1
|
Ernst S, Piestrzyńska-Kajtoch A, Gethmann J, Natonek-Wiśniewska M, Sadeghi B, Polak MP, Keller M, Gavier-Widén D, Moazami-Goudarzi K, Houston F, Groschup MH, Fast C. Prion protein gene (PRNP) variation in German and Danish cervids. Vet Res 2024; 55:98. [PMID: 39095901 PMCID: PMC11297704 DOI: 10.1186/s13567-024-01340-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Accepted: 05/31/2024] [Indexed: 08/04/2024] Open
Abstract
The structure of cellular prion proteins encoded by the prion protein gene (PRNP) impacts susceptibility to transmissible spongiform encephalopathies, including chronic wasting disease (CWD) in deer. The recent emergence of CWD in Northern European reindeer (Rangifer tarandus), moose (Alces alces alces) and red deer (Cervus elaphus), in parallel with the outbreak in North America, gives reason to investigate PRNP variation in European deer, to implement risk assessments and adjust CWD management for deer populations under threat. We here report PRNP-sequence data from 911 samples of German red, roe (Capreolus capreolus), sika (Cervus nippon) and fallow deer (Dama dama) as well as additional data from 26 Danish red deer close to the German border and four zoo species not native to Germany. No PRNP sequence variation was observed in roe and fallow deer, as previously described for populations across Europe. In contrast, a broad PRNP variation was detected in red deer, with non-synonymous polymorphisms at codons 98, 226 and 247 as well as synonymous mutations at codons 21, 78, 136 and 185. Moreover, a novel 24 bp deletion within the octapeptide repeat was detected. In summary, 14 genotypes were seen in red deer with significant differences in their geographical distribution and frequencies, including geographical clustering of certain genotypes, suggesting "PRNP-linages" in this species. Based on data from North American CWD and the genotyping results of the European CWD cases, we would predict that large proportions of wild cervids in Europe might be susceptible to CWD once introduced to naive populations.
Collapse
Affiliation(s)
- Sonja Ernst
- Institute of Novel and Emerging Infectious Diseases, Friedrich-Loeffler-Institut, Greifswald, Isle of Riems, Germany
| | | | - Jörn Gethmann
- Institute of Epidemiology, Friedrich-Loeffler-Institut, Greifswald, Isle of Riems, Germany
| | | | - Balal Sadeghi
- Institute of Novel and Emerging Infectious Diseases, Friedrich-Loeffler-Institut, Greifswald, Isle of Riems, Germany
| | - Miroslaw P Polak
- Department of Virology, National Veterinary Research Institute, Pulawy, Poland
| | - Markus Keller
- Institute of Novel and Emerging Infectious Diseases, Friedrich-Loeffler-Institut, Greifswald, Isle of Riems, Germany
| | | | | | - Fiona Houston
- Division of Immunology, The Roslin Institute, Royal Dick School of Veterinary Studies, University of Edinburgh, Edinburgh, UK
| | - Martin H Groschup
- Institute of Novel and Emerging Infectious Diseases, Friedrich-Loeffler-Institut, Greifswald, Isle of Riems, Germany
| | - Christine Fast
- Institute of Novel and Emerging Infectious Diseases, Friedrich-Loeffler-Institut, Greifswald, Isle of Riems, Germany.
| |
Collapse
|
2
|
Teferedegn EY, Can H, Erkunt Alak S, Ün C. Low frequency of protective variants at regulatory region of PRNP gene indicating the genetically high risk of BSE in Ethiopian Bos indicus and Bos taurus africanus. Anim Biotechnol 2023; 34:1931-1936. [PMID: 35400314 DOI: 10.1080/10495398.2022.2058007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022]
Abstract
Susceptibility to classical bovine spongiform encephalopathy (BSE) has been linked to 23 bp indel in promoter and 12 bp indel in the first intron of cattle prion protein gene. This study aimed to investigate 23/12 bp indel polymorphisms in the polymorphisms in cattle prion protein (PRNP) gene to reveal the risk of BSE in Ethiopian cattle. Also, frequency of each polymorphism was compared to the other Bos taurus and Bos indicus breeds. According to results, the insertion variant was detected at a low frequency in all of the study populations at both loci. The 23 bp insertion allele in Fogera breed was relatively lower than Borona and Arsi and the same allele at the same locus in Afar breed was higher than the rest of the breeds (0.16). Due to high linkage disequilibrium (LD) of the deletion allele in Bos taurus, the frequencies of deletion allele at 23 bp (0.84) and 12 bp (0.86) loci in Afar breed were relatively closer than the rest of the breeds. In addition, DD/DD was found as the highly frequent diplotype in all of the breeds. The low frequency of insertion alleles at 23 and 12 bp indel sites demonstrate that Ethiopian cattle have a genetically high risk for BSE.
Collapse
Affiliation(s)
- Eden Yitna Teferedegn
- Department of Biology Molecular Biology Section, Faculty of Science, Ege University, İzmir, Turkey
| | - Hüseyin Can
- Department of Biology Molecular Biology Section, Faculty of Science, Ege University, İzmir, Turkey
| | - Sedef Erkunt Alak
- Department of Biology Molecular Biology Section, Faculty of Science, Ege University, İzmir, Turkey
| | - Cemal Ün
- Department of Biology Molecular Biology Section, Faculty of Science, Ege University, İzmir, Turkey
| |
Collapse
|
3
|
Kamali-Jamil R, Vázquez-Fernández E, Tancowny B, Rathod V, Amidian S, Wang X, Tang X, Fang A, Senatore A, Hornemann S, Dudas S, Aguzzi A, Young HS, Wille H. The ultrastructure of infectious L-type bovine spongiform encephalopathy prions constrains molecular models. PLoS Pathog 2021; 17:e1009628. [PMID: 34061899 PMCID: PMC8195424 DOI: 10.1371/journal.ppat.1009628] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Revised: 06/11/2021] [Accepted: 05/10/2021] [Indexed: 11/18/2022] Open
Abstract
Bovine spongiform encephalopathy (BSE) is a prion disease of cattle that is caused by the misfolding of the cellular prion protein (PrPC) into an infectious conformation (PrPSc). PrPC is a predominantly α-helical membrane protein that misfolds into a β-sheet rich, infectious state, which has a high propensity to self-assemble into amyloid fibrils. Three strains of BSE prions can cause prion disease in cattle, including classical BSE (C-type) and two atypical strains, named L-type and H-type BSE. To date, there is no detailed information available about the structure of any of the infectious BSE prion strains. In this study, we purified L-type BSE prions from transgenic mouse brains and investigated their biochemical and ultrastructural characteristics using electron microscopy, image processing, and immunogold labeling techniques. By using phosphotungstate anions (PTA) to precipitate PrPSc combined with sucrose gradient centrifugation, a high yield of proteinase K-resistant BSE amyloid fibrils was obtained. A morphological examination using electron microscopy, two-dimensional class averages, and three-dimensional reconstructions revealed two structural classes of L-type BSE amyloid fibrils; fibrils that consisted of two protofilaments with a central gap and an average width of 22.5 nm and one-protofilament fibrils that were 10.6 nm wide. The one-protofilament fibrils were found to be more abundant compared to the thicker two-protofilament fibrils. Both fibrillar assemblies were successfully decorated with monoclonal antibodies against N- and C-terminal epitopes of PrP using immunogold-labeling techniques, confirming the presence of polypeptides that span residues 100-110 to 227-237. The fact that the one-protofilament fibrils contain both N- and C-terminal PrP epitopes constrains molecular models for the structure of the infectious conformer in favour of a compact four-rung β-solenoid fold.
Collapse
Affiliation(s)
- Razieh Kamali-Jamil
- Department of Biochemistry, University of Alberta, Edmonton, Alberta, Canada
- Centre for Prions and Protein Folding Diseases, University of Alberta, Edmonton, Alberta, Canada
| | - Ester Vázquez-Fernández
- Department of Biochemistry, University of Alberta, Edmonton, Alberta, Canada
- Centre for Prions and Protein Folding Diseases, University of Alberta, Edmonton, Alberta, Canada
| | - Brian Tancowny
- Department of Biochemistry, University of Alberta, Edmonton, Alberta, Canada
- Centre for Prions and Protein Folding Diseases, University of Alberta, Edmonton, Alberta, Canada
| | - Vineet Rathod
- Department of Biochemistry, University of Alberta, Edmonton, Alberta, Canada
- Centre for Prions and Protein Folding Diseases, University of Alberta, Edmonton, Alberta, Canada
| | - Sara Amidian
- Department of Biochemistry, University of Alberta, Edmonton, Alberta, Canada
- Centre for Prions and Protein Folding Diseases, University of Alberta, Edmonton, Alberta, Canada
| | - Xiongyao Wang
- Department of Biochemistry, University of Alberta, Edmonton, Alberta, Canada
- Centre for Prions and Protein Folding Diseases, University of Alberta, Edmonton, Alberta, Canada
| | - Xinli Tang
- Department of Biochemistry, University of Alberta, Edmonton, Alberta, Canada
- Centre for Prions and Protein Folding Diseases, University of Alberta, Edmonton, Alberta, Canada
| | - Andrew Fang
- Department of Biochemistry, University of Alberta, Edmonton, Alberta, Canada
- Centre for Prions and Protein Folding Diseases, University of Alberta, Edmonton, Alberta, Canada
| | - Assunta Senatore
- Institute of Neuropathology, University of Zürich, Zürich, Switzerland
| | - Simone Hornemann
- Institute of Neuropathology, University of Zürich, Zürich, Switzerland
| | - Sandor Dudas
- Canadian BSE Reference Laboratory, Canadian Food Inspection Agency, Lethbridge Laboratory, Lethbridge, Alberta, Canada
| | - Adriano Aguzzi
- Institute of Neuropathology, University of Zürich, Zürich, Switzerland
| | - Howard S. Young
- Department of Biochemistry, University of Alberta, Edmonton, Alberta, Canada
| | - Holger Wille
- Department of Biochemistry, University of Alberta, Edmonton, Alberta, Canada
- Centre for Prions and Protein Folding Diseases, University of Alberta, Edmonton, Alberta, Canada
- Neuroscience and Mental Health Institute, University of Alberta, Edmonton, Alberta, Canada
| |
Collapse
|
4
|
Aggarwal N, Eliaz D, Cohen H, Rosenhek-Goldian I, Cohen SR, Kozell A, Mason TO, Shimanovich U. Protein nanofibril design via manipulation of hydrogen bonds. Commun Chem 2021; 4:62. [PMID: 36697777 PMCID: PMC9814780 DOI: 10.1038/s42004-021-00494-2] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2020] [Accepted: 03/16/2021] [Indexed: 02/03/2023] Open
Abstract
The process of amyloid nanofibril formation has broad implications including the generation of the strongest natural materials, namely silk fibers, and their major contribution to the progression of many degenerative diseases. The key question that remains unanswered is whether the amyloidogenic nature, which includes the characteristic H-bonded β-sheet structure and physical characteristics of protein assemblies, can be modified via controlled intervention of the molecular interactions. Here we show that tailored changes in molecular interactions, specifically in the H-bonded network, do not affect the nature of amyloidogenic fibrillation, and even have minimal effect on the initial nucleation events of self-assembly. However, they do trigger changes in networks at a higher hierarchical level, namely enhanced 2D packaging which is rationalized by the 3D hierarchy of β-sheet assembly, leading to variations in fibril morphology, structural composition and, remarkably, nanomechanical properties. These results pave the way to a better understanding of the role of molecular interactions in sculpting the structural and physical properties of protein supramolecular constructs.
Collapse
Affiliation(s)
- Nidhi Aggarwal
- grid.13992.300000 0004 0604 7563Department of Molecular Chemistry and Materials Science, Weizmann Institute of Science, Rehovot, Israel
| | - Dror Eliaz
- grid.13992.300000 0004 0604 7563Department of Molecular Chemistry and Materials Science, Weizmann Institute of Science, Rehovot, Israel
| | - Hagai Cohen
- grid.13992.300000 0004 0604 7563Department of Chemical Research Support, Weizmann Institute of Science, Rehovot, Israel
| | - Irit Rosenhek-Goldian
- grid.13992.300000 0004 0604 7563Department of Chemical Research Support, Weizmann Institute of Science, Rehovot, Israel
| | - Sidney R. Cohen
- grid.13992.300000 0004 0604 7563Department of Chemical Research Support, Weizmann Institute of Science, Rehovot, Israel
| | - Anna Kozell
- grid.13992.300000 0004 0604 7563Department of Molecular Chemistry and Materials Science, Weizmann Institute of Science, Rehovot, Israel
| | - Thomas O. Mason
- grid.13992.300000 0004 0604 7563Department of Molecular Chemistry and Materials Science, Weizmann Institute of Science, Rehovot, Israel
| | - Ulyana Shimanovich
- grid.13992.300000 0004 0604 7563Department of Molecular Chemistry and Materials Science, Weizmann Institute of Science, Rehovot, Israel
| |
Collapse
|
5
|
Prion Protein Devoid of the Octapeptide Repeat Region Delays Bovine Spongiform Encephalopathy Pathogenesis in Mice. J Virol 2017; 92:JVI.01368-17. [PMID: 29046443 DOI: 10.1128/jvi.01368-17] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2017] [Accepted: 10/05/2017] [Indexed: 12/26/2022] Open
Abstract
Conformational conversion of the cellular isoform of prion protein, PrPC, into the abnormally folded, amyloidogenic isoform, PrPSc, is a key pathogenic event in prion diseases, including Creutzfeldt-Jakob disease in humans and scrapie and bovine spongiform encephalopathy (BSE) in animals. We previously reported that the octapeptide repeat (OR) region could be dispensable for converting PrPC into PrPSc after infection with RML prions. We demonstrated that mice transgenically expressing mouse PrP with deletion of the OR region on the PrP knockout background, designated Tg(PrPΔOR)/Prnp0/0 mice, did not show reduced susceptibility to RML scrapie prions, with abundant accumulation of PrPScΔOR in their brains. We show here that Tg(PrPΔOR)/Prnp0/0 mice were highly resistant to BSE prions, developing the disease with markedly elongated incubation times after infection with BSE prions. The conversion of PrPΔOR into PrPScΔOR was markedly delayed in their brains. These results suggest that the OR region may have a crucial role in the conversion of PrPC into PrPSc after infection with BSE prions. However, Tg(PrPΔOR)/Prnp0/0 mice remained susceptible to RML and 22L scrapie prions, developing the disease without elongated incubation times after infection with RML and 22L prions. PrPScΔOR accumulated only slightly less in the brains of RML- or 22L-infected Tg(PrPΔOR)/Prnp0/0 mice than PrPSc in control wild-type mice. Taken together, these results indicate that the OR region of PrPC could play a differential role in the pathogenesis of BSE prions and RML or 22L scrapie prions.IMPORTANCE Structure-function relationship studies of PrPC conformational conversion into PrPSc are worthwhile to understand the mechanism of the conversion of PrPC into PrPSc We show here that, by inoculating Tg(PrPΔOR)/Prnp0/0 mice with the three different strains of RML, 22L, and BSE prions, the OR region could play a differential role in the conversion of PrPC into PrPSc after infection with RML or 22L scrapie prions and BSE prions. PrPΔOR was efficiently converted into PrPScΔOR after infection with RML and 22L prions. However, the conversion of PrPΔOR into PrPScΔOR was markedly delayed after infection with BSE prions. Further investigation into the role of the OR region in the conversion of PrPC into PrPSc after infection with BSE prions might be helpful for understanding the pathogenesis of BSE prions.
Collapse
|
6
|
Yaman Y, Ün C. Nucleotide and octapeptide-repeat variations of the prion protein coding gene (PRNP) in Anatolian, Murrah, and crossbred water buffaloes. Trop Anim Health Prod 2017; 50:573-579. [PMID: 29147935 DOI: 10.1007/s11250-017-1471-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2017] [Accepted: 11/08/2017] [Indexed: 11/25/2022]
Abstract
Resistance to bovine spongiform encephalopathy (BSE) that is significantly associated with insertion/deletion (indel) polymorphisms at two loci (putative promoter and intron 1) on the prion protein gene (PRNP) in cattle has been well documented. Studies suggest that the insertion alleles are related to BSE resistance. Until recently, BSE has never been reported in water buffaloes (unlike cattle). Previous studies have demonstrated that the PRNP gene in water buffalo consists mostly of insertion alleles at both loci; nevertheless, whether or not water buffaloes are genetically resistant to BSE and the role of indel polymorphisms in their resistance status is not clear. We examined the coding region of PRNP to determine the nucleotide and octapeptide-repeat (octarepeats) variations of Anatolian, Murrah and Murrah × Anatolian (M × A) water buffaloes. Three synonymous single nucleotide polymorphisms (SNP) at positions 126, 234, and 285, and a non-synonymous SNP at position 322 (G108S) were detected. Triplet G/A/T base substitutions were observed at position 126 and two additional genotypes, T/A and T/G, at this position were determined. We also found six octarepeats that indicated the presence of the wild-type PRNP6 allele in the coding region. To the best of our knowledge, this is the first report of the T/A and T/G genotypes in water buffaloes.
Collapse
Affiliation(s)
- Yalçın Yaman
- Department of Biometry and Genetics, Sheep Research Institute, Çanakkale road, 7.km, 10220, Bandirma, Balikesir, Turkey.
| | - Cemal Ün
- Faculty of Science, Department of Biology, Ege University, 35040, İzmir, Turkey
| |
Collapse
|
7
|
Ricci A, Allende A, Bolton D, Chemaly M, Davies R, Fernández Escámez PS, Gironés R, Herman L, Koutsoumanis K, Lindqvist R, Nørrung B, Robertson L, Sanaa M, Simmons M, Skandamis P, Snary E, Speybroeck N, Kuile BT, Threlfall J, Wahlström H, Adkin A, De Koeijer A, Ducrot C, Griffin J, Ortiz Pelaez A, Latronico F, Ru G. Bovine spongiform encephalopathy (BSE) cases born after the total feed ban. EFSA J 2017; 15:e04885. [PMID: 32625550 PMCID: PMC7010122 DOI: 10.2903/j.efsa.2017.4885] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Sixty bovine spongiform encephalopathy (BSE) cases of Classical or unknown type (BARB‐60 cases) were born after the date of entry into force of the EU total feed ban on 1 January 2001. The European Commission has requested EFSA to provide a scientific opinion on the most likely origin(s) of these BARB‐60 cases; whether feeding with material contaminated with the BSE agent can be excluded as the origin of any of these cases and, if so, whether there is enough scientific evidence to conclude that such cases had a spontaneous origin. The source of infection cannot be ascertained at the individual level for any BSE case, including these BARB‐60 cases, so uncertainty remains high about the origin of disease in each of these animals, but when compared with other biologically plausible sources of infection (maternal, environmental, genetic, iatrogenic), feed‐borne exposure is the most likely. This exposure was apparently excluded for only one of these BARB‐60 cases. However, there is considerable uncertainty associated with the data collected through the field investigation of these cases, due to a time span of several years between the potential exposure of the animal and the confirmation of disease, recall difficulty, and the general paucity of documented objective evidence available in the farms at the time of the investigation. Thus, feeding with material contaminated with the BSE agent cannot be excluded as the origin of any of the BARB‐60 cases, nor is it possible to definitively attribute feed as the cause of any of the BARB‐60 cases. A case of disease is classified as spontaneous by a process of elimination, excluding all other definable possibilities; with regard to the BARB‐60 cases, it is not possible to conclude that any of them had a spontaneous origin.
Collapse
|
8
|
Yang Q, Zhang S, Liu L, Lei C, Qi X, Lin F, Qu W, Qi X, Liu J, Wang R, Chen H, Lan X. The evaluation of 23-bp and 12-bp insertion/deletion within the PRNP gene and their effects on growth traits in healthy Chinese native cattle breeds. JOURNAL OF APPLIED ANIMAL RESEARCH 2017. [DOI: 10.1080/09712119.2017.1348950] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Qing Yang
- College of Animal Science and Technology, Northwest A&F University, Shaanxi Key Laboratory of Molecular Biology for Agriculture, Yangling, People’s Republic of China
| | - Sihuan Zhang
- College of Animal Science and Technology, Northwest A&F University, Shaanxi Key Laboratory of Molecular Biology for Agriculture, Yangling, People’s Republic of China
| | - Liangliang Liu
- School of Business Information, Shanghai University of International Business and Economics, Shanghai, People’s Republic of China
| | - Chuzhao Lei
- College of Animal Science and Technology, Northwest A&F University, Shaanxi Key Laboratory of Molecular Biology for Agriculture, Yangling, People’s Republic of China
| | - Xinglei Qi
- Xia'nan cattle Technology Development Company, Biyang, People’s Republic of China
- Bureau of Animal Husbandry, Biyang, People’s Republic of China
| | - Fengpeng Lin
- Xia'nan cattle Technology Development Company, Biyang, People’s Republic of China
- Bureau of Animal Husbandry, Biyang, People’s Republic of China
| | - Weidong Qu
- Bureau of Animal Husbandry, Biyang, People’s Republic of China
| | - Xingshan Qi
- Bureau of Animal Husbandry, Biyang, People’s Republic of China
| | - Jiming Liu
- Animal Husbandry Technology Promotion Station of Jiangxi, Nanchang, People’s Republic of China
| | - Rongmin Wang
- Animal Husbandry Technology Promotion Station of Jiangxi, Nanchang, People’s Republic of China
| | - Hong Chen
- College of Animal Science and Technology, Northwest A&F University, Shaanxi Key Laboratory of Molecular Biology for Agriculture, Yangling, People’s Republic of China
| | - Xianyong Lan
- College of Animal Science and Technology, Northwest A&F University, Shaanxi Key Laboratory of Molecular Biology for Agriculture, Yangling, People’s Republic of China
| |
Collapse
|
9
|
Vermette M, Schleining J, Greenlee J, Smith J. Genetic variation of the prion protein gene (PRNP) in alpaca (Vicugna pacos). GENE REPORTS 2016. [DOI: 10.1016/j.genrep.2016.06.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
10
|
Sorbolini S, Gaspa G, Steri R, Dimauro C, Cellesi M, Stella A, Marras G, Marsan PA, Valentini A, Macciotta NPP. Use of canonical discriminant analysis to study signatures of selection in cattle. Genet Sel Evol 2016; 48:58. [PMID: 27521154 PMCID: PMC4983034 DOI: 10.1186/s12711-016-0236-7] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2016] [Accepted: 08/01/2016] [Indexed: 01/08/2023] Open
Abstract
BACKGROUND Cattle include a large number of breeds that are characterized by marked phenotypic differences and thus constitute a valuable model to study genome evolution in response to processes such as selection and domestication. Detection of "signatures of selection" is a useful approach to study the evolutionary pressures experienced throughout history. In the present study, signatures of selection were investigated in five cattle breeds farmed in Italy using a multivariate approach. METHODS A total of 4094 bulls from five breeds with different production aptitudes (two dairy breeds: Italian Holstein and Italian Brown Swiss; two beef breeds: Piemontese and Marchigiana; and one dual purpose breed: Italian Simmental) were genotyped using the Illumina BovineSNP50 v.1 beadchip. Canonical discriminant analysis was carried out on the matrix of single nucleotide polymorphisms (SNP) genotyping data, separately for each chromosome. Scores for each canonical variable were calculated and then plotted in the canonical space to quantify the distance between breeds. SNPs for which the correlation with the canonical variable was in the 99th percentile for a specific chromosome were considered to be significantly associated with that variable. Results were compared with those obtained using an FST-based approach. RESULTS Based on the results of the canonical discriminant analysis, a large number of signatures of selection were detected, among which several had strong signals in genomic regions that harbour genes known to have an impact on production and morphological bovine traits, including MSTN, LCT, GHR, SCD, NCAPG, KIT, and ASIP. Moreover, new putative candidate genes were identified, such as GCK, B3GALNT1, MGAT1, GALNTL1, PRNP, and PRND. Similar results were obtained with the FST-based approach. CONCLUSIONS The use of canonical discriminant analysis on 50 K SNP genotypes allowed the extraction of new variables that maximize the separation between breeds. This approach is quite straightforward, it can compare more than two groups simultaneously, and relative distances between breeds can be visualized. The genes that were highlighted in the canonical discriminant analysis were in concordance with those obtained using the FST index.
Collapse
Affiliation(s)
- Silvia Sorbolini
- Dipartimento di Agraria, Sezione di Scienze Zootecniche, Università degli Studi di Sassari, V. le Italia, 9, 07100, Sassari, Italy
| | - Giustino Gaspa
- Dipartimento di Agraria, Sezione di Scienze Zootecniche, Università degli Studi di Sassari, V. le Italia, 9, 07100, Sassari, Italy
| | - Roberto Steri
- Consiglio per la Ricerca e la Sperimentazione in Agricoltura, via Salaria 31, 00015, Monterotondo, Italy
| | - Corrado Dimauro
- Dipartimento di Agraria, Sezione di Scienze Zootecniche, Università degli Studi di Sassari, V. le Italia, 9, 07100, Sassari, Italy
| | - Massimo Cellesi
- Dipartimento di Agraria, Sezione di Scienze Zootecniche, Università degli Studi di Sassari, V. le Italia, 9, 07100, Sassari, Italy
| | | | | | - Paolo Ajmone Marsan
- Istituto di Zootecnica, Università Cattolica del Sacro Cuore, Piacenza, Italy
| | - Alessio Valentini
- Dipartimento per l'Innovazione dei Sistemi Biologici Agroalimentari e Forestali DIBAF, Università della Tuscia, Viterbo, Italy
| | - Nicolò Pietro Paolo Macciotta
- Dipartimento di Agraria, Sezione di Scienze Zootecniche, Università degli Studi di Sassari, V. le Italia, 9, 07100, Sassari, Italy.
| |
Collapse
|
11
|
Prion Type-Dependent Deposition of PRNP Allelic Products in Heterozygous Sheep. J Virol 2015; 90:805-12. [PMID: 26512080 PMCID: PMC4702698 DOI: 10.1128/jvi.02316-15] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2015] [Accepted: 10/08/2015] [Indexed: 01/09/2023] Open
Abstract
UNLABELLED Susceptibility or resistance to prion infection in humans and animals depends on single prion protein (PrP) amino acid substitutions in the host, but the agent's modulating role has not been well investigated. Compared to disease incubation times in wild-type homozygous ARQ/ARQ (where each triplet represents the amino acids at codons 136, 154, and 171, respectively) sheep, scrapie susceptibility is reduced to near resistance in ARR/ARR animals while it is strongly enhanced in VRQ/VRQ carriers. Heterozygous ARR/VRQ animals exhibit delayed incubation periods. In bovine spongiform encephalopathy (BSE) infection, the polymorphism effect is quite different although the ARR allotype remains the least susceptible. In this study, PrP allotype composition in protease-resistant prion protein (PrP(res)) from brain of heterozygous ARR/VRQ scrapie-infected sheep was compared with that of BSE-infected sheep with a similar genotype. A triplex Western blotting technique was used to estimate the two allotype PrP fractions in PrP(res) material from BSE-infected ARR/VRQ sheep. PrP(res) in BSE contained equimolar amounts of VRQ- and ARR-PrP, which contrasts with the excess (>95%) VRQ-PrP fraction found in PrP in scrapie. This is evidence that transmissible spongiform encephalopathy (TSE) agent properties alone, perhaps structural aspects of prions (such as PrP amino acid sequence variants and PrP conformational state), determine the polymorphic dependence of the PrP(res) accumulation process in prion formation as well as the disease-associated phenotypic expressions in the host. IMPORTANCE Transmissible spongiform encephalopathies (TSEs) are fatal neurodegenerative and transmissible diseases caused by prions. Amino acid sequence variants of the prion protein (PrP) determine transmissibility in the hosts, as has been shown for classical scrapie in sheep. Each individual produces a separate PrP molecule from its two PrP gene copies. Heterozygous scrapie-infected sheep that produce two PrP variants associated with opposite scrapie susceptibilities (136V-PrP variant, high; 171R-PrP variant, very low) contain in their prion material over 95% of the 136V PrP variant. However, when these sheep are infected with prions from cattle (bovine spongiform encephalopathy [BSE]), both PrP variants occur in equal ratios. This shows that the infecting prion type determines the accumulating PrP variant ratio in the heterozygous host. While the host's PrP is considered a determining factor, these results emphasize that prion structure plays a role during host infection and that PrP variant involvement in prions of heterozygous carriers is a critical field for understanding prion formation.
Collapse
|
12
|
Murdoch BM, Murdoch GK. Genetics of Prion Disease in Cattle. Bioinform Biol Insights 2015; 9:1-10. [PMID: 26462233 PMCID: PMC4589088 DOI: 10.4137/bbi.s29678] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2015] [Revised: 08/10/2015] [Accepted: 08/12/2015] [Indexed: 12/03/2022] Open
Abstract
Bovine spongiform encephalopathy (BSE) is a prion disease that is invariably fatal in cattle and has been implicated as a significant human health risk. As a transmissible disease of livestock, it has impacted food safety, production practices, global trade, and profitability. Genetic polymorphisms that alter the prion protein in humans and sheep are associated with transmissible spongiform encephalopathy susceptibility or resistance. In contrast, there is no strong evidence that nonsynonymous mutations in the bovine prion gene (PRNP) are associated with classical BSE (C-BSE) disease susceptibility, though two bovine PRNP insertion/deletion polymorphisms, in the putative region, are associated with susceptibility to C-BSE. However, these associations do not explain the full extent of BSE susceptibility, and loci outside of PRNP appear to be associated with disease incidence in some cattle populations. This article provides a review of the current state of genetic knowledge regarding prion diseases in cattle.
Collapse
Affiliation(s)
- Brenda M Murdoch
- Animal and Veterinary Science, University of Idaho, Moscow, ID, USA
| | - Gordon K Murdoch
- Animal and Veterinary Science, University of Idaho, Moscow, ID, USA
| |
Collapse
|
13
|
Rzewucka-Wójcik E, Frost A, Jędrzejczak M, Zaborski D, Pilarczyk R, Szatkowska I, Wójcik J, Grzesiak W, Dybus A. The PRNP ins/deland octapeptide repeat polymorphisms in Jersey cattle and their associations with production traits. JOURNAL OF APPLIED ANIMAL RESEARCH 2013. [DOI: 10.1080/09712119.2012.742442] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
14
|
McGill I, Menache A, Knight A, Allen C, Hill S, Eastwood B. Bovine TB and badger culling. Vet Rec 2012; 171:353-4. [DOI: 10.1136/vr.e6661] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Affiliation(s)
| | | | | | | | - Sophie Hill
- 14 Grace Crescent Hardwick Cambridge CB23 7AH
| | | |
Collapse
|
15
|
Jossé L, Marchante R, Zenthon J, von der Haar T, Tuite MF. Probing the role of structural features of mouse PrP in yeast by expression as Sup35-PrP fusions. Prion 2012; 6:201-10. [PMID: 22449853 DOI: 10.4161/pri.19214] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
The yeast Saccharomyces cerevisiae is a tractable model organism in which both to explore the molecular mechanisms underlying the generation of disease-associated protein misfolding and to map the cellular responses to potentially toxic misfolded proteins. Specific targets have included proteins which in certain disease states form amyloids and lead to neurodegeneration. Such studies are greatly facilitated by the extensive 'toolbox' available to the yeast researcher that provides a range of cell engineering options. Consequently, a number of assays at the cell and molecular level have been set up to report on specific protein misfolding events associated with endogenous or heterologous proteins. One major target is the mammalian prion protein PrP because we know little about what specific sequence and/or structural feature(s) of PrP are important for its conversion to the infectious prion form, PrP (Sc) . Here, using a study of the expression in yeast of fusion proteins comprising the yeast prion protein Sup35 fused to various regions of mouse PrP protein, we show how PrP sequences can direct the formation of non-transmissible amyloids and focus in particular on the role of the mouse octarepeat region. Through this study we illustrate the benefits and limitations of yeast-based models for protein misfolding disorders.
Collapse
Affiliation(s)
- Lyne Jossé
- Kent Fungal Group, School of Biosciences, University of Kent, Canterbury, UK
| | | | | | | | | |
Collapse
|
16
|
Four independent molecular prion protein parameters for discriminating new cases of C, L, and h bovine spongiform encephalopathy in cattle. J Clin Microbiol 2011; 49:3026-8. [PMID: 21677067 DOI: 10.1128/jcm.01102-11] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
In anticipation of the emergence of more variants of bovine spongiform encephalopathy (BSE), a semiquantitative display of the following four independent molecular diagnostic prion parameters was designed: N terminus, proteinase K (PK) resistance, glycoprofile, and mixed population. One H BSE case, three L BSE cases, six C BSE cases, and one unusual classical BSE (C BSE) case are reported.
Collapse
|
17
|
Shu Y, Masujin K, Okada H, Iwamaru Y, Imamura M, Matsuura Y, Mohri S, Yokoyama T. Characterization of Syrian hamster adapted prions derived from L-type and C-type bovine spongiform encephalopathies. Prion 2011; 5:103-8. [PMID: 21597334 DOI: 10.4161/pri.5.2.15847] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Atypical forms of bovine spongiform encephalopathy (BSE) may be caused by different prions from classical BSE (C-BSE). In this study, we examined the susceptibility of mice overexpressing mouse and hamster chimeric prion protein (PrP) to L-type atypical BSE (L-BSE). None of the transgenic mice showed susceptibility to L-BSE, except mice overexpressing hamster PrP. We also examined the transmission properties of L-BSE in hamsters. The incubation period of hamsters intracerebrally inoculated with L-BSE was 576.8 days, and that of the subsequent passage was decreased to 208 days. Although the lesion and glycoform profiles and relative proteinase K resistant core fragment of the abnormal isoform of PrP (PrPcore) of L-BSE were similar to that of C-BSE, the deposition of the abnormal isoform of PrP (PrPSc) and the molecular weight of PrPcore of L-BSE was different from than that of C-BSE. In hamster models, some prion strain characteristics of L-BSE were indistinguishable from those of C-BSE.
Collapse
Affiliation(s)
- Yujing Shu
- Prion Disease Research Center, National Institute of Animal Health, Tsukuba, Ibaraki, Japan
| | | | | | | | | | | | | | | |
Collapse
|
18
|
Simmons MM, Spiropoulos J, Webb PR, Spencer YI, Czub S, Mueller R, Davis A, Arnold ME, Marsh S, Hawkins SAC, Cooper JA, Konold T, Wells GAH. Experimental classical bovine spongiform encephalopathy: definition and progression of neural PrP immunolabeling in relation to diagnosis and disease controls. Vet Pathol 2010; 48:948-63. [PMID: 21078883 DOI: 10.1177/0300985810387072] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Tissues from sequential-kill time course studies of bovine spongiform encephalopathy (BSE) were examined to define PrP immunohistochemical labeling forms and map disease-specific labeling over the disease course after oral exposure to the BSE agent at two dose levels. Study was confined to brainstem, spinal cord, and certain peripheral nervous system ganglia-tissues implicated in pathogenesis and diagnosis or disease control strategies. Disease-specific labeling in the brainstem in 39 of 220 test animals showed the forms and patterns observed in natural disease and invariably preceded spongiform changes. A precise temporal pattern of increase in labeling was not apparent, but labeling was generally most widespread in clinical cases, and it always involved neuroanatomic locations in the medulla oblongata. In two cases, sparse labeling was confined to one or more neuroanatomic nuclei of the medulla oblongata. When involved, the spinal cord was affected at all levels, providing no indication of temporal spread within the cord axis or relative to the brainstem. Where minimal PrP labeling occurred in the thoracic spinal cord, it was consistent with initial involvement of general visceral efferent neurons. Labeling of ganglia involved only sensory ganglia and only when PrP was present in the brainstem and spinal cord. These experimental transmissions mimicked the neuropathologic findings in BSE-C field cases, independent of dose of agent or stage of disease. The model supports current diagnostic sampling approaches and control measures for the removal and destruction of nervous system tissues in slaughtered cattle.
Collapse
Affiliation(s)
- M M Simmons
- Department of Pathology, Veterinary Laboratories Agency, Addlestone, Surrey, UK.
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
19
|
Shimogiri T, Msalya G, Myint SL, Okamoto S, Kawabe K, Tanaka K, Mannen H, Minezawa M, Namikawa T, Amano T, Yamamoto Y, Maeda Y. Allele distributions and frequencies of the six prion protein gene (PRNP) polymorphisms in Asian native cattle, Japanese breeds, and mythun (Bos frontalis). Biochem Genet 2010; 48:829-39. [PMID: 20623331 DOI: 10.1007/s10528-010-9364-x] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2010] [Accepted: 04/12/2010] [Indexed: 11/28/2022]
Abstract
Six polymorphic sites of the bovine prion protein gene (PRNP) were genotyped in 569 animals of Asian native cattle, Japanese breeds, purebred mythun (Bos frontalis), and mythun x cattle composite animals. At the 23-bp indel site, a deletion (23-) allele was a major allele in all populations except mythun. At the 12-bp indel site, an insertion (12+) allele was a major allele in all populations. The 14-bp indel site was polymorphic in all Asian native cattle. In the octapeptide repeat region, a six-repeat allele was a major allele in all populations, and 5/5 and 4/6 genotypes were detected in Japanese Black and Mongolian cattle and in mythun, respectively. Two nonsynonymous single nucleotide polymorphisms (SNPs) (K3T and S154N) were detected in Asian native cattle and mythun. Haplotype analysis using the genotypes of the six sites estimated 33 different haplotypes. The haplotype 23- 12- K 6 S 14+ was found in all populations.
Collapse
Affiliation(s)
- Takeshi Shimogiri
- Laboratory of Animal Breeding and Genetics, Faculty of Agriculture, Kagoshima University, 1-21-24 Korimoto, Kagoshima, 890-0065, Japan,
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
20
|
Abstract
Variation of the PrP gene was examined in healthy and BSE-affected Slovak cattle. According to previous studies, the 23-bp indel polymorphism is supposed to be associated with higher susceptibility to BSE. We investigated 301 samples from healthy cattle of various Slovak breeds and 24 samples obtained from tissues of BSE-affected cattle in Slovakia. We examined the PrP gene for the 23-bp indel polymorphism in the putative promoter region, 12-bp indel polymorphism in the first intron of the PrP gene, variations in number of octapeptide repeat units, and presence of the silent AAC>AAT transition in codon 192 within the protein-coding region of the PrP gene. Altogether we found 23 different genotypes in the group of healthy cattle and only 6 genotypes in the group of BSE-affected cattle. Comparison of homozygotes for the 23-bp insertion and heterozygotes showed significant differences (P < 0.05) in genotype distribution between the examined groups. Thereby the homozygous insertion genotype at the 23-bp indel polymorphism site in the promoter region of the prion protein gene seems to have a protective effect against BSE.
Collapse
|
21
|
Rigter A, Priem J, Timmers-Parohi D, Langeveld JPM, van Zijderveld FG, Bossers A. Prion protein self-peptides modulate prion interactions and conversion. BMC BIOCHEMISTRY 2009; 10:29. [PMID: 19943977 PMCID: PMC2789745 DOI: 10.1186/1471-2091-10-29] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/27/2009] [Accepted: 11/30/2009] [Indexed: 12/30/2022]
Abstract
Background Molecular mechanisms underlying prion agent replication, converting host-encoded cellular prion protein (PrPC) into the scrapie associated isoform (PrPSc), are poorly understood. Selective self-interaction between PrP molecules forms a basis underlying the observed differences of the PrPC into PrPSc conversion process (agent replication). The importance of previously peptide-scanning mapped ovine PrP self-interaction domains on this conversion was investigated by studying the ability of six of these ovine PrP based peptides to modulate two processes; PrP self-interaction and conversion. Results Three peptides (octarepeat, binding domain 2 -and C-terminal) were capable of inhibiting self-interaction of PrP in a solid-phase PrP peptide array. Three peptides (N-terminal, binding domain 2, and amyloidogenic motif) modulated prion conversion when added before or after initiation of the prion protein misfolding cyclic amplification (PMCA) reaction using brain homogenates. The C-terminal peptides (core region and C-terminal) only affected conversion (increased PrPres formation) when added before mixing PrPC and PrPSc, whereas the octarepeat peptide only affected conversion when added after this mixing. Conclusion This study identified the putative PrP core binding domain that facilitates the PrPC-PrPSc interaction (not conversion), corroborating evidence that the region of PrP containing this domain is important in the species-barrier and/or scrapie susceptibility. The octarepeats can be involved in PrPC-PrPSc stabilization, whereas the N-terminal glycosaminoglycan binding motif and the amyloidogenic motif indirectly affected conversion. Binding domain 2 and the C-terminal domain are directly implicated in PrPC self-interaction during the conversion process and may prove to be prime targets in new therapeutic strategy development, potentially retaining PrPC function. These results emphasize the importance of probable PrPC-PrPC and required PrPC-PrPSc interactions during PrP conversion. All interactions are probably part of the complex process in which polymorphisms and species barriers affect TSE transmission and susceptibility.
Collapse
Affiliation(s)
- Alan Rigter
- Department of Bacteriology and TSEs, Central Veterinary Institute (CVI) of Wageningen UR, Lelystad, 8200 AB, the Netherlands.
| | | | | | | | | | | |
Collapse
|
22
|
Oztabak K, Ozkan E, Soysal I, Paya I, Ün C. Detection of prion gene promoter and intron1indelpolymorphisms in Anatolian water buffalo (Bubalus bubalis). J Anim Breed Genet 2009; 126:463-7. [DOI: 10.1111/j.1439-0388.2009.00821.x] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
|
23
|
MSALYA G, SHIMOGIRI T, OKAMOTO S, KAWABE K, MINEZAWA M, NAMIKAWA T, MAEDA Y. Gene and haplotype polymorphisms of the Prion gene (PRNP) in Japanese Brown, Japanese native and Holstein cattle. Anim Sci J 2009; 80:520-7. [DOI: 10.1111/j.1740-0929.2009.00669.x] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
24
|
Kim Y, Kim JB, Sohn H, Lee C. A national survey on the allelic, genotypic, and haplotypic distribution of PRNP insertion and deletion polymorphisms in Korean cattle. J Genet 2009; 88:99-103. [PMID: 19417551 DOI: 10.1007/s12041-009-0014-1] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Younyoung Kim
- Department of Bioinformatics and Life Science, Soongsil University, Seoul 156-743, South Korea
| | | | | | | |
Collapse
|
25
|
Purdey M. Are Organophosphate Pesticides Involved in the Causation of Bovine Spongiform Encephalopathy (BSE)? Hypothesis Based upon a Literature Review and Limited Trials on BSE Cattle. ACTA ACUST UNITED AC 2009. [DOI: 10.3109/13590849409034540] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
26
|
Czarnik U, Grzybowski G, Zabolewicz T, Strychalski J, Kaminski S. Deletion/insertion polymorphism of the prion protein gene (PRNP) in Polish Red cattle, Polish White-backed cattle and European bison (Bison bonasus L., 1758). RUSS J GENET+ 2009. [DOI: 10.1134/s1022795409040103] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
27
|
Ün C, Oztabak K, Özdemir N, Tesfaye D, Mengi A, Schellander K. Detection of Bovine Spongiform Encephalopathy-Related Prion Protein Gene Promoter Polymorphisms in Local Turkish Cattle. Biochem Genet 2008; 46:820-7. [DOI: 10.1007/s10528-008-9196-0] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2008] [Accepted: 07/15/2008] [Indexed: 11/30/2022]
|
28
|
Ibeagha-Awemu EM, Kgwatalala P, Ibeagha AE, Zhao X. A critical analysis of disease-associated DNA polymorphisms in the genes of cattle, goat, sheep, and pig. Mamm Genome 2008; 19:226-45. [PMID: 18350334 PMCID: PMC2323435 DOI: 10.1007/s00335-008-9101-5] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2007] [Accepted: 02/11/2008] [Indexed: 10/29/2022]
Abstract
Genetic variations through their effects on gene expression and protein function underlie disease susceptibility in farm animal species. The variations are in the form of single nucleotide polymorphisms, deletions/insertions of nucleotides or whole genes, gene or whole chromosomal rearrangements, gene duplications, and copy number polymorphisms or variants. They exert varying degrees of effects on gene action, such as substitution of an amino acid for another, shift in reading frame and premature termination of translation, and complete deletion of entire exon(s) or gene(s) in diseased individuals. These factors influence gene function by affecting mRNA splicing pattern or by altering/eliminating protein function. Elucidating the genetic bases of diseases under the control of many genes is very challenging, and it is compounded by several factors, including host x pathogen x environment interactions. In this review, the genetic variations that underlie several diseases of livestock (under monogenic and polygenic control) are analyzed. Also, factors hampering research efforts toward identification of genetic influences on animal disease identification and control are highlighted. A better understanding of the factors analyzed could be better harnessed to effectively identify and control, genetically, livestock diseases. Finally, genetic control of animal diseases can reduce the costs associated with diseases, improve animal welfare, and provide healthy animal products to consumers, and should be given more attention.
Collapse
Affiliation(s)
- Eveline M Ibeagha-Awemu
- Department of Animal Science, McGill University, 21,111 Lakeshore Road, Ste Anne De Bellevue, Montreal, QC, Canada, H9X 3V9.
| | | | | | | |
Collapse
|
29
|
Goldmann W. PrP genetics in ruminant transmissible spongiform encephalopathies. Vet Res 2008; 39:30. [PMID: 18284908 DOI: 10.1051/vetres:2008010] [Citation(s) in RCA: 133] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2007] [Accepted: 01/24/2008] [Indexed: 11/15/2022] Open
Abstract
Scrapie, bovine spongiform encephalopathy (BSE), and chronic wasting disease (CWD) are prion diseases in ruminants with considerable impact on animal health and welfare. They can also pose a risk to human health and control is therefore an important issue. Prion protein (PrP) genetics may be used to control and eventually eradicate animal prion diseases. The PrP gene in sheep and other representatives of the order Artiodactyles has many polymorphisms of which several are crucial determinants of susceptibility to prion diseases, also known as transmissible spongiform encephalopathies (TSE). This review will present the current understanding of PrP genetics in ruminants highlighting similarity and difference between the species in the context of TSE.
Collapse
Affiliation(s)
- Wilfred Goldmann
- Roslin Institute Neuropathogenesis Unit, West Mains Road, Edinburgh EH 93JF, UK.
| |
Collapse
|
30
|
Hosokawa T, Tsuchiya K, Sato I, Takeyama N, Ueda S, Tagawa Y, Kimura KM, Nakamura I, Wu G, Sakudo A, Casalone C, Mazza M, Caramelli M, Takahashi H, Sata T, Sugiura K, Baj A, Toniolo A, Onodera T. A monoclonal antibody (1D12) defines novel distribution patterns of prion protein (PrP) as granules in nucleus. Biochem Biophys Res Commun 2008; 366:657-63. [DOI: 10.1016/j.bbrc.2007.11.163] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2007] [Accepted: 11/23/2007] [Indexed: 01/25/2023]
|
31
|
Hosokawa T, Ono F, Tsuchiya K, Sato I, Takeyama N, Ueda S, Zanusso G, Takahashi H, Sata T, Sakudo A, Suguira K, Baj A, Toniolo A, Yoshikawa Y, Onodera T. Distinct immunohistochemical localization in Kuru plaques using novel anti-prion protein antibodies. Microbiol Immunol 2008; 52:25-9. [DOI: 10.1111/j.1348-0421.2008.00007.x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
32
|
Polymorphisms of Two Indels at the PRNP Gene in Three Beef Cattle Herds. Biochem Genet 2007; 46:1-7. [PMID: 18064562 DOI: 10.1007/s10528-007-9113-y] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2007] [Accepted: 05/23/2007] [Indexed: 10/22/2022]
Abstract
Bovine spongiform encephalopathy (BSE) is a transmissible fatal neurodegenerative disorder, presenting a characteristic spongiform degeneration of cattle brain due to the accumulation of a pathogenic and protease-resistant infectious protein (prion). Two deletion/insertion polymorphisms of the prion protein gene (23 bp at the promoter region and 12 bp at intron 1) were analyzed in three beef cattle herds (Aberdeen Angus, Charolais, and Franqueiro) to verify allele frequencies for possible use in selection of resistant animals. High frequencies of susceptibility alleles (23 and 12 bp deletion) and haplotype (23 del/12 del) were observed in the Aberdeen Angus and Charolais herds, but Franqueiro presented one of the highest frequencies of resistant alleles so far described. These data indicate the need for selection in Aberdeen Angus and Charolais breeds to increase the frequency of resistant animals in order to reduce the probabilities of BSE outbreaks in these populations.
Collapse
|
33
|
Novakofski J, Brewer MS, Mateus-Pinilla N, Killefer J, McCusker RH. Prion biology relevant to bovine spongiform encephalopathy. J Anim Sci 2007; 83:1455-76. [PMID: 15890824 DOI: 10.2527/2005.8361455x] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Bovine spongiform encephalopathy (BSE) and chronic wasting disease (CWD) of deer and elk are a threat to agriculture and natural resources, as well as a human health concern. Both diseases are transmissible spongiform encephalopathies (TSE), or prion diseases, caused by autocatalytic conversion of endogenously encoded prion protein (PrP) to an abnormal, neurotoxic conformation designated PrPsc. Most mammalian species are susceptible to TSE, which, despite a range of species-linked names, is caused by a single highly conserved protein, with no apparent normal function. In the simplest sense, TSE transmission can occur because PrPsc is resistant to both endogenous and environmental proteinases, although many details remain unclear. Questions about the transmission of TSE are central to practical issues such as livestock testing, access to international livestock markets, and wildlife management strategies, as well as intangible issues such as consumer confidence in the safety of the meat supply. The majority of BSE cases seem to have been transmitted by feed containing meat and bone meal from infected animals. In the United Kingdom, there was a dramatic decrease in BSE cases after neural tissue and, later, all ruminant tissues were banned from ruminant feed. However, probably because of heightened awareness and widespread testing, there is growing evidence that new variants of BSE are arising "spontaneously," suggesting ongoing surveillance will continue to find infected animals. Interspecies transmission is inefficient and depends on exposure, sequence homology, TSE donor strain, genetic polymorphism of the host, and architecture of the visceral nerves if exposure is by an oral route. Considering the low probability of interspecies transmission, the low efficiency of oral transmission, and the low prion levels in nonnervous tissues, consumption of conventional animal products represents minimal risk. However, detection of rare events is challenging, and TSE literature is characterized by subsequently unsupported claims of species barriers or absolute tissue safety. This review presents an overview of TSE and summarizes recent research on pathogenesis and transmission.
Collapse
Affiliation(s)
- J Novakofski
- Department of Animal Sciences, University of Illinois at Urbana-Champaign, IL 61801-4737, USA.
| | | | | | | | | |
Collapse
|
34
|
Jacobs JG, Langeveld JPM, Biacabe AG, Acutis PL, Polak MP, Gavier-Widen D, Buschmann A, Caramelli M, Casalone C, Mazza M, Groschup M, Erkens JHF, Davidse A, van Zijderveld FG, Baron T. Molecular discrimination of atypical bovine spongiform encephalopathy strains from a geographical region spanning a wide area in Europe. J Clin Microbiol 2007; 45:1821-9. [PMID: 17442800 PMCID: PMC1933055 DOI: 10.1128/jcm.00160-07] [Citation(s) in RCA: 145] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2007] [Revised: 03/12/2007] [Accepted: 04/06/2007] [Indexed: 11/20/2022] Open
Abstract
Transmissible spongiform encephalopathy strains can be differentiated by their behavior in bioassays and by molecular analyses of the disease-associated prion protein (PrP) in a posttranslationally transformed conformation (PrPSc). Until recently, isolates from cases of bovine spongiform encephalopathy (BSE) appeared to be very homogeneous. However, a limited number of atypical BSE isolates have recently been identified upon analyses of the disease-associated proteinase K (PK) resistance-associated moiety of PrPSc (PrPres), suggesting the existence of at least two additional BSE PrPres variants. These are defined here as the H type and the L type, according to the higher and lower positions of the nonglycosylated PrPres band in Western blots, respectively, compared to the position of the band in classical BSE (C-type) isolates. These molecular PrPres variants, which originated from six different European countries, were investigated together. In addition to the migration properties and glycosylation profiles (glycoprofiles), the H- and L-type isolates exhibited enhanced PK sensitivities at pH 8 compared to those of the C-type isolates. Moreover, H-type BSE isolates exhibited differences in the binding of antibodies specific for N- and more C-terminal PrP regions and principally contained two aglycosylated PrPres moieties which can both be glycosylated and which is thus indicative of the existence of two PrPres populations or intermediate cleavage sites. These properties appear to be consistent within each BSE type and independent of the geographical origin, suggesting the existence of different BSE strains in cattle. The choice of three antibodies and the application of two pHs during the digestion of brain homogenates provide practical and diverse tools for the discriminative detection of these three molecular BSE types and might assist with the recognition of other variants.
Collapse
Affiliation(s)
- Jorg G Jacobs
- Central Institute for Animal Disease Control (CIDC-Lelystad), 8203 AA 2004, Lelystad. The Netherlands
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
35
|
Brun A, Gutiérrez-Adán A, Castilla J, Pintado B, Díaz-San Segundo F, Cano MJ, Alamillo E, Espinosa JC, Torres JM. Reduced susceptibility to bovine spongiform encephalopathy prions in transgenic mice expressing a bovine PrP with five octapeptide repeats. J Gen Virol 2007; 88:1842-1849. [PMID: 17485546 DOI: 10.1099/vir.0.82568-0] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
In this work, transgenic (Tg) mice were generated expressing a bovine prion protein containing five octarepeats (BoPrP5OR-Tg). After intracerebral inoculation of bovine spongiform encephalopathy (BSE) inoculum, these mice suffered a BSE-like neuropathology but survived longer compared with homologous Tg mice expressing similar levels of a six octarepeat BoPrP protein (BoPrP6OR-Tg). De novo-generated five octarepeat (5OR) PrPSc showed no biochemical differences from 6OR-PrPSc, and the proteinase K-resistant core (PrPres) was biochemically indistinguishable from the 6OR counterpart. Lower susceptibility to BSE is suggested for BoPrP5OR-Tg mice, as they were not as efficient at replicating BSE prions from the same natural source inoculum as BoPrP6OR-Tg mice expressing similar PrPC levels. These results raise the possibility of selecting cattle breeds bearing the 5OR Prnp allele that are less susceptible to prion infection.
Collapse
Affiliation(s)
- Alejandro Brun
- Centro de Investigación en Sanidad Animal, INIA, Valdeolmos, 28130 Madrid, Spain
| | - Alfonso Gutiérrez-Adán
- Departamento de Reproducción Animal y Conservación de Recursos Zoogenéticos, 28049 Madrid, Spain
| | - Joaquín Castilla
- Centro de Investigación en Sanidad Animal, INIA, Valdeolmos, 28130 Madrid, Spain
| | - Belén Pintado
- Departamento de Reproducción Animal y Conservación de Recursos Zoogenéticos, 28049 Madrid, Spain
| | | | - María J Cano
- Centro de Investigación en Sanidad Animal, INIA, Valdeolmos, 28130 Madrid, Spain
| | - Elia Alamillo
- Centro de Investigación en Sanidad Animal, INIA, Valdeolmos, 28130 Madrid, Spain
| | - Juan C Espinosa
- Centro de Investigación en Sanidad Animal, INIA, Valdeolmos, 28130 Madrid, Spain
| | - Juan M Torres
- Centro de Investigación en Sanidad Animal, INIA, Valdeolmos, 28130 Madrid, Spain
| |
Collapse
|
36
|
Mapping of possible prion protein self-interaction domains using peptide arrays. BMC BIOCHEMISTRY 2007; 8:6. [PMID: 17430579 PMCID: PMC1855927 DOI: 10.1186/1471-2091-8-6] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/09/2006] [Accepted: 04/12/2007] [Indexed: 11/10/2022]
Abstract
Background The common event in transmissible spongiform encephalopathies (TSEs) or prion diseases is the conversion of host-encoded protease sensitive cellular prion protein (PrPC) into strain dependent isoforms of scrapie associated protease resistant isoform (PrPSc) of prion protein (PrP). These processes are determined by similarities as well as strain dependent variations in the PrP structure. Selective self-interaction between PrP molecules is the most probable basis for initiation of these processes, potentially influenced by chaperone molecules, however the mechanisms behind these processes are far from understood. We previously determined that polymorphisms do not affect initial PrPC to PrPSc binding but rather modulate a subsequent step in the conversion process. Determining possible sites of self-interaction could elucidate which amino acid(s) or amino acid sequences contribute to binding and further conversion into other isoforms. To this end, ovine – and bovine PrP peptide-arrays consisting of 15-mer overlapping peptides were probed with recombinant sheep PrPC fused to maltose binding protein (MBP-PrP). Results The peptide-arrays revealed two distinct high binding areas as well as some regions of lower affinity in PrPC resulting in total in 7 distinct amino acid sequences (AAs). The first high binding area comprises sheep-PrP peptides 43–102 (AA 43–116), including the N-terminal octarepeats. The second high binding area of sheep-PrP peptides 134–177 (AA 134–191), encompasses most of the scrapie susceptibility-associated polymorphisms in sheep. This concurs with previous studies showing that scrapie associated-polymorphisms do not modulate the initial binding of PrPC to PrPSc. Comparison of ovine – and bovine peptide-array binding patterns revealed that amino acid specific differences can influence the MBP-PrP binding pattern. PrP-specific antibodies were capable to completely block interaction between the peptide-array and MBP-PrP. MBP-PrP was also capable to specifically bind to PrP in a Western blot approach. The octarepeat region of PrP seems primarily important for this interaction because proteinase K pre-treatment of PrPSc completely abolished binding. Conclusion Binding of MBP-PrP to PrP-specific sequences indicate that several specific self-interactions between individual PrP molecules can occur and suggest that an array of interactions between PrPC-PrPC as well as PrPC-PrPSc may be possible, which ultimately lead to variations in species barrier and strain differences.
Collapse
|
37
|
Saunders GC, Griffiths PC, Cawthraw S, Tout AC, Wiener P, Woolliams JA, Williams JL, Windl O. Polymorphisms of the prion protein gene coding region in born-after-the-reinforced-ban (BARB) bovine spongiform encephalopathy cattle in Great Britain. J Gen Virol 2007; 88:1374-1378. [PMID: 17374784 DOI: 10.1099/vir.0.82507-0] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Polymorphisms of the prion protein gene are associated with differing susceptibilities to transmissible spongiform encephalopathy diseases, as shown for variant Creutzfeldt–Jakob disease in humans and scrapie in sheep, but not yet in cattle. Imposition of control measures in the UK, including a reinforced ruminant feed ban in 1996, has led to a reduction in the incidence of bovine spongiform encephalopathy (BSE). BSE-affected cattle born after 1996 in Great Britain have been termed born-after-the-reinforced-ban (BARB) cases. In this study, the PrP gene coding region from 100 BARB BSE cases and 66 matched healthy-control cattle was sequenced to investigate whether this would reveal a genetic basis to their origin. Polymorphisms identified were not found to be associated with increased susceptibility to BSE in the BARB cases. Analysis of BARB cases grouped either by clinical status or by whether they formed an isolated or clustered case was also undertaken, but differences were not found to be significant.
Collapse
Affiliation(s)
- G C Saunders
- TSE Molecular Biology Department, Veterinary Laboratories Agency (VLA) Weybridge, New Haw, Addlestone, Surrey KT15 3NB, UK
| | - P C Griffiths
- TSE Molecular Biology Department, Veterinary Laboratories Agency (VLA) Weybridge, New Haw, Addlestone, Surrey KT15 3NB, UK
| | - S Cawthraw
- TSE Molecular Biology Department, Veterinary Laboratories Agency (VLA) Weybridge, New Haw, Addlestone, Surrey KT15 3NB, UK
| | - A C Tout
- TSE Molecular Biology Department, Veterinary Laboratories Agency (VLA) Weybridge, New Haw, Addlestone, Surrey KT15 3NB, UK
| | - P Wiener
- Division of Genomics and Bioinformatics, Roslin Institute (Edinburgh), Roslin, Midlothian EH25 9PS, UK
| | - J A Woolliams
- Division of Genomics and Bioinformatics, Roslin Institute (Edinburgh), Roslin, Midlothian EH25 9PS, UK
| | - J L Williams
- Division of Genomics and Bioinformatics, Roslin Institute (Edinburgh), Roslin, Midlothian EH25 9PS, UK
| | - O Windl
- TSE Molecular Biology Department, Veterinary Laboratories Agency (VLA) Weybridge, New Haw, Addlestone, Surrey KT15 3NB, UK
| |
Collapse
|
38
|
Wells GAH, Konold T, Arnold ME, Austin AR, Hawkins SAC, Stack M, Simmons MM, Lee YH, Gavier-Widén D, Dawson M, Wilesmith JW. Bovine spongiform encephalopathy: the effect of oral exposure dose on attack rate and incubation period in cattle. J Gen Virol 2007; 88:1363-1373. [PMID: 17374783 DOI: 10.1099/vir.0.82421-0] [Citation(s) in RCA: 95] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The dose–response of cattle exposed to the bovine spongiform encephalopathy (BSE) agent is an important component of modelling exposure risks for animals and humans and thereby, the modulation of surveillance and control strategies for BSE. In two experiments calves were dosed orally with a range of amounts of a pool of brainstems from BSE-affected cattle. Infectivity in the pool was determined by end-point titration in mice. Recipient cattle were monitored for clinical disease and, from the incidence of pathologically confirmed cases and their incubation periods (IPs), the attack rate and IP distribution according to dose were estimated. The dose at which 50 % of cattle would be clinically affected was estimated at 0.20 g brain material used in the experiment, with 95 % confidence intervals of 0.04–1.00 g. The IP was highly variable across all dose groups and followed a log-normal distribution, with decreasing mean as dose increased. There was no evidence of a threshold dose at which the probability of infection became vanishingly small, with 1/15 (7 %) of animals affected at the lowest dose (1 mg).
Collapse
Affiliation(s)
- G A H Wells
- Veterinary Laboratories Agency, Woodham Lane, New Haw, Addlestone, Surrey KT15 3NB, UK
| | - T Konold
- Veterinary Laboratories Agency, Woodham Lane, New Haw, Addlestone, Surrey KT15 3NB, UK
| | - M E Arnold
- Veterinary Laboratories Agency, Woodham Lane, New Haw, Addlestone, Surrey KT15 3NB, UK
| | - A R Austin
- Veterinary Laboratories Agency, Woodham Lane, New Haw, Addlestone, Surrey KT15 3NB, UK
| | - S A C Hawkins
- Veterinary Laboratories Agency, Woodham Lane, New Haw, Addlestone, Surrey KT15 3NB, UK
| | - M Stack
- Veterinary Laboratories Agency, Woodham Lane, New Haw, Addlestone, Surrey KT15 3NB, UK
| | - M M Simmons
- Veterinary Laboratories Agency, Woodham Lane, New Haw, Addlestone, Surrey KT15 3NB, UK
| | - Y H Lee
- National Veterinary Research and Quarantine Service, Anyang, Republic of Korea
| | - D Gavier-Widén
- National Veterinary Institute (SVA), SE-75189 Uppsala, Sweden
| | - M Dawson
- Veterinary Laboratories Agency, Woodham Lane, New Haw, Addlestone, Surrey KT15 3NB, UK
| | - J W Wilesmith
- Veterinary Laboratories Agency, Woodham Lane, New Haw, Addlestone, Surrey KT15 3NB, UK
| |
Collapse
|
39
|
Czarnik U, Zabolewicz T, Strychalski J, Grzybowski G, Bogusz M, Walawski K. Deletion/insertion polymorphism of the prion protein gene (PRNP) in Polish Holstein-Friesian cattle. J Appl Genet 2007; 48:69-71. [PMID: 17272863 DOI: 10.1007/bf03194659] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The aim of the present study was to identify the deletion/insertion polymorphism of the bovine prion protein gene (PRNP) within the promoter sequence (23 bp), intron 1 (12 bp) and 3' untranslated region (14 bp). DNA was isolated from blood of 234 randomly tested Polish Holstein-Friesian cows and from semen of 47 sires used for artificial insemination (AI) in 2004. No statistically significant differences were found in the frequency of genotypes and alleles between cows and breeding bulls in the 3 analysed polymorphic sites within the PRNP gene. Only 3 haplotypes were identified in sires and 4 haplotypes in cows.
Collapse
Affiliation(s)
- Urszula Czarnik
- Department of Animal Genetics, University of Warmia and Mazury, M. Oczapowskiego 5, 10-957 Olsztyn, Poland.
| | | | | | | | | | | |
Collapse
|
40
|
Forde N, Rogers M, Canty MJ, Lonergan P, Smith GW, Coussens PM, Ireland JJ, Evans ACO. Association of the prion protein and its expression with ovarian follicle development in cattle. Mol Reprod Dev 2007; 75:243-9. [PMID: 17595008 DOI: 10.1002/mrd.20807] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
The cellular form of the prion protein (PrP(C)) has been detected in many tissues including reproductive tissues. While its function is unclear, it has been suggested to act as a receptor for an unidentified ligand and/or as an antioxidant agent. We tested the hypothesis that PrP(C) is differentially expressed in dominant, growing, compared to subordinate bovine ovarian follicles. Using both microarray analysis and quantitative real-time PCR, the level of prion protein mRNA (Prnp) in both theca and granulosa cells was measured. We found that levels of Prnp were significantly higher in the theca cells of dominant compared to subordinate follicles but similar among granulosa cells from different follicles. This difference was apparent immediately after selection of the dominant follicle and continued to the dominance stage of the follicle wave. Levels of the protein for PrP(C) were also higher (P < 0.05) in theca cells of dominant compared to subordinate follicles. In conclusion, elevated PrP(C) was associated with ovarian follicle growth and development and we suggest that it may play a role in the success of follicle development.
Collapse
Affiliation(s)
- N Forde
- School of Agriculture Food Science and Veterinary Medicine and the Conway Institute for Biomolecular and Biomedical Research, College of Life Sciences, University College Dublin, Belfield, Dublin, Ireland
| | | | | | | | | | | | | | | |
Collapse
|
41
|
Béringue V, Bencsik A, Le Dur A, Reine F, Laï TL, Chenais N, Tilly G, Biacabé AG, Baron T, Vilotte JL, Laude H. Isolation from cattle of a prion strain distinct from that causing bovine spongiform encephalopathy. PLoS Pathog 2006; 2:e112. [PMID: 17054396 PMCID: PMC1617128 DOI: 10.1371/journal.ppat.0020112] [Citation(s) in RCA: 88] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2006] [Accepted: 09/12/2006] [Indexed: 11/19/2022] Open
Abstract
To date, bovine spongiform encephalopathy (BSE) and its human counterpart, variant Creutzfeldt-Jakob disease, have been associated with a single prion strain. This strain is characterised by a unique and remarkably stable biochemical profile of abnormal protease-resistant prion protein (PrP(res)) isolated from brains of affected animals or humans. However, alternate PrP(res) signatures in cattle have recently been discovered through large-scale screening. To test whether these also represent separate prion strains, we inoculated French cattle isolates characterised by a PrP(res) of higher apparent molecular mass--called H-type--into transgenic mice expressing bovine or ovine PrP. All mice developed neurological symptoms and succumbed to these isolates, showing that these represent a novel strain of infectious prions. Importantly, this agent exhibited strain-specific features clearly distinct from that of BSE agent inoculated to the same mice, which were retained on further passage. Moreover, it also differed from all sheep scrapie isolates passaged so far in ovine PrP-expressing mice. Our findings therefore raise the possibility that either various prion strains may exist in cattle, or that the BSE agent has undergone divergent evolution in some animals.
Collapse
Affiliation(s)
- Vincent Béringue
- Institut National de la Recherche Agronomique, Virologie Immunologie Moléculaires, Jouy-en-Josas, France
| | - Anna Bencsik
- Agence Française de Sécurité Sanitaire des Aliments, Unité Agents Transmissibles Non Conventionnels, Lyon, France
| | - Annick Le Dur
- Institut National de la Recherche Agronomique, Virologie Immunologie Moléculaires, Jouy-en-Josas, France
| | - Fabienne Reine
- Institut National de la Recherche Agronomique, Virologie Immunologie Moléculaires, Jouy-en-Josas, France
| | - Thanh Lan Laï
- Institut National de la Recherche Agronomique, Virologie Immunologie Moléculaires, Jouy-en-Josas, France
| | - Nathalie Chenais
- Institut National de la Recherche Agronomique, Génétique Biochimique, et Cytogénétique, Jouy-en-Josas, France
| | - Gaëlle Tilly
- Institut National de la Recherche Agronomique, Génétique Biochimique, et Cytogénétique, Jouy-en-Josas, France
| | - Anne-Gaëlle Biacabé
- Agence Française de Sécurité Sanitaire des Aliments, Unité Agents Transmissibles Non Conventionnels, Lyon, France
| | - Thierry Baron
- Agence Française de Sécurité Sanitaire des Aliments, Unité Agents Transmissibles Non Conventionnels, Lyon, France
| | - Jean-Luc Vilotte
- Institut National de la Recherche Agronomique, Génétique Biochimique, et Cytogénétique, Jouy-en-Josas, France
| | - Hubert Laude
- Institut National de la Recherche Agronomique, Virologie Immunologie Moléculaires, Jouy-en-Josas, France
- * To whom correspondence should be addressed. E-mail:
| |
Collapse
|
42
|
Geldermann H, He H, Bobal P, Bartenschlager H, Preuss S. Comparison of DNA variants in the PRNP and NF1 regions between bovine spongiform encephalopathy and control cattle. Anim Genet 2006; 37:469-74. [PMID: 16978176 DOI: 10.1111/j.1365-2052.2006.01519.x] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
DNA from 252 bovine spongiform encephalopathy (BSE) cattle and 376 non-diseased control cattle were genotyped for nine loci in the prion protein (PRNP) gene region, three loci in the neurofibromin 1 (NF1) region and four control loci on different chromosomes. The allele and genotype frequencies of the control loci were similar in BSE and control cattle. In the analysed 7.4 Mb PRNP region, the largest differences between BSE and control cattle were found for the loci REG2, R16 and R18, which are located between +300 and +5600 bp, spanning PRNP introns 1 to 2. Carriers of the REG2 genotype 128/128 were younger at BSE diagnosis than those with the other genotypes (128/140 or 140/140). The predominant haplotype REG2 128 bp-R18 173 bp occurred more frequently (P < 0.001), and the second-most frequent haplotype (REG2 140 bp-R18 175 bp) occurred less frequently (P < 0.05) in BSE than in control cattle. The largest frequency differences between BSE and control groups were observed in the Brown Swiss breed. Across all breeds, most of the same alleles and haplotypes of the PRNP region were associated with BSE. In the 23-cM NF1 region, associations with BSE incidence were found for the RM222 allele and for the DIK4009 genotype frequencies. Cattle carrying RM222 genotypes with the 127- or 129-bp alleles were about half a year older at BSE incidence than those with other genotypes. Across the breeds, different alleles and genotypes of the NF1 region were associated with BSE. The informative DNA markers were used to localize the genetic disposition to BSE and may be useful for the identification of the causative DNA variants.
Collapse
Affiliation(s)
- H Geldermann
- Department of Animal Breeding and Biotechnology, University of Hohenheim, D70599 Stuttgart, Germany.
| | | | | | | | | |
Collapse
|
43
|
Nakamitsu S, Miyazawa T, Horiuchi M, Onoe S, Ohoba Y, Kitagawa H, Ishiguro N. Sequence variation of bovine prion protein gene in Japanese cattle (Holstein and Japanese Black). J Vet Med Sci 2006; 68:27-33. [PMID: 16462113 DOI: 10.1292/jvms.68.27] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
To assess relationships between nucleotide polymorphisms of the prion protein (PRNP) gene and susceptibility to bovine spongiform encephalopathy (BSE), we investigated polymorphisms in the open reading frame (ORF) and 2 upper regions of the PRNP gene from 2 Japanese cattle breeds: 863 healthy Holstein cattle, 6 BSE-affected Holstein cattle, and 186 healthy Japanese Black (JB) cattle. In the ORF, we found single-nucleotide polymorphisms (SNPs) at nucleotide positions 234 and 576 and found 5 or 6 copies of the octapeptide repeat, but we did not find any amino acid substitutions. In the upper region, we examined 2 sites of insertion/deletion (indel) polymorphisms: a 23-bp indel in the upper region of exon 1, and a 12-bp indel in the putative promoter region of intron 1. A previous report suggests that the 23-bp indel polymorphism is associated with susceptibility to BSE, but we did not find a difference in allele frequency between healthy and BSE-affected Holstein cattle. There were differences in allele frequency between healthy Holstein and JB cattle at the 23- and 12-bp indels and at the SNPs at nucleotide positions 234 and 576, but there was no difference in allele frequency of the octapeptide repeat. We identified a unique PRNP gene lacking a 288-bp segment (96 amino acids) in DNA samples stocked in our laboratory, but this deletion was not found in any of the 1049 cattle examined in the present study. The present results provide data about variations and distribution of the bovine PRNP gene.
Collapse
Affiliation(s)
- Satoshi Nakamitsu
- Laboratory of Veterinary Public Health, Obihiro University of Agriculture and Veterinary Medicine, Obihiro, Hokkaido 080-8555, Japan
| | | | | | | | | | | | | |
Collapse
|
44
|
ABE T, HASEBE H, KOBAYASHI E. Frequencies of bovine PrP gene polymorphisms in Holstein and Japanese Black bulls in Japan. Anim Sci J 2006. [DOI: 10.1111/j.1740-0929.2006.00364.x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
45
|
Opinion of the Scientific Panel on biological hazards (BIOHAZ) on the Breeding programme for TSE resistance in sheep. EFSA J 2006. [DOI: 10.2903/j.efsa.2006.382] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
|
46
|
Abstract
Bovine spongiform encephalopathy (BSE) is one of several diseases known collectively as transmissible spongiform encephalopathies (TSE) and caused by prions, which are nonconventional infectious agents. The risk of human infection by exposure to a TSE agent is generally considered to be low, because of the species barrier. However, the prions causing BSE in cattle are able to cross the species barrier easily. The appearance of variant Creutzfeldt–Jakob disease (vCJD) after human exposure to BSE prions has highlighted the possible impacts of this infection on human health. Today, a major concern is that the number of BSE cases in many European countries, including the emerging eastern European countries of the EU, is growing. A further concern now emerging is the possibility that BSE could spread to other livestock species, such as sheep or goats. This paper provides an overview of BSE transmission and its potential implications for public health.
Collapse
Affiliation(s)
- Juan Carlos Espinosa
- Centro de Investigación en Sanidad Animal, INIA, 28130 Valdeolmos, Madrid, Spain
| | - Monica Morales
- Centro de Investigación en Sanidad Animal, INIA, 28130 Valdeolmos, Madrid, Spain
| | - Maria Eugenia Herva
- Centro de Investigación en Sanidad Animal, INIA, 28130 Valdeolmos, Madrid, Spain
| | - Juan Maria Torres
- Centro de Investigación en Sanidad Animal, INIA, 28130 Valdeolmos, Madrid, Spain
| |
Collapse
|
47
|
Andrievskaia O, McRae H, Elmgren C, Huang H, Balachandran A, Nielsen K. Generation of antibodies against bovine recombinant prion protein in various strains of mice. CLINICAL AND VACCINE IMMUNOLOGY : CVI 2006; 13:98-105. [PMID: 16426006 PMCID: PMC1356621 DOI: 10.1128/cvi.13.1.98-105.2006] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Transmissible spongiform encephalopathies (TSEs), also known as prion diseases, belong to a group of neurodegenerative disorders affecting humans and animals. To date, definite diagnosis of prion disease can only be made by analysis of tissue samples for the presence of protease-resistant misfolded prion protein (PrP(Sc)). Monoclonal antibodies (MAbs) to the prion protein provide valuable tools for TSE diagnosis, as well as for basic research on these diseases. In this communication, the development of antibodies against recombinant bovine prion protein (brecPrP) in four strains of mice (BALB/c, ND4, SJL, and NZB/NZW F(1)) is described. Immunization of autoimmunity-prone NZB/NZW F(1) and SJL mice with brecPrP was applied to overcome self-tolerance against the prion protein. ND4 and SJL mice did not develop an immune response to brecPrP. BALB/c mice produced antibody titers of 1:1,000 to 1:1,500 in an enzyme-linked immunosorbent assay (ELISA), while NZB/NZW F(1) mice responded with titers of 1:7,000 to 1:11,000. A panel of 71 anti-brecPrP MAbs recognizing continuous and discontinuous epitopes was established from BALB/c and NZB/NZW F(1) mice. Seven anti-brecPrP MAbs reacted with both the cellular form of PrP and protease K-resistant PrP(Sc) from sheep brain in Western blot assays. The epitope specificity of these MAbs was determined, and applicability to immunohistochemical detection of prions was studied. The MAbs generated will be useful tools in the development of TSE immunochemical diagnosis and for research. This is the first report of the development of anti-PrP MAbs by use of autoimmune NZB/NZW F(1) mice as an alternative approach for the generation of PrP-specific MAbs.
Collapse
Affiliation(s)
- Olga Andrievskaia
- Canadian Food Inspection Agency, OLF, 3851 Fallowfield Rd., Ottawa ON K2H 8P9, Canada.
| | | | | | | | | | | |
Collapse
|
48
|
Jeong BH, Sohn HJ, Lee JO, Kim NH, Kim JI, Lee SY, Cho IS, Joo YS, Carp RI, Kim YS. Polymorphisms of the prion protein gene (PRNP) in Hanwoo (Bos taurus coreanae) and Holstein cattle. Genes Genet Syst 2006; 80:303-8. [PMID: 16284424 DOI: 10.1266/ggs.80.303] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Polymorphisms in the prion protein gene (PRNP) in humans and sheep correlate with susceptibility to transmissible spongiform encephalopathies (TSEs). Bovine spongiform encephalopathy (BSE) has been reported in British and Japanese cattle; it has occurred thus far in Holstein cattle. BSE in Hanwoo (Bos taurus coreanae) cattle has not been diagnosed up to now. To characterize the bovine PRNP polymorphisms in Korean cattle, we analyzed the open reading frame (ORF) of PRNP in 120 Hanwoo (beef) cattle and 53 Holstein (dairy) cattle. Three polymorphisms were found, the third position of codon 78 (G-->A), the third position of codon 192 (C-->T), and the deletion of a single octa-repeat. An analysis of codon 78 revealed no difference in the genotype (P = 0.2026) or allele (P = 0.7180) frequencies between Hanwoo and Holstein animals. However, there were significant differences in the genotype (P < 0.0001) and allele (P < 0.0001) frequencies at PRNP codon 192 between Hanwoo and Holstein animals. The rate of Holstein animals with deletion of a single octa-repeat was 91.5% undeleted homozygotes, 8.5% heterozygotes (with R3 deletion), and 0% deleted homozygotes. However, none of the 120 Hanwoo animals had any octa-repeat deletions. The genotype (P < 0.0001) and allele (P < 0.0001) frequencies of a single octa-repeat-deletion were also significantly different between Hanwoo and Holstein animals.
Collapse
Affiliation(s)
- Byung-Hoon Jeong
- Ilsong Institute of Life Science, Hallym University, Anyang, Kyounggi-do, South Korea
| | | | | | | | | | | | | | | | | | | |
Collapse
|
49
|
Bergström AL, Jensen TK, Heegaard PMH, Cordes H, Hansen VB, Laursen H, Lind P. Short-term Study of the Uptake of PrPSc by the Peyer's Patches in Hamsters after Oral Exposure to Scrapie. J Comp Pathol 2006; 134:126-33. [PMID: 16473365 DOI: 10.1016/j.jcpa.2005.08.002] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2005] [Accepted: 08/11/2005] [Indexed: 10/25/2022]
Abstract
The disease-associated prion protein (PrP(Sc)) has been detected in the ileal Peyer's patches of lambs as early as one week after oral exposure to scrapie. In hamsters, the earliest reported time of PrP(Sc) detection in the Peyer's patches after oral exposure to scrapie is 69 days post-infection. To evaluate the acute uptake of inoculum and to investigate whether the Peyer's patches constitute the primary site of entry for scrapie after oral exposure, hamsters were each exposed orally to 1 ml of a 10% brain homogenate from hamsters in the terminal stage of infection with the 263 K strain of the scrapie agent. PrP(Sc) was demonstrated in the Peyer's patches only a few days after exposure, i.e., much earlier than previously reported. This study supports the view that the Peyer's patches constitute at least one of the primary entry sites of PrP(Sc) after oral exposure to scrapie.
Collapse
Affiliation(s)
- A-L Bergström
- Department of Veterinary Diagnostics, The Danish Institute for Food and Veterinary Research, Bülowsvej 27, 1790 Copenhagen V, Denmark
| | | | | | | | | | | | | |
Collapse
|
50
|
Yang JM, Zhao DM, Liu HX, Li N, Hao YX, Ning ZY, Qin XH. Comparative analysis of the prion protein open reading frame nucleotide sequences in peacock and parakeet. Virus Genes 2005; 30:193-6. [PMID: 15744576 DOI: 10.1007/s11262-004-5627-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Revised: 07/23/2004] [Accepted: 09/03/2004] [Indexed: 10/25/2022]
Abstract
The open reading frame of peacock and parakeet prion protein (PrP) genes was cloned and sequenced. The peacock and parakeet PrP genes consisted of 833 and 866 nucleotides encoding 266 and 277 amino acids, respectively (GenBank Accession numbers AY365065 and AY365066). Sequence analysis showed that the peacock and parakeet PrP genes had 93.67% homology to each other, 94.04% and 99.64% homology to the chicken PrP gene and 46.0% and 42.1% similarity to the mammalian PrP genes, respectively. The structural features of all known mammalian and avian PrPs, including N-terminal signal peptides, tandem repeats, conserved hydrophobic region, disulfide bridges and glycoinositol phospholipid anchor, were also found in peacock and parakeet PrPs. The parakeet and peacock PrPs, however, differed in the hexarepeat region, with the peacock having six and the parakeet having seven hexarepeats. The phylogenetic analysis showed that the PrP genes in 52 species were clustered into 2 distinct lineages, the avian and the mammalian. The peacock and parakeet PrP genes belonged to the same lineage but the peacock PrP was sub-classed with the pigeon PrP and the parakeet PrP was sub-classed with the duck and chicken PrPs. The present work added two more species data to the collection of the PrP genes and supported the previous findings that the PrP genes are highly conserved across species.
Collapse
Affiliation(s)
- Jian-Min Yang
- National Animal Transmissible Spongiform Encephalopathies Laboratory, College of Veterinary Medicine, China Agricultural University, 100094, Beijing, People's Republic of China
| | | | | | | | | | | | | |
Collapse
|