] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Revised: 09/28/2021] [Accepted: 10/16/2021] [Indexed: 11/30/2022]
|
13
|
Szabonella alba gen. nov., sp. nov., a motile alkaliphilic bacterium of the family Rhodobacteraceae isolated from a soda lake. Int J Syst Evol Microbiol 2022; 72. [DOI: 10.1099/ijsem.0.005219] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
A Gram-stain-negative, oxidase- and catalase-positive, rod-shaped, creamy white coloured bacterial strain, DMG-N-6T, was isolated from a water sample of Lake Fertő/Neusiedler See (Hungary). Phylogenetic analysis based on 16S rRNA gene sequences revealed that the strain forms a distinct linage within the family
Rhodobacteraceae
. Its closest relatives are
Tabrizicola alkalilacus
DJCT (96.76% similarity) and
Tabrizicola piscis
K13M18T (96.76%), followed by
Tabrizicola sediminis
DRYC-M-16T (96.69 %),
Rhodobacter sediminicola
JA983T (96.62 %),
Tabrizicola aquatica
RCRI19T (96.47 %) and
Cereibacter johrii
JA192T (96.18 %). The novel bacterial strain favours an alkaline environment (pH 8.0-12.0) and grows optimally at 18–28°C in the presence of 2–4 % (w/v) NaCl. Cells of DMG-N-6T were motile by a single subpolar flagellum. Bacteriochlorophyll a was not detected. The predominant respiratory quinone was ubiquinone Q-10. The major cellular fatty acid was C18:1
ω7c. The polar lipid profile comprised phosphatidylglycerol, diphosphatidylglycerol, phosphatidylethanolamine, phosphatidylserine, phosphatidylcholine, an unidentified phospholipid and five unidentified lipids. The assembled draft genome of strain DMG-N-6T had 52 contigs with a total length of 4 219 778 bp and a G+C content of 64.3 mol%. Overall genome-related indices (ANI <77.8 %, AAI <69.0 %, dDDH <19.6 %) with respect to close relatives were all significantly below the corresponding threshold to demarcate bacterial genus and species. Strain DMG-N-6T (=DSM 108208T=NCAIM B.02645T) is strongly different from its closest relatives and is suggested as the type strain of a novel species of a new genus in the family
Rhodobacteraceae
, for which the name Szabonella alba gen. nov., sp. nov. is proposed.
Collapse
|
14
|
Cordone A, D’Errico G, Magliulo M, Bolinesi F, Selci M, Basili M, de Marco R, Saggiomo M, Rivaro P, Giovannelli D, Mangoni O. Bacterioplankton Diversity and Distribution in Relation to Phytoplankton Community Structure in the Ross Sea Surface Waters. Front Microbiol 2022; 13:722900. [PMID: 35154048 PMCID: PMC8828583 DOI: 10.3389/fmicb.2022.722900] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Accepted: 01/05/2022] [Indexed: 01/04/2023] Open
Abstract
Primary productivity in the Ross Sea region is characterized by intense phytoplankton blooms whose temporal and spatial distribution are driven by changes in environmental conditions as well as interactions with the bacterioplankton community. However, the number of studies reporting the simultaneous diversity of the phytoplankton and bacterioplankton in Antarctic waters are limited. Here, we report data on the bacterial diversity in relation to phytoplankton community structure in the surface waters of the Ross Sea during the Austral summer 2017. Our results show partially overlapping bacterioplankton communities between the stations located in the Terra Nova Bay (TNB) coastal waters and the Ross Sea Open Waters (RSOWs), with a dominance of members belonging to the bacterial phyla Bacteroidetes and Proteobacteria. In the TNB coastal area, microbial communities were characterized by a higher abundance of sequences related to heterotrophic bacterial genera such as Polaribacter spp., together with higher phytoplankton biomass and higher relative abundance of diatoms. On the contrary, the phytoplankton biomass in the RSOW were lower, with relatively higher contribution of haptophytes and a higher abundance of sequences related to oligotrophic and mixothrophic bacterial groups like the Oligotrophic Marine Gammaproteobacteria (OMG) group and SAR11. We show that the rate of diversity change between the two locations is influenced by both abiotic (salinity and the nitrogen to phosphorus ratio) and biotic (phytoplankton community structure) factors. Our data provide new insight into the coexistence of the bacterioplankton and phytoplankton in Antarctic waters, suggesting that specific rather than random interaction contribute to the organic matter cycling in the Southern Ocean.
Collapse
Affiliation(s)
- Angelina Cordone
- Department of Biology, University of Naples Federico II, Naples, Italy
| | - Giuseppe D’Errico
- Department of Life Sciences, DISVA, Polytechnic University of Marche, Ancona, Italy
| | - Maria Magliulo
- Department of Biology, University of Naples Federico II, Naples, Italy
| | - Francesco Bolinesi
- Department of Biology, University of Naples Federico II, Naples, Italy
- *Correspondence: Francesco Bolinesi,
| | - Matteo Selci
- Department of Biology, University of Naples Federico II, Naples, Italy
| | - Marco Basili
- National Research Council, Institute of Marine Biological Resources and Biotechnologies CNR-IRBIM, Ancona, Italy
| | - Rocco de Marco
- National Research Council, Institute of Marine Biological Resources and Biotechnologies CNR-IRBIM, Ancona, Italy
| | | | - Paola Rivaro
- Department of Chemistry and Industrial Chemistry, University of Genoa, Genoa, Italy
| | - Donato Giovannelli
- Department of Biology, University of Naples Federico II, Naples, Italy
- Department of Life Sciences, DISVA, Polytechnic University of Marche, Ancona, Italy
- National Research Council, Institute of Marine Biological Resources and Biotechnologies CNR-IRBIM, Ancona, Italy
- Department of Marine and Coastal Science, Rutgers University, New Brunswick, NJ, United States
- Marine Chemistry and Geochemistry Department, Woods Hole Oceanographic Institution, Woods Hole, MA, United States
- Earth-Life Science Institute, Tokyo Institute of Technology, Tokyo, Japan
- Donato Giovannelli,
| | - Olga Mangoni
- Department of Biology, University of Naples Federico II, Naples, Italy
- Consorzio Nazionale Interuniversitario delle Scienze del Mare (CoNISMa), Rome, Italy
| |
Collapse
|
15
|
Kobiyama A, Rashid J, Reza MS, Ikeda Y, Yamada Y, Kudo T, Mizusawa N, Yanagisawa S, Ikeda D, Sato S, Ogata T, Ikeo K, Kaga S, Watanabe S, Naiki K, Kaga Y, Segawa S, Tada Y, Musashi T, Mineta K, Gojobori T, Watabe S. Seasonal and annual changes in the microbial communities of Ofunato Bay, Japan, based on metagenomics. Sci Rep 2021; 11:17277. [PMID: 34446773 PMCID: PMC8390468 DOI: 10.1038/s41598-021-96641-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Accepted: 08/12/2021] [Indexed: 02/07/2023] Open
Abstract
Five years of datasets from 2015 to 2019 of whole genome shotgun sequencing for cells trapped on 0.2-µm filters of seawater collected monthly from Ofunato Bay, an enclosed bay in Japan, were analysed, which included the 2015 data that we had reported previously. Nucleotide sequences were determined for extracted DNA from three locations for both the upper (1 m) and deeper (8 or 10 m) depths. The biotic communities analysed at the domain level comprised bacteria, eukaryotes, archaea and viruses. The relative abundance of bacteria was over 60% in most months for the five years. The relative abundance of the SAR86 cluster was highest in the bacterial group, followed by Candidatus Pelagibacter and Planktomarina. The relative abundance of Ca. Pelagibacter showed no relationship with environmental factors, and those of SAR86 and Planktomarina showed positive correlations with salinity and dissolved oxygen, respectively. The bacterial community diversity showed seasonal changes, with high diversity around September and low diversity around January for all five years. Nonmetric multidimensional scaling analysis also revealed that the bacterial communities in the bay were grouped in a season-dependent manner and linked with environmental variables such as seawater temperature, salinity and dissolved oxygen.
Collapse
Affiliation(s)
- Atsushi Kobiyama
- Kitasato University School of Marine Biosciences, Minami-ku, Sagamihara, Kanagawa, 252-0373, Japan
| | - Jonaira Rashid
- Kitasato University School of Marine Biosciences, Minami-ku, Sagamihara, Kanagawa, 252-0373, Japan
- Bangladesh Fisheries Research Institute, Freshwater Station, Mymensingh, 2201, Bangladesh
| | - Md Shaheed Reza
- Kitasato University School of Marine Biosciences, Minami-ku, Sagamihara, Kanagawa, 252-0373, Japan
- Department of Fisheries Technology, Bangladesh Agricultural University, Mymensingh, 2202, Bangladesh
| | - Yuri Ikeda
- Kitasato University School of Marine Biosciences, Minami-ku, Sagamihara, Kanagawa, 252-0373, Japan
| | - Yuichiro Yamada
- Kitasato University School of Marine Biosciences, Minami-ku, Sagamihara, Kanagawa, 252-0373, Japan
| | - Toshiaki Kudo
- Kitasato University School of Marine Biosciences, Minami-ku, Sagamihara, Kanagawa, 252-0373, Japan
| | - Nanami Mizusawa
- Kitasato University School of Marine Biosciences, Minami-ku, Sagamihara, Kanagawa, 252-0373, Japan
| | - Saki Yanagisawa
- Kitasato University School of Marine Biosciences, Minami-ku, Sagamihara, Kanagawa, 252-0373, Japan
| | - Daisuke Ikeda
- Kitasato University School of Marine Biosciences, Minami-ku, Sagamihara, Kanagawa, 252-0373, Japan
| | - Shigeru Sato
- Kitasato University School of Marine Biosciences, Minami-ku, Sagamihara, Kanagawa, 252-0373, Japan
| | - Takehiko Ogata
- Kitasato University School of Marine Biosciences, Minami-ku, Sagamihara, Kanagawa, 252-0373, Japan
| | - Kazuho Ikeo
- Kitasato University School of Marine Biosciences, Minami-ku, Sagamihara, Kanagawa, 252-0373, Japan
- National Institute of Genetics, Yata, Mishima, Shizuoka, 411-8540, Japan
| | - Shinnosuke Kaga
- Iwate Fisheries Technology Center, Kamaishi, Iwate, 026-0001, Japan
| | - Shiho Watanabe
- Iwate Fisheries Technology Center, Kamaishi, Iwate, 026-0001, Japan
| | - Kimiaki Naiki
- Iwate Inland Fisheries Technology Center, Hachimantai, Iwate, 028-7302, Japan
| | - Yoshimasa Kaga
- Iwate Inland Fisheries Technology Center, Hachimantai, Iwate, 028-7302, Japan
| | - Satoshi Segawa
- Iwate Fisheries Technology Center, Kamaishi, Iwate, 026-0001, Japan
| | - Yumiko Tada
- Iwate Fisheries Technology Center, Kamaishi, Iwate, 026-0001, Japan
| | - Tatsuya Musashi
- Iwate Fisheries Technology Center, Kamaishi, Iwate, 026-0001, Japan
| | - Katsuhiko Mineta
- Computational Bioscience Research Center, King Abdullah University of Science and Technology, Thuwal, 23955-6900, Saudi Arabia
| | - Takashi Gojobori
- Computational Bioscience Research Center, King Abdullah University of Science and Technology, Thuwal, 23955-6900, Saudi Arabia.
| | - Shugo Watabe
- Kitasato University School of Marine Biosciences, Minami-ku, Sagamihara, Kanagawa, 252-0373, Japan.
| |
Collapse
|
16
|
Velho Rodrigues MF, Lisicki M, Lauga E. The bank of swimming organisms at the micron scale (BOSO-Micro). PLoS One 2021; 16:e0252291. [PMID: 34111118 PMCID: PMC8191957 DOI: 10.1371/journal.pone.0252291] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2020] [Accepted: 05/13/2021] [Indexed: 12/24/2022] Open
Abstract
Unicellular microscopic organisms living in aqueous environments outnumber all other creatures on Earth. A large proportion of them are able to self-propel in fluids with a vast diversity of swimming gaits and motility patterns. In this paper we present a biophysical survey of the available experimental data produced to date on the characteristics of motile behaviour in unicellular microswimmers. We assemble from the available literature empirical data on the motility of four broad categories of organisms: bacteria (and archaea), flagellated eukaryotes, spermatozoa and ciliates. Whenever possible, we gather the following biological, morphological, kinematic and dynamical parameters: species, geometry and size of the organisms, swimming speeds, actuation frequencies, actuation amplitudes, number of flagella and properties of the surrounding fluid. We then organise the data using the established fluid mechanics principles for propulsion at low Reynolds number. Specifically, we use theoretical biophysical models for the locomotion of cells within the same taxonomic groups of organisms as a means of rationalising the raw material we have assembled, while demonstrating the variability for organisms of different species within the same group. The material gathered in our work is an attempt to summarise the available experimental data in the field, providing a convenient and practical reference point for future studies.
Collapse
Affiliation(s)
- Marcos F. Velho Rodrigues
- Department of Applied Mathematics and Theoretical Physics, University of Cambridge, Cambridge, United Kingdom
| | - Maciej Lisicki
- Faculty of Physics, University of Warsaw, Warsaw, Poland
| | - Eric Lauga
- Department of Applied Mathematics and Theoretical Physics, University of Cambridge, Cambridge, United Kingdom
| |
Collapse
|
17
|
Cao Y, Yu X, Ju F, Zhan H, Jiang B, Kang H, Xie Z. Airborne bacterial community diversity, source and function along the Antarctic Coast. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 765:142700. [PMID: 33069481 DOI: 10.1016/j.scitotenv.2020.142700] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2020] [Revised: 09/11/2020] [Accepted: 09/26/2020] [Indexed: 06/11/2023]
Abstract
Antarctica is an isolated and relatively simple ecosystem dominated by microorganisms, providing a rare opportunity to study the spread of airborne microbes and to predict future global climate change. However, little is known about on the diversity and potential sources of microorganisms in the marine atmosphere along the Antarctica coast. Here we explored the airborne bacterial community (i.e., bacteriome) diversity, sources and functional potential along the Antarctic coast based on 16S rRNA gene amplicon sequencing of 25 bioaerosol samples collected during the 33rd Xuelong Antarctic scientific expedition. The results showed that bacterial communities in the Antarctic bioaerosols i) were predominated by Proteobacteria (91.3%) including Sphingomonas, ii) showed relative low alpha-diversity but high spatiotemporal variabilities; and iii) were potentially immigrated with terrestrial, marine and Antarctic polar bacteria through long-range transport and sea-air exchange pathways. Moreover, canonical correspondence analysis of bacteriome composition showed that wind speed, temperature, and organic carbon had a significant effect on the bacterial community (P < 0.05), although bacterial richness (Richness index) and diversity (Simpson index and Shannon index) showed no statistically significant differences between rainy, cloudy and snowy weather conditions (Adjust P > 0.05, ANOVA, Tukey HSD test). iv) The functional profiles predicted by Tax4fun2 suggest high representation of function genes related to fatty acid biosynthesis and metabolism, amino acid metabolism, nucleotide metabolism, and carbohydrate metabolism, which is conducive to the formation of microlayers on the surface of the ocean and the survival and growth of bacteria.
Collapse
Affiliation(s)
- Yue Cao
- School of Life Sciences, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Xiawei Yu
- Anhui Key Laboratory of Polar Environment and Global Change & Department of Environmental Science and Engineering, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Feng Ju
- School of Engineering, Westlake University, Hangzhou 310024, China; Key Laboratory of Coastal Environment and Resource Research of Zhejiang Province, School of Engineering, Westlake University, Hangzhou 310024, China
| | - Haicong Zhan
- Anhui Key Laboratory of Polar Environment and Global Change & Department of Environmental Science and Engineering, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Bei Jiang
- Anhui Key Laboratory of Polar Environment and Global Change & Department of Environmental Science and Engineering, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Hui Kang
- Anhui Key Laboratory of Polar Environment and Global Change & Department of Environmental Science and Engineering, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Zhouqing Xie
- School of Life Sciences, University of Science and Technology of China, Hefei, Anhui 230026, China; Anhui Key Laboratory of Polar Environment and Global Change & Department of Environmental Science and Engineering, University of Science and Technology of China, Hefei, Anhui 230026, China; Center for Excellence in Urban Atmospheric Environment, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen, Fujian 361021, China.
| |
Collapse
|
18
|
Szuróczki S, Abbaszade G, Buni D, Bóka K, Schumann P, Neumann-Schaal M, Vajna B, Tóth E. Fertoeibacter niger gen. nov., sp. nov. a novel alkaliphilic bacterium of the family Rhodobacteraceae. Int J Syst Evol Microbiol 2021; 71. [PMID: 33734953 DOI: 10.1099/ijsem.0.004762] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
Three Gram-stain-negative, non-motile, oxidase- and catalase-positive, rod-shaped, black, facultative phototrophic bacterial strains, RG-N-1aT, DMA-N-7a and RA-N-9 were isolated from the water sample from Lake Fertő/Neusiedler See (Hungary). Phylogenetic analysis based on the 16S rRNA gene sequences revealed that the strains form a distinct linage within the family Rhodobacteraceae and their closest relatives are Tabrizicola piscis K13M18T (96.32%) followed by Cypionkella psychrotolerans PAMC 27389T (96.25%). The novel bacterial strains prefer alkaline environments and grow optimally at 23-33 °C in the presence of NaCl (1-2 w/v%). Bacteriochlorophyll a was detected. Cells contained exclusively ubiquinone Q-10. The major cellular fatty acids were C18 : 1ω7c, C19 : 1iso ω5c, C18 : 0 3-OH and C18 : 1ω7c 11-methyl. The polar lipid profile contains diphosphatidylglycerol, phosphatidylethanolamine, phosphatidylcholine, an unidentified phospholipid and four unidentified lipids. The assembled draft genome of RG-N-1aT had 33 contigs with N50 values 315 027 nt, 96× genome coverage, total length of 4 326 551 bp and a DNA G+C content of 64.9%. Genome-based calculations (genome-to-genome distance and DNA G+C percentage) and pairwise amino acid identity (AAI <73.5%) indicate that RG-N-1aT represents a novel genus. RG-N-1aT (=DSM 108317T=NCAIM B.02647T) is suggested as the type strain of a novel genus and species in the family Rhodobacteraceae, for which the name Fertoeibacter niger gen. nov., sp. nov. is proposed.
Collapse
Affiliation(s)
- Sára Szuróczki
- Department of Microbiology, Faculty of Science, Eötvös Loránd University, Pázmány Péter stny. 1/C, H-1117 Budapest, Hungary
| | - Gorkhmaz Abbaszade
- Department of Microbiology, Faculty of Science, Eötvös Loránd University, Pázmány Péter stny. 1/C, H-1117 Budapest, Hungary
| | - Dominika Buni
- Department of Microbiology, Faculty of Science, Eötvös Loránd University, Pázmány Péter stny. 1/C, H-1117 Budapest, Hungary
| | - Károly Bóka
- Department of Plant Anatomy, Faculty of Science, Eötvös Loránd University, Budapest, Pázmány Péter stny. 1/C, H-1117, Hungary
| | - Peter Schumann
- Leibniz Institute DSMZ-German Collection of Microorganisms and Cell Cultures, Inhoffenstrasse 7B, D-38124, Braunschweig, Germany
| | - Meina Neumann-Schaal
- Leibniz Institute DSMZ-German Collection of Microorganisms and Cell Cultures, Inhoffenstrasse 7B, D-38124, Braunschweig, Germany
| | - Balázs Vajna
- Department of Microbiology, Faculty of Science, Eötvös Loránd University, Pázmány Péter stny. 1/C, H-1117 Budapest, Hungary
| | - Erika Tóth
- Department of Microbiology, Faculty of Science, Eötvös Loránd University, Pázmány Péter stny. 1/C, H-1117 Budapest, Hungary
| |
Collapse
|
19
|
Zhu S, Xue Z, Huang Y, Chen X, Ren N, Chen T, Chen Y, Yang J, Chen J. Muricauda sediminis sp. nov., isolated from western Pacific Ocean sediment. Int J Syst Evol Microbiol 2021; 71. [PMID: 33709904 DOI: 10.1099/ijsem.0.004757] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
A Gram-stain-negative bacterium, designated strain 40Bstr401T, was isolated from a sediment sample collected from the western Pacific Ocean. Analysis of its 16S rRNA gene sequence revealed that strain 40Bstr401T belongs to the genus Muricauda and is closely related to type strains Muricauda antarctica Ar-22T (98.2 %), Muricauda taeanensis 105T (98.2 %) and Muricauda beolgyonensis BB-My12T (97.4 %). The average nucleotide identity values for 40Bstr401T with M. antarctica Ar-22T and M. taeanensis 105T are 79.3 % and 78.8 %, respectively. The in silico DNA-DNA hybridization values between strain 40Bstr401T and M. antarctica Ar-22T and M. taeanensis 105T are 26.7 and 26.6 %, respectively. The major isoprenoid quinone of 40Bstr401T is MK-6, and iso-C17 : 0 3-OH and iso-C15 : 0 are the dominant cellular fatty acids. The major polar lipids are phosphatidylethanolamine, four unidentified amino lipids and two unidentified lipids. The G+C content of the genomic DNA is 42.9 mol%. Its phylogenetic distinctiveness and chemotaxonomic differences, together with the phenotypic properties observed in this study, indicate that strain 40Bstr401T can be differentiated from closely related species. Therefore, we propose strain 40Bstr401T represents a novel species in the genus Muricauda, for which the name Muricauda sediminis sp. nov. is suggested. The type strain is 40Bstr401T (=MCCC 1K04568T=KCTC 82139T).
Collapse
Affiliation(s)
- Sidong Zhu
- College of Biological and Environmental Sciences, Zhejiang Wanli University, Ningbo 315100, PR China
| | - Zehao Xue
- College of Biological and Environmental Sciences, Zhejiang Wanli University, Ningbo 315100, PR China
| | - Yizhe Huang
- College of Biological and Environmental Sciences, Zhejiang Wanli University, Ningbo 315100, PR China
| | - Xiunuan Chen
- College of Biological and Environmental Sciences, Zhejiang Wanli University, Ningbo 315100, PR China
| | - Na Ren
- College of Biological and Environmental Sciences, Zhejiang Wanli University, Ningbo 315100, PR China
| | - Ting Chen
- College of Biological and Environmental Sciences, Zhejiang Wanli University, Ningbo 315100, PR China
| | - Yong Chen
- Institute of Respiratory and Disease, Shenzhen People's Hospital, Shenzhen 518020, PR China
| | - Jifang Yang
- College of Biological and Environmental Sciences, Zhejiang Wanli University, Ningbo 315100, PR China
| | - Jigang Chen
- College of Biological and Environmental Sciences, Zhejiang Wanli University, Ningbo 315100, PR China
| |
Collapse
|
20
|
García-Lopez E, Serrano S, Calvo MA, Peña Perez S, Sanchez-Casanova S, García-Descalzo L, Cid C. Microbial Community Structure Driven by a Volcanic Gradient in Glaciers of the Antarctic Archipelago South Shetland. Microorganisms 2021; 9:microorganisms9020392. [PMID: 33672948 PMCID: PMC7917679 DOI: 10.3390/microorganisms9020392] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Revised: 02/04/2021] [Accepted: 02/10/2021] [Indexed: 11/26/2022] Open
Abstract
It has been demonstrated that the englacial ecosystem in volcanic environments is inhabited by active bacteria. To know whether this result could be extrapolated to other Antarctic glaciers and to study the populations of microeukaryotes in addition to those of bacteria, a study was performed using ice samples from eight glaciers in the South Shetland archipelago. The identification of microbial communities of bacteria and microeukaryotes using 16S rRNA and 18S rRNA high throughput sequencing showed a great diversity when compared with microbiomes of other Antarctic glaciers or frozen deserts. Even the composition of the microbial communities identified in the glaciers from the same island was different, which may be due to the isolation of microbial clusters within the ice. A gradient in the abundance and diversity of the microbial communities from the volcano (west to the east) was observed. Additionally, a significant correlation was found between the chemical conditions of the ice samples and the composition of the prokaryotic populations inhabiting them along the volcanic gradient. The bacteria that participate in the sulfur cycle were those that best fit this trend. Furthermore, on the eastern island, a clear influence of human contamination was observed on the glacier microbiome.
Collapse
|
21
|
Walker AM, Leigh MB, Mincks SL. Patterns in Benthic Microbial Community Structure Across Environmental Gradients in the Beaufort Sea Shelf and Slope. Front Microbiol 2021; 12:581124. [PMID: 33584606 PMCID: PMC7876419 DOI: 10.3389/fmicb.2021.581124] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2020] [Accepted: 01/05/2021] [Indexed: 11/13/2022] Open
Abstract
The paradigm of tight pelagic-benthic coupling in the Arctic suggests that current and future fluctuations in sea ice, primary production, and riverine input resulting from global climate change will have major impacts on benthic ecosystems. To understand how these changes will affect benthic ecosystem function, we must characterize diversity, spatial distribution, and community composition for all faunal components. Bacteria and archaea link the biotic and abiotic realms, playing important roles in organic matter (OM) decomposition, biogeochemical cycling, and contaminant degradation, yet sediment microbial communities have rarely been examined in the North American Arctic. Shifts in microbial community structure and composition occur with shifts in OM inputs and contaminant exposure, with implications for shifts in ecological function. Furthermore, the characterization of benthic microbial communities provides a foundation from which to build focused experimental research. We assessed diversity and community structure of benthic prokaryotes in the upper 1 cm of sediments in the southern Beaufort Sea (United States and Canada), and investigated environmental correlates of prokaryotic community structure over a broad spatial scale (spanning 1,229 km) at depths ranging from 17 to 1,200 m. Based on hierarchical clustering, we identified four prokaryotic assemblages from the 85 samples analyzed. Two were largely delineated by the markedly different environmental conditions in shallow shelf vs. upper continental slope sediments. A third assemblage was mainly comprised of operational taxonomic units (OTUs) shared between the shallow shelf and upper slope assemblages. The fourth assemblage corresponded to sediments receiving heavier OM loading, likely resulting in a shallower anoxic layer. These sites may also harbor microbial mats and/or methane seeps. Substructure within these assemblages generally reflected turnover along a longitudinal gradient, which may be related to the quantity and composition of OM deposited to the seafloor; bathymetry and the Mackenzie River were the two major factors influencing prokaryote distribution on this scale. In a broader geographical context, differences in prokaryotic community structure between the Beaufort Sea and Norwegian Arctic suggest that benthic microbes may reflect regional differences in the hydrography, biogeochemistry, and bathymetry of Arctic shelf systems.
Collapse
Affiliation(s)
- Alexis M Walker
- College of Fisheries and Ocean Sciences, University of Alaska Fairbanks, Fairbanks, AK, United States
| | - Mary Beth Leigh
- Institute of Arctic Biology, University of Alaska Fairbanks, Fairbanks, AK, United States
| | - Sarah L Mincks
- College of Fisheries and Ocean Sciences, University of Alaska Fairbanks, Fairbanks, AK, United States
| |
Collapse
|
22
|
Pseudonocardia cytotoxica sp. nov., a novel actinomycete isolated from an Arctic fjord with potential to produce cytotoxic compound. Antonie van Leeuwenhoek 2020; 114:23-35. [PMID: 33230720 DOI: 10.1007/s10482-020-01490-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2020] [Accepted: 10/21/2020] [Indexed: 01/20/2023]
Abstract
Herein we report the isolation of a novel actinomycete, strain MCCB 268T, from the sediment sample collected from a high Arctic fjord Kongsfjorden. MCCB 268T showed greater than 97% 16S rRNA gene sequence similarity with those of Pseudonocardia konjuensis LM 157T (98.06%), Pseudonocardia soli NW8-21 (97.22%) Pseudonocardia endophytica YIM 56035 (97.08%) and Pseudonocardia nantongensis KLBMP 1282 (97.34%) showing that the strain should be assigned to the genus Pseudonocardia. DNA-DNA hybridization with Pseudonocardia konjuensis LM 157T showed only 41.5% relatedness to strain MCCB 268T. The whole genome of the strain MCCB 268T was sequenced. Whole-genome average nucleotide identity, dDDH (%) and genome tree analysis demonstrated that strain significantly differed from other Pseudonocardia species. The G + C content was 70.5 mol%. MCCB 268T exhibited in vitro cytotoxicity and through bioassay guided fractionation followed by HPLC separation a cytotoxic compound (I) was isolated. The compound (I) was identified as 1-acetyl-β-carboline through NMR spectra and high-resolution mass spectrometry. Compound (I) showed cytotoxicity against lung cancer cell line and mode of anticancer activity was found to be through the induction of apoptosis. Based on the genotypic and phenotypic features, MCCB 268T ought to be classified as a novel species under the genus Pseudonocardia for which the name Pseudonocardia cytotoxica sp. nov. is proposed (= CCUG72333T = JCM32718T).
Collapse
|
23
|
Carter-Gates M, Balestreri C, Thorpe SE, Cottier F, Baylay A, Bibby TS, Moore CM, Schroeder DC. Implications of increasing Atlantic influence for Arctic microbial community structure. Sci Rep 2020; 10:19262. [PMID: 33159130 PMCID: PMC7648788 DOI: 10.1038/s41598-020-76293-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2019] [Accepted: 10/19/2020] [Indexed: 11/17/2022] Open
Abstract
Increasing influence of Atlantic water in the Arctic Ocean has the potential to significantly impact regional water temperature and salinity. Here we use a rDNA barcoding approach to reveal how microbial communities are partitioned into distinct assemblages across a gradient of Atlantic-Polar Water influence in the Norwegian Sea. Data suggest that temperate adapted bacteria may replace cold water taxa under a future scenario of increasing Atlantic influence, but the eukaryote response is more complex. Some abundant eukaryotic cold water taxa could persist, while less abundant eukaryotic taxa may be replaced by warmer adapted temperate species. Furthermore, within lineages, different taxa display evidence of increased relative abundance in reaction to favourable conditions and we observed that rare microbial taxa are sample site rather than region specific. Our findings have significant implications for the vulnerability of polar associated community assemblages, which may change, impacting the ecosystem services they provide, under predicted increases of Atlantic mixing and warming within the Arctic region.
Collapse
Affiliation(s)
- Michael Carter-Gates
- Cellular and Molecular Department, The Marine Biological Association of the UK, Plymouth, PL1 2PB, UK
| | - Cecilia Balestreri
- Cellular and Molecular Department, The Marine Biological Association of the UK, Plymouth, PL1 2PB, UK
| | | | - Finlo Cottier
- Scottish Association for Marine Science, Oban, PA37 1QA, Argyll, UK.,Department of Arctic and Marine Biology, University of Tromsø - The Arctic University of Norway, 9037, Tromsø, Norway
| | - Alison Baylay
- Ocean and Earth Sciences, University of Southampton, Southampton, SO14 3ZH, UK
| | - Thomas S Bibby
- Ocean and Earth Sciences, University of Southampton, Southampton, SO14 3ZH, UK
| | - C Mark Moore
- Ocean and Earth Sciences, University of Southampton, Southampton, SO14 3ZH, UK
| | - Declan C Schroeder
- Cellular and Molecular Department, The Marine Biological Association of the UK, Plymouth, PL1 2PB, UK. .,Veterinary Population Medicine, The University of Minnesota, St Paul, MN, 55108, USA. .,School of Biological Sciences, University of Reading, Reading, RG6 6AH, UK.
| |
Collapse
|
24
|
Rufibacter radiotolerans sp. nov., a novel gamma-radiation-resistant bacterium isolated from rice field. Arch Microbiol 2020; 203:347-353. [PMID: 32945891 DOI: 10.1007/s00203-020-02033-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2020] [Revised: 08/10/2020] [Accepted: 09/02/2020] [Indexed: 10/23/2022]
Abstract
A red-pigmented isolate, designated DG31DT, was isolated from the soil of a rice field in South Korea. Cells were strictly aerobic, short rod-shaped, Gram-negative, oxidase-positive, and catalase-positive. The major polar lipid was phosphatidylethanolamine (PE), and the predominant respiratory quinone was MK-7. DG31DT showed high resistance to both the UV and gamma radiations. Based on the 16S rRNA gene sequence, strain DG31DT was related to Rufibacter immobilis MCC P1T (97.1%) and Rufibacter tibetensis 1351T (96.5%). The average nucleotide identity (ANI) and in silico DNA-DNA hybridization (isDDH) values between the strain DG31DT and the related Rufibacter sp. were between 74.1-77.6% and 19.9-21.9%, respectively. Strain DG31DT grew between 15 and 30 °C (optimum, 25 °C), at pH 6.0-8.0 (optimum, pH 7.0) and tolerated up to 1.0% NaCl (w/v). The major cellular fatty acids of the novel strain were summed feature 3 (C16:1 ω7c/C16:1 ω6c) and C16:1 ω5c. Flexirubin-type pigments were absent. On the basis of the phenotypic, phylogenetic, and chemotaxonomic data, strain DG31DT represents a novel species of the genus Rufibacter, for which the name Rufibacter radiotolerans sp. nov. is proposed. The type strain is DG31DT (= JCM 19446T = KCTC 32454T).
Collapse
|
25
|
Xue Z, Zhu S, Chen X, Chen T, Ren N, Chen Y, Dong B, Shen X, Huang Y, Yang J, Chen J. Jiella pacifica sp. nov., isolated from the West Pacific Ocean. Int J Syst Evol Microbiol 2020; 70:4345-4350. [PMID: 32584750 DOI: 10.1099/ijsem.0.004295] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
A Gram-stain-negative bacterium, designated strain 40Bstr34T, isolated from a sediment sample from the West Pacific Ocean, was taxonomically characterized by using a polyphasic approach. The strain was phylogenetically close to Jiella aquimaris LZB041T and Jiella endophytica CBS5Q-3T, with 16S rRNA gene sequence similarities of 98.5 and 97.1 %, respectively. The genome of strain 40Bstr34T featured a G+C content of 65.7 % for a 5.8 Mb chromosome. Up-to-date bacterial core gene set analysis revealed that strain 40Bstr34T represents one independent lineage with J.aquimaris LZB041T. In silico DNA-DNA hybridization values between strain 40Bstr34T and its phylogenetic neighbours ranged from 30.3-34.2 %, below the cutoff of 70 %. In addition, the corresponding average nucleotide identity values were between 81.8-83.7 %, which are lower than 95 % threshold. The predominant cellular fatty acids of strain 40Bstr34T were summed feature 8 (C18 : 1 ω6c and/or C18 : 1 ω7c), cyclo-C19 : 0 ω8c and iso-C17 : 0 3-OH, and ubiquinone-10 as the predominant respiratory quinone. The major polar lipids included phosphatidylethanolamine, phosphatidylmonomethylethanolamine, diphosphatidylglycerol, phosphatidylglycerol, phosphatidylcholine, two unidentified aminolipids and two unidentified lipids. Based on the results of phenotypic, chemotaxonomic and genetic analyses, strain 40Bstr34T is identified as representing a novel species of the genus Jiella for which the name Jiella pacifica sp. nov. is proposed. The type strain is 40Bstr34T (=JCM 33903T=MCCC 1K04569T).
Collapse
Affiliation(s)
- Zehao Xue
- College of Biological and Environmental Sciences, Zhejiang Wanli University, Ningbo 315100, PR China
| | - Sidong Zhu
- College of Biological and Environmental Sciences, Zhejiang Wanli University, Ningbo 315100, PR China
| | - Xiunuan Chen
- College of Biological and Environmental Sciences, Zhejiang Wanli University, Ningbo 315100, PR China
| | - Ting Chen
- College of Biological and Environmental Sciences, Zhejiang Wanli University, Ningbo 315100, PR China
| | - Na Ren
- College of Biological and Environmental Sciences, Zhejiang Wanli University, Ningbo 315100, PR China
| | - Yong Chen
- Institute of Respiratory and Disease, Shenzhen People's Hospital, Shenzhen 518020, PR China
| | - Bingxia Dong
- College of Biological and Environmental Sciences, Zhejiang Wanli University, Ningbo 315100, PR China
| | - Xudong Shen
- College of Biological and Environmental Sciences, Zhejiang Wanli University, Ningbo 315100, PR China
| | - Yizhe Huang
- College of Biological and Environmental Sciences, Zhejiang Wanli University, Ningbo 315100, PR China
| | - Jifang Yang
- College of Biological and Environmental Sciences, Zhejiang Wanli University, Ningbo 315100, PR China
| | - Jigang Chen
- College of Biological and Environmental Sciences, Zhejiang Wanli University, Ningbo 315100, PR China
| |
Collapse
|
26
|
Choo S, Borchert E, Wiese J, Saha M, Künzel S, Weinberger F, Hentschel U. Polaribacter septentrionalilitoris sp. nov., isolated from the biofilm of a stone from the North Sea. Int J Syst Evol Microbiol 2020; 70:4305-4314. [PMID: 32579104 DOI: 10.1099/ijsem.0.004290] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
A new member of the family Flavobacteriaceae was isolated from the biofilm of a stone at Nordstrand, a peninsula at the German North Sea shore. Phylogenetic analysis of the 16S rRNA gene sequence showed that strain ANORD1T was most closely related to the validly described type strains Polaribacter porphyrae LNM-20T (97.0 %) and Polaribacter reichenbachii KMM 6386T (96.9 % 16S rRNA gene sequence similarity) and clustered with Polaribacter gangjinensis K17-16T (96.0 %). Strain ANORD1T was determined to be mesophilic, Gram-negative, non-motile and strictly aerobic. Optimal growth was observed at 20-30 °C, within a salinity range of 2-7 % sea salt and from pH 7-10. Like other type strains of the genus Polaribacter, ANORD1T was tested negative for flexirubin-type pigments, while carotenoid-type pigments were detected. The DNA G+C content of strain ANORD1T was 30.6 mol%. The sole respiratory quinone detected was menaquinone 6 (MK-6). The major fatty acids identified were C15 : 0, iso-C15 : 0, C15 : 1 ω6c and iso-C15 : 0 3-OH. Based on the polyphasic approach, strain ANORD1T represents a novel species in the genus Polaribacter, with the name Polaribacter septentrionalilitoris sp. nov. being proposed. The type strain is ANORD1T (=DSM 110039T=NCIMB 15081T=MTCC 12685T).
Collapse
Affiliation(s)
- Simeon Choo
- GEOMAR Helmholtz Centre for Ocean Research Kiel, RD3 Marine Symbioses, Düsternbrooker Weg 20, 24105 Kiel, Germany
| | - Erik Borchert
- GEOMAR Helmholtz Centre for Ocean Research Kiel, RD3 Marine Symbioses, Düsternbrooker Weg 20, 24105 Kiel, Germany
| | - Jutta Wiese
- GEOMAR Helmholtz Centre for Ocean Research Kiel, RD3 Marine Symbioses, Düsternbrooker Weg 20, 24105 Kiel, Germany
| | - Mahasweta Saha
- Present address: Marine Ecology and Biodiversity, Plymouth Marine Laboratory, Prospect Place, PL1 3DH, Plymouth, UK.,GEOMAR Helmholtz Centre for Ocean Research Kiel, RD3 Benthic Ecology, Hohenbergstraße 2, 24105 Kiel, Germany
| | - Sven Künzel
- Max Planck Institute for Evolutionary Biology, 24306 Plön, Germany
| | - Florian Weinberger
- GEOMAR Helmholtz Centre for Ocean Research Kiel, RD3 Benthic Ecology, Hohenbergstraße 2, 24105 Kiel, Germany
| | - Ute Hentschel
- Christian-Albrechts-University (CAU) of Kiel, Kiel, Germany.,GEOMAR Helmholtz Centre for Ocean Research Kiel, RD3 Marine Symbioses, Düsternbrooker Weg 20, 24105 Kiel, Germany
| |
Collapse
|
27
|
Xu W, Chen XY, Wei XT, Lu DC, Du ZJ. Polaribacter aquimarinus sp. nov., isolated from the surface of a marine red alga. Antonie van Leeuwenhoek 2019; 113:407-415. [DOI: 10.1007/s10482-019-01350-z] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/21/2019] [Accepted: 10/10/2019] [Indexed: 11/29/2022]
|
28
|
Caza F, Joly de Boissel PG, Villemur R, Betoulle S, St-Pierre Y. Liquid biopsies for omics-based analysis in sentinel mussels. PLoS One 2019; 14:e0223525. [PMID: 31581216 PMCID: PMC6776352 DOI: 10.1371/journal.pone.0223525] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2019] [Accepted: 09/23/2019] [Indexed: 12/14/2022] Open
Abstract
Liquid biopsy of plasma is a simple and non-invasive technology that holds great promise in biomedical research. It is based on the analysis of nucleic acid-based biomarkers with predictive potential. In the present work, we have combined this concept with the FTA technology for sentinel mussels. We found that hemocytes collected from liquid biopsies can be readily fixed on FTA cards and used for long-term transcriptome analysis. We also showed that liquid biopsy is easily adaptable for metagenomic analysis of bacterial profiles of mussels. We finally provide evidence that liquid biopsies contained circulating cell-free DNA (ccfDNA) which can be used as an easily accessible genomic reservoir. Sampling of FTA-fixed circulating nucleic acids is stable at room temperature and does not necessitate a cold-chain protection. It showed comparable performance to frozen samples and is ideally adapted for sampling in remote areas, most notably in polar regions threatened by anthropogenic activities. From an ethical point of view, this minimally-invasive and non-lethal approach further reduces incidental mortality associated with conventional tissue sampling. This liquid biopsy-based approach should thus facilitate biobanking activities and development of omics-based biomarkers in mussels to assess the quality of aquatic ecosystems.
Collapse
Affiliation(s)
- France Caza
- INRS-Institut Armand-Frappier, Laval, Québec, Canada
| | | | | | - Stéphane Betoulle
- Université Reims Champagne-Ardenne, UMR-I 02 SEBIO, Stress environnementaux et Biosurveillance des milieux aquatiques, Reims, France
| | | |
Collapse
|
29
|
García-López M, Meier-Kolthoff JP, Tindall BJ, Gronow S, Woyke T, Kyrpides NC, Hahnke RL, Göker M. Analysis of 1,000 Type-Strain Genomes Improves Taxonomic Classification of Bacteroidetes. Front Microbiol 2019; 10:2083. [PMID: 31608019 PMCID: PMC6767994 DOI: 10.3389/fmicb.2019.02083] [Citation(s) in RCA: 229] [Impact Index Per Article: 38.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2018] [Accepted: 08/23/2019] [Indexed: 11/25/2022] Open
Abstract
Although considerable progress has been made in recent years regarding the classification of bacteria assigned to the phylum Bacteroidetes, there remains a need to further clarify taxonomic relationships within a diverse assemblage that includes organisms of clinical, piscicultural, and ecological importance. Bacteroidetes classification has proved to be difficult, not least when taxonomic decisions rested heavily on interpretation of poorly resolved 16S rRNA gene trees and a limited number of phenotypic features. Here, draft genome sequences of a greatly enlarged collection of genomes of more than 1,000 Bacteroidetes and outgroup type strains were used to infer phylogenetic trees from genome-scale data using the principles drawn from phylogenetic systematics. The majority of taxa were found to be monophyletic but several orders, families and genera, including taxa proposed long ago such as Bacteroides, Cytophaga, and Flavobacterium but also quite recent taxa, as well as a few species were shown to be in need of revision. According proposals are made for the recognition of new orders, families and genera, as well as the transfer of a variety of species to other genera. In addition, emended descriptions are given for many species mainly involving information on DNA G+C content and (approximate) genome size, both of which can be considered valuable taxonomic markers. We detected many incongruities when comparing the results of the present study with existing classifications, which appear to be caused by insufficiently resolved 16S rRNA gene trees or incomplete taxon sampling. The few significant incongruities found between 16S rRNA gene and whole genome trees underline the pitfalls inherent in phylogenies based upon single gene sequences and the impediment in using ordinary bootstrapping in phylogenomic studies, particularly when combined with too narrow gene selections. While a significant degree of phylogenetic conservation was detected in all phenotypic characters investigated, the overall fit to the tree varied considerably, which is one of the probable causes of misclassifications in the past, much like the use of plesiomorphic character states as diagnostic features.
Collapse
Affiliation(s)
- Marina García-López
- Department of Microorganisms, Leibniz Institute DSMZ – German Collection of Microorganisms and Cell Cultures, Braunschweig, Germany
| | - Jan P. Meier-Kolthoff
- Department of Microorganisms, Leibniz Institute DSMZ – German Collection of Microorganisms and Cell Cultures, Braunschweig, Germany
| | - Brian J. Tindall
- Department of Microorganisms, Leibniz Institute DSMZ – German Collection of Microorganisms and Cell Cultures, Braunschweig, Germany
| | - Sabine Gronow
- Department of Microorganisms, Leibniz Institute DSMZ – German Collection of Microorganisms and Cell Cultures, Braunschweig, Germany
| | - Tanja Woyke
- Department of Energy, Joint Genome Institute, Walnut Creek, CA, United States
| | - Nikos C. Kyrpides
- Department of Energy, Joint Genome Institute, Walnut Creek, CA, United States
| | - Richard L. Hahnke
- Department of Microorganisms, Leibniz Institute DSMZ – German Collection of Microorganisms and Cell Cultures, Braunschweig, Germany
| | - Markus Göker
- Department of Microorganisms, Leibniz Institute DSMZ – German Collection of Microorganisms and Cell Cultures, Braunschweig, Germany
| |
Collapse
|
30
|
de Sousa AGG, Tomasino MP, Duarte P, Fernández-Méndez M, Assmy P, Ribeiro H, Surkont J, Leite RB, Pereira-Leal JB, Torgo L, Magalhães C. Diversity and Composition of Pelagic Prokaryotic and Protist Communities in a Thin Arctic Sea-Ice Regime. MICROBIAL ECOLOGY 2019; 78:388-408. [PMID: 30623212 DOI: 10.1007/s00248-018-01314-2] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2018] [Accepted: 12/25/2018] [Indexed: 06/09/2023]
Abstract
One of the most prominent manifestations of climate change is the changing Arctic sea-ice regime with a reduction in the summer sea-ice extent and a shift from thicker, perennial multiyear ice towards thinner, first-year ice. These changes in the physical environment are likely to impact microbial communities, a key component of Arctic marine food webs and biogeochemical cycles. During the Norwegian young sea ICE expedition (N-ICE2015) north of Svalbard, seawater samples were collected at the surface (5 m), subsurface (20 or 50 m), and mesopelagic (250 m) depths on 9 March, 27 April, and 16 June 2015. In addition, several physical and biogeochemical data were recorded to contextualize the collected microbial communities. Through the massively parallel sequencing of the small subunit ribosomal RNA amplicon and metagenomic data, this work allows studying the Arctic's microbial community structure during the late winter to early summer transition. Results showed that, at compositional level, Alpha- (30.7%) and Gammaproteobacteria (28.6%) are the most frequent taxa across the prokaryotic N-ICE2015 collection, and also the most phylogenetically diverse. Winter to early summer trends were quite evident since there was a high relative abundance of thaumarchaeotes in the under-ice water column in late winter while this group was nearly absent during early summer. Moreover, the emergence of Flavobacteria and the SAR92 clade in early summer might be associated with the degradation of a spring bloom of Phaeocystis. High relative abundance of hydrocarbonoclastic bacteria, particularly Alcanivorax (54.3%) and Marinobacter (6.3%), was also found. Richness showed different patterns along the depth gradient for prokaryotic (highest at mesopelagic depth) and protistan communities (higher at subsurface depths). The microbial N-ICE2015 collection analyzed in the present study provides comprehensive new knowledge about the pelagic microbiota below drifting Arctic sea-ice. The higher microbial diversity found in late winter/early spring communities reinforces the need to continue with further studies to properly characterize the winter microbial communities under the pack-ice.
Collapse
Affiliation(s)
- António Gaspar G de Sousa
- CIIMAR/CIMAR - Interdisciplinary Centre of Marine and Environmental Research, University of Porto, Terminal de Cruzeiros do Porto de Leixões, Av. General Norton de Matos s/n, 4450-208, Porto, Portugal.
- Department of Biology, Faculty of Sciences, University of Porto, Rua Campo Alegre s/n, 4169-007, Porto, Portugal.
| | - Maria Paola Tomasino
- CIIMAR/CIMAR - Interdisciplinary Centre of Marine and Environmental Research, University of Porto, Terminal de Cruzeiros do Porto de Leixões, Av. General Norton de Matos s/n, 4450-208, Porto, Portugal
| | - Pedro Duarte
- Norwegian Polar Institute, Fram Centre, N-9296, Tromsø, Norway
| | | | - Philipp Assmy
- Norwegian Polar Institute, Fram Centre, N-9296, Tromsø, Norway
| | - Hugo Ribeiro
- CIIMAR/CIMAR - Interdisciplinary Centre of Marine and Environmental Research, University of Porto, Terminal de Cruzeiros do Porto de Leixões, Av. General Norton de Matos s/n, 4450-208, Porto, Portugal
| | - Jaroslaw Surkont
- Instituto Gulbenkian de Ciência, Rua da Quinta Grande, 6, 2780-156, Oeiras, Portugal
| | - Ricardo B Leite
- Instituto Gulbenkian de Ciência, Rua da Quinta Grande, 6, 2780-156, Oeiras, Portugal
| | - José B Pereira-Leal
- Instituto Gulbenkian de Ciência, Rua da Quinta Grande, 6, 2780-156, Oeiras, Portugal
| | - Luís Torgo
- LIAAD - Laboratory of Artificial Intelligence and Decision Support, INESC Tec, Porto, Portugal
- Faculty of Computer Science, Dalhousie University, Halifax, Canada, USA
| | - Catarina Magalhães
- CIIMAR/CIMAR - Interdisciplinary Centre of Marine and Environmental Research, University of Porto, Terminal de Cruzeiros do Porto de Leixões, Av. General Norton de Matos s/n, 4450-208, Porto, Portugal
- Department of Biology, Faculty of Sciences, University of Porto, Rua Campo Alegre s/n, 4169-007, Porto, Portugal
| |
Collapse
|
31
|
Park S, Park JM, Lee JS, Yoon JH. Description of Polaribacter aestuariivivens sp. nov., isolated from a tidal flat. FEMS Microbiol Lett 2019; 366:5567180. [PMID: 31504481 DOI: 10.1093/femsle/fnz185] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2019] [Accepted: 09/06/2019] [Indexed: 11/12/2022] Open
Abstract
A bacterial strain, DBTF-3T, was isolated from a tidal flat of Republic of Korea. Phylogenetic trees of 16S rRNA gene sequences showed that strain DBTF-3T belonged to the genus Polaribacter. Strain DBTF-3T exhibited 16S rRNA gene sequence similarities of 97.1-98.1% to type strains of P. dokdonensis, P. haliotis, P. marinaquae, P. insulae, P. vadi, P. glomeratus, P. irgensii and P. reichenbachii, and 94.0-96.9% to those of the other Polaribacter species. DNA-DNA relatedness values of strain DBTF-3T with type strains of P. marinaquae and P. insulae were 14-19%. Average nucleotide identity and digital DNA-DNA hybridization values between strain DBTF-3T and type strains of six other Polaribacter species were 76.5-83.5% and 20.9-27.1%, respectively. Strain DBTF-3T contained MK-6 as the predominant menaquinone, and iso-C15:0, summed feature 3, iso-C15:1 G and iso-C15:0 3-OH as the major fatty acids. The major polar lipids were phosphatidylethanolamine and one unidentified lipid. Differential phenotypic properties, together with its phylogenetic and genetic distinctiveness, revealed that strain DBTF-3T is separated from Polaribacter species. On the basis of the data presented, strain DBTF-3T (= KACC 19612T = NBRC 113191T) represents a novel species of the genus Polaribacter, for which the name Polaribacter aestuariivivens sp. nov. is proposed.
Collapse
Affiliation(s)
- Sooyeon Park
- Department of Food Science and Biotechnology, Sungkyunkwan University, 2066 Seobu-ro, Jangan-gu, Suwon 16419, Republic of Korea
| | - Ji-Min Park
- Department of Food Science and Biotechnology, Sungkyunkwan University, 2066 Seobu-ro, Jangan-gu, Suwon 16419, Republic of Korea
| | - Jung-Sook Lee
- Korean Collection for Type Cultures (KCTC), Korea Research Institute of Bioscience and Biotechnology (KRIBB), 181 Ipsin-gil, Jeongeup-si 56212, Republic of Korea
| | - Jung-Hoon Yoon
- Department of Food Science and Biotechnology, Sungkyunkwan University, 2066 Seobu-ro, Jangan-gu, Suwon 16419, Republic of Korea
| |
Collapse
|
32
|
Flavivirga rizhaonensis sp. nov., a marine bacterium isolated from intertidal sand. Antonie van Leeuwenhoek 2019; 112:1645-1653. [DOI: 10.1007/s10482-019-01291-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/17/2019] [Accepted: 06/14/2019] [Indexed: 10/26/2022]
|
33
|
Szuróczki S, Khayer B, Spröer C, Toumi M, Szabó A, Felföldi T, Schumann P, Tóth E. Arundinibacter roseus gen. nov., sp. nov., a new member of the family Cytophagaceae. Int J Syst Evol Microbiol 2019; 69:2076-2081. [PMID: 31099731 DOI: 10.1099/ijsem.0.003436] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Three Gram-stain-negative, aerobic, non-motile, oxidase- and catalase positive, rod-shaped, pink-coloured bacterial strains, DMA-K-7aT, DMA-K-1 and DMG-N-1, were isolated from water sampled at Lake Fertő/Neusiedler See (Hungary). Phylogenetic analysis based on the 16S rRNA gene sequences revealed that the strains form a distinct linage within the family Cytophagaceae of the phylum Bacteroidetes, and their closest relatives are Rhabdobacter roseus R49T (95.66 %) and Dyadobacter sediminis Z12T (95.38 %). The assembled genome of strain DMA-K-7aT had a total length of 5.8 Mb and a DNA G+C content of 45.7 mol%. The major isoprenoid quinone was menaquinone-7 (MK-7). The major cellular fatty acids were C16 : 1 ω7c, iso-C15 : 0, C16 : 1 ω5c, C16 : 0 and iso-C17 : 0 3-OH. The polar lipid profile contained phosphatidylethanolamine, phosphatidylserine, an unknown aminolipid, an unknown glycolipid and five unknown lipids. Flexirubin-type pigments were absent. Strain DMA-K-7aT (=DSM 106737T=NCAIM B.02641T) is proposed as the type strain of a new genus and species in the family Cytophagaceae, for which the name Arundinibacter roseus gen. nov., sp. nov. is proposed.
Collapse
Affiliation(s)
- S Szuróczki
- 1Department of Microbiology, Faculty of Science, Eötvös Loránd University, Pázmány Péter stny., 1/C, H-1117 Budapest, Hungary
| | - B Khayer
- 2Department of Water Hygiene, National Public Health Center, Albert Flórián út 2-6. H-1097 Budapest, Hungary
| | - C Spröer
- 3Leibniz Institute DSMZ-German Collection of Microorganisms and Cell Cultures, Inhoffenstrasse 7B, D-38124, Braunschweig, Germany
| | - M Toumi
- 1Department of Microbiology, Faculty of Science, Eötvös Loránd University, Pázmány Péter stny., 1/C, H-1117 Budapest, Hungary
| | - A Szabó
- 1Department of Microbiology, Faculty of Science, Eötvös Loránd University, Pázmány Péter stny., 1/C, H-1117 Budapest, Hungary
| | - T Felföldi
- 1Department of Microbiology, Faculty of Science, Eötvös Loránd University, Pázmány Péter stny., 1/C, H-1117 Budapest, Hungary
| | - P Schumann
- 3Leibniz Institute DSMZ-German Collection of Microorganisms and Cell Cultures, Inhoffenstrasse 7B, D-38124, Braunschweig, Germany
| | - E Tóth
- 1Department of Microbiology, Faculty of Science, Eötvös Loránd University, Pázmány Péter stny., 1/C, H-1117 Budapest, Hungary
| |
Collapse
|
34
|
Kim SJ, Kim JG, Lee SH, Park SJ, Gwak JH, Jung MY, Chung WH, Yang EJ, Park J, Jung J, Hahn Y, Cho JC, Madsen EL, Rodriguez-Valera F, Hyun JH, Rhee SK. Genomic and metatranscriptomic analyses of carbon remineralization in an Antarctic polynya. MICROBIOME 2019; 7:29. [PMID: 30786927 PMCID: PMC6383258 DOI: 10.1186/s40168-019-0643-4] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/22/2018] [Accepted: 02/01/2019] [Indexed: 06/09/2023]
Abstract
BACKGROUND Polynyas in the Southern Ocean are regions of intense primary production, mainly by Phaeocystis antarctica. Carbon fixed by phytoplankton in the water column is transferred to higher trophic levels, and finally, to the deep ocean. However, in the Amundsen Sea, most of this organic carbon does not reach the sediment but is degraded in the water column due to high bacterial heterotrophic activity. RESULTS We reconstructed 12 key bacterial genomes from different phases of bloom and analyzed the expression of genes involved in organic carbon remineralization. A high correlation of gene expression between the peak and decline phases was observed in an individual genome bin-based pairwise comparison of gene expression. Polaribacter belonging to Bacteroidetes was found to be dominant in the peak phase, and its transcriptional activity was high (48.9% of the total mRNA reads). Two dominant Polaribacter bins had the potential to utilize major polymers in P. antarctica, chrysolaminarin and xylan, with a distinct set of glycosyl hydrolases. In the decline phase, Gammaproteobacteria (Ant4D3, SUP05, and SAR92), with the potential to utilize low molecular weight-dissolved organic matter (LMW-DOM) including compatible solutes, was increased. The versatility of Gammaproteobacteria may contribute to their abundance in organic carbon-rich polynya waters, while the SAR11 clade was found to be predominant in the sea ice-covered oligotrophic ocean. SAR92 clade showed transcriptional activity for utilization of both polysaccharides and LMW-DOM; this may account for their abundance both in the peak and decline phases. Ant4D3 clade was dominant in all phases of the polynya bloom, implicating the crucial roles of this clade in LMW-DOM remineralization in the Antarctic polynyas. CONCLUSIONS Genomic reconstruction and in situ gene expression analyses revealed the unique metabolic potential of dominant bacteria of the Antarctic polynya at a finer taxonomic level. The information can be used to predict temporal community succession linked to the availability of substrates derived from the P. antarctica bloom. Global warming has resulted in compositional changes in phytoplankton from P. antarctica to diatoms, and thus, repeated parallel studies in various polynyas are required to predict global warming-related changes in carbon remineralization.
Collapse
Affiliation(s)
- So-Jeong Kim
- Geologic Environment Research Division, Korea Institute of Geoscience and Mineral Resources, Daejeon, 34132, Republic of Korea
| | - Jong-Geol Kim
- Department of Microbiology, Chungbuk National University, Cheongju, 28644, Republic of Korea
| | - Sang-Hoon Lee
- Division of Polar Ocean Environment, Korea Polar Research Institute, Incheon, 21990, Republic of Korea
| | - Soo-Je Park
- Department of Biology, Jeju National University, Jeju, 63243, Republic of Korea
| | - Joo-Han Gwak
- Department of Microbiology, Chungbuk National University, Cheongju, 28644, Republic of Korea
| | - Man-Young Jung
- Department of Microbial Ecology, University of Vienna, 1090, Vienna, Austria
| | - Won-Hyung Chung
- Research Group of Gut Microbiome, Korea Food Research Institute, Sungnam, 13539, Republic of Korea
| | - Eun-Jin Yang
- Division of Polar Ocean Environment, Korea Polar Research Institute, Incheon, 21990, Republic of Korea
| | - Jisoo Park
- Division of Polar Ocean Environment, Korea Polar Research Institute, Incheon, 21990, Republic of Korea
| | - Jinyoung Jung
- Division of Polar Ocean Environment, Korea Polar Research Institute, Incheon, 21990, Republic of Korea
| | - Yoonsoo Hahn
- Department of Life Science, Chung-Ang University, Seoul, 06974, Republic of Korea
| | - Jang-Cheon Cho
- Department of Biological Sciences, Inha University, Incheon, 22212, Republic of Korea
| | - Eugene L Madsen
- Department of Microbiology, Cornell University, Ithaca, NY, 14853-8101, USA
| | - Francisco Rodriguez-Valera
- Evolutionary Genomics Group, División de Microbiología, Universidad Miguel Hernández, Apartado 18, San Juan de Alicante, 03550, Alicante, Spain
| | - Jung-Ho Hyun
- Department of Marine Science and Convergence Engineering, Hanyang University ERICA Campus, Ansan, 15588, Republic of Korea
| | - Sung-Keun Rhee
- Department of Microbiology, Chungbuk National University, Cheongju, 28644, Republic of Korea.
| |
Collapse
|
35
|
Messina CM, Renda G, Laudicella VA, Trepos R, Fauchon M, Hellio C, Santulli A. From Ecology to Biotechnology, Study of the Defense Strategies of Algae and Halophytes (from Trapani Saltworks, NW Sicily) with a Focus on Antioxidants and Antimicrobial Properties. Int J Mol Sci 2019; 20:E881. [PMID: 30781640 PMCID: PMC6412379 DOI: 10.3390/ijms20040881] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2018] [Revised: 02/12/2019] [Accepted: 02/14/2019] [Indexed: 11/16/2022] Open
Abstract
This study aimed at the characterization of the antioxidant power of polyphenol extracts (PE) obtained from the algae Cystoseira foeniculacea (CYS) (Phaeophyta) and from the halophyte Halocnemum strobilaceum (HAL), growing in the solar saltworks of western Sicily (Italy), and at the evaluation of their anti-microfouling properties, in order to correlate these activities to defense strategies in extreme environmental conditions. The antioxidant properties were assessed in the PE based on the total antioxidant activity test and the reducing power test; the anti-microfouling properties of the two PE were evaluated by measuring the growth inhibition of marine fish and shellfish pathogen bacteria as well as marine surface fouling bacteria and microalgae exposed to the fractions. Similar polyphenol content (CYS 5.88 ± 0.75 and HAL 6.03 ± 0.25 mg gallic acid equivalents (GAE) g-1 dried weight, DW) and similar reducing power percentage (93.91 ± 4.34 and 90.03 ± 6.19) were recorded for both species, even if they exhibited a different total antioxidant power (measured by the percentage of inhibition of the radical 2,2 diphenyl-1-picrylhydrazyl DPPH), with CYS (79.30) more active than HAL (59.90). Both PE showed anti-microfouling properties, being inhibitors of adhesion and growth of marine fish and shellfish pathogen bacteria (V. aestuarianus, V. carchariae, V. harveyi, P. elyakovii, H. aquamarina) and fouling bacteria (V. natriegens, V. proteolyticus, P. iirgensii, R. litoralis) with minimum inhibitory concentrations comparable to the commercial antifouling products used as a positive control (SEA-NINE™ 211N). Only CYS was a significant inhibitor of the microalgae strains tested, being able to reduce E. gayraliae and C. closterium growth (MIC 10 µg·mL-1) and the adhesion of all three strains tested (E. gayraliae, C. closterium and P. purpureum), suggesting its promise for use as an antifouling (AF) product.
Collapse
Affiliation(s)
- Concetta Maria Messina
- Dipartimento di Scienze della terra e del Mare DiSTeM, Laboratorio di Biochimica Marina ed Ecotossicologia, Università degli Studi di Palermo, Via G. Barlotta 4, 91100 Trapani, Italy.
| | - Giuseppe Renda
- Dipartimento di Scienze della terra e del Mare DiSTeM, Laboratorio di Biochimica Marina ed Ecotossicologia, Università degli Studi di Palermo, Via G. Barlotta 4, 91100 Trapani, Italy.
| | - Vincenzo Alessandro Laudicella
- Dipartimento di Scienze della terra e del Mare DiSTeM, Laboratorio di Biochimica Marina ed Ecotossicologia, Università degli Studi di Palermo, Via G. Barlotta 4, 91100 Trapani, Italy.
- Istituto di Biologia Marina, Consorzio Universitario della Provincia di Trapani, Via G. Barlotta 4, 91100 Trapani, Italy.
| | - Rozenn Trepos
- Biodimar, Laboratoire des Sciences de l'Environnement Marin (LEMAR), UMR 6539, UBO/IUEM, 29200 Brest, France.
| | - Marilyne Fauchon
- Biodimar, Laboratoire des Sciences de l'Environnement Marin (LEMAR), UMR 6539, UBO/IUEM, 29200 Brest, France.
| | - Claire Hellio
- Biodimar, Laboratoire des Sciences de l'Environnement Marin (LEMAR), UMR 6539, UBO/IUEM, 29200 Brest, France.
| | - Andrea Santulli
- Dipartimento di Scienze della terra e del Mare DiSTeM, Laboratorio di Biochimica Marina ed Ecotossicologia, Università degli Studi di Palermo, Via G. Barlotta 4, 91100 Trapani, Italy.
- Istituto di Biologia Marina, Consorzio Universitario della Provincia di Trapani, Via G. Barlotta 4, 91100 Trapani, Italy.
| |
Collapse
|
36
|
Taxonomic profiles in metagenomic analyses of free-living microbial communities in the Ofunato Bay. Gene 2018; 665:192-200. [PMID: 29705124 DOI: 10.1016/j.gene.2018.04.075] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2018] [Accepted: 04/25/2018] [Indexed: 12/21/2022]
Abstract
The Ofunato Bay in Iwate Prefecture, Japan is a deep coastal bay located at the center of the Sanriku Rias Coast and considered an economically and environmentally important asset. Here, we describe the first whole genome sequencing (WGS) study on the microbial community of the bay, where surface water samples were collected from three stations along its length to cover the entire bay; we preliminarily sequenced a 0.2 μm filter fraction among sequentially size-fractionated samples of 20.0, 5.0, 0.8 and 0.2 μm filters, targeting the free-living fraction only. From the 0.27-0.34 Gb WGS library, 0.9 × 106-1.2 × 106 reads from three sampling stations revealed 29 bacterial phyla (~80% of assigned reads), 3 archaeal phyla (~4%) and 59 eukaryotic phyla (~15%). Microbial diversity obtained from the WGS approach was compared with 16S rRNA gene results by mining WGS metagenomes, and we found similar estimates. The most frequently recovered bacterial sequences were Proteobacteria, predominantly comprised of 18.0-19.6% Planktomarina (Family Rhodobacteraceae) and 13.7-17.5% Candidatus Pelagibacter (Family Pelagibacterales). Other dominant bacterial genera, including Polaribacter (3.5-6.1%), Flavobacterium (1.8-2.6%), Sphingobacterium (1.4-1.6%) and Cellulophaga (1.4-2.0%), were members of Bacteroidetes and likely associated with the degradation and turnover of organic matter. The Marine Group I Archaea Nitrosopumilus was also detected. Remarkably, eukaryotic green alga Bathycoccus, Ostreococcus and Micromonas accounted for 8.8-15.2%, 3.6-4.9% and 2.1-3.1% of total read counts, respectively, highlighting their potential roles in the phytoplankton bloom after winter mixing.
Collapse
|
37
|
Nedashkovskaya OI, Kim SG, Balabanova LA, Zhukova NV, Bakunina IY, Mikhailov VV. Polaribacter staleyi sp. nov., a polysaccharide-degrading marine bacterium isolated from the red alga Ahnfeltia tobuchiensis. Int J Syst Evol Microbiol 2018; 68:623-629. [DOI: 10.1099/ijsem.0.002554] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Affiliation(s)
- Olga I. Nedashkovskaya
- G.B. Elyakov Pacific Institute of Bioorganic Chemistry of the Far-Eastern Branch of the Russian Academy of Sciences, Pr. 100 Let Vladivostoku 159, 690022, Vladivostok, Russia
| | - Song-Gun Kim
- Korean Collection for Type Cultures, Biological Resource Center, Korea Research Institute of Bioscience and Biotechnology, 181 Ipsin-gil, Jeongeup, Jeollabuk-do 56212, Republic of Korea
| | - Larissa A. Balabanova
- G.B. Elyakov Pacific Institute of Bioorganic Chemistry of the Far-Eastern Branch of the Russian Academy of Sciences, Pr. 100 Let Vladivostoku 159, 690022, Vladivostok, Russia
- Far Eastern Federal University, Sukhanova St. 8, 690950, Vladivostok, Russia
| | - Natalia V. Zhukova
- Far Eastern Federal University, Sukhanova St. 8, 690950, Vladivostok, Russia
- National Scientific Center of Marine Biology, Russian Academy of Science, Palchevskogo 17, Vladivostok 690041, Russia
| | - Irina Y. Bakunina
- G.B. Elyakov Pacific Institute of Bioorganic Chemistry of the Far-Eastern Branch of the Russian Academy of Sciences, Pr. 100 Let Vladivostoku 159, 690022, Vladivostok, Russia
| | - Valery V. Mikhailov
- G.B. Elyakov Pacific Institute of Bioorganic Chemistry of the Far-Eastern Branch of the Russian Academy of Sciences, Pr. 100 Let Vladivostoku 159, 690022, Vladivostok, Russia
- Far Eastern Federal University, Sukhanova St. 8, 690950, Vladivostok, Russia
| |
Collapse
|
38
|
Zou R, Zhang Y, Zhou X, Wang Y, Peng F. Spirosoma flavum sp. nov., isolated from Arctic tundra soil. Int J Syst Evol Microbiol 2017; 67:4911-4916. [DOI: 10.1099/ijsem.0.002238] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Affiliation(s)
- Rui Zou
- China Center for Type Culture Collection (CCTCC), College of Life Sciences, Wuhan University, Wuhan 430072, PR China
- Hubei Institute for Food and Drug Control, Wuhan 430064, PR China
| | - Yumin Zhang
- China Center for Type Culture Collection (CCTCC), College of Life Sciences, Wuhan University, Wuhan 430072, PR China
| | - Xueyin Zhou
- China Center for Type Culture Collection (CCTCC), College of Life Sciences, Wuhan University, Wuhan 430072, PR China
| | - Yang Wang
- Hubei Institute for Food and Drug Control, Wuhan 430064, PR China
| | - Fang Peng
- China Center for Type Culture Collection (CCTCC), College of Life Sciences, Wuhan University, Wuhan 430072, PR China
- Hubei Provincial Cooperative Innovation Center of Industrial Fermentation, Wuhan 430072, PR China
| |
Collapse
|
39
|
Ten LN, Okiria J, Lee JJ, Lee SY, Kang IK, Lee DS, Jung HY. Spirosoma koreense sp. nov., a species of the family Cytophagaceae isolated from beach soil. Int J Syst Evol Microbiol 2017; 67:5198-5204. [DOI: 10.1099/ijsem.0.002440] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Affiliation(s)
- Leonid N. Ten
- School of Applied Biosciences, Kyungpook National University, Daegu 41566, Republic of Korea
| | - Joseph Okiria
- School of Applied Biosciences, Kyungpook National University, Daegu 41566, Republic of Korea
| | - Jae-Jin Lee
- School of Applied Biosciences, Kyungpook National University, Daegu 41566, Republic of Korea
| | - Seung-Yeol Lee
- School of Applied Biosciences, Kyungpook National University, Daegu 41566, Republic of Korea
| | - In-Kyu Kang
- Department of Horticultural Science, Kyungpook National University, Daegu 41566, Republic of Korea
| | - Dae Sung Lee
- Department of Environmental Engineering, Kyungpook National University, Daegu 41566, Republic of Korea
| | - Hee-Young Jung
- Institute of Plant Medicine, Kyungpook National University, Daegu 41566, Republic of Korea
- School of Applied Biosciences, Kyungpook National University, Daegu 41566, Republic of Korea
| |
Collapse
|
40
|
Han JR, Wang K, Zhang J, Chen GJ, Du ZJ. Polaribacter tangerinus sp. nov., isolated from sediment in a sea cucumber culture pond. Int J Syst Evol Microbiol 2017; 67:4736-4741. [DOI: 10.1099/ijsem.0.002369] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Affiliation(s)
- Ji-Ru Han
- State key Laboratory of Microbial Technology, Shandong University, Jinan 250100, PR China
- College of Marine Science, Shandong University, Weihai 264209, PR China
| | - Kan Wang
- State key Laboratory of Microbial Technology, Shandong University, Jinan 250100, PR China
- College of Marine Science, Shandong University, Weihai 264209, PR China
| | - Jing Zhang
- State key Laboratory of Microbial Technology, Shandong University, Jinan 250100, PR China
- College of Marine Science, Shandong University, Weihai 264209, PR China
| | - Guan-Jun Chen
- State key Laboratory of Microbial Technology, Shandong University, Jinan 250100, PR China
- College of Marine Science, Shandong University, Weihai 264209, PR China
| | - Zong-Jun Du
- State key Laboratory of Microbial Technology, Shandong University, Jinan 250100, PR China
- College of Marine Science, Shandong University, Weihai 264209, PR China
| |
Collapse
|
41
|
Wang N, Xu F, Zhang XY, Chen XL, Qin QL, Zhou BC, Zhang YZ, Shi M. Changchengzhania lutea gen. nov., sp. nov., a new member of the family Flavobacteriaceae isolated from Antarctic intertidal sediment. Int J Syst Evol Microbiol 2017; 67:5187-5192. [PMID: 29068279 DOI: 10.1099/ijsem.0.002439] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
A Gram-negative, aerobic, yellow pigmented, non-flagellated, non-gliding, rod-shaped bacterial strain, designated SM1355T, was isolated from Antarctic intertidal sediment collected near the Chinese Antarctic Great Wall Station. The strain grew at 4-35 °C and with 0.5-7.0 % (w/v) NaCl. It hydrolysed aesculin but didn't reduce nitrate to nitrite. Phylogenetic analysis based on 16S rRNA gene sequences revealed that strain SM1355T formed a distinct phylogenetic lineage within the family Flavobacteriaceae, sharing the highest 16S rRNA gene sequence similarity with Flaviramulus ichthyoenteri (96.3 %) and fairly high sequence similarities (95.0-96.0 %) with over 20 recognized species in eight genera of the family Flavobacteriaceae. The predominant fatty acids were anteiso-C15 : 0, iso-C15 : 0 and iso-C15 : 1 G. The major polar lipids were phosphatidylethanolamine and one unidentified lipid. The genomic DNA G+C content of strain SM1355T was 36.2 mol%. Based on the results of the polyphasic characterization for strain SM1355T, it is identified as the representative of a novel species in a new genus of the family Flavobacteriaceae, for which the name Changchengzhania lutea gen. nov., sp. nov. is proposed. The type strain of Changchengzhania lutea is SM1355T (=JCM 30336T=CCTCC AB 2014246T).
Collapse
Affiliation(s)
- Ning Wang
- State Key Laboratory of Microbial Technology, Shandong University, Jinan 250100, PR China.,Marine Biotechnology Research Center, Shandong University, Jinan 250100, PR China
| | - Fei Xu
- State Key Laboratory of Microbial Technology, Shandong University, Jinan 250100, PR China.,Marine Biotechnology Research Center, Shandong University, Jinan 250100, PR China
| | - Xi-Ying Zhang
- State Key Laboratory of Microbial Technology, Shandong University, Jinan 250100, PR China.,Marine Biotechnology Research Center, Shandong University, Jinan 250100, PR China
| | - Xiu-Lan Chen
- State Key Laboratory of Microbial Technology, Shandong University, Jinan 250100, PR China.,Marine Biotechnology Research Center, Shandong University, Jinan 250100, PR China
| | - Qi-Long Qin
- State Key Laboratory of Microbial Technology, Shandong University, Jinan 250100, PR China.,Marine Biotechnology Research Center, Shandong University, Jinan 250100, PR China
| | - Bai-Cheng Zhou
- Marine Biotechnology Research Center, Shandong University, Jinan 250100, PR China
| | - Yu-Zhong Zhang
- State Key Laboratory of Microbial Technology, Shandong University, Jinan 250100, PR China.,Marine Biotechnology Research Center, Shandong University, Jinan 250100, PR China.,Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, PR China
| | - Mei Shi
- State Key Laboratory of Microbial Technology, Shandong University, Jinan 250100, PR China.,Marine Biotechnology Research Center, Shandong University, Jinan 250100, PR China
| |
Collapse
|
42
|
Park S, Yoon SY, Park JM, Yoon JH. Polaribacter insulae sp. nov., isolated from a tidal flat. Int J Syst Evol Microbiol 2017; 67:4013-4019. [PMID: 28893356 DOI: 10.1099/ijsem.0.002236] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
A Gram-stain-negative, aerobic, non-motile and ovoid or rod-shaped bacterial strain, designated OITF-22T, was isolated from a tidal flat of Oido, an island of South Korea, and subjected to a polyphasic taxonomic study. Strain OITF-22T grew optimally at 25 °C, at pH 7.0-8.0 and in the presence of 2.0-3.0 % (w/v) NaCl. The phylogenetic trees based on 16S rRNA gene sequences showed that strain OITF-22T fell within the clade comprising the type strains of Polaribacter species. Strain OITF-22T exhibited 16S rRNA gene sequence similarity values of 97.2-99.4 % to the type strains of Polaribacter vadi, P. haliotis, P. atrinae, P. dokdonensis, P. litorisediminis,P. reichenbachii, P. irgensii and P. marinaquae, and of 93.0-96.9 % to the type strains of the other Polaribacter species. Strain OITF-22T contained MK-6 as the predominant menaquinone and iso-C15 : 0 and iso-C15 : 0 3-OH as the major fatty acids. The major polar lipids detected in strain OITF-22T were phosphatidylethanolamine and one unidentified lipid. The DNA G+C content of strain OITF-22T was 32.3 mol% and its DNA-DNA relatedness values with the type strains of the eight phylogenetically most closely related Polaribacter species were 9-32 %. Differential phenotypic properties, together with phylogenetic and genetic distinctiveness, revealed that strain OITF-22T is separated from recognized species of the genus Polaribacter. On the basis of the data presented, strain OITF-22T is considered to represent a novel species of the genus Polaribacter, for which the name Polaribacter insulae sp. nov. is proposed. The type strain is OITF-22T (=KCTC 52658T=NBRC 112706T).
Collapse
Affiliation(s)
- Sooyeon Park
- Department of Food Science and Biotechnology, Sungkyunkwan University, Jangan-gu, Suwon, Republic of Korea
| | - Sun Young Yoon
- Department of Food Science and Biotechnology, Sungkyunkwan University, Jangan-gu, Suwon, Republic of Korea
| | - Ji-Min Park
- Department of Food Science and Biotechnology, Sungkyunkwan University, Jangan-gu, Suwon, Republic of Korea
| | - Jung-Hoon Yoon
- Department of Food Science and Biotechnology, Sungkyunkwan University, Jangan-gu, Suwon, Republic of Korea
| |
Collapse
|
43
|
Lee YH, Lee JJ, Lee SY, Lee DS, Kim MK, Ten LN, Jung HY. Larkinella ripae sp. nov., isolated from seashore soil. Int J Syst Evol Microbiol 2017; 67:3759-3764. [PMID: 28879840 DOI: 10.1099/ijsem.0.002188] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Strain 15J11-11T was isolated from soil collected at the seashore and was Gram-staining-negative, short-rod-shaped, gliding and pale-pink pigmented. Flexirubin-type pigments were absent. The isolate grew at a temperature range of 15 to 30 °C and a pH range of 7 to 8. Comparative 16S rRNA gene sequence studies showed that strain 15J11-11T belonged to the genus Larkinella within the phylum Bacteroidetes and was most closely related to Larkinella arboricola Z0532T (95.6 %), Larkinella bovis M2TB15T (95.4 %), and Larkinella insperata LMG 22510T (95.2 %). The genomic DNA G+C content of strain 15J11-11T was 53.2 mol%. The strain contained phosphatidylethanolamine, phosphatidylserine, an unidentified aminophospholipid and two unidentified polar lipids as the major polar lipids; menaquinone-7 as the predominant quinone and C16 : 1ω5c, iso-C15 : 0 and iso-C17 : 0 3-OH as the major fatty acids which supported the affiliation of strain 15J11-11T to the genus Larkinella. Based on its phenotypic properties and phylogenetic distinctiveness, strain 15J11-11T represents a novel species of the genus Larkinella, for which the name Larkinella ripae sp. nov. is proposed. The type strain is 15J11-11T (=KCTC 42996T=JCM 31657T).
Collapse
Affiliation(s)
- Yeon-Hee Lee
- College of Agricultural and Life Sciences, Kyungpook National University, Daegu 41566, Republic of Korea
| | - Jae-Jin Lee
- College of Agricultural and Life Sciences, Kyungpook National University, Daegu 41566, Republic of Korea
| | - Seung-Yeo Lee
- College of Agricultural and Life Sciences, Kyungpook National University, Daegu 41566, Republic of Korea
| | - Dae Sung Lee
- Department of Environmental Engineering, Kyungpook National University, Daegu 41566, Republic of Korea
| | - Myung Kyum Kim
- Department of Bio and Environmental Technology, Seoul Women's University, Seoul 01797, Republic of Korea
| | - Leonid N Ten
- College of Agricultural and Life Sciences, Kyungpook National University, Daegu 41566, Republic of Korea
| | - Hee-Young Jung
- College of Agricultural and Life Sciences, Kyungpook National University, Daegu 41566, Republic of Korea.,Institute of Plant Medicine, Kyungpook National University, Daegu 41566, Republic of Korea
| |
Collapse
|
44
|
Wu Y, Yu M, Zhang Z, Wang Y, Yang X, Wang X, Ren Q, Sun Z, Shi X, Zhang XH. Polaribacter pacificus sp. nov., isolated from a deep-sea polymetallic nodule from the Eastern Pacific Ocean. Int J Syst Evol Microbiol 2017; 67:3203-3208. [PMID: 28829019 DOI: 10.1099/ijsem.0.002082] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
A Gram-staining-negative, yellow-colony-forming, rod-shaped, non-flagellated and facultatively aerobic strain, designed HRA130-1T, was isolated from a deep-sea polymetallic nodule from the Pacific Clarion-Clipperton Fracture Zone (CCFZ). Phylogenetic analysis based on 16S rRNA gene sequences indicated that strain HRA130-1T belonged to the genus Polaribacter (96.3-93.2 % 16S rRNA gene sequence similarity), and exhibited 94 % 16S rRNA gene sequence similarity to Polaribacter filamentus KCTC 23135T (type species) and the highest sequence similarity to Polaribacter huanghezhanensis KCTC 32516T (96.3 %). Optimal growth occurred in the presence of 4 % (w/v) NaCl, at pH 7.0 and 16 °C. The DNA G+C content of strain HRA130-1T was 35.9 mol%. The major fatty acid was iso-C15 : 0. The predominant respiratory quinone was menaquinone-6 (MK-6). The major polar lipids were phosphatidylethanolamine, phosphatidylglycerol, one unidentified phospholipid and an unidentified aminolipid. On the basis of data from the present taxonomic study using a polyphasic approach, strain HRA130-1T represents a novel species of the genus Polaribacter, for which the name Polaribacter pacificus sp. nov. is proposed. The type strain is HRA130-1T (=KCTC 52370T=MCCC 1K03199T=JCM 31460T=CGMCC 1.15763T).
Collapse
Affiliation(s)
- Yanhong Wu
- College of Marine Life Sciences, Ocean University of China, Qingdao 266003, PR China
| | - Min Yu
- College of Marine Life Sciences, Ocean University of China, Qingdao 266003, PR China
| | - Zenghu Zhang
- College of Marine Life Sciences, Ocean University of China, Qingdao 266003, PR China
| | - Yanan Wang
- College of Marine Life Sciences, Ocean University of China, Qingdao 266003, PR China
| | - Xiaoting Yang
- College of Marine Life Sciences, Ocean University of China, Qingdao 266003, PR China
| | - Xiaolei Wang
- College of Marine Life Sciences, Ocean University of China, Qingdao 266003, PR China
| | - Qiaomeng Ren
- College of Marine Life Sciences, Ocean University of China, Qingdao 266003, PR China
| | - Zhongcheng Sun
- College of Marine Life Sciences, Ocean University of China, Qingdao 266003, PR China
| | - Xiaochong Shi
- College of Marine Life Sciences, Ocean University of China, Qingdao 266003, PR China
| | - Xiao-Hua Zhang
- College of Marine Life Sciences, Ocean University of China, Qingdao 266003, PR China.,Institute of Evolution and Marine Biodiversity, Ocean University of China, Qingdao 266003, PR China.,Laboratory for Marine Ecology and Environmental Science, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266071, PR China
| |
Collapse
|
45
|
Park S, Yoon SY, Ha MJ, Yoon JH. Polaribacter litorisediminis sp. nov., isolated from a tidal flat. Int J Syst Evol Microbiol 2017; 67:2036-2042. [PMID: 28665265 DOI: 10.1099/ijsem.0.001919] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
A Gram-stain-negative, aerobic, non-motile and ovoid or rod-shaped bacterial strain, designated OITF-11T, was isolated from a tidal flat in Oido, an island of South Korea, and subjected to a polyphasic taxonomic study. Strain OITF-11T grew optimally at 25 °C, at pH 7.0-8.0 and in the presence of 2.0 % (w/v) NaCl. The phylogenetic trees based on 16S rRNA gene sequences showed that strain OITF-11T belonged to the genus Polaribacter. Strain OITF-11T exhibited 16S rRNA gene sequence similarity values of 97.4-98.1 % to Polaribacter haliotis RA4-7T, Polaribacter atrinae KACC 17473T, Polaribacter dokdonensis DSW-5T and Polaribacter marinaquae KCTC 42664T, and of 94.1-96.9 % to the type strains of the other Polaribacter species. Strain OITF-11T contained menaquinone MK-6 as the predominant menaquinone and iso-C15 : 0, iso-C15 : 1 G, iso-C15 : 0 3-OH, iso-C17 : 0 3-OH and C15 : 1ω6c as the major fatty acids. The major polar lipids detected in strain OITF-11T were phosphatidylethanolamine, phosphatidylmonomethylethanolamine and one unidentified lipid. The DNA G+C content of strain OITF-11T was 32.2 mol% and its DNA-DNA relatedness values with the type strains of P. haliotis, P. atrinae, P. dokdonensis and P. marinaquae were 14-33 %. Differential phenotypic properties, together with its phylogenetic and genetic distinctiveness, revealed that strain OITF-11T is separated from recognized species of the genus Polaribacter. On the basis of the data presented, strain OITF-11T is considered to represent a novel species of the genus Polaribacter, for which the name Polaribacter litorisediminis sp. nov. is proposed. The type strain is OITF-11T (=KCTC 52500T=NBRC 112457T).
Collapse
Affiliation(s)
- Sooyeon Park
- Department of Food Science and Biotechnology, Sungkyunkwan University, Jangan-gu, Suwon, Republic of Korea
| | - Sun Young Yoon
- Department of Food Science and Biotechnology, Sungkyunkwan University, Jangan-gu, Suwon, Republic of Korea
| | - Min-Ji Ha
- Department of Food Science and Biotechnology, Sungkyunkwan University, Jangan-gu, Suwon, Republic of Korea
| | - Jung-Hoon Yoon
- Department of Food Science and Biotechnology, Sungkyunkwan University, Jangan-gu, Suwon, Republic of Korea
| |
Collapse
|
46
|
Sipler RE, Kellogg CTE, Connelly TL, Roberts QN, Yager PL, Bronk DA. Microbial Community Response to Terrestrially Derived Dissolved Organic Matter in the Coastal Arctic. Front Microbiol 2017. [PMID: 28649233 PMCID: PMC5465303 DOI: 10.3389/fmicb.2017.01018] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Warming at nearly twice the global rate, higher than average air temperatures are the new ‘normal’ for Arctic ecosystems. This rise in temperature has triggered hydrological and geochemical changes that increasingly release carbon-rich water into the coastal ocean via increased riverine discharge, coastal erosion, and the thawing of the semi-permanent permafrost ubiquitous in the region. To determine the biogeochemical impacts of terrestrially derived dissolved organic matter (tDOM) on marine ecosystems we compared the nutrient stocks and bacterial communities present under ice-covered and ice-free conditions, assessed the lability of Arctic tDOM to coastal microbial communities from the Chukchi Sea, and identified bacterial taxa that respond to rapid increases in tDOM. Once thought to be predominantly refractory, we found that ∼7% of dissolved organic carbon and ∼38% of dissolved organic nitrogen from tDOM was bioavailable to receiving marine microbial communities on short 4 – 6 day time scales. The addition of tDOM shifted bacterial community structure toward more copiotrophic taxa and away from more oligotrophic taxa. Although no single order was found to respond universally (positively or negatively) to the tDOM addition, this study identified 20 indicator species as possible sentinels for increased tDOM. These data suggest the true ecological impact of tDOM will be widespread across many bacterial taxa and that shifts in coastal microbial community composition should be anticipated.
Collapse
Affiliation(s)
- Rachel E Sipler
- The Virginia Institute of Marine Science, College of William & Mary, Gloucester PointVA, United States
| | - Colleen T E Kellogg
- Department of Microbiology & Immunology, University of British Columbia, VancouverBC, Canada
| | - Tara L Connelly
- Department of Marine Sciences, University of Georgia, AthensGA, United States
| | - Quinn N Roberts
- The Virginia Institute of Marine Science, College of William & Mary, Gloucester PointVA, United States
| | - Patricia L Yager
- Department of Marine Sciences, University of Georgia, AthensGA, United States
| | - Deborah A Bronk
- The Virginia Institute of Marine Science, College of William & Mary, Gloucester PointVA, United States
| |
Collapse
|
47
|
Joo ES, Kim EB, Jeon SH, Srinivasan S, Kim MK. Spirosoma swuense sp. nov., isolated from wet soil. Int J Syst Evol Microbiol 2017; 67:532-536. [PMID: 27902228 DOI: 10.1099/ijsem.0.001592] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Strain JBM2-3T, a pale-yellow-coloured, aerobic, catalase-negative, oxidase-positive and Gram-stain-negative bacterium, was isolated from wet soil. The isolate grew aerobically at 25-30 °C (optimum 25 °C), pH 6.0-8.0 (optimum pH 7.0) and in the presence of 0-0.5 % (w/v) NaCl (optimum 0 % NaCl). Phylogenetic analysis based on 16S rRNA gene sequence indicated that strain JBM2-3T belonged to the genus Spirosoma, with a sequence similarity of 96.2 % with Spirosoma panaciterrae Gsoil 1519T. The strain showed the typical chemotaxonomic characteristics of the genus Spirosoma, with the presence of menaquinone 7 as the respiratory quinone; the major fatty acids were summed feature 3 (composed of C16: 1ω6c/ω7c), C16: 1ω5c and iso-C15: 0. The DNA G+C content of strain JBM2-3T was 47.4 mol%. The polar lipid profile contained major amounts of phosphatidylethanolamine and aminophospholipids. On the basis of its phenotypic and genotypic properties, and phylogenetic distinctiveness, strain JBM2-3T should be classified as a representative of a novel species in the genus Spirosoma, for which the name Spirosoma swuense sp. nov. is proposed. The type strain is JBM2-3T (=KCTC 52176T=JCM 31298T).
Collapse
Affiliation(s)
- Eun Sun Joo
- Department of Bio and Environmental Technology, College of Natural Science, Seoul Women's University, Seoul 139-774, Republic of Korea
| | - Eun Bit Kim
- Department of Bio and Environmental Technology, College of Natural Science, Seoul Women's University, Seoul 139-774, Republic of Korea
| | - Seon Hwa Jeon
- Department of Bio and Environmental Technology, College of Natural Science, Seoul Women's University, Seoul 139-774, Republic of Korea
| | - Sathiyaraj Srinivasan
- Department of Bio and Environmental Technology, College of Natural Science, Seoul Women's University, Seoul 139-774, Republic of Korea
| | - Myung Kyum Kim
- Department of Bio and Environmental Technology, College of Natural Science, Seoul Women's University, Seoul 139-774, Republic of Korea
| |
Collapse
|
48
|
Microbial communities of aquatic environments on Heard Island characterized by pyrotag sequencing and environmental data. Sci Rep 2017; 7:44480. [PMID: 28290555 PMCID: PMC5349573 DOI: 10.1038/srep44480] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2016] [Accepted: 02/09/2017] [Indexed: 12/23/2022] Open
Abstract
Heard Island in the Southern Ocean is a biological hotspot that is suffering the effects of climate change. Significant glacier retreat has generated proglacial lagoons, some of which are open to the ocean. We used pyrotag sequencing of SSU rRNA genes and environmental data to characterize microorganisms from two pools adjacent to animal breeding areas, two glacial lagoons and Atlas Cove (marine site). The more abundant taxa included Actinobacteria, Bacteroidetes and Proteobacteria, ciliates and picoflagellates (e.g. Micromonas), and relatively few Archaea. Seal Pool, which is rich in organic matter, was characterized by a heterotrophic degradative community, while the less eutrophic Atlas Pool had more eucaryotic primary producers. Brown Lagoon, with the lowest nutrient levels, had Eucarya and Bacteria predicted to be oligotrophs, possess small cell sizes, and have the ability to metabolize organic matter. The marine influence on Winston Lagoon was evident by its salinity and the abundance of marine-like Gammaproteobacteria, while also lacking typical marine eucaryotes indicating the system was still functioning as a distinct niche. This is the first microbiology study of Heard Island and revealed that communities are distinct at each location and heavily influenced by local environmental factors.
Collapse
|
49
|
Kang H, Kim H, Joung Y, Joh K. Polaribacter lacunae sp. nov., isolated from a lagoon. Int J Syst Evol Microbiol 2017; 67:681-686. [DOI: 10.1099/ijsem.0.001694] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Affiliation(s)
- Heeyoung Kang
- Department of Bioscience and Biotechnology, Hankuk University of Foreign Studies, Gyeonggi 17035, Republic of Korea
| | - Haneul Kim
- Department of Bioscience and Biotechnology, Hankuk University of Foreign Studies, Gyeonggi 17035, Republic of Korea
| | - Yochan Joung
- Department of Biological Sciences, Inha University, Incheon 22212, Republic of Korea
| | - Kiseong Joh
- Department of Bioscience and Biotechnology, Hankuk University of Foreign Studies, Gyeonggi 17035, Republic of Korea
| |
Collapse
|
50
|
Kim E, Shin SK, Choi S, Yi H. Polaribacter vadi sp. nov., isolated from a marine gastropod. Int J Syst Evol Microbiol 2017; 67:144-147. [DOI: 10.1099/ijsem.0.001591] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022] Open
Affiliation(s)
- Eunji Kim
- Department of Public Health Sciences, Graduate School, Korea University, Seoul, Republic of Korea
| | - Su-kyoung Shin
- Department of Public Health Sciences, Graduate School, Korea University, Seoul, Republic of Korea
| | - Sungmi Choi
- Department of Public Health Sciences, Graduate School, Korea University, Seoul, Republic of Korea
| | - Hana Yi
- School of Biosystem and Biomedical Science, Korea University, Seoul, Republic of Korea
- Department of Public Health Sciences, Graduate School, Korea University, Seoul, Republic of Korea
| |
Collapse
|